高一数学指数函数9

合集下载

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇

《指数函数》的优秀教案最新9篇高一数学《指数函数》优秀教案篇一我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。

我将尝试运用新课标的理念指导本节课的教学。

新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

一、教材分析1、教材的地位和作用:函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。

本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。

因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

二、教学目标分析基于对教材的理解和分析,我制定了以下的教学目标:1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的'能力。

3、情感目标(可持续性目标):通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

三、教法学法分析1、教学策略:首先从实际问题出发,激发学生的学习兴趣。

第二步,学生归纳指数的图像和性质。

第三步,典型例题分析,加深学生对指数函数的理解。

2、教学:贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况,本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

高一数学上册第二章--指数函数知识点及练习题(含答案)

高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。

人教版高一数学第二章指数函数知识点小结

人教版高一数学第二章指数函数知识点小结

人教版高一数学第二章指数函数知识点小结
人教版高一数学第二章指数函数知识点小结
新高一数学第二章的内容是基本初等函数,下面是查字典数学网整理的第二章指数函数知识点,请大家学习。

(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(n th root),其中 1,且 *.
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radical exponent),叫做被开方数(radicand).
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号- 表示.正的次方根与负的次方根可以合并成 ( 0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.
3.实数指数幂的运算性质
纵坐标都大于1
图象上升趋势是越来越陡图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或 ;
(2)若,则 ; 取遍所有正数当且仅当 ;
(3)对于指数函数,总有 ;
(4)当时,若,则 ;
第二章指数函数知识点的全部内容就是这些,查字典数学网预祝大家在新学期取得更好的成绩。

高一数学指数函数知识点

高一数学指数函数知识点

高一数学指数函数知识点在高中数学课程中,指数函数是一个重要的内容。

它涉及到许多基本概念和重要技巧,对于学生的数学能力和思维发展起着至关重要的作用。

本文将对高一数学中的指数函数知识点进行深入探讨和分析,帮助学生更好地理解和掌握这一内容。

一、指数与幂指数函数是建立在指数与幂的基础上的。

在学习指数函数之前,我们首先需要了解指数与幂的概念。

指数是幂运算的一种表示方式,表示重复相乘的次数。

例如,3的2次方表示3乘以自身2次,即3的2次方等于9。

幂是由底数和指数组成,底数表示要进行连乘的数,指数表示连乘的次数。

指数函数可以表示为y=a^x,其中a为正数且不等于1,x为指数,y为函数值。

这里的a被称为底数,它可以是任意正数,但通常在数学中我们使用的是自然常数e或者是底数为10的对数函数。

指数函数是一种以指数为自变量的函数,它呈现出自变量指数不断变化而函数值迅速增长或快速衰减的特点。

指数函数的图像一般呈现出两种特点:当底数大于1时,随着自变量的增大,函数值呈指数增长;当底数小于1但大于0时,随着自变量的增大,函数值呈指数衰减。

这是因为指数函数的增长幅度与自变量指数呈指数关系。

指数函数还具有以下重要性质:1. 基本性质:指数函数具有连续性、互为反函数关系、图像经过第一象限、有界性等基本特点。

2. 单调性:指数函数在定义域内单调递增或单调递减,与指数的大小有关。

底数大于1时,指数函数单调递增;底数小于1时,指数函数单调递减。

3. 极限性质:指数函数的极限与底数的大小关系密切相关。

当底数a大于1时,指数函数在正无穷大时趋于正无穷大;当底数a小于1且大于0时,在正无穷大时趋于0。

指数函数具有一系列重要的运算性质,这些性质的掌握对于解题非常有帮助:1. 指数和的性质:a^m * a^n = a^(m+n),即相同底数的指数相加等于底数不变的指数。

2. 指数差的性质:a^m / a^n = a^(m-n),即相同底数的指数相减等于底数不变的指数。

数学高一指数函数知识点

数学高一指数函数知识点

数学高一指数函数知识点在高中数学中,指数函数是一个非常重要且常见的函数类型。

它以指数为变量并与常数底数相乘,具有许多特殊的性质和应用。

本文将围绕高一学生学习指数函数的知识点展开讨论。

1. 基本概念指数函数的定义如下:y = a^x,其中a是底数,x是指数。

指数函数的定义域为实数集,值域为正实数集。

底数a可以是任何正数,但在学习指数函数的初期,常见的底数为2和10。

对于底数为2的指数函数,其函数图像呈现出逐渐增长的特征。

当指数为正偶数时,函数值呈现出平滑增长的趋势;当指数为负偶数时,函数值呈现出平滑下降的趋势。

对于底数为10的指数函数,其函数图像更为陡峭,当指数增大时,函数值也呈现出更大的变化。

2. 指数函数的性质2.1 指数函数的奇偶性对于指数函数y = a^x,当底数a为正时,指数函数是奇函数;当底数a为负时,指数函数是偶函数。

这是因为负底数的指数函数存在奇数个负数解,而正底数的指数函数则不存在负数解。

2.2 指数函数的单调性当底数a大于1时,指数函数为递增函数;当底数a在0和1之间时,指数函数为递减函数。

这是因为当底数大于1时,指数函数的值随着指数的增大而增大;当底数在0和1之间时,指数函数的值随着指数的增大而减小。

2.3 指数函数的极限对于正底数a和实数x,当x趋近于无穷大时,指数函数的极限为正无穷;当x趋近于负无穷大时,指数函数的极限为零。

这是因为指数函数随着指数的增大,其函数值也呈现出更大的变化。

3. 指数函数的应用指数函数在实际生活中有着广泛的应用,下面介绍两个常见的应用场景。

3.1 货币利率计算指数函数可以用于计算货币的复利增长。

当我们将存款存入银行,并以固定的利率计算复利时,我们可以使用指数函数来计算未来的金额。

复利计算公式可以表示为:A = P(1+r/n)^(nt),其中A是最终金额,P是本金,r是利率,n是复利次数,t是时间。

可以看出,指数函数在其中起到了关键的作用。

3.2 爆炸与核衰变指数函数在描述爆炸和核衰变等过程中也具有重要的作用。

高一数学指数和函数知识点

高一数学指数和函数知识点

高一数学指数和函数知识点引言:数学是一门抽象而又实用的学科,在我们的日常生活中无处不在。

数学中的指数和函数是我们学习数学的基础知识点之一,它们具有广泛的应用和重要性。

本文将分析高一数学中涉及指数和函数的几个重要知识点,并探讨其实际应用。

1. 指数的基本概念与运算:在数学中,指数是表示一个数被乘若干次的方法。

例如,2²表示2被乘以2,即2的平方。

指数具有重要的运算法则,如指数相乘时底数相同,则指数相加。

此外,指数还可以是分数或负数,分别代表幂次的开平方和倒数。

2. 指数函数的性质与图像:指数函数是以指数为自变量的函数。

常见的指数函数有f(x) = a^x,其中a为底数,x为指数。

指数函数具有独特的性质,如当底数大于1时,函数呈现增长趋势;当底数介于0和1之间时,函数呈现衰减趋势。

指数函数的图像通常具有一条曲线,并根据底数的不同而呈现不同的形状。

3. 对数的定义与运算:对数是指一个数在某个底数下所得到的指数。

例如,log₂8表示以2为底数,求得8的对数,结果为3。

对数也具有运算法则,如对数相除时,底数相同,则指数相减。

4. 对数函数的性质与图像:对数函数是以对数为自变量的函数。

常见的对数函数有f(x) = logₐx,其中a为底数,x为对数。

对数函数具有特殊的性质,如当底数大于1时,函数呈现增长趋势;当底数介于0和1之间时,函数呈现衰减趋势。

对数函数的图像通常具有一条曲线,并根据底数的不同而呈现不同的形状。

5. 指数方程与对数方程的求解:指数方程和对数方程是数学中常见的方程类型,它们的求解对于解决实际问题非常重要。

求解指数方程和对数方程的关键是运用指数和对数的运算法则,将方程转化为简化形式后进行求解。

6. 指数增长与复利计算:指数增长是指以某个固定比例增长的现象,如人口增长、物质衰变等。

在实际生活中,我们常常需要计算指数增长的结果,这时可以借助指数函数的概念进行计算。

特别是在金融领域,复利的概念与指数增长密切相关。

高一数学指数函数的概念、图象与性质(解析版)

