微积分函数、极限、连续ppt
合集下载
《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
12
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,
观
x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,
观
x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x
微积分ppt课件
和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
数学分析课件
长度的计算
利用定积分可以计算曲线的长度,以及物体的周长。
06
高阶导数与高阶积分
高阶导数的计算与性质
高阶导数的计算方法
定义法:根据导数的定义,对函数进行多次求 导,适用于简单的函数。
莱布尼茨法则:利用已知的导数公式,通过递 推关系计算高阶导数,适用于较复杂的函数。
高阶导数的计算与性质
线性性质:若$f(x)$和$g(x)$的$n$阶导数存在 ,则$(a f+b g)^{(n)}=a f^{(n)}+b g^{(n)}$ 。
数学分析课件
目录
• 数学分析概述 • 数学分析的基本性质 • 极限理论及其应用 • 微分学及其应用 • 定积分及其应用 • 高阶导数与高阶积分 • 数学分析中的重要定理与问题
01
数学分析概述
定义与意义
定义
数学分析是研究函数、序列、极限、 微积分等概念与方法的分支,是数学 的基础学科。
意义
数学分析在数学领域中占据重要地位 ,为其他数学分支提供基础理论和工 具,也是许多实际应用领域的基础。
THANKS。
积分的基本性质
积分具有可加性、可减性、可乘性和可除性 。
积分的基本公式
积分的基本公式包括求导公式、微分公式、 乘积公式、幂函数公式等。
积分的方法
积分的方法包括换元法、分部积分法、有理 函数积分法等。
积分的应用:面积、体积、长度
面积的计算
利用定积分可以计算曲线下面积,以及平面图 形面积。
体积的计算
利用定积分可以计算旋转体的体积,以及立体 的体积。
分区求和法:将积分区间划分为若干小区间,在每个小 区间上应用牛顿-莱布尼茨公式计算积分,再求和得到 总积分值。
《函数的极限与连续》课件
示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。
专升本-高数一-PPT课件
例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x
)
1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足
故
x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn
极限与连续ppt
. . .. . . . .
...
分成若干充分小(长度无限接近零)曲线段, 这些曲线段也就无限接近(趋于)直线段. 据此,数学家找到一种用直线近似 代替曲线(以直代曲) 的处理曲线的方法,从而创立了微积分方法。
即: 先对曲线段无限细分; 再用直线来近似代替 曲线段(即以直代曲); 然后取极限(看无穷趋势)的数学方法, 我们称此为
同样可以看出,随着 n 的无限增大时, 上述其它数列的
无限变化趋势。
数列(2.3),即
{1} n
无限地接近常数0;
数列(2.4),即
{n} n 1
无限地接近常数1;
数列(2.5),即{2n} 无限增大;
数列(2.6),即{( 1) n } 不停地在1与-1之间摆动.
前四个数列(2.1)-(2.4)反映了一类数列的一
因为 12 +22 +
n2 =
1 (2n +1)n(n +1) 6
,所以
原式 limn1来自n(n(n
1)(2n
6n2
1)
)
lim
n
(n
1)(2n 6n2
1)
1
11
lim(1 )(2 )
6 n n
n
1 lim(1 1) lim(2 1) 1 .
