【重点推荐】九年级数学上册 矩形的性质与判定课时练习 (新版)北师大版

合集下载

2019届九年级数学上册 1.2 矩形的性质与判定(第3课时)同步练习 (新版)北师大版.doc

2019届九年级数学上册 1.2 矩形的性质与判定(第3课时)同步练习 (新版)北师大版.doc

2019届九年级数学上册 1.2 矩形的性质与判定(第3课时)同步练习(新版)北师大版1.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=()A. B. C. D.2.如图,△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A. 2B. 3 C.4 D.43.如图,△ABC中,∠B=90°,AB=8,BC=6,点D是AC上的任意一点,过点D作DE⊥AB 于点E,DF⊥BC于点F,连接EF,则EF的最小值是.4.在平行四边形ABCD中,AB=5,BC=6,若AC=BD,则平行四边形ABCD的面积为.5.如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为.6.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.7.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE.8.已知:如图,在△ABC中,AB=AC,AD是BC边的中线,AN为△ABC的外角∠CAM的平分线,CE⊥AN于点E,线段DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)线段DF与AB有怎样的关系?证明你的结论.9.如图,在▱ABCD中,对角线AC、BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=6,∠AOB=120°,求BC的长.10.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E,BD=BE.(1)求证:四边形ABCD是矩形;(2)若∠AOB=60°,AB=4,求四边形ABED的面积.参考答案1.D 2.A3.4.8 4.30 5.166. 证明:(1)在平行四边形ABCD中,∠A=∠C,(1分)又∵AE=CG,AH=CF,∴△AEH≌△CGF.(2分)∴EH=GF.(1分)在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.(1分)∴GH=EF.(1分)∴四边形EFGH是平行四边形.(1分)(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.(1分)∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.(1分)∴∠DHG=∠DGH=.(1分)∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)解法二:连接BD,AC.∵AH=AE,AD=AB,∴,∴HE∥BD,(1分)同理可证,GH∥AC,(1分)∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,(1分)∴AC⊥BD,∴∠EHG=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)7. 证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.8.(1)证明:∵在△ABC中,AB=AC,AD是BC边的中线,∴AD⊥BC,∠BAD=∠CAD,∴∠ADC=90°,∵AN为△ABC的外角∠CAM的平分线,∴∠MAN=∠CAN,∴∠DAE=90°,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形;(2)DF∥AB,DF=AB.理由:∵四边形ADCE为矩形,∴AF=CF,∵BD=CD,∴DF是△ABC的中位线,∴DF∥AB,DF=AB.9. (1)证明:∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∵OA=OB,∴OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵∠AOB=120°,OA=OB,∴∠OAB=∠OBA=30°,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC=2BC,∴AB==BC,∴BC=AB=6×=2.10. (1)证明:如图,∵四边形ABCD是平行四边形,∴AB∥CD.又∵点E在DC的延长线上,∴AB∥CE.又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE.又BD=BE,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:∵在矩形ABCD中,∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴BO=AB=4,∴BD=2BO=2×4=8,又∵四边形ABEC是平行四边形,∴CE=AB=4,∴DE=CD+CE=8,在Rt△ABC中,BC===4,∴四边形ABED的面积=(4+8)×4=24.。

北师大版数学九年级上册矩形的性质与判定 同步练习题 含答案

北师大版数学九年级上册矩形的性质与判定 同步练习题 含答案

第一章特殊平行四边形 1.2 矩形的性质与判定1. 如图,在△ABC中,BD,CE是高,点G,F分别是BC,DE的中点,则下列结论中错误的是( )A.∠DGE=60° B.GF⊥DE C.GF平分∠DGE D.GE=GD2. 如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD 的中点,若AB=6 cm,BC=8 cm,则△AEF的周长等于( )A. 7cmB. 8cmC. 9cmD. 10cm3. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )A. 13B. 14 C, 15 D. 164. 如图,在△ABC中,点D,E,F分别为边BC,AC,AB的中点,AH⊥BC于点H,若FD=8 cm,则HE等于( )A. 11cmB. 10cmC. 9cmD. 8cm5. 矩形具有而一般平行四边形不具有的性质是( )A .对边相等B .对角线相等C .对角相等D .对角线互相平分 6. 下列四边形不是矩形的是( ) A .有三个角都是直角的四边形 B .四个角都相等的四边形 C .对角线相等且互相平分的四边形 D . 一组对边平行,且对角相等的四边形7. 如图,顺次连接四边形ABCD 各边中点得四边形EFGH ,要使四边形EFGH 为矩形,应添加的条件是( )A .AC⊥BDB .AC =BD C .AB∥DC D .AB =DC8. 在数学活动课上, 老师和同学们判断一个四边形门框是否为矩形, 下面是某合作学习小组的4位同学拟订的方案, 其中正确的是( ) A .测量两组对边是否分别相等 B .测量对角线是否相互平分 C .测量其内角是否都为直角 D . 测量对角线是否垂直9. 如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .BE =AD -DFB .AF =12ADC .AB =AFD .△AFD ≌△DCE10. 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8 B.5 C.6 D.7.211. 如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2=12. 如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,则矩形ABCD的面积=13. 如图,四边形ABCD的对角线AC,BD相交于点O,已知条件:①AB∥CD;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD,则下列条件的组合不能使四边形ABCD成为矩形的选项是 (填序号)14. 在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,2),要使四边形OBCA为矩形,则C点的坐标为________.15. 已知一直角三角形的周长是4+26,斜边的中线长是2,则这个三角形的面积是件,使四边形ABCD为矩形.17. 如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为18. 如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为19. 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为20. 如图,在矩形ABCD中,AB=1,点E,F分别为AD,CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=________.21. 如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC 的交点为点O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22. 如图,在▱ABCD中,E是BC的中点,且EA=ED.(1)求证:四边形ABCD是矩形;(2)若BC=6 cm,AE=5 cm,求S▱ABCD.23. 如图,在矩形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且EF =ED ,EF⊥ED.求证:AE 平分∠BAD.24. 如图,四边形ABCD 的对角线AC ,BD 相交于点O ,已知O 是AC 的中点,AE =CF ,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.25. 如图,△ABC中,点O是边AC上一个动点,过点O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.答案:1---10 ACBDB DADBA 11. 60° 12. 4 3 13. ② ⑤ ⑥ 14. (3,2) 15. 5216. ∠B=90°或∠BAC+∠BCA=90° 17. 8 18. 60° 19. (3,43)20. 221. 解:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,由折叠知BC =CE =AD ,AB =AE =CD ,又∵DE =ED ,∴△ADE ≌△CED(SSS ).(2)∵△ADE ≌△CED ,∴∠EDC =∠DEA ,由折叠知∠OAC =∠CAB ,又∵∠OCA =∠CAB ,∴∠OAC =∠OCA ,∵∠EOC =∠EAB ,∴2∠OAC =2∠DEA ,∴∠OAC =∠DEA ,∴DE ∥AC.22. (1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,又∵EA=ED , BE =EC ,∴△ABE≌△DCE,∴∠B=∠C,∵AB∥CD,∴∠B+∠C=180°,∴∠B=12×180°=90°,∴▱ABCD 是矩形(2)在Rt△ABE 中,BE =12BC =3(cm),∴AB=AE 2-BE 2=4(cm),∴S ▱ABCD =AB·BC=4×6=24(cm 2).23. 证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠BAD=90°,AB =CD , ∴∠BEF+∠BFE=90°,∵EF⊥ED,∴∠BEF+∠CED=90°, ∴∠BFE=∠CED,同理∠BEF=∠EDC.在△EBF 与△DCE 中,⎩⎪⎨⎪⎧∠BFE=∠CED,EF =ED ,∠BEF=∠EDC,∴△EBF≌△DCE(ASA ).∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°. ∴∠BAE=∠EAD,即AE 平分∠BAD.24. (1)证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵OA=OC , AE =CF ,∴OE=OF ,∴△BOE≌△DOF(AAS ).(2)若OD =12AC ,则四边形ABCD 是矩形.证明如下:∵△BOE≌△DOF,∴OB=OD ,又∵OD=12AC ,OA =OC ,∴OA=OB =OC =OD ,∴BD=AC ,∴四边形ABCD 为矩形. 25. (1)证明:如图所示,∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,∠4=∠6,∵MN ∥BC ,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO =CO ,FO =CO ,∴OE =OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=8,CF =6,∴EF=82+62=10,∴OC=12EF =5.(3)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.1、最困难的事就是认识自己。