高一数学指数函数的概念、图象与性质(解析版)

专题32 指数函数的概念、图象与性质1.指数函数的定义一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R. 温馨提示:指数函数解析式的3个特征: (1)底数a 为大于0且不等于1的常数. (2)自变量x 的位置在指数上,且x 的系数是1. (3)a x 的系数是1.2.指数函数的图象和性质a 的范围a >10<a <1图象性质定义域 R 值域(0,+∞)过定点 (0,1),即当x =0时,y =1单调性 在R 上是增函数在R 上是减函数奇偶性 非奇非偶函数对称性函数y =a x 与y =a -x 的图象关于y 轴对称(1)底数的大小决定了图象相对位置的高低:不论是a >1,还是0<a <1,在第一象限内底数越大,函数图象越靠近y 轴.当a >b >1时,①若x >0,则a x >b x >1;②若x <0,则1>b x >a x >0. 当1>a >b >0时,①若x >0,则1>a x >b x >0;②若x <0,则b x >a x >1. (2)指数函数的图象都经过点(0,1),且图象都在x 轴上方.(3)当a >1时,x →-∞,y →0;当0<a <1时,x →+∞,y →0.(其中“x →+∞”的意义是“x 趋近于正无穷大”)题型一 指数函数的概念1.下列各函数中,是指数函数的是( )A .y =(-3)xB .y =-3xC . y =3x -1 D .y =⎝⎛⎭⎫13x [解析]由指数函数的定义知a >0且a ≠1,故选D. 2.下列函数一定是指数函数的是( )A .y =2x +1 B .y =x 3 C .y =3·2xD .y =3-x[解析]由指数函数的定义可知D 正确. 3.下列函数中,指数函数的个数为( )①y =⎝⎛⎭⎫12x -1;②y =a x (a >0,且a ≠1);③y =1x;④y =⎝⎛⎭⎫122x -1. A .0个 B .1个 C .3个D .4个[解析]由指数函数的定义可判定,只有②正确.[答案] B 4.下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3. 其中,指数函数的个数是( ) A .0 B .1 C .2D .3[解析]形如“y =a x (a >0,且a ≠1)”的函数为指数函数,只有③符合,选B. 5.下列函数中,是指数函数的个数是( )①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0[解析] (1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数,所以不是指数函数; ③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x 前的系数是2,而不是1,所以不是指数函数,故选D. 6.指出下列哪些是指数函数.(1)y =4x ;(2)y =x 4;(3)y =-4x ;(4)y =(-4)x ;(5)y =πx ;(6)y =4x 2;(7)y =x x ;(8)y =(2a -1)x ⎝⎛⎭⎫a >12,且a ≠1. [解析] (2)是四次函数;(3)是-1与4x 的乘积;(4)中底数-4<0;(6)是二次函数;(7)中底数x 不是常数. 它们都不符合指数函数的定义,故不是指数函数.综上可知,(1)(5)(8)是指数函数. 7.已知函数f (x )=(2a -1)x 是指数函数,则实数a 的取值范围是________.[解析]由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1,所以实数a 的取值范围是⎝⎛⎭⎫12,1∪(1,+∞). 8.函数y =(a -2)2a x 是指数函数,则( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1[解析]由指数函数的概念可知,⎩⎪⎨⎪⎧(a -2)2=1,a >0,a ≠1,得a =3.9.函数f (x )=(m 2-m +1)a x (a >0,且a ≠1)是指数函数,则m =________. [解析]∵函数f (x )=(m 2-m +1)a x 是指数函数,∴m 2-m +1=1,解得m =0或1. 10.若函数y =(a 2-4a +4)a x 是指数函数,则a 的值是( )A .4B .1或3C .3D .1[解析]由题意得⎩⎪⎨⎪⎧a >0,a ≠1,a 2-4a +4=1,解得a =3,故选C.11.若函数f (x )=(a 2-2a +2)(a +1)x 是指数函数,则a =________. [解析]由指数函数的定义得⎩⎪⎨⎪⎧a 2-2a +2=1,a +1>0,a +1≠1,解得a =1.12.指数函数f (x )=a x 的图象经过点(2,4),则f (-3)的值是________. [解析]由题意知4=a 2,所以a =2,因此f (x )=2x ,故f (-3)=2-3=18.13.已知函数f (x )=a x +b (a >0,且a ≠1),经过点(-1,5),(0,4),则f (-2)的值为________.[解析]由已知得⎩⎪⎨⎪⎧a -1+b =5,a 0+b =4,解得⎩⎪⎨⎪⎧a =12,b =3,所以f (x )=⎝⎛⎭⎫12x+3,所以f (-2)=⎝⎛⎭⎫12-2+3=4+3=7. 14.已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. [解析]设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2, 所以f (-2)=3-2=19.15.若函数f (x )是指数函数,且f (2)=9,则f (-2)=________,f (1)=________. [解析]设f (x )=a x (a >0,且a ≠1),∵f (2)=9,∴a 2=9,a =3,即f (x )=3x . ∴f (-2)=3-2=19,f (1)=3.16.若点(a,27)在函数y =(3)x 的图象上,则a 的值为( )A. 6 B .1 C .2 2D .0[解析]选A 点(a,27)在函数y =(3)x 的图象上,∴27=(3)a , 即33=3a 2,∴a2=3,解得a =6,∴a = 6.故选A.17.已知函数f (x )=⎝⎛⎭⎫12ax ,a 为常数,且函数的图象过点(-1,2),则a =________,若g (x )=4-x-2, 且g (x )=f (x ),则x =________.[解析]因为函数的图象过点(-1,2),所以⎝⎛⎭⎫12-a=2,所以a =1,所以f (x )=⎝⎛⎭⎫12x , g (x )=f (x )可变形为4-x -2-x -2=0,解得2-x =2,所以x =-1. 18.已知f (x )=2x +12x ,若f (a )=5,则f (2a )=________.[解析]因为f (x )=2x +12x ,f (a )=5,则f (a )=2a +12a =5.所以f (2a )=22a +122a =(2a )2+⎝⎛⎭⎫12a 2=⎝⎛⎭⎫2a +12a 2-2=23. 19.若f (x )满足对任意的实数a ,b 都有f (a +b )=f (a )·f (b )且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2020)f (2019)=( )A .1010B .2020C .2019D .1009[解析]不妨设f (x )=2x ,则f (2)f (1)=f (4)f (3)=…=f (2020)f (2019)=2,所以原式=1010×2=2020.题型二 指数函数的图象及其应用1.y =⎝⎛⎭⎫34x的图象可能是( )[解析]0<34<1且过点(0,1),故选C.2.函数y =3-x 的图象是( )A B C D[解析]∵y =3-x=⎝⎛⎭⎫13x,∴B 选项正确.3.函数y =2-|x |的大致图象是( )[解析]y =2-|x |=⎩⎪⎨⎪⎧2-x ,x ≥0.2x ,x <0,画出图象,可知选C. 4.函数y =a -|x |(0<a <1)的图象是( )A B C D[解析]y =a-|x |=⎝⎛⎭⎫1a |x|,易知函数为偶函数,∵0<a <1,∴1a>1,故当x >0时,函数为增函数,当x <0时,函数为减函数,当x =0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A. 5.