6 n
bn )
lim
n
an
lim
n
bn
;
(2) (3)
lnim(an
bn
)
lim
n
an
lim
n
bn ;
若还满足 bn 0 ,且
微积分基本公式ppt课件
热力学
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
高等数学ppt课件
定积分的性质
定积分具有可加性、可积性、可微性等性质 。
定积分的应用
01
02
03
几何应用
定积分可以用于计算平面 图形和三维物体的面积和 体积,如矩形、圆形、球 体等。
物理应用
定积分可以用于计算变力 沿直线做功、液体压力等 物理问题。
经济应用
定积分可以用于计算经济 指标,如成本、收益、利 润等。
05
多重积分与向量分析
多重积分的概念与性质
多重积分的定义
多重积分是单变量积分概念的推广,它涉及多个变量 的积分。多重积分可以看作是对于每个变量进行积分 ,然后将结果相乘。
多重积分的性质
多重积分的性质包括积分的可加性、积分的可交换性、 积分的可结合性等。这些性质与单变量积分的性质类似 ,但需要考虑到多个变量的复杂性。
函数定义
函数是一种数学工具,它建立了数与数之间的对应关系,可以将一个数集中的每一个数唯一地映射到另一个数集中。 函数的性质包括定义域、值域、对应关系等。
函数的表示方法
函数的表示方法有表格法、图示法和解析法等,其中解析法是最常用的方法之一。解析法是通过数学表达式来表示函 数的关系。
函数的单调性
函数的单调性是指函数在某区间内的单调递增或单调递减的性质。单调函数具有连续性和可导性等性质 。
03
导数与微分
导数的定义与性质
总结词
导数是描述函数值随自变量改变速率的 方式,是函数局部性质的重要体现。
VS
详细描述
导数定义为函数在某一点的变化率,即函 数在这一点处切线的斜率。导数的基本性 质包括:(1)常数函数的导数为零;( 2)导函数在某点的极限就是原函数在该 点的导数值;(3)两个函数相加或相减 后的导数等于各自导数之和或之差;(4 )常数倍函数的导数等于该常数乘以原函 数的导数。
微积分--极限与连续 ppt课件
考虑当
x
,函数
y1 x
的变化情况
y
O
x
lim 1 0. x x
ppt课件
15
定义:对任意的正数,如果总存在一个正数X, 使得当 x >X时,f (x)-A < ,则称当x 时, f (x)以A为极限,记为 lim f (x)=A.
x
ppt课件
16
x 的理解:
10. x 情形 : lim f ( x) A x
ppt课件
35
§2.5 极限运算法则
一、极限运算法则
定理 设 lim f ( x) A,lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0.
记作 lim f ( x) A 或 x x0 0
f ( x0 0) A.
(
x
x
0
)
右极限 0, 0,使当x0 x x0 时,
恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0 ( x x0 )
注意 :{x 0 x x0 }
f ( x0 0) A.
x0时的极限,
记作
lim
x x0
f (x)=A.
" "定义
0, 0,使当0 x x0 时,恒有 f ( x) A .
注意 :{x 0 x x0 } { x 0 x x0 } { x x x0 0}
ppt课件
24
注意:1.函数极限与f ( x)在点x0是否有定义无关; 2.与任意给定的正数有关.
ppt课件
33
经济数学基础--微积分第一章
解 u , v 分别是中间变量,故 y u2 tan 2v tan 2x2 .
经济应用数学基础——微积分
第一章 第二节 第 12 页
极 限 的 概 念
极限的概念
• 1.2.1 数列的极限 • 1.2.2 函数的极限
经济应用数学基础——微积分
第一章 第二节
极
限
1 数列的极限
的 概
念
先给出数列的定义:在某一对应规则下,当 n(n N ) 依次取 1, 2, 3, , n, 时,对应的实
函数的自变量 x 是指 x 的绝对值无限增大,它包含以下两种情况: (1) x 取正值,无限增大,记作 x ; (2) x 取负值,它的绝对值无限增大(即 x 无限减小),记作 x .
定义1.2.3 : 如果当 x 无限增大(即 x )时,函数 f (x) 无限趋近于一个确定
的常数 A ,那么就称 f (x) 当 x 时存在极限 A ,称数 A为当 x 时函数 f (x) 的极限,
径.在上述领域中除去领域的中心点 a
称为点 a
的去心
领域,记为
0
U(a,
),
0
即 U(a,) x 0 x a , 如右图所示.
第 19 页
经济应用数学基础——微积分
第一章 第二节 极 限 的 概 念
注意:
在定义中,“设函数 f (x) 在点 x0 的某个去心领域内有定义”反映我们关心的 是函数 f (x) 在点 x0 附近的变化趋势,而不是 f (x) 在 x0 这一孤立点的情况.在定义 极限lim f (x) 时, f (x) 有没有极限,与f (x) 在点 x0 是否有定义并无关系.