北师大版九年级数学上册--第一章 1.2《矩形的性质和判定》同步练习题(含答案)

北师大版九年级数学上册--第一章  1.2《矩形的性质和判定》同步练习题(含答案)

1.2《矩形的性质和判定》同步练习1、矩形的对边 ,对角线 且 ,四个角都是 ,即是 图形又是 图形。

2、四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是________。

3、已知矩形ABCD 的对角线相交于O ,对角线长8cm ,∠AOD=60°,则AD=________,AB=________。

4、如图,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2,∠BOC=120°,AB=4,则四边形ABCD 的面积=________。

5、矩形的面积是60,一边长为5,则它的一条对角线长等于 。

6、如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。

7、 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________。

8、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 。

题4图 题8图9、若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 。

10、平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等 11、下列叙述错误的是( )A.平行四边形的对角线互相平分B.平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角是90º的平行四边形是矩形12、下列检查一个门框是否为矩形的方法中正确的是( )A .测量两条对角线是否相等B .用曲尺测量对角线是否互相垂直C .用曲尺测量门框的三个角是否都是直角 D.测量两条对角线是否互相平分13、矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( )A 、5cmB 、7.5cmC 、10cmD 、12.5cm14、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形15、如图,四边形的对角线互相平分,要使它成为矩形,需要添加的条件是( )A.B. C. D.题15图 题16图16、如图,在矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB=6,OA=4,则AD 的长为( )A 、4B 、8C 、33D 、72yxP D CB A O解答题:1、如图,已知矩形ABCD的两条对角线相交于O,︒=∠120AOD,AB=4cm,求此矩形的面积。

20xx-20xx北师大版数学九年级上册矩形的性质与判定同步课时练习题含答案.doc

20xx-20xx北师大版数学九年级上册矩形的性质与判定同步课时练习题含答案.doc

北师大版数学九年级上册第一章特殊平行四边形 1.2 矩形的性质与判定1.2.1矩形的性质同步课时练习题1.下列性质中,矩形具有但平行四边形不一定具有的是()A.对边相等B.对角相等C.对角线相等D.对边平行2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.如图,矩形 ABCD的顶点 A,C分别在直线 a,b上,且 a∥b,∠ 1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°4.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. 3 cm B.2 cm C.2 3 cm D.4 cm5.如图,对折矩形纸片 ABCD,使 AB与 DC重合得到折痕 EF,将纸片展平;再一次折叠,使点 D落到 EF 上点 G处,并使折痕经过点 A,展平纸片后∠ DAG的大小为()A.30°B.45°C.60°D.75°6.如图,已知矩形 ABCD中,对角线 AC,BD相交于点 O,AE⊥BD于点 E,若∠DAE∶∠ BAE=3∶1,则∠ EAC的度数是()A.18°B.36°C.45°D.72°7.如图,在矩形 ABCD中, AB=4,BC=6,点 E 为 BC的中点.将△ ABE沿AE折叠,使点 B 落在矩形内点 F 处,连接 CF,则 CF的长为( )A. 9B.12C.16D.18 5 5 5 58. 已知四边形 ABCD,若 AB∥CD,AD∥BC,且∠ D=90°,则四边形 ABCD为____.9.2cm,则该矩形的对角线长已知矩形的面积为 40 cm,一边长为 5为.10.如图,在 Rt△ABC中,∠C=90°,D为AB的中点,且CD=5,则AB=____ cm.11.如图, Rt△ABC中,∠C=90°,AC=BC=6,点E是斜边AB上任意一点,作 EF⊥AC于点 F,EG⊥BC于点 G,则矩形 CFEG的周长是 ____.12.如图,在Rt△ABC中,∠ ACB=90°,点D,E,F分别是AB,BC,CA的中点,若 EF=4cm,则 CD=____cm.13.如图,“人字形”屋梁中,AB=AC,点E,F,D分别是AB,AC,BC的中点,若AB=6m,∠B=30°,则支撑“人字形”屋梁的木料DE,AD,DF共有____m.14.直角三角形斜边上的高与中线分别是 5 cm和 6 cm,则它的面积是.15.如图,点 O是矩形 ABCD的对角线 AC的中点,点 M是 AD的中点,若 AB=5,AD=12,则四边形 ABOM的周长为 ____.16.如图,在矩形 ABCD中, AB=3,对角线 AC,BD相交于点 O,AE垂直平分 OB 于点 E,则 AD的长为.17.如图所示,在△ ABC中, BD,CE是高,点 G,F分别是 BC,DE的中点,则下列结论中:① GE=GD;② GF⊥DE;③ GF平分∠ DGE;④∠ DGE=60°. 其中正确的是.( 填写序号)18.如图,矩形 ABCD的对角线 AC,BD相交于点 O,若 AB=AO,求∠ ABD的度数.19.如图所示,矩形 ABCD的对角线 AC,BD相交于点 O,AE⊥BD,垂足为点E,∠1=∠ 2,OB=6cm.(1) 求∠ BOC的度数;(2)求△ DOC的周长.20.准备一张矩形纸片,按下图操作:将△ ABE沿 BE翻折,使点 A 落在对角线 BD上的 M点,将△ CDF沿 DF翻折,使点 C落在对角线 BD上的 N点.(1)求证:四边形 BFDE是平行四边形;(2)若四边形 BFDE是菱形, AB=2,求菱形 BFDE的面积.参考答案:1---7CBCDC CD8.矩形9.89cm10.1011.1212. 413.9214. 30cm15. 2016. 3 317.①②③18. 解:在矩形 ABCD中, AC=BD,AO=1AC,BO=1BD,2 2∴AO=BO.又∵ AB=AO,∴ AO=BO=AB,即△ ABO为等边三角形.∴∠ ABD=60°19.解: (1) ∵AE⊥BD,∴∠ AEO=∠ AEB=90°,又∵ AE=AE,∠ 1=∠ 2,∴△ AEO≌△ AEB.∴AB=AO.又∵ OA=OB,∴△ AOB为等边三角形,∴∠ AOB=60°,∴∠ BOC=120°(2) 由矩形的性质可得△ OCD ≌△ OAB ,∴OC =OA =OB =6 cm.∴△ DOC 的周长为 18 cm20. (1) ∵四边形 ABCD 是矩形, ∴∠ A =∠ C =90°,AB =CD ,AB ∥CD ,∴∠ ABD=∠ CDB ,由折叠可知,∠ EBD =∠ FDB ,∴ EB ∥DF ,∵ ED ∥BF ,∴四边形 BFDE为平行四边形(2) ∵四边形 BFDE 为菱形,∴ BE =BF ,∠ EBD =∠ FBD =∠ ABE ,∵四边形 ABCD 是矩形,∴ AD =BC ,∠ ABC =90°,∴∠ ABE =30°,∵∠ A =90°, AB =2,∴AE =2 3,BF =BE =2AE =43,33∴菱形 BFDE 的面积为43×2=8 33 3。