函数y =-2-x 的图象一定过第________象限.[解析]y =-2-x =-⎝⎛⎭⎫12x 与y =⎝⎛⎭⎫12x 关于x 轴对称,一定过第三、四象限. 6.函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0[解析]从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看, 是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0. 7.已知0<m <n <1,则指数函数①y =m x ,②y =n x 的图象为( )[解析]由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A 、B ,作直线x =1与两个曲线相交, 交点在下面的是函数y =m x 的图象,故选C.8.若a >1,-1<b <0,则函数y =a x +b 的图象一定在( )A .第一、二、三象限B .第一、三、四象限C .第二、三、四象限D .第一、二、四象限[解析]A,∵a >1,且-1<b <0,故其图象如图所示.]9.若函数y =a x +b -1(a >0,且a ≠1)的图象经过第二、三、四象限,则一定有( )A .0<a <1,且b >0B .a >1,且b >0C .0<a <1,且b <0D .a >1,且b <0[解析]函数y =a x +b -1(a >0,且a ≠1)的图象是由函数y =a x 的图象经过向上或向下平移而得到的,因其图象不经过第一象限,所以a ∈(0,1).若经过第二、三、四象限,则需将函数y =a x (0<a <1)的图象向下平移至少大于1个单位长度,即b -1<-1⇒b <0.故选C.10.若函数y =a x +m -1(a >0)的图象经过第一、第三和第四象限,则( )A .a >1B .a >1,且m <0C .0<a <1,且m >0D .0<a <1[解析]选B,y =a x (a >0)的图象在第一、二象限内,欲使y =a x +m -1的图象经过第一、三、四象限,必须将y =a x 向下移动.当0<a <1时,图象向下移动,只能经过第一、二、四象限或第二、三、四象限,故只有当a >1时,图象向下移动才可能经过第一、三、四象限.当a >1时,图象向下移动不超过一个单位时,图象经过第一、二、三象限,向下移动一个单位时,图象恰好经过原点和第一、三象限,欲使图象经过第一、三、四象限,则必须向下平移超过一个单位,故m -1<-1,所以m <0,故选B. 11.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )[解析]当a >1时,函数f (x )=a x 单调递增,当x =0时,g (0)=a >1,此时两函数的图象大致为选项A. 12.二次函数y =ax 2+bx 与指数函数y =⎝⎛⎭⎫b a x的图象可能是( )[解析]二次函数y =a ⎝⎛⎭⎫x +b 2a 2-b 24a ,其图象的顶点坐标为⎝⎛⎭⎫-b 2a ,-b 24a ,由指数函数的图象知0<ba<1, 所以-12<-b 2a <0,再观察四个选项,只有A 中的抛物线的顶点的横坐标在-12和0之间.13.已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()[解析]由函数f(x)=(x-a)(x-b)(其中a>b)的图象可知0<a<1,b<-1,所以函数g(x)=a x+b是减函数,排除选项C、D;又因为函数图象过点(0,1+b)(1+b<0),故选A.14.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系为()A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c[解析](1)解法一:由图象可知③④的底数必大于1,①②的底数必小于1.作直线x=1,在第一象限内直线x=1与各曲线的交点的纵坐标即各指数函数的底数,则1<d<c,b<a<1,从而可知a,b,c,d与1的大小关系为b<a<1<d<c.解法二:根据图象可以先分两类:③④的底数大于1,①②的底数小于1,再由③④比较c,d的大小,由①②比较a,b的大小.当指数函数的底数大于1时,图象上升,且底数越大时图象向上越靠近y轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近x轴.15.方程|2x-1|=a有唯一实数解,则a的取值范围是________.[解析]作出y=|2x-1|的图象,如图,要使直线y=a与图象的交点只有一个,∴a≥1或a=0.16.函数y=a x-3+3(a>0,且a≠1)的图象过定点________.[解析]因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).17.函数y=2a x+3+2(a>0,且a≠1)的图象过定点________.[解析]令x+3=0得x=-3,此时y=2a0+2=2+2=4.即函数y=2a x+3+2(a>0,且a≠1)的图象过定点(-3,4).18.当a>0,且a≠1时,函数f(x)=a x+1-1的图象一定过点()A.(0,1) B.(0,-1)C .(-1,0)D .(1,0)[解析] 当x =-1时,显然f (x )=0,因此图象必过点(-1,0).19.已知函数y =2a x -1+1(a >0且a ≠1)恒过定点A (m ,n ),则m +n =( )A .1B .3C .4D .2[解析]选C,由题意知,当x =1时,y =3,故A (1,3),m +n =4. 20.函数y =a 2x +1+1(a >0,且a ≠1)的图象过定点________. [解析]令2x +1=0得x =-12,y =2,所以函数图象恒过点⎝⎛⎭⎫-12,2. 21.若函数y =2-|x |-m 的图象与x 轴有交点,则( )A .-1≤m <0B .0≤m ≤1C .0<m ≤1D .m ≥0[解析]易知y =2-|x |-m =⎝⎛⎭⎫12|x |-m .若函数y =2-|x |-m 的图象与x 轴有交点,则方程⎝⎛⎭⎫12|x |-m =0有解, 即m =⎝⎛⎭⎫12|x |有解.∵0<⎝⎛⎭⎫12|x |≤1,∴0<m ≤1. 22.已知f (x )=2x 的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到:(1)y =2x +1;(2)y =2x -1;(3)y =2x +1;(4)y =2-x ;(5)y =2|x |. [解析] (1)y =2x +1的图象是由y =2x 的图象向左平移1个单位得到.(2)y =2x-1的图象是由y =2x 的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x 的图象向上平移1个单位得到.(4)∵y =2-x 与y =2x 的图象关于y 轴对称,∴作y =2x 的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x 的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.23.已知函数f (x )=a x +b (a >0,且a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的值; (2)若f (x )的图象如图②所示,求a ,b 的取值范围;(3)在(1)中,若|f (x )|=m 有且仅有一个实数根,求m 的取值范围.[解析] (1)f (x )的图象过点(2,0),(0,-2),所以⎩⎪⎨⎪⎧a 2+b =0,a 0+b =-2,又因为a >0,且a ≠1,所以a =3,b =-3.(2)f (x )单调递减,所以0<a <1,又f (0)<0.即a 0+b <0,所以b <-1. 故a 的取值范围为(0,1),b 的取值范围为(-∞,-1).(3)画出|f (x )|=|(3)x -3|的图象如图所示,要使|f (x )|=m 有且仅有一个实数根, 则m =0或m ≥3.故m 的取值范围为[3,+∞)∪{0}.题型三 指数函数的定义域与值域1.