例1.1.3 求函数 y 4x 1 的反函数. 解 由v 4x 1 ,可解得 x y 14 . 交换 x 和 y 的次序,得 y 14(x 1) ,
高等数学微积分教学ppt(2)
2、自变量趋于无穷大时函数的极限
本节内容 :
二、函数的极限
1、自变量趋于有限值时函数的极限
1).
时函数极限的定义
引例. 测量正方形面积.
面积为A )
边长为
(真值:
边长
面积
直接观测值
间接观测值
任给精度 ,
要求
确定直接观测值精度 :
定义1 . 设函数
在点
的某去心邻域内有定义 ,
当
时, 有
1.幂函数
2.指数函数
3.对数函数
4.三角函数
正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.
四. 初等函数
由常数及基本初等函数
否则称为非初等函数 .
例如 ,
并可用一个式子表示的函数 ,
例6. 求
解:
利用定理 4 可知
说明 : y = 0 是
的渐近线 .
内容小结
1). 无穷小与无穷大的定义
2). 无穷小与函数极限的关系
Th1
3). 无穷小与无穷大的关系
Th3
4). 无穷小的运算法则
Th4
Th5
二、 函数的间断点
一、 函数连续性的定义
函数的连续性与间断点
第一章
可见 , 函数
分析基础
函数
极限
连续
— 研究对象
— 研究方法
— 研究桥梁
函数、极限与连续
第一章
二、函数
一、集合
第一节
函数
元素 a 属于集合 M , 记作
本节内容 :
二、函数的极限
1、自变量趋于有限值时函数的极限
1).
时函数极限的定义
引例. 测量正方形面积.
面积为A )
边长为
(真值:
边长
面积
直接观测值
间接观测值
任给精度 ,
要求
确定直接观测值精度 :
定义1 . 设函数
在点
的某去心邻域内有定义 ,
当
时, 有
1.幂函数
2.指数函数
3.对数函数
4.三角函数
正弦函数
余弦函数
正切函数
余切函数
正割函数
余割函数
5.反三角函数
幂函数,指数函数,对数函数,三角函数和反三角函数统称为基本初等函数.
四. 初等函数
由常数及基本初等函数
否则称为非初等函数 .
例如 ,
并可用一个式子表示的函数 ,
例6. 求
解:
利用定理 4 可知
说明 : y = 0 是
的渐近线 .
内容小结
1). 无穷小与无穷大的定义
2). 无穷小与函数极限的关系
Th1
3). 无穷小与无穷大的关系
Th3
4). 无穷小的运算法则
Th4
Th5
二、 函数的间断点
一、 函数连续性的定义
函数的连续性与间断点
第一章
可见 , 函数
分析基础
函数
极限
连续
— 研究对象
— 研究方法
— 研究桥梁
函数、极限与连续
第一章
二、函数
一、集合
第一节
函数
元素 a 属于集合 M , 记作
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 , 就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学. 聪明在于学习 , 天才在于积累 . 学而优则用 , 学而优则创 .
邻域是一种特殊的区间。
点a的δ邻域
U (a, ) {x x a , x R}
δ δ
a -δ
a
a +δ
点a的空心邻域 U o (a, ) {x 0 x a , x R}
δ
a -δ a
δ
a +δ
右邻域 (a , a +δ),左邻域 (a -δ, a)
1.1.2
o x
1.1.4
奇偶性
函数的性质
设函数 y = f (x),x∈D,D是对称于原点的 数集 。若对D上任何 x , 如果 f (-x) = f (x),则称 y = f (x) 为偶函数; 偶函数的图像关于 y 轴对称,奇函数的图像 关于原点对称。
如果 f (-x) =-f (x),则称 y = f (x) 为奇函数。
1. 结论 “函数 y=3x+5 是无界函数” 正确否? 2. 结论 “函数 y=cosx 不是单调函数” 正确否?