北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.2 矩形的性质与判定》同步练习题-附答案一、选择题1.如图,在矩形ABCD中,两条对角线AC、BD相交于点O,若OB=5.则AC=()A.10 B.8 C.5√3D.52.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则AB的长度为()A.1 B.√2C.√3D.23.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC 的度数是()A.18°B.36°C.45°D.72°4.如图,在矩形ABCD中E,F分别是AD,CD的中点,连接BE,BF,且G,H分别是BE,BF的中点,已知BD=20,则GH的长为( )A.4B.5C.8D.105.如图∠BAC=90°,AB=6,AC=8,P为边BC上一动点(点P不与点B,C重合),PE⊥AB于点E,PF⊥AC 于点F,则EF的最小值为()A.4 B.4.8C.5.2D.66.如图,在矩形纸片ABCD中AB=10,AD=6点E为AD边上一点,将△ABE沿BE翻折,点A恰好落在CD边上点F处,则AE长为()A.83B.72C.103D.1347.如右图,A,B为5×5的正方形网格中的两个格点,称四个顶点都是格点的矩形为格点矩形,则在此图中以A,B为顶点的格点矩形共可以画出()A.1个B.2个C.3个D.4个8.如图,在矩形ABCD中,AB=10,BC=6,点M是AB边的中点,点N是AD边上任意一点,将线段MN绕点M顺时针旋转90°,点N旋转到点N',则△MBN'周长的最小值为()A.15 B.5+5√5C.10+5√2D.18二、填空题9.在矩形ABCD中AB=2,对角线AC与BD相交于点 O,若∠BAO=60°,则边BC的长为.10.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°若AB=3cm,则AC=cm.11.如图所示的长方形纸条ABCD,将纸片沿MN折叠,MB与DN交于点K,若∠1=70°,则∠KNC=°12.如图,在矩形ABCD中AB=2AD=6,点P为AB边上一点,且AP≤3,连接DP,将ΔADP沿DP折叠,点A落在点M处,连接CM,BM,当ΔBCM为等腰三角形时,BP的长为.13.如图,在矩形ABCD中AB=8,BC=12,E为BC上一点,CE=4,M为BC的中点.动点P,Q从E出发,分别向点B,C运动,且PE=2QE.若PD和AQ交于点F,连接MF,则MF的最小值为.三、解答题14.如图,折叠长方形纸片ABCD的一边,使点D落在BC边的D′处AB=6cm,BC=10cm求CE的长.15.如图,在矩形ABCD中,点E在BC边上,点F在CD边上,且AB=4,BE=3,EF=6,AF=√61求三角形AEF的面积.16.如图,在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,且AE=CG,BF=DH,连接EG、FH.(1)求证:△AEH≌△CGF;(2)若EG=FH,∠AHE=35°,求∠DHG的度数.17.如图,四边形ABCD中∠DAB=45°,AB=8,AD=3√2,E为AB中点,且CD⊥DE,连接CE.(1)求DE的长度;(2)若∠BEC=∠ADE,求BC的长度.18.已知:如图,四边形ABCD的对角线AC,BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点。

北师大版九年级上册数学1.2《矩形的性质与判定》课时练习(简单答案)

北师大版九年级上册数学1.2《矩形的性质与判定》课时练习(简单答案)

九年级北师大版数学1.2《矩形的性质与判定》课时练习一、选择题:1、顺次连接矩形ABCD 各边中点,所得四边形必定是( )A . 邻边不等的平行四边形B . 矩形C . 正方形D . 菱形2、矩形具有而平行四边形不具有...的性质是( ) A .对角线互相平分 B .邻角互补 C .对角相等 D .对角线相等3、把一张长方形的纸片按图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B ′M 的延长线上,那么∠EMF 的读度为( )A .85°B .90°C .95°D .100°4、如图,在矩形ABCD 中,AB=3,BC=5,在CD 上任取一点E ,连接BE ,将△BCE 沿BE 折叠,使点C 恰好落在AD 边上的点F 处,则CE 的长为( ).A. 53B. 43C. 52D.3 5、在下列图形性质中,矩形不一定...具有的是( ) A .对角线互相平分且相等 B .四个角相等C .既是轴对称图形,又是中心对称图形D .对角线互相垂直平分6、如图,矩形ABCD 中,AB=3,BC=4,则图中五个小矩形的周长之和为( )A. 16B.8C. 14D. 127、如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2√5B . 3√5C . 5D .68、如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,AD AB =12,△CEF 的面积为S 1,△AEB 的面积为S2,则S1S 2的值等于( ).A. 1:16B.1:8C. 1:4D. 1:2二、填空题:9、如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =2,则矩形的对角线AC 的长是______.10、在四边形ABCD 中,已知AB ∥DC ,AB =DC .要想该四边形成为矩形,只需再加上一个条件是____ _ .11、如图所示,把两个大小完全一样的矩形拼成“L ”形图案,则∠FAC=_______, ∠FCA=________.12、如图,在一张长为7cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为 .13、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,BC'交AD于点E,则线段DE的长为.14、如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG 交CD于点F.若AB=6,BC=4√6,则FD的长为 .三、解答题:15、如图,在矩形ABCD中,两条对角线AC和BD相交于点O,AB=OA=4 cm,求BD与AD的长.16、如图所示,矩形ABCD中,M是BC的中点,且MA⊥MD,若矩形的周长为36 cm,求此矩形的面积。