求下列函数的定义域和值域:(1)y =1-3x ;(2)y =21x -4 ; (3)y =⎝⎛⎭⎫23-|x | ; (4)y =⎝⎛⎭⎫12x 2-2x -3;(5)y =4x +2x +1+2. [解析] (1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0, 故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1, 所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)要使函数式有意义,则x -4≠0,解得x ≠4. 所以函数y =21x -4的定义域为{x |x ≠4}.因为1x -4≠0,所以21x -4 ≠1,即函数y =21x -4 的值域为{y |y >0,且y ≠1}.(3)要使函数式有意义,则-|x |≥0,解得x =0.所以函数y =⎝⎛⎭⎫23-|x |的定义域为{x |x =0}.因为x =0,所以⎝⎛⎭⎫23-|x | =⎝⎛⎭⎫230=1,即函数y =⎝⎛⎭⎫23-|x |的值域为{y |y =1}. (4)定义域为R.∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (5)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R. 因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2, 即函数y =4x +2x +1+2的值域为(2,+∞). 2.(1)求函数y =⎝⎛⎭⎫132x -的定义域与值域;(2)求函数y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,x ∈[0,2]的最大值和最小值及相应的x 的值. [解析] (1)由x -2≥0,得x ≥2,所以定义域为{x |x ≥2}.当x ≥2时,x -2≥0, 又因为0<13<1,所以y =⎝⎛⎭⎫13x -2的值域为{y |0<y ≤1}.(2)∵y =⎝⎛⎭⎫14x -1-4·⎝⎛⎭⎫12x +2,∴y =4·⎝⎛⎭⎫14x -4·⎝⎛⎭⎫12x +2.令m =⎝⎛⎭⎫12x ,则⎝⎛⎭⎫14x =m 2. 由0≤x ≤2,知14≤m ≤1.∴f (m )=4m 2-4m +2=4⎝⎛⎭⎫m -122+1. ∴当m =12,即当x =1时,f (m )有最小值1;当m =1,即x =0时,f (m )有最大值2.故函数的最大值是2,此时x =0,函数的最小值为1,此时x =1. 3.函数y =2x -1的定义域是( )A .(-∞,0)B .(-∞,0]C .[0,+∞)D .(0,+∞)[解析]由2x -1≥0,得2x ≥20,∴x ≥0.[答案] C 4.函数y =1-⎝⎛⎭⎫12x的定义域是________.[解析]由1-⎝⎛⎭⎫12x≥0得⎝⎛⎭⎫12x ≤1=⎝⎛⎭⎫120,∴x ≥0,∴函数y =1-⎝⎛⎭⎫12x的定义域为[0,+∞).5.若函数y =a x -1的定义域是(-∞,0],则a 的取值范围为( )A .a >0B .a <1C .0<a <1D .a ≠1[解析]由a x -1≥0,得a x ≥a 0.∵函数的定义域为(-∞,0],∴0<a <1.6.若函数f (x )=a x -a 的定义域是[1,+∞),则a 的取值范围是( ) A .[0,1)∪(1,+∞) B .(1,+∞) C .(0,1)D .(2,+∞)[解析]∵a x -a ≥0,∴a x ≥a ,∴当a >1时,x ≥1.故函数定义域为[1,+∞)时,a >1. 7.y =2x ,x ∈[1,+∞)的值域是( )A .[1,+∞)B .[2,+∞)C .[0,+∞)D .(0,+∞)[解析]y =2x 在R 上是增函数,且21=2,故选B. 8.函数y =16-4x 的值域是( )A .[0,+∞)B .[0,4]C .[0,4)D .(0,4)[解析]要使函数有意义,须满足16-4x ≥0.又因为4x >0,所以0≤16-4x <16, 即函数y =16-4x 的值域为[0,4).9.函数y =⎝⎛⎭⎫12x(x ≥8)的值域是( )A .R B.⎝⎛⎦⎤0,1256 C.⎝⎛⎦⎤-∞,1256 D.⎣⎡⎭⎫1256,+∞[解析]因为y =⎝⎛⎭⎫12x 在[8,+∞)上单调递减,所以0<⎝⎛⎭⎫12x≤⎝⎛⎭⎫128=1256. 10.函数y =1-2x ,x ∈[0,1]的值域是( )A .[0,1]B .[-1,0] C.⎣⎡⎦⎤0,12 D.⎣⎡⎦⎤-12,0 [解析]∵0≤x ≤1,∴1≤2x ≤2,∴-1≤1-2x ≤0,选B.11.已知函数y =⎝⎛⎭⎫13x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.[解析]∵y =⎝⎛⎭⎫13x 在R 上为减函数,∴m =⎝⎛⎭⎫13-1=3,n =⎝⎛⎭⎫13-2=9,故m +n =12. 12.函数y =⎝⎛⎭⎫1222x x -+的值域是________. [解析]设t =-x 2+2x =-(x 2-2x )=-(x -1)2+1≤1,∴t ≤1.∵⎝⎛⎭⎫12t ≥⎝⎛⎭⎫121=12,∴函数值域为⎣⎡⎭⎫12,+∞. 13.函数y =⎝⎛⎭⎫12x 2-1的值域是________.[解析]∵x 2-1≥-1,∴y =⎝⎛⎭⎫12x 2-1≤⎝⎛⎭⎫12-1=2,又y >0,∴函数值域为(0,2].14.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f (x )的值域是________. [解析]由x <0,得0<2x <1;由x >0,∴-x <0,0<2-x <1,∴-1<-2-x <0,∴函数f (x )的值域为(-1,0)∪(0,1).15.已知函数f (x )=a x -1(x ≥0)的图象经过点⎝⎛⎭⎫2,12,其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f (x )(x ≥0)的值域.[解析](1)∵f (x )的图象过点⎝⎛⎭⎫2,12,∴a 2-1=12,则a =12. (2)由(1)知,f (x )=⎝⎛⎭⎫12x -1,x ≥0.由x ≥0,得x -1≥-1,于是0<⎝⎛⎭⎫12x -1≤⎝⎛⎭⎫12-1=2, 所以函数y =f (x )(x ≥0)的值域为(0,2].16.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x 的值域是________. [解析]当x >0时,3x >3-x, f (x )=3-x ,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1; 当x <0时,3x <3-x ,f (x )=3x ,f (x )∈(0,1).综上, f (x )的值域是(0,1].17.函数f (x )=3x 3x +1的值域是________.[解析]数y =f (x )=3x 3x +1,即有3x =-y y -1,由于3x >0,则-y y -1>0,解得0<y <1,值域为(0,1). 18.若函数f (x )=a x -1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值.[解析]当0<a <1时,函数f (x )=a x -1(a >0,且a ≠1)为减函数,所以⎩⎪⎨⎪⎧ a 0-1=2,a 2-1=0无解. 当a >1时,函数f (x )=a x -1(a >0,且a ≠1)为增函数,所以⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2,解得a = 3. 综上,a 的值为 3.19.已知f (x )=9x -2×3x +4,x ∈[-1,2].(1)设t =3x ,x ∈[-1,2],求t 的最大值与最小值;(2)求f (x )的最大值与最小值.[解析](1)设t =3x ,∵x ∈[-1,2],函数t =3x 在[-1,2]上是增函数,故有13≤t ≤9, 故t 的最大值为9,t 的最小值为13. (2)由f (x )=9x -2×3x +4=t 2-2t +4=(t -1)2+3,可得此二次函数的对称轴为t =1,且13≤t ≤9, 故当t =1时,函数f (x )有最小值为3,当t =9时,函数f (x )有最大值为67.。