3. 考察函数y=1/x 在 [1, +∞) 的单调性和有界性。
1. 设
且
时 证明 为奇函数 .
其中
a, b, c 为常数, 且
证: 令 t 1 , 则 x 1 , a f (1) b f (t ) ct t x t
1
哪些主要的科学问题呢?
有四种主要类型的问题.
Archimedes
2
第一类问题
已知物体移动的距离表为时间的函数的公式, 求物体在任意时刻的速度和加速度;反过来,已知 物体的加速度表为时间的函数的公式,求速度和距 离。
3
第一类问题
困难在于:十七世纪所涉及的速度和加速度每时 每刻都在变化。例如,计算瞬时速度,就不能象计算 平均速度那样,用运动的时间去除移动的距离,因为 在给定的瞬刻,移动的距离和所用的时间都是 0,而 0 / 0 是无意义的。但根据物理学,每个运动的物体在 它运动的每一时刻必有速度,是不容怀疑的。
1. 决定一个函数的因素有哪些? 2. 如何确定函数的定义域?
1.1.3
医学中常用的函数表示法
优点:便于查出函数值。
列表法 用表格列示出x与y的对应关系。 图像法 以数对(x,y)为点的坐标描绘出能反映x
与y的对应关系的曲线。 优点:容易观察函数的变化趋势。
解析法 用等式表示出x与y的关系。
优点:便于从理论上对函数进行定性 研究与定量分析。
区间及邻域
区间 (interval)
开区间 (a, b) {x a x b, x R}
闭区间 [a, b] {x a x b, x R}
a a b b
半开半闭区间
(a,b]、[a,b)
以上区间统称为有限区间
无限区间
( P.1自学 )
邻域 (neighborhood)
医学和物理学中常用的分段函数:
y
例1.1.1 符号函数
1, sgn( x) 0, 1,
( x 0) ( x 0). ( x 0)
1
o
-1 y
x
1, (t nT ) . 例1.1.2 脉冲函数 y(t ) 0, (t nT )
y
o
x
x (0 x 1) 例1.1.3 f ( x) 2 x 1 ( x 1)
引
言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 , 有了变数 , 微分和积分也就立刻成
恩格斯
为必要的了,而它们也就立刻产生.
复合函数的映射示意图
y
y = f (u)
y = f [φ(x)] u u =φ(x) x
说明:
1. 复合函数还可以由多个(三个及其以上)基 本初等函数经多次复合构成。 2. 并不是任何两个函数都可以复合成有意义的 复合函数。 如 y=ln(u-8) 与 u=sin x 构成的复合函数 y=ln(sinx-8) 就没有意义。
有界性
设函数 y = f (x),x∈D。若存在正数 M ,使 对D上任何 x ,都有 ︱ f (x) ︱≤ M 则称 f (x) 在 D 上有界,并称 f (x) 是 D 上的有界 函数。 否则,称函数 f (x) 在 D 上无界。
有界函数的图像必落在直线 y = M 与 y = -M 之间的带形区域内。
注, 指出并纠正了其中的错误 , 在数学方法和数学 理论上作出了杰出的贡献 . 他的 “ 割圆术 ” 求圆周率 的方法 :
“ 割之弥细 , 所失弥小, 割之又割 , 以至于不可割 , 则与圆合体而无所失矣 ” 极限思想 .
40
它包含了“用已知逼近未知 , 用近似逼近精确”的重要
1.3.1 数列极限 (limit of sequence )
1.2.3 反函数 (自学) 1.2.4 隐函数
显函数 由形式 y = f (x) 表示的函数。 隐函数 由方程 F( x, y )=0 表示的函数。 如 x2 + y 2 =R2 y x +ln(xy)+sin(xy)+8=0
1.2.5 初等函数 (Elementary function)
由基本初等函数经过有限次的四则运算或有 限次的复合步骤所构成的,能用一个解析式子表 示的函数称为初等函数。 初等函数是高等数学的主要研究对象。 在高等数学中,把不是初等函数的函数统称 为非初等函数。
数列极限的实质:考察当 n→+∞时,数列 {an} 的通项 an 的变化趋势。
引例 考察数列{an} 的变化趋势:
n1 (1) n 1 1 1 1 (1) , a2 a4 ……a3 : 1, , , ,, 2 3 4 n n -1 O 1 2 3 n n , , ,, , : 2 3 4 n 1 n 1
6
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
7
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
8
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心、一个体积相当大的物体作用于 另一个物体上的引力。
华罗庚
由薄到厚 , 由厚到薄 .