北师大版九年级上册矩形的性质与判定课时精练(附答案)

北师大版九年级上册矩形的性质与判定课时精练(附答案)

北师大版九年级上册矩形的性质与判定课时精练(附答案)一、单选题1.能判定四边形是平行四边形的是()A. 对角线互相垂直B. 对角线相等C. 对角线互相垂直且相等D. 对角线互相平分2.已知▱ABCD,其对角线的交点为O,则下面说法正确的是()A. 当OA=OB时▱ABCD为矩形B. 当AB=AD时▱ABCD为正方形C. 当∠ABC=90°时▱ABCD为菱形D. 当AC⊥BD时▱ABCD为正方形3.下列说法正确的是()A. 平行四边形的对角线互相平分且相等B. 矩形的对角线相等且互相平分C. 菱形的对角线互相垂直且相等D. 正方形的对角线是正方形的对称轴4.现有14米长的木材,要做成一个如图所示的窗户,若窗户横档的长度为a米,则窗户中能射进阳光的部分的面积(窗框面积忽略不计)是()A. a(7﹣a)米2B. a(7﹣a)米2C. a(14﹣a)米2D. a(7﹣3a)米25.如图,下列条件中,能使平行四边形ABCD成为矩形的是()A. AB=BCB. AB=CDC. AC⊥BDD. AC=BD6.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A. 3B. 4C. 5D. 67.在▱ABCD 中,增加下列条件中的一个,就能断定它是矩形的是( )A. ∠A+∠C=180°B. AB=BCC. AC⊥BDD. AC=2AB8.如图,在平面直角坐标系中,矩形OABC的顶点A,B在反比例函数的图像上,纵坐标分别为1和3,则k的值为()A. B. C. 2 D. 39.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A. B. C. D.二、填空题10.如图所示,已知平行四边形ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB⊥BC 中,能说明平行四边形ABCD是矩形的有(填写序号)________ .11.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(添加一个条件即可).12.已知矩形,给出三个关系式:① ② ③ 如果选择关系式________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是________ .13.若矩形的面积为a2+ab,宽为a,则长为________.14.矩形ABCD的对角线相交于O ,AC=2AB ,则△COD为________三角形.15.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是________ cm2.16.如图,点A在轴的负半轴上,点B在轴的正半轴上,∠BAO=30°,将△ABO绕点A逆时针旋转得到△ACD,点O的对应点D刚好落在AB上,直线CB交轴于点E,已知E ,则点C的坐标是________.17.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有下列结论:①FC=HE;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .其中正确的是________.(把所有正确结论的序号都选上)18.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.三、解答题19.如图,在▱ABCD中,∠ABD=90°,延长AB至点E,使BE=AB,连接CE.求证:四边形BECD是矩形.20.在矩形ABCD中,点O是AC的中点,AC=2AB,延长AB至G,使BG=AB,连接GO交BC于E,延长GO 交AD于F.(1)求证:△ABC≌△AOG;(2)猜测四边形AECF的形状并证明你的猜想.21.如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.22.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求tan∠EAD的值.答案一、单选题1. D2. A3. B4. B5. D6. D7. A8. B9. A二、填空题10. ①④ 11. ∠ABC=90°或AC=BD.12. ①;一组邻边相等的矩形是正方形13. a+b 14. 等边15. 5.1 16. 17. ①③④ 18.三、解答题19. 证明:∵四边形ABD是平行四边形,∴CD=AB,CD∥AB,∵BE=AB,∴BE=CD,∴四边形BECD是平行四边形,∵∠ABD=90°,∴∠DBE=90°,∴四边形BECD是矩形.20. (1)证明:∵点O是AC的中点,∴AO=CO=AC,∵AC=2AB,BG=AB,∴AB=AO,AC=AG,在△ABC和△AOG中,,∴△ABC≌△AOG(SAS);(2)解:四边形AECF是菱形;理由如下:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠OAF=∠COE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OF=OE,∴四边形AECF是平行四边形,∵△ABC≌△AOG,∴∠AOG=∠ABC=90°,∴AC⊥EF,∴四边形AECF是菱形.21. 解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB= =67.5°,∴∠EBC=90°﹣67.5°=22.5°.22. (1)证明:∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形.又∵菱形ABCD,∴AC⊥BD,∴∠DOC=90°.∴四边形ODEC是矩形.(2)如图,过点E作EF⊥AD,交AD的延长线于F.∵AC⊥BD,∠ADB=60°,AD=2,∴OD=,AO=OC=3.∵四边形ODEC是矩形,∴DE=OC=3,∠ODE=90°.又∵∠ADO+∠ODE+∠EDF=180°,∴∠EDF=30°.在Rt△DEF中,∠F=90°,∠EDF=30°.∴EF=.∴DF=.在Rt△AFE中,∠DFE=90°,∴tan∠EAD=.。

九年级数学上册《第一章 矩形的性质与判定》同步练习题及答案(北师大版)

九年级数学上册《第一章 矩形的性质与判定》同步练习题及答案(北师大版)