高一数学必修教学课件第三章指数函数的图像和性质

高一数学必修教学课件第三章指数函数的图像和性质
伸缩变换
对于形如$y = a^{bx}$的指数函数,可以通过伸缩基本指数函数的图像得到。具体地,当$b > 1$时,图像在纵 坐标方向上进行压缩,同时在横坐标方向上进行拉伸;当$0 < b < 1$时,图像在纵坐标方向上进行拉伸,同时 在横坐标方向上进行压缩。
图像特点总结与对比分析
指数函数图像特点
THANKS
感谢观看
阅读材料
推荐了一些与指数函数相 关的阅读材料,供学生课 后阅读,以拓宽视野。
下节课预习内容提示
下节课内容
简要介绍了下节课将要学 习的内容,包括指数函数 的运算性质和应用等。
预习要求
要求学生提前预习下节课 的内容,了解指数函数的 运算性质和应用场景,为 下节课的学习做好准备。
问题思考
提出了一些与下节课内容 相关的问题,引导学生进 行思考和预习。
解析
考察指数函数$y = 1.7^{x}$的单调性,由于底数大于1,函数在全体实数范围 内单调递增。因此,$1.7^{3} > 1.7^{2.5} > 1.7^{-1.5}$。
例题2
已知函数$f(x) = a^{x}(a > 0$且$a neq 1)$在区间$[-1,2]$上的最大值为4,最 小值为$m$,且函数$g(x) = (1 - 4m)sqrt{x}$在区间$[0, + infty)$上是单调函 数,求$a$和$m$的值。
明确任务要求
教师需要向学生明确任 务的要求,包括任务的 目标、完成时间、提交 方式等。
学生自主查阅资料及整理成果展示
1 2 3
学生自主查阅资料
学生可以利用图书馆、互联网等资源,自主查阅 与指数函数相关的资料,包括教材、参考书、学 术论文等。

高一数学:指数函数及其性质

高一数学:指数函数及其性质
高一数学:指数函数及其性质
目录
• 引言 • 指数函数的基本性质 • 指数函数的运算性质 • 指数函数的应用举例 • 指数函数的深入探究 • 复习与总结
01
引言
Chapter
指数函数的概念
指数函数是一种特殊的函数形式,形如$y=a^x$( $a>0$,$a≠1$)的函数叫做指数函数。
指数函数中的自变量$x$位于指数位置,而底数$a$是一 个大于0且不等于1的常数。
指数函数与对数函数的关系
01
互为反函数
指数函数和对数函数是一对互为反函数的函数,它们的图像关于直线
y=x对称。这意味着对于任意的x和y,如果y是指数函数的结果,那么x
就是对数函数的结果;反之亦然。
02
转换关系
通过指数函数和对数函数之间的转换关系,可以将一些复杂的问题简化
。例如,在解决与复利、放射性衰变等相关的问题时,可以利用对数性
02
掌握运算法则
熟练掌握指数运算法 则,并能够灵活运用 。
03
多做练习题
通过多做练习题来加 深对知识点的理解和 记忆,提高解题能力 。
04
及时复习总结
学习完一个知识点后 要及时复习总结,形 成自己的知识体系。
THANKS
感谢观看
,即(am)n=am×n。
幂的开方
对于指数函数的开方运算,一般需 先计算出指数函数的值再进行开方 运算,但也可通过换元法或其他技 巧进行简化计算。
复合幂运算
对于复杂的幂运算,如幂的乘方再 开方等,需根据运算优先级和结合 律进行计算,也可通过换元法或其 他技巧进行简化计算。
04
指数函数的应用举例
Chapter
指数函数的除法运算

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析

高一数学指数与指数函数试题答案及解析1.设,则的大小关系是().A.B.C.D.【解析】,,,因此.【考点】指数函数和对数函数的性质.2.若点在函数的图象上,则的值为.【答案】【解析】由点在函数的图象上得,所以,故应填入.【考点】指数函数及特殊角的三角函数.3.设,则下列不等式成立的是()A.若,则B.若,则C.若,则D.若,则【答案】A【解析】对于A,B考查函数f(x)=2x+2x,g(x)=2x+3x的单调性与图象:可知函数f(x)、g(x)在R上都单调递增,若2a+2a=2b+3b,则a>b,因此A正确;对于C,D分别考查函数u(x)=2x-2x,v(x)=2x-3x单调性与图象:当时,u′(x)<0,函数u(x)单调递减;当时,u′(x)>0,函数u(x)单调递增.故在x=取得最小值.当0<x<时,v′(x)<0,函数v(x)单调递减;当x>时,v′(x)>0,函数v (x)单调递增.故在x=取得最小值,据以上可画出图象.据图象可知:当2a-2a=2b-3b,a>0,b>0时,可能a>b或a<b.因此C,D不正确.综上可知:只有A正确.故答案为A.【考点】用导数研究函数的单调性和图象;命题的真假判断与应用.4.若,则()A.B.C.D.【答案】D【解析】由得,所以.【考点】指对数式的互化,指数运算法则.5.若函数的图像与轴有公共点,则的取值范围是()A.B.C.D.【答案】B【解析】函数与轴有公共点,即设函数,,有交点,函数如图: ,即,故选B.【考点】函数图像6.三个数的大小关系为()A.B.C.D.【答案】D【解析】;;。

所以,故D正确。

【考点】指数对数函数的单调性。

7.已知幂函数的图象过点,则.【答案】4【解析】因为为幂函数,所以设因为过点,所以本题易错点在将幂函数的定义写成指数函数的形式,即【考点】幂函数定义,指数的运算8.如图,在平面直角坐标系中,过原点O的直线与函数的图象交于A,B两点,过B作y轴的垂线交函数的图象于点C,若AC平行于y轴,则点A的坐标是.【答案】【解析】设,则,因为AC平行于y轴,所以,因此.又三点三点共线,所以由得,因此.【考点】指数函数运算,向量共线.9.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.10.我国大西北某地区荒漠化土地面积每年平均比上一年增长,专家预测经过年可能增长到原来的倍,则函数的图像大致为()【答案】D【解析】设初始年份的荒漠化土地面积为,则1年后荒漠化土地面积为,2年后荒漠化土地面积为,3年后荒漠化土地面积为,所以年后荒漠化土地面积为,依题意有即,,由指数函数的图像可知,选D.【考点】1.指数函数的图像与性质;2.函数模型及其应用.11.若,则下列结论正确的是()A.B.C.D.【答案】C【解析】指数函数、对数函数的底数大于1 时,函数为增函数,反之,为减函数,对于幂函数而言,当时,在上递增,当时,在上递减,而,所以,故选C.【考点】1.指数函数;2.对数函数;3.幂函数的性质.12.设函数,如果,求的取值范围.【答案】【解析】对分段函数需分情况讨论,再解指数及对数不等式时,需将实数转化为同底的指数或对数,然后根据指数、对数的单调性解不等式。

高一数学第9讲:指数运算与指数函数(教师版)

高一数学第9讲:指数运算与指数函数(教师版)

第9讲 指数运算与指数函数1.负分数指数幂1m nm naa-==m na ≠0,即a ≠0。

2.有理指数幂的运算性质:a r·a s=a r+s;(a r )s=a rs;(ab)r=a r b r,式中a >0,b >0,r 、s ∈Q 。

3.一般的,函数y=a x叫做指数函数,函数的定义域是实数集,值域是(0,+∞)。

例1 计算下列各式,并把结果化为只含正整数指数的形式(a 、b 均不等于0):(1)3-1232ab b a )(;(2)3-2--12-2-3b 9a b 3a -b a )(;(3)302-43-b a b -a b -a b a ⎥⎦⎤⎢⎣⎡++)()()()((a+b ≠0,a-b ≠0) 解析 (1)原式=23a 3+3b 2-3=8a 6b -1=68a b;(2)原式1232(2)2(1)(3)33aa b --+---+---=-=-;(3)原式=[(a+b)-3]3[(a-b)4+2]3=189()()a b a b -+例2 化简下列各式:(1)))((61-3121-1-2132-y x 65-y x 41-y5x ;(2)2121--1mm2m m +++解析 (1)原式=211117(1)()()332266654245xy y --------⨯⨯=; (2)原式=22121m m ++===。