12
1
1.1 1.2 1.3 1.4 1.5 1.6
函数、极限与连续
函数 初等函数 极限概念 极限的计算 无穷小量与无穷大量 函数的连续性
1.1 函数
1.1.1 1.1.2 1.1.3 1.1.4 区间及邻域 函数的定义 医学中常用的函数表示法 函数的性质
1.1.1
4
第二类问题
求曲线的切线。 这个问题的重要性来源于好几个方面:纯几何问
题、光学中研究光线通过透镜的通道问题、运动物体
在它的轨迹上任意一点处的运动方向问题等。
5
第二类问题
困难在于:曲线的“切线”的定义本身就是一个 没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接 触于一点而且位于曲线的一边的直线”。这个定义对 于十七世纪所用的较复杂的曲线已经不适应了。
1.2.1 基本初等函数 ( basic elementary function )
P.6 表1.2
1.2.2 复合函数
设 y = lnu,u =1- x2。问: 能否通过变量 u, 将 y 表示成 以 x 为自变量的函数?
当 x∈(-1, 1),能通过变量 u 将 y 表示成 x 的 函数: y = ln(1- x2), x∈(-1, 1) D*
当 x∈(-∞, -1]∪[1, +∞)时,不能通过变量 u 将 y 表示成 x 的函数。
定义1.2 (复合函数)
设 y 是 u 的函数 y = f (u), u 是 x 的函数 u =φ(x)。D* 表示 u =φ(x) 的定义域中使得函数 y = f (u) 有意义的全体 x 的非空集合。则当 x∈D* 时, 函数 u =φ(x) 所对应的 u 值使得函 数 y = f (u) 有确定的值与x 相对应,从而得到一 个以 x 为自变量,y 为因变量的函数,记为 y = f [φ(x ) ] , x∈D* 这时,称 y 为 x 的复合函数。其中,称 y = f (u) 为外函数,u =φ(x) 为内函数,u 为中间变量。
如:有些分段函数就不是初等函数。
非初等函数举例: 符号函数 当x>0 当x=0 当x<0 取整函数
y
1
o
1
x
当
y
2 1o
1 2 3 4
x
37
内容小结
1. 集合区间、邻域 2. 函数的定义及函数的二要素 3. 函数的特性 4. 初等函数的结构 定义域
对应规律
有界性, 单调性, 奇偶性, 周期性
f (a x) f (a x),
于是
f (b x) f (b x) f ( 2a x )
f (x) f a ( x a)
故 f (x) 是周期函数 , 周期为
27
1.2 初等函数
二、如何学习高等数学 ?
1. 认识高等数学的重要性, 培养浓厚的学习兴趣.
一门科学, 只有当它成功地运用数学时, 才能达到真正完善的地步 .
马克思
要辨证而又唯物地了解自然 , 就必须熟悉数学.
恩格斯
2. 学数学最好的方式是做数学. 聪明在于学习 , 天才在于积累 . 学而优则用 , 学而优则创 .
邻域是一种特殊的区间。
点a的δ邻域
U (a, ) {x x a , x R}
δ δ
a -δ
a
a +δ
点a的空心邻域 U o (a, ) {x 0 x a , x R}
δ
a -δ a
δ
a +δ
右邻域 (a , a +δ),左邻域 (a -δ, a)
1.1.2
o x
1.1.4
奇偶性
函数的性质
设函数 y = f (x),x∈D,D是对称于原点的 数集 。若对D上任何 x , 如果 f (-x) = f (x),则称 y = f (x) 为偶函数; 偶函数的图像关于 y 轴对称,奇函数的图像 关于原点对称。
如果 f (-x) =-f (x),则称 y = f (x) 为奇函数。
1. 结论 “函数 y=3x+5 是无界函数” 正确否? 2. 结论 “函数 y=cosx 不是单调函数” 正确否?