九年级数学上册《第一章矩形的性质与判定》同步练习题及答案(北师大版)1.如图,点E为矩形ABCD内一点,且EA=EB.求证:∠ECD=∠EDC.2.如图,在矩形ABCD中,点M在CD上,AM=AB,BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=3,MN=1,求AB的长.3.如图,在矩形ABCD中,O是对角线AC的中点,过点O作EF⊥AC分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)若AB=8,BC=16,求CF的长.4.如图,在平行四边形ABCD中,过点D作DE⊥AB于点E,点F在边CD上,且FC=AE,连接AF、BF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,FC=3,DF=5,求BF的长.5.如图,在平行四边形ABCD中,CE⊥AD于点E,延长DA至点F,使得EF=DA,连接BF,CF.(1)求证:四边形BCEF是矩形;(2)若AB=3,CF=4,DF=5,求EF的长.6.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.7.已知:如图,四边形ABCD是平行四边形,CE∥BD交AD的延长线于点E,CE=AC.(1)求证:四边形ABCD是矩形;(2)若AB=4,AD=3,求四边形BCED的周长.8.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若∠BDE=15°,求∠DOE;(3)在(2)的条件下,若AB=2,求△BOE的面积.9.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.10.如图,在矩形ABCD中,E为DC边的中点,连接AB,AE的延长线和BC的延长线相交于点F.(1)求证:△ADE≌△FCE;(2)连接AC,与BE相交于点G,若△GEC的面积为2,求矩形ABCD的面积.11.如图,在矩形ABCD中,O为对角线BD的中点,过点O作直线分别与矩形的边AB,CD交于E,F 两点,连接BF,DE.(1)求证:四边形BEDF为平行四边形;(2)若AD=1,AB=3,且EF⊥BD,求AE的长.12.已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)当△ABC的边AC、BC满足什么数量关系时,四边形AMCN是矩形,请说明理由.13.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:OC=BC.(2)四边形ABCD是矩形.14.已知,在四边形ABCD中,AD∥BC,点E为BC的中点,连接AC,DE交于点F,AB=AC,AF=CF.(1)如图1,求证:四边形AECD是矩形;(2)如图2,连接BF,在不添加任何辅助线的情况下,请直接写出图2中与△BEF面积相等的三角形.15.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.16.如图,矩形ABCD中,AB=2,BC=5,E、P分别在AD、BC上,且DE=BP=1(1)判断△BEC的形状,并说明理由;(2)求证:四边形EFPH是矩形.17.如图△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=4,CF=3,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.18.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.19.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P 作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.20.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.如图,在长方形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD、BC、CB、DA 方向在长方形的边上同时运动,当有一个点先到达所在运动边的另一个端点时即停止,已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,点的运动停止?(2)点P与点N可能相遇吗?点Q与点M呢?请通过计算说明理由.(3)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形?22.如图,AC为矩形ABCD的对角线,BE⊥AC于点E,DF⊥AC于点F.(1)求证:△ABE≌△CDF.(2)求证:四边形BFDE是平行四边形.23.如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线D→C→B→A→D方向以2cm/s 的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?24.如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A﹣B﹣C﹣D回到点A,设点P运动的时间为t秒.(1)当t=3秒时,求△ABP的面积;(2)当t为何值时,点P与点A的距离为5cm?(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三边长的三角形是直角三角形,且AP是斜边.参考答案1.证明:∵EA=EB∴∠EAB=∠EBA在矩形ABCD中,∠DAB=∠CBA=90°,AD=BC ∴∠DAB﹣∠EAB=∠CBA﹣∠EBA即∠EAD=∠EBC在△ADE和△BCE中{AD=BC∠DAE=∠CBE EA=EB∴△ADE≌△BCE(SAS).∴ED=EC∴∠ECD=∠EDC.2.(1)证明:在矩形ABCD中,∠D=90°,DC∥AB ∴∠BAN=∠AMD∵BN⊥AM∴∠BNA=90°在△ABN和△MAD中{∠BAN=∠AMD ∠BNA=∠D=90°AB=AM∴△ABN≌△MAD(AAS);(2)解:∵△ABN≌△MAD∴BN=AD=3∵AB2=AN2+BN2∴AB2=(AB﹣1)2+9∴AB=53.(1)证明:∵四边形ABCD是矩形∴AD∥BC∴∠DAC=∠BCA∵点O是AC的中点∴AO=CO在△AEO和△CFO中{∠DAC=∠ACB AO=CO∠AOE=∠COF∴△AEO≌△CFO(ASA);(2)解:如图,连接AF∵AO=CO,EF⊥AC∴AF=FC∵AF2=AB2+BF2∴CF2=(16﹣CF)2+64∴CF=10.4.(1)证明:∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵FC=AE∴CD﹣FC=AB﹣AE即DF=BE∴四边形DEBF是平行四边形又∵DE⊥AB∴∠DEB=90°∴平行四边形DEBF是矩形;(2)解:∵AF平分∠DAB∴∠DAF=∠BAF∵DC∥AB∴∠DF A=∠BAF∴∠DF A=∠DAF∴AD=DF=5在Rt△AED中,由勾股定理得:DE=√AD2−AE2=√52−32=4由(1)得:四边形DEBF是矩形∴BF=DE=4.5.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∵EF=DA∴EF=BC,EF∥BC∴四边形BCEF是平行四边形又∵CE⊥AD∴∠CEF=90°∴平行四边形BCEF是矩形;(2)解:∵四边形ABCD是平行四边形∴CD=AB=3∵CF=4,DF=5∴CD2+CF2=DF2∴△CDF是直角三角形,∠DCF=90°∴△CDF的面积=12DF×CE=12CF×CD∴CE=CF×CDDF=4×35=125由(1)得:EF=BC,四边形BCEF是矩形∴∠FBC=90°,BF=CE=12 5∴BC=√CF2−BF2=√42−(125)2=165∴EF=16 5.6.证明:(1)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD∵AE=FD∴AE+EF=FD+EF即AF=DE在△ABF和△DCE中{AB=CD BF=CE AF=DE∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE∴∠A=∠D∵AB∥CD∴∠A+∠D=180°∴2∠A=180°∴∠A=90°∴▱ABCD为矩形.7.(1)证明:∵四边形ABCD是平行四边形∴AE∥BC∵CE∥BD∴四边形BCED是平行四边形∴CE=BD.∵CE=AC∴AC=BD.∴▱ABCD是矩形;(2)解:∵AB=4,AD=3,∠DAB=90°∴BD=√AB2+AD2=√42+32=5.∵四边形BCED是平行四边形∴四边形BCED的周长为2(BC+BD)=2×(3+5)=16.8.(1)证明:∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=90°∴∠BAD=90°∴∠BAD=∠ABC=∠ADC=90°∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,DE平分∠ADC∴∠CDE=∠CED=45°∴EC=DC又∵∠BDE=15°∴∠CDO=60°又∵矩形的对角线互相平分且相等∴OD=OC∴△OCD是等边三角形∴∠DOC=∠OCD=60°∴∠OCB=90°﹣∠DCO=30°∵CO=CE∴∠COE=(180°﹣30°)÷2=75°∴∠DOE=∠DOC+∠COE=60°+75°=135°;(3)解:作OF⊥BC于F.∵四边形ABCD是矩形∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD ∴AO=BO=CO=DO∴BF=FC∴OF=12CD=1∵∠OCB=30°,AB=2∴BC=2√3∵DE平分∠ADC,∠ADC=90°∴∠EDC=45°在Rt△EDC中,EC=CD=2∴△BOE的面积=12•EB•OF=12×(2√3−2)×1=√3−1.9.证明:(1)∵AD∥BC∴∠ABC+∠BAD=180°,∠ADC+∠BCD=180°∵∠ABC =∠ADC∴∠BAD =∠BCD∴四边形ABCD 是平行四边形∴OA =OC =12AC ,OB =OD =12BD∵OA =OB∴AC =BD∴四边形ABCD 是矩形;(2)如图,连接OP∵AD =12,AB =5∴BD =√AB 2+AD 2=√144+25=13∴BO =OD =AO =CO =132 ∵S △AOD =14S 矩形ABCD =14×12×5=15∴S △AOP +S △POD =15∴12×132×FP +12×132×EP =15 ∴PE +PF =6013.10.