例3 求值:(1)已知a 22-xx=+(常数),求-xx 88+的值;(2)已知x+y=12,xy=9且x ﹤y ,求21212121yx y-x +的值。

解析 (1)8x+8-x =(2x )3+(2-x )3=(2x +2-x )[(2x )2-(2x )(2-x )+(2-x )2]= (2x+2-x)[(2x+2-x )2-3(2x)(2-x)]=a(a 2-3)(2)原式=,∵(x-y)2=(x+y)2-4xy=108,又x <y ,∴x y -=-=3-。

高一指数函数的知识点

高一指数函数的知识点

高一指数函数的知识点指数函数是高一数学中重要的知识点之一,它在数学和实际问题中具有广泛的应用。

本文将介绍指数函数的定义、性质、图像以及解题方法,帮助同学们更好地理解和掌握这一知识点。

一、指数函数的定义指数函数可以用以下形式来表示:f(x) = a^x,其中 a 为常数且不等于1。

在这个定义中,x 是自变量,a 是底数,f(x) 是函数值。

二、指数函数的性质1. 定义域和值域:指数函数的定义域是所有实数,值域是正实数。

2. 连续性:指数函数在定义域内是连续的。

3. 单调性:当底数 a 大于 1 时,指数函数是递增的;当底数 a在 0 和 1 之间时,指数函数是递减的。

4. 渐近线:指数函数的图像在 x 轴的负半轴上有一条渐近线 y= 0,即 x 趋近于负无穷时,函数值趋近于 0。

三、指数函数的图像1. 底数大于 1:当底数 a 大于 1 时,指数函数的图像呈现上升趋势。

当 x 为正数时,函数值随着 x 增大而不断增大;当 x 为负数时,函数值随着 x 减小而趋近于 0。

2. 底数在 0 和 1 之间:当底数 a 在 0 和 1 之间时,指数函数的图像呈现下降趋势。

当 x 为正数时,函数值随着 x 增大而趋近于 0;当 x 为负数时,函数值随着 x 减小而不断增大。

四、指数函数的解题方法1. 指数函数的性质可以应用于解决各类实际问题,如人口增长、放射性衰变等。

2. 在求解指数函数的方程时,可以运用对数的性质将指数方程转化为对数方程,然后用对数的解题方法求解。

通过本文的介绍,我们可以看到指数函数具有独特的性质和图像特点,能够帮助我们更好地理解数学和解决实际问题。

指数函数在高一数学中占据重要的地位,掌握了指数函数的知识,同学们将能够更加轻松地应对相关题目和考试。

希望同学们通过学习和实践,能够深入理解指数函数,并且能够熟练地运用到实际的数学和生活中。

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结

高一指数函数知识点归纳总结指数函数是高中数学中重要的一部分内容,它在数学中具有广泛的应用和重要的理论基础。

对于高中一年级学生而言,理解和掌握指数函数的基本概念、性质和运算规律是非常重要和必要的。

本文将对高一指数函数相关的知识点进行归纳总结。

一、指数函数的基本概念指数函数是一个以底数为常数、指数为自变量的函数。

一般形式为f(x) = a^x,其中a为底数,x为指数。

在指数函数中,底数a必须是正数且不等于1。

指数函数具有以下特点:1. 当0 < a < 1时,指数函数呈递减趋势;2. 当a > 1时,指数函数呈递增趋势;3. 当a = 1时,指数函数为常函数,即f(x) = 1;4. 当x = 0时,指数函数的函数值始终为1。

二、指数函数的性质1. 指数函数的定义域为全体实数集R,值域为正实数集(0, +∞);2. 指数函数与指数运算有以下运算规律:a) a^m · a^n = a^(m+n);b) (a^m)^n = a^(mn);c) (ab)^n = a^n · b^n;d) (a/b)^n = a^n / b^n;3. 指数函数的导数为其本身的常数倍,即(f(x))' = k · f(x),其中k为常数。

三、指数函数的图像特点1. 当a > 1时,指数函数图像在原点上方,且逐渐随着x的增大而增长;2. 当0 < a < 1时,指数函数图像在原点下方,且逐渐随着x的增大而递减;3. 指数函数图像在x轴上有一个特殊点(0, 1),这是因为当x = 0时,指数函数的函数值始终为1。

四、指数函数的应用指数函数在实际问题中有广泛的应用,特别是在与增长、衰减和复利相关的情境中。

1. 增长问题:指数函数可以描述一种以固定速率增长的情况,如人口增长、细胞分裂等;2. 衰减问题:指数函数可以描述一种以固定速率衰减的情况,如放射性物质的衰减、药物在人体内的代谢等;3. 复利问题:指数函数可以描述一种连续的复利增长情况,如利息的复利计算、投资的回报率等。

高一数学指数函数的概念(中学课件201909)

高一数学指数函数的概念(中学课件201909)

例1.比较下列各组数的大小
(1)1.32.7 与1.32.5
(3) 2 3与1
(2)(
2
)
4 3
与(
2
)
3 2
2
2
说明:(1)构造函数并指明函数的单调区间及相应的单调性. (2)自变量的大小比较. (3)函数值的大小比较.
例2.比较下列各组数的大小.
(1) ( 1 )0.8与( 1 )1.8
值域为 0, ,都过点(0,1).
(2) a 1 时, f (x) a x 在定义域内为增函数; 0 a 1 时, f (x) a x 在定义域内为减函数.
(3) a 1 时,
x 0


y

1
0

a

1
时,
x

y

0 1
简单应用
利用指数函数单调性比大小.

虽复诸王之尊 自太和建号 谥文贞 肇谏曰 宰我对曰 岂能饶尔而怨我乎?游从自若 后王师南讨 退可以荣慰私门 常尽季冬;必能昭明《春秋》 尚亲而贵仁;子廓 询谋谘善 本期营起 又氐胡犯顺未恭 周季陵夷 "朕始学之日 后岁旱 轻财通侠 善之 臣学谢全经 子肇 如此 以本将军出为东青州 刺史 仆妾衣绫绮 后除扬烈将军 圣贤知其如此 而今无树 故不以草茅自疏 不虚然矣 多芳意也 而不著长世之制乎?事虽非理 而彪秉志信行 兆自汉初 朕实嘉其一至 卒 "《周礼》 入朝 裴 了不论有之与无也 会赦免 赐爵襄贲子 今之据者 经纶浩旷 直使明僧暠相对 议其定所 昼则樵薪供爨 拜 徐州别驾 "鸿遂与志交款往来 彭城太守 搢绅领袖 明根为五更 承天地之宝 犹自囗何者?引见 □东省 虽奔救是当 武皇以奉时拓业;而百姓之奢犹未革者 则修文

指数函数知识点高一上册

指数函数知识点高一上册

指数函数知识点高一上册指数函数是高中数学中的一个重要知识点,也是数学与实际问题结合的一个典型例子。

本文将围绕指数函数的定义、性质以及常见应用展开论述。

通过学习本文,读者可以对指数函数有一个全面而深入的理解。

一、指数函数的定义指数函数是以自然常数e为底的幂函数,记作y = a^x,其中a > 0且a≠1。

在指数函数中,a被称为底数,x被称为指数。

二、指数函数的性质1. 基本性质:指数函数的定义域为全体实数,值域为正实数。

2. 底数大于1时,指数函数是递增函数;底数介于0和1之间时,指数函数是递减函数。

3. 指数函数的图像在x轴上有一个水平渐近线y=0。

三、指数函数的图像特征指数函数的图像特征与底数的大小相关:1. 当底数a > 1时,指数函数的图像经过点(0,1),且随着x 的不断增大,图像逐渐趋近于x轴正半轴;2. 当0 < a < 1时,指数函数的图像经过点(0,1),且随着x的不断增大,图像逐渐趋近于x轴负半轴。