3. 考察函数y=1/x 在 [1, +∞) 的单调性和有界性。
1. 设
且
时 证明 为奇函数 .
其中
a, b, c 为常数, 且
证: 令 t 1 , 则 x 1 , a f (1) b f (t ) ct t x t
1
哪些主要的科学问题呢?
有四种主要类型的问题.
Archimedes
2
第一类问题
已知物体移动的距离表为时间的函数的公式, 求物体在任意时刻的速度和加速度;反过来,已知 物体的加速度表为时间的函数的公式,求速度和距 离。
3
第一类问题
困难在于:十七世纪所涉及的速度和加速度每时 每刻都在变化。例如,计算瞬时速度,就不能象计算 平均速度那样,用运动的时间去除移动的距离,因为 在给定的瞬刻,移动的距离和所用的时间都是 0,而 0 / 0 是无意义的。但根据物理学,每个运动的物体在 它运动的每一时刻必有速度,是不容怀疑的。
1. 决定一个函数的因素有哪些? 2. 如何确定函数的定义域?
1.1.3
医学中常用的函数表示法
优点:便于查出函数值。
列表法 用表格列示出x与y的对应关系。 图像法 以数对(x,y)为点的坐标描绘出能反映x
与y的对应关系的曲线。 优点:容易观察函数的变化趋势。
解析法 用等式表示出x与y的关系。
优点:便于从理论上对函数进行定性 研究与定量分析。
区间及邻域
区间 (interval)
开区间 (a, b) {x a x b, x R}
闭区间 [a, b] {x a x b, x R}
a a b b
半开半闭区间
(a,b]、[a,b)
以上区间统称为有限区间
无限区间
( P.1自学 )
邻域 (neighborhood)
医学和物理学中常用的分段函数:
y
例1.1.1 符号函数
1, sgn( x) 0, 1,
( x 0) ( x 0). ( x 0)
1
o
-1 y
x
1, (t nT ) . 例1.1.2 脉冲函数 y(t ) 0, (t nT )
y
o
x
x (0 x 1) 例1.1.3 f ( x) 2 x 1 ( x 1)
引
言
一、什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题. 高等数学 — 研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数,辩证法进入了数学 , 有了变数 , 微分和积分也就立刻成
恩格斯
为必要的了,而它们也就立刻产生.
复合函数的映射示意图
y
y = f (u)
y = f [φ(x)] u u =φ(x) x
说明:
1. 复合函数还可以由多个(三个及其以上)基 本初等函数经多次复合构成。 2. 并不是任何两个函数都可以复合成有意义的 复合函数。 如 y=ln(u-8) 与 u=sin x 构成的复合函数 y=ln(sinx-8) 就没有意义。
有界性
设函数 y = f (x),x∈D。若存在正数 M ,使 对D上任何 x ,都有 ︱ f (x) ︱≤ M 则称 f (x) 在 D 上有界,并称 f (x) 是 D 上的有界 函数。 否则,称函数 f (x) 在 D 上无界。
有界函数的图像必落在直线 y = M 与 y = -M 之间的带形区域内。
注, 指出并纠正了其中的错误 , 在数学方法和数学 理论上作出了杰出的贡献 . 他的 “ 割圆术 ” 求圆周率 的方法 :
“ 割之弥细 , 所失弥小, 割之又割 , 以至于不可割 , 则与圆合体而无所失矣 ” 极限思想 .