(1)证明:∵四边形ABCD 是矩形∴AD ∥CB ,AD =BC∴∠D =∠FCE ;∵E 为DC 中点∴ED =EC在△ADE 与△FCE 中{∠D =∠FCE DE =CE ∠AED =∠FEC∴△ADE ≌△FCE (ASA );(2)解:∵四边形ABCD 是矩形∴AB ∥CD ,AB =DC∴AB EC =BG EG ,S △ABGS △CEG =(AB EC )2∵DE =CE∴AB =2CE∴BG EG =2,S △ABGS △CEG =(AB EC )2=4∵△GEC 的面积为2∴S △BGC =2S △CEG =4,S △ABG =4S △CEG =8∴S △ABC =S △BGC +S △ABG =4+8=12∴矩形ABCD 的面积=2S △ABC =24.11.(1)证明:∵四边形ABCD 是矩形∴AB ∥CD∴∠OBE =∠ODF∵O 为对角线BD 的中点∴OB =OD在△OBE 和△ODF 中{∠OBE =∠ODF OB =OD ∠BOE =∠DOF∴△OBE ≌△ODF (ASA )∴BE =DF又∵BE ∥DF∴四边形BEDF 为平行四边形;(2)解:∵四边形ABCD 是矩形∴∠A =90°由(1)得:四边形BEDF 为平行四边形∵EF ⊥BD∴平行四边形BEDF 为菱形∴BE =DE设AE =x ,则DE =BE =3﹣x在Rt △ADE 中,由勾股定理得:AD 2+AE 2=DE 2即12+x 2=(3﹣x )2解得:x =43即AE 的长为43. 12.(1)证明∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD∵M ,N 分别为AB 和CD 的中点∴AM =12AB ,CN =12CD∴AM =CN∵AB ∥CD∴四边形AMCN 是平行四边形;(2)解:AC =BC 时,四边形AMCN 是矩形证明∵AC =BC ,且M 是BC 的中点∴CM ⊥AB即∠AMC =90°∴四边形AMCN 是矩形.13.证明:(1)∵CE 平分∠ACB∴∠OCE =∠BCE∵BO ⊥CE∴∠CFO =∠CFB =90°在△OCF 与△BCF 中{∠OCE =∠BCE CF =CF ∠CFO =∠CFB△OCF ≌△BCF (ASA )∴OC =BC ;(2)∵点O 是AC 的中点∴OA =OC∵AD ∥BC∴∠DAO =∠BCO ,∠ADO =∠CBO在△OAD 与△OCB 中{∠DAO =∠BCO OA =OC ∠ADO =∠CBO∴△OAD ≌△OCB (ASA )∴AD =BC∵AD ∥BC∴四边形ABCD 是平行四边形∵OE ⊥AC∴∠EOC =90°在△OCE 与△BCE 中{CE =CE ∠OCE =∠BEC OC =BC∴△OCE ≌△BCE (SAS )∴∠EBC =∠EOC =90°∴四边形ABCD 是矩形.14.(1)证明:∵AD ∥BC∴∠F AD =∠FCE ,∠FDA =∠FEC在△ADF 和△CEF 中{∠FAD =∠FCE ∠FDA =∠FEC AF =CF∴△ADF ≌△CEF (AAS )∴AD =CE∵AD ∥CE∴四边形AECD 为平行四边形∵AB =AC ,点E 为BC 的中点∴AE ⊥BC∴∠AEC =90°∴平行四边形AECD 为矩形;(2)解:图2中与△BEF 面积相等的三角形为△AEF ,△ADF ,△CDF ,△CEF .理由如下:∵点E为BC的中点∴S△CEF=S△BEF∵AF=CF∴S△AEF=S△CEF,S△ADF=S△CDF由(1)可知,四边形AECD是矩形∴EF=DF∴S△AEF=S△ADF∴S△CEF=S△BEF=S△AEF=S△ADF=S△CDF即与△BEF面积相等的三角形为△AEF,△ADF,△CDF,△CEF.15.(1)证明:∵四边形ABDE是平行四边形∴AB∥DE,AB=ED∵DC=ED∴DC=AB,DC∥AB∴四边形ABCD是平行四边形∵DE⊥AD∴∠ADC=90°∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO ∴OD=OC∵OF⊥CD∴DF=CF=12CD=12×2=1∴OF=12BC=12×4=2,EF=DE+DF=2+1=3∴OE=√EF2+OF2=√32+22=√13.16.解:(1)△BEC是直角三角形:理由是:∵矩形ABCD∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2由勾股定理得:CE=√CD2+DE2=√22+12=√5同理BE=2√5∴CE2+BE2=5+20=25∵BC2=52=25∴BE2+CE2=BC2∴∠BEC=90°∴△BEC是直角三角形.(2)∵矩形ABCD∴AD=BC,AD∥BC∵DE=BP∴四边形DEBP是平行四边形∴BE∥DP∵AD=BC,AD∥BC,DE=BP∴AE=CP∴四边形AECP是平行四边形∴AP∥CE∴四边形EFPH是平行四边形∵∠BEC=90°∴平行四边形EFPH是矩形.17.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F ∴∠2=∠5,∠4=∠6∵MN∥BC∴∠1=∠5,∠3=∠6∴∠1=∠2,∠3=∠4∴EO=CO,FO=CO∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6∴∠2+∠4=∠5+∠6=90°∵CE=4,CF=3∴EF=√42+32=5∴OC=12EF=52;(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO∵EO=FO∴四边形AECF是平行四边形∵∠ECF=90°∴平行四边形AECF是矩形.18.解:(1)当E与F不重合时,四边形DEBF是平行四边形.理由:∵四边形ABCD是平行四边形∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向点O运动∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形;(2)四边形DEBF能是矩形.理由:∵四边形DEBF是平行四边形∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm由于动点的速度都是1cm/s所以t=2(s)故当运动时间t=2s时,以D、E、B、F为顶点的四边形是矩形.19.解:(1)∵△CDQ≌△CPQ∴DQ=PQ,PC=DC∵AB=DC=5,AD=BC=3∴PC=5在Rt△PBC中,PB=√PC2−BC2=4∴P A=AB﹣PB=5﹣4=1设AQ=x,则DQ=PQ=3﹣x在Rt△P AQ中,(3﹣x)2=x2+12解得x=4 3∴AQ=4 3.(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB ∵MD⊥MP∴∠PMD=90°∴∠PME+∠DMF=90°∵∠FDM+∠DMF=90°∴∠MDF=∠PME∵M是QC的中点∴DM=12QC,PM=12QC∴DM=PM在△MDF和△PME中{∠MDF=∠PME ∠DFM=∠MEP DM=PM∴△MDF≌△PME(AAS)∴ME=DF,PE=MF∵EF⊥CD,AD⊥CD∴EF∥AD∵QM=MC∴DF=CF=12DC=52∴ME=5 2∵ME是梯形ABCQ的中位线∴2ME=AQ+BC,即5=AQ+3∴AQ=2.方法2、∵点M是Rt△CDQ的斜边CQ中点∴DM=CM∴∠DMQ=2∠DCQ∵点M是Rt△CPQ的斜边的中点∴MP=CM∴∠PMQ=2∠PCQ∵∠DMP=90°∴2∠DCQ+2∠PCQ=90°∴∠PCD=45°,°∠BCP=90°﹣45°=45°∴∠BPC=45°=∠BCP,∴BP=BC=3∵∠CPQ=90°∴∠APQ=180°﹣90°﹣45°=45°∴∠AQP=90°﹣45°=45°=∠APQ∴AQ=AP=2.20.(1)证明:∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,OB=OD,OA=OC∴∠ABE=∠CDF∵点E,F分别为OB,OD的中点∴BE=12OB,DF=12OD∴BE=DF在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB∴AB=OA∵E是OB的中点∴AG⊥OB∴∠OEG=90°同理:CF⊥OD∴AG∥CF∴EG∥CF由(1)得:△ABE≌△CDF∴AE=CF∵EG=AE∴EG=CF∴四边形EGCF是平行四边形∵∠OEG=90°∴四边形EGCF是矩形.21.解:(1)由题意得x2=20∴x=2√5∴当x为2√5时,点的运动停止;(2)当点P与点N相遇时,2x+x2=20解得x=2√21−1或﹣1﹣2√21(舍去)当点Q与点M相遇时,x+3x=20解得x=5当x=5时,x2=25>20∴点Q与点M不能相遇;(3)∵当点N到达A点时,x2=20∴x=2√5∴BQ=2√5cm,CM=6√5cm∵BQ+CM=8√5<20∴此时M点与Q点还未相遇∴点Q只能在点M的左侧①如图,当点P在点N的左侧时20﹣(x+3x)=20﹣(2x+x2)解得x=0(舍去)或x=2∴当x=2时,以P、Q、M、N为顶点的四边形是平行四边形;②如图,当点P在点N的右侧时20﹣(x+3x)=(2x+x2)﹣20解得x=4或﹣10(舍去)∴当x=4时,以P、Q、M、N为顶点的四边形是平行四边形综上,当x=2或4时,以P、Q、M、N为顶点的四边形是平行四边形.22.证明:(1)∵四边形ABCD是矩形∴AB=CD,AB∥CD∴∠BAE=∠DCF又∵BE⊥AC,DF⊥AC∴∠AEB=∠CFD=90°在△ABE和△CDF中{∠AEB=∠CFD ∠BAE=∠DCF AB=CD∴△ABE≌△CDF(AAS);(2)由(1)得:△ABE≌△CDF∴BE=DF又∵BE⊥AC,DF⊥AC∴BE∥DF∴四边形BFDE是平行四边形.23.解:(1)设t秒时两点相遇根据题意得,t+2t=2(4+8)解得t=8答:经过8秒两点相遇;(2)观察图象可知,点M不可能在AB或DC上.①如图1,点M在E点右侧时,当AN=ME时,四边形AEMN为平行四边形得:8﹣t=9﹣2t解得t=1∵t =1时,点M 还在DC 上∴t =1舍去;②如图2,点M 在E 点左侧时,当AN =ME 时,四边形AEMN 为平行四边形 得:8﹣t =2t ﹣9解得t =173. 所以,经过173秒钟,点A 、E 、M 、N 组成平行四边形.24.解:(1)当t =3时,点P 的路程为2×3=6cm∵AB =4cm ,BC =6cm∴点P 在BC 上∴S △ABP =12AB ⋅BP =4(cm 2).(2)(Ⅰ)若点P 在BC 上∵在Rt △ABP 中,AP =5,AB =4∴BP =2t ﹣4=3∴t =72;(Ⅱ)若点P 在DC 上则在Rt △ADP 中,AP 是斜边∵AD =6∴AP >6∴AP ≠5;(Ⅲ)若点P 在AD 上AP =5则点P 的路程为20﹣5=15∴t=15 2综上,当t=72秒或t=152时,AP=5cm.(3)当2<t<5时,点P在BC边上∵BP=2t﹣4,CP=10﹣2t∴AP2=AB2+BP2=42+(2t﹣4)2由题意,有AD2+CP2=AP2∴62+(10﹣2t)2=42+(2t﹣4)2∴t=133<5即t=13 3.。