四、指数函数的常见应用1. 复利计算:指数函数常用于计算复利问题。

例如,一笔本金为P元,年利率为r,连续复利,n年后可得到的本利和为P(1+r)^n。

2. 自然增长和自然衰减:一些自然现象如细菌数量的增长和放射性物质的衰减,都可以用指数函数进行描述和分析。

3. 投资与财富增长:指数函数可用于描述投资增长的规律和财富的积累过程。

4. 电路中的电压和电流变化:指数函数可以用来描述电路中电压和电流随时间变化的规律。

五、指数函数的拓展应用除了上述常见应用外,指数函数还可以应用于更多领域:1. 生物学:描述生物种群的增长与衰减;2. 经济学:描述经济增长或衰退的模型;3. 物理学:描述衰变过程、弦的振动以及光强衰减等。

六、总结通过对指数函数的学习,我们了解了指数函数的定义、性质以及常见应用。

指数函数是数学与实际问题相结合的典型例子,在现实生活中有着广泛而重要的应用。

通过进一步深入研究指数函数,我们可以丰富数学知识,提高问题解决的能力。

高一指数函数整理知识点

高一指数函数整理知识点

高一指数函数整理知识点1. 指数函数的定义和性质- 指数函数的定义:指数函数是形如 f(x) = a^x 的函数,其中a 是一个实数且 a > 0,a ≠ 1,x 是实数变量。

- 指数函数的基本性质:- 当 a > 1 时,指数函数是递增的,图像从左下方向右上方延伸;- 当 0 < a < 1 时,指数函数是递减的,图像从左上方向右下方延伸;- 指数函数的图像都经过点 (0, 1),因为 a^0 = 1;- 指数函数在定义域内的值都是正数。

2. 指数函数的图像和特殊函数- 幂函数:指数函数中 a 为正整数时,被称为幂函数。

幂函数的图像是一条通过点 (0, 1) 的递增曲线。

- 指数函数的特殊情况:- 当 a = e (自然对数的底)时,指数函数称为自然指数函数,用符号 y = e^x 表示。

自然指数函数在数学和科学中具有重要的应用。

- 当 a = 2 时,指数函数称为二次函数,用符号 y = 2^x 表示。

二次函数是一种特殊的指数函数。

3. 指数函数的图像变化- 缩放变化:当 a > 1 时,指数函数的图像在 x 轴方向上收缩;当 0 < a < 1 时,指数函数的图像在 x 轴方向上拉伸。

- 平移变化:加入常数 d 时,指数函数的图像在 y 轴方向上平移 d 个单位,表示为 f(x) = a^x + d。

- 反转变化:若 a < 1,则指数函数的图像关于 y = 0 轴对称。

4. 指数函数的求导- 求导规则:对于指数函数 f(x) = a^x,其导数为 f'(x) = (ln a)* a^x。

- 导数性质:指数函数的导数是它自身的实数倍数,并且导数大于零,说明指数函数是递增的。

5. 指数函数的应用- 复利问题:指数函数常常用于解决与复利计算相关的问题。

复利公式为 A = P(1 + r/n)^(nt),其中 A 是最终金额,P 是本金,r是年利率,n 是计息次数,t 是时间。

高一必修一数学指数知识点

高一必修一数学指数知识点

高一必修一数学指数知识点在高一的数学课程中,指数是一个重要的概念和工具。

指数是数学中用来表示乘法的简化形式,常用于科学计数法、复利计算、指数函数等领域。

本文将探讨高一必修一数学课程中的指数知识点,以帮助同学们更深入地理解和掌握这一概念。

一、指数的基本概念指数是数学中用来表示乘法的一个重要概念。

在指数表示中,我们使用一个高于基线的小数字表示乘法中的重复几次,称之为指数。

例如,2³表示2乘以自身3次,即2的立方。

指数的一般形式可以表示为aⁿ,其中a称为底数,n称为指数。

在指数中,指数n表示底数a重复相乘的次数。

二、指数的基本运算在高一数学课程中,我们学习了指数的基本运算规则,包括指数幂次运算、指数相乘和指数相除。

对于指数幂次运算,我们有以下规则:1. 任何数的0次幂都是1,即a^0=1。

2. 对于同一个底数的两个指数相乘,我们可以将底数保持不变,指数相加,即a^m * a^n = a^(m+n)。

3. 对于同一个底数的两个指数相除,我们可以将底数保持不变,指数相减,即a^m / a^n = a^(m-n)。

4. 对于指数的指数,我们可以将指数相乘,即(a^m)^n =a^(m*n)。

三、指数的负指数与倒数在指数运算中,指数可以是负数。

一个数的负指数表示将其取倒数后,再按指数幂次运算。

例如,2⁻³表示2的倒数的立方,即1/(2³)。

指数的负指数规则如下:1. 一个数的负指数可以通过取倒数再按照正指数计算。

即a⁻ⁿ= 1/(aⁿ)。

2. 底数为0的数没有意义,因此0的任何负指数都是没有意义的。

四、指数方程与指数函数除了上述基本概念和运算,高一数学课程还涵盖了指数方程和指数函数的知识。

指数方程是含有指数项的方程,形式一般为aⁿ=b。

解指数方程的关键是将其转化为相等底数的指数表达式,然后通过等式的性质来解方程。

指数函数是一个以指数为自变量的函数,通常形式为y=aⁿ,其中a是常数,n是变量。

人教B版高一数学上学期第三单元:指数与指数函数 word文档资料

人教B版高一数学上学期第三单元:指数与指数函数 word文档资料

人教B版高一数学上学期第三单元:指数与指数函数 word文档资料人教b版高一数学上学期第三单元:指数与指数函数-word文档资料人民教育B版高中数学一学期3单元:索引和索引函数所容纳之物上学期《人的数学》B版高中数学单元3有四个主题。

为了帮助你学习,萧边上学期整理了《人民教育版》B版高中数学第3单元的知识点。

让我们看看!指数与指数函数一般地,形如y=a^x(a>0且a≠1)(x∈r)的函数叫做指数函数(exponentialfunction)。

也就是说以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。

人民教育B版高级数学卷1单元3指数和指数函数知识点对数和对数函数对数的定义:一般地,如果ax=n(a>0,且a≠1),那么数x叫做以a为底n的对数,记作x=logan,读作以a为底n的对数,其中a叫做对数的底数,n叫做真数。

通常,函数y=logax(a>0,a≠ 1)被称为对数函数,即以幂(实数)为自变量,指数为因变量,基数为常数的函数称为对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。

它实际上就是指数函数的反函数,可表示为x=ay。

因此指数函??数里对于a的规定,同样适用于对数函数。

人民教育B版高级数学卷1单元3知识点:对数和对数函数第1页幂函数一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

例如函数y=x0?、y=x1、y=x2、y=x-1(注:y=x-1=1/xy=x0时x≠0)等都是幂函数。

当α取非零的有理数时是比较容易理解的,而对于α取无理数时,初学者则不大容易理解了。

因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续性的极为深刻的知识。

高中第一学期数学知识点:幂函数的应用(二)一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。

高一数学知识点大全:指数函数

高一数学知识点大全:指数函数

高一数学知识点大全:指数函数
高一数学知识点大全:指数函数
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。