40
它包含了“用已知逼近未知 , 用近似逼近精确”的重要
1.3.1 数列极限 (limit of sequence )
1.2.3 反函数 (自学) 1.2.4 隐函数
显函数 由形式 y = f (x) 表示的函数。 隐函数 由方程 F( x, y )=0 表示的函数。 如 x2 + y 2 =R2 y x +ln(xy)+sin(xy)+8=0
1.2.5 初等函数 (Elementary function)
由基本初等函数经过有限次的四则运算或有 限次的复合步骤所构成的,能用一个解析式子表 示的函数称为初等函数。 初等函数是高等数学的主要研究对象。 在高等数学中,把不是初等函数的函数统称 为非初等函数。
数列极限的实质:考察当 n→+∞时,数列 {an} 的通项 an 的变化趋势。
引例 考察数列{an} 的变化趋势:
n1 (1) n 1 1 1 1 (1) , a2 a4 ……a3 : 1, , , ,, 2 3 4 n n -1 O 1 2 3 n n , , ,, , : 2 3 4 n 1 n 1
6
第三类问题
求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45 角
发射炮弹时,射程最大。
研究行星运动也涉及最大最小值问题。
7
第三类问题
困难在于:原有的初等计算方法已不适于解决研 究中出现的问题。但新的方法尚无眉目。
8
第四类问题
求曲线的长度、曲线所围成的面积、曲面所围成 的体积、物体的重心、一个体积相当大的物体作用于 另一个物体上的引力。
华罗庚
由薄到厚 , 由厚到薄 .
12
1
1.1 1.2 1.3 1.4 1.5 1.6
函数、极限与连续
函数 初等函数 极限概念 极限的计算 无穷小量与无穷大量 函数的连续性
1.1 函数
1.1.1 1.1.2 1.1.3 1.1.4 区间及邻域 函数的定义 医学中常用的函数表示法 函数的性质
1.1.1
4
第二类问题
求曲线的切线。 这个问题的重要性来源于好几个方面:纯几何问
题、光学中研究光线通过透镜的通道问题、运动物体
在它的轨迹上任意一点处的运动方向问题等。
5
第二类问题
困难在于:曲线的“切线”的定义本身就是一个 没有解决的问题。 古希腊人把圆锥曲线的切线定义为“与曲线只接 触于一点而且位于曲线的一边的直线”。这个定义对 于十七世纪所用的较复杂的曲线已经不适应了。
1.2.1 基本初等函数 ( basic elementary function )
P.6 表1.2
1.2.2 复合函数
设 y = lnu,u =1- x2。问: 能否通过变量 u, 将 y 表示成 以 x 为自变量的函数?
当 x∈(-1, 1),能通过变量 u 将 y 表示成 x 的 函数: y = ln(1- x2), x∈(-1, 1) D*
当 x∈(-∞, -1]∪[1, +∞)时,不能通过变量 u 将 y 表示成 x 的函数。
定义1.2 (复合函数)
设 y 是 u 的函数 y = f (u), u 是 x 的函数 u =φ(x)。D* 表示 u =φ(x) 的定义域中使得函数 y = f (u) 有意义的全体 x 的非空集合。则当 x∈D* 时, 函数 u =φ(x) 所对应的 u 值使得函 数 y = f (u) 有确定的值与x 相对应,从而得到一 个以 x 为自变量,y 为因变量的函数,记为 y = f [φ(x ) ] , x∈D* 这时,称 y 为 x 的复合函数。其中,称 y = f (u) 为外函数,u =φ(x) 为内函数,u 为中间变量。
如:有些分段函数就不是初等函数。
非初等函数举例: 符号函数 当x>0 当x=0 当x<0 取整函数
y
1
o
1
x
当
y
2 1o
1 2 3 4
x
37
内容小结
1. 集合区间、邻域 2. 函数的定义及函数的二要素 3. 函数的特性 4. 初等函数的结构 定义域
对应规律
有界性, 单调性, 奇偶性, 周期性
f (a x) f (a x),
于是
f (b x) f (b x) f ( 2a x )
f (x) f a ( x a)
故 f (x) 是周期函数 , 周期为
27
1.2 初等函数