北师大版数学九年级上册 1.2矩形的性质与判定 同步课时作业

北师大版数学九年级上册  1.2矩形的性质与判定 同步课时作业
3.答案:D
解析:A.若 AD ⊥ BC ,则四边形 AEDF 是平行四边形,不一定是矩形,错误; B.若 AD 垂直平分 BC ,则四边形 AEDF 是菱形,不一定是矩形,错误; C.若 BD = CD ,则四边形 AEDF 是菱形是平行四边形,不一定是矩形,错误;
D.正确,故选 D. 4.答案:C 解析:矩形是指有一个内角是直角的平行四边形
2.如图,顺次连接四边形 ABCD 各边中点得四边形 EFGH ,要使四边形 EFGH 为矩形,
应添加的条件是( )
A. AB / /DC B. AC = BD C. AC ⊥ BD
D. AB = DC
3.如图,在△ABC 中,点 D 是边 BC 上的点(与 B, C 两点不重合),过点 D 作
DE / / AC, DF / / AB ,分别交 AB, AC 于 E, F 两点,下列说法正确的是( )
又 AEF = DEC ,△AEF △DEC (AAS) , AF = CD ,
又 AF = BD , BD = CD . (2)四边形 AFBD 为矩形 证明: Q AB = AC , 由(1)知 BD = CD , AD ⊥ BC (三线合一),即 ADB = 90 , 又 Q AF //BD , AF = BD ,四边形 AFBD 为平行四边形, 四边形 AFBD 是矩形
OM = 3,BC = 10 ,则 OB 的长为( )
A.5
B.4
C. 34
2
D. 34
9.如图,在△ABC 中, ACB = 90 , CD ⊥ AB ,垂足为 D,点 E 是 AB 的中点,
CD = DE = a ,则 AB 的长为( )
A. 2a
B. 2 2a
C. 3a