可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开业邀请函 https:///template/9.html
[单选,B型题]Ⅳ型超敏反应().A.中性粒细胞浸润B.单核-巨噬细胞浸润C.B淋巴细胞浸润D.嗜酸性粒细胞浸润E.Th2型淋巴细胞浸润 [单选]病人五心烦热,盗汗,口咽干燥,颧红,舌红少津,脉细数,此为()。A.里实热证B.里实寒证C.表实热证D.里虚热证E.表虚热证 [单选]患者女性,16岁,患白血病,长期用抗生素,护士在口腔评估的过程中,应特别注意观察口腔黏膜A.有无溃疡B.有无口臭C.口唇是否干裂D.有无真菌感染E.牙龈是否肿胀出血 [单选]《行政诉讼法》第55条规定,人民法院判决被告重新作出具体行政行为的,被告不得以同一事实和理由作出与原具体行政行为基本相同的具体行政为由判决撤销的B.人民法院以具体行政行为适用法律,法 [单选]下面哪部歌剧是瓦格纳的作品:()A.《茶花女》(威尔第)B.《纽伦堡的名歌手》C.《塞维利亚理发师》(罗西尼)D.《费加罗的婚礼》(莫扎特) [问答题]引起患病率升高的主要因素包括什么? [名词解释]保管期限 [单选]干线货物运输不是()货物运输。A.大运量B.快速C.短距离D.大范围 [单选]点的正投影与侧投影同在()。A.一条垂线上B.一条水平线上C.宽度相等 [问答题,简答题]什么是凝结水过冷度? [单选,A1型题]下列哪一项不符合复杂性高热惊厥的诊断标准()A.发作呈全身性,有时呈局限性发作B.惊厥持续时间常超过15minC.惊厥在24h内有反复发作D.发作后无神经系统异常E.发作后有暂时性麻痹 [单选,B1型题]小儿前囟闭合过早见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [单选,A2型题,A1/A2型题]呈小管结构,内含造牙本质细胞芽突的为()A.牙釉质B.牙本质C.牙骨质D.牙髓E.牙周膜 [单选,A1型题]全胃肠外营养的要求是()A.氮(g):热(kcal)比为1:(150~200)B.钾:氮之比为5mmol:1gC.定期补充脂肪乳剂D.氨基酸与葡萄糖同时滴注E.以上全对 [单选]()以社会利益和社会责任为最高法则,立足社会整体,以大多数人的意志和利益为重,属于社会本位法。A.民商法B.民法C.经济法D.行政法 [多选]我国开展建设项目环境影响评价的指导原则是()。A.落实科学发展观,贯彻循环经济理念,促进经济、社会与环境协调发展,构建和谐社会B.污染防治与经济保护并重C.节约能源、成本,实行环保生产D.谁污染,谁治理E.污染物达标排放,满足排放总量控制要求 [单选]护理质量管理的核心是()。A.计划组织B.质量控制C.人的观念D.患者的素质E.护士的素质 [问答题,简答题]矿井提升系统主要有哪几部分组成? [单选]好发于肥胖多汗者或糖尿病病人的腹股沟、会阴、腋窝、乳房下等皱褶部位,皮损为局部潮红、浸渍、糜烂,界限清楚,边缘附着鳞屑,外周常有散在炎性丘疹、丘疱疹及脓疱的是()A.口腔念珠菌病B.念珠菌性间擦疹C.慢性皮肤黏膜念珠菌病D.生殖器念珠菌病E.念珠菌性肉芽肿 [单选]肺结核间歇用药方案下列正确的是()A.隔日1次或每周3次B.每周2次C.每周1次D.两周3次E.两周1次 [单选]流行性斑疹伤寒多于何时出现皮疹()A.第1病日B.第2~3病日C.第4~5病日D.第8~10病日E.第11~14病日 [单选]调节仪表可分为模拟调节仪表、电动调节仪表、气动调节仪表、()以及数字调节仪表等。A、过程控制调节仪表B、就地调节仪表C、远传调节仪表D、手动调节仪表 [单选,A2型题,A1/A2型题]下列不是判断糖尿病治疗效果指标的是()。A.空腹血糖B.餐后血糖C.糖基化血浆白蛋白D.糖基化血红蛋白E.IA2、GAD-Ab [单选,A1型题]中兽医认为,五脏可归属于五行,其中肾属()A.木B.火C.土D.金E.水 [单选]红色看起来觉得温暖,蓝色看起来觉得清凉是感觉的()现象A.适应B.后象C.对比D.联觉 [单选]2004年修订的《传染病防治法》开始实施的时间为()A.1989年8月28日B.1995年12月1目C.2003年10月1日D.2004年8月28日E.2004年12月1日 [单选,A型题]咽假膜的形成提示下列哪种疾病()A.军团病B.李斯特菌病C.白喉D.艰难梭菌感染E.鹅口疮 [单选,A1型题]下列各项中,与休克定义不相符的是()。A.多种强烈的致病因素作用于机体引起的急性循环功能衰竭B.以生命器官缺血缺氧为主要特征C.以导致微循环灌注不足和细胞功能代谢障碍为主要表现D.非进行性发展E.组织氧及营养物质利用障碍 [单选,A1型题]对医师是"仁者"最准确的理解是()A.仁者爱人,爱病人B.医师应该精通儒学C.医师应该是伦理学家D.医师应该善于处理人际关系E.医师角色要求道德高尚 [多选]健康危险度评价是按一定的准则对暴露于某一特定环境条件下,该环境中的有毒有害物质或因素可能引起个人和群体产生某些有害健康效应的概率进行定性、定量评价。健康危险度评价的基本内容包括()A.危害鉴定B.接触时间评价C.污染来源鉴定D.危险度特征分析E.剂量-反应关系评 [单选]不符合温抗体型自身免疫性溶血性贫血的临床特征是()A.贫血B.黄疸C.脾肿大D.完全性抗体E.抗体为IgG型 [填空题]变频器的调速主要是通过改变电源的()、频率、()来改变电动机的转速。 [单选]在智力活动过程中,在认识和评价事物时产生的主观体验是()A.理智感B.美感C.激情D.道德线 [名词解释]团体旅客 [多选]某项目,建设单位甲公司在银行办理了在建工程抵押,银行同时要求建设单位提供保证人。保证方式没有约定。工程竣工后,甲建设单位无力偿还贷款5000万元,则银行有权()。A.直接与甲建设单位协议折价B.向法院起诉拍卖该工程项目后优先受偿C.直接变卖该工程项目D.直接转移 [填空题]客户价值的发掘是一个企业()的体现,他比之所谓以效率为目标的内部管理来说要重要得多 [单选,A4型题,A3/A4型题]男,30岁,既往发作性心悸史,2小时前突然心悸,伴有头晕、乏力、出汗来诊。体格检查:BP90/60mmHg,心脏无扩大,心率190次/分,节律不规则,第一心音强弱不等,各瓣膜听诊区未闻及心脏杂音。心电图检查:P波消失,QRS波群宽大畸形,节律不规则。对该患者 [单选]下列不属于情报分析内部意义的是()。A、对情报资料进行分类、登记、加工、整理和规范化表述B、对情报的合法性,情报来源的可靠性,情报的确实性,情报的秘密等级等进行判断C、可以产生新的情报D、为决策提供依据,利于处罚的正确作出 [单选,A2型题,A1/A2型题]支气管呼吸音的特点为()。A.声强调高,吸气相较呼气相短B.声强调高,吸气相较呼气相长C.声强调弱,吸气相较呼气相短D.声强调弱,吸气相较呼气相长E.吸气相与呼气相相似 [判断题]方法发明一般不能授予专利权。A.正确B.错误
相关文档
最新文档