最新2019-2020年度北师大版九年级数学上册《矩形的性质与判定》课时练习及答案解析-精品试题

最新2019-2020年度北师大版九年级数学上册《矩形的性质与判定》课时练习及答案解析-精品试题

北师大版数学九年级上册第一章第二节矩形的性质与判定课时练习一、单选题(共15题)1.如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B 与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A.四边形ABCD由矩形变为平行四边形B.BD的长度增大C.四边形ABCD的面积不变D.四边形ABCD的周长不变答案:C解析:解答:∵矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,∴AD=BC,AB=DC,∴四边形变成平行四边形,故A正确;BD的长度增加,故B正确;∵拉成平行四边形后,高变小了,但底边没变,∴面积变小了,故C错误;∵四边形的每条边的长度没变,∴周长没变,故D正确,故选C.分析: 由将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,由平行四边形的判定定理知四边形变成平行四边形,由于四边形的每条边的长度没变,所以周长没变;拉成平行四边形后,高变小了,但底边没变,所以面积变小了,BD的长度增加了2.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=12AC,OB=12BD,∴OA=OB,∴A、B、C正确,D错误,故选:D.分析: 矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论3.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A.17 B.18 C.19 D.20答案:D解析:解答: ∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=12CD=2.5,AC=22512=13,∵O是矩形ABCD的对角线AC的中点,∴BO=12AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选:D.分析: 本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好4. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm答案:D解析:解答: ∵四边形ABCD是矩形,∴OA=OC=12AC,OD=OB=12BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=OB=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.分析:根据矩形的性质求出OA=OB,AC=BD,求出AC的长,求出OA和OB的长,推出等边三角形OAB,求出AB=OA,代入求出即可5.如图,矩形ABCD的两条对角线交于点O,若∠AOD=120°,AB=6,则AC等于()A.8 B.10 C.12 D.18答案:C解析:解答: ∵矩形ABCD的两条对角线交于点O,∴OA=OB=1AC,2∵∠AOD=120°,∴∠AOB=180°-∠AOD=180°-120°=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=2×6=12.故选C.分析: 本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的对角线互相平分且相等是解题的关键6.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD 的长为()A.4 B.3 C.2 D.1答案:A解析:解答: 在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.分析: 根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2AB,再根据矩形的对角线相等解答7.一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A.60 2B.70 2 C.120 2 D.140 2答案:A解析:解答:∵黄色三角形与绿色三角形面积之和是矩形面积的50%;∴矩形的面积=21÷(50%-15%)=21÷35%=60(2).故选:A.分析: 黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,用除法即可得出矩形的面积8.如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=3,则OE=()A.1 B.2 C.3 D.4答案:A解析:解答: ∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=3,∠OAD=60°,∴∠OAE=30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A分析: 先根据等边三角形的性质得出OA=3,根据△OAE是一个含30°的直角三角形,进而得出OE的长度9.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16 B.22或16 C.26 D.22或26答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠AEB=∠ABE,∴AE=AB,①当AE=3,DE=5时,AD=BC=3+5=8,AB=CD=AE=3,即矩形ABCD的周长是AD+AB+BC+CD=8+3+8+3=22;②当AE=5,DE=3时,AD=BC=3+5=8,AB=CD=AE=5,即矩形ABCD的周长是AD+AB+BC+CD=8+5+8+5=26;即矩形的周长是22或26分析: 根据矩形性质得出AD=BC,AB=CD,AD∥BC,求出AE=AB,分为当AE=3或AE=5两种情况,求出即可10.矩形具有而菱形不具有的性质是()A.对角线相等B.两组对边分别平行C.对角线互相平分D.两组对角分别相等答案:A解析:解答: ∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.分析: 根据矩形与菱形的性质求解即可求得答案.注意矩形与菱形都是平行四边形.11.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A.16cm B.22cm C.26cm D.22cm或26cm答案:D解析:解答: ∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.分析: 根据矩形的性质得出AD=BC,AB=CD,AD∥BC,推出∠AEB=∠CBE,求出∠ABE=∠CBE=∠AEB,推出AB=AE=CD,分为两种情况,代入求出即可12. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A.57.5°B.32.5°C.57.5°,23.5°D.57.5°,32.5°答案:D解析:解答: ∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=12×(180°-∠AOB)=12×(180°-65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°-57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.分析: 根据矩形的性质得出∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,推出OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,求出∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,根据三角形内角和定理求出即可13.矩形具有而菱形不具有的性质是()A.对角线相等B.对角线平分一组对角C.对角线互相平分D.对角线互相垂直答案:A解析:解答:矩形的对角线互相平分且相等;菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;根据矩形和菱形的性质得出:矩形具有而菱形不具有的性质是:对角线相等;故选:A.分析: 根据矩形好菱形的性质,容易得出结论.14.过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A.对角线相等的四边形B.对角线垂直的四边形C.对角线互相平分且相等的四边形D.对角线互相垂直平分的四边形答案:B解析:解答:如图所示:∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选:B.分析: 由矩形的性质得出∠E=90°,由平行线的性质得出∠EAO=∠EBO=90°,证出四边形AEBO是矩形,得出∠AOB=90°即可15. 若矩形的一条对角线与一边的夹角是40°,则两条对角线所夹的锐角的度数为()A.80°B.60°C.45°D.40°答案:A解析:解答:图形中∠1=40°,∵矩形的性质对角线相等且互相平分,∴OB=OC,∴△BOC是等腰三角形,∴∠OBC=∠1,则∠AOB=2∠1=80°.故选A.分析: 根据矩形的性质,得△BOC是等腰三角形,再由等腰三角形的性质进行答题.二、填空题(共5题)16.如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.答案: AC=BD.答案不唯一解析:解答: 添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一分析: 根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可17.平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC ⊥BD;③AB=BC;④AC平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________答案: ①⑤解析:解答: 要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可分析:四边形ABCD是平行四边形,要成为矩形加上一个角为直角或对角线相等即可18.如图,要使平行四边形ABCD是矩形,则应添加的条件是________(只填一个).答案: ∠ABC=90°或AC=BD(不唯一)解析:解答: 根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD.故答案为:∠ABC=90°或AC=BD分析: 根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可19.如图,在四边形ABCD中,对角线AC,BD相交于点O,且AO=CO,BO=DO,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上一个条件是________(填上你认为正确的一个答案即可)答案:∠DAB=90°解析:解答:可以添加条件∠DAB=90°,∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵∠DAB=90°,∴四边形ABCD是矩形,故答案为:∠DAB=90°分析: 根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定20.木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)答案:合格解析:解答:∵AB=DC=8cm,BC=AD=15cm,∴四边形ABCD是平行四边形,∵AC=17cm,AB=8cm,BC=15cm,∴AC2=AB2+BC2,∴∠B=90°,∴四边形ABCD是矩形,即四边形是长方形,故答案为:合格.分析: 先退出思想是平行四边形,根据勾股定理的逆定理求出∠B=90°,根据矩形的判定推出即可三、解答题(共5题)21.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;答案:解答: (1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形答案:解答: (2)证明:连接BD,AC.∵AH=AE,AD=AB,∴AH AEAD AB∴HE∥BD,同理可证,GH∥AC,∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴∠EHG=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形解析:分析: (1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥BD,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由1知四边形HGFE 是平行四边形,故四边形HGFE是矩形.22.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积答案: 解答:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=1BC=3,2∴AD=22=4.53∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.解析:分析:利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC 中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD23.如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形答案:解答:证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,21世纪教育网∴四边形ABCD是矩形.解析:分析: 欲证明四边形ABCD是矩形,只需推知∠DAB是直角24.有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?答案:AD=140cm.解析:解答:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°-150°=30°,∴∠MCD=60°-30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.分析: 过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可25.如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案:见解答解析:解答:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,(∠BAC+∠FAB)=90°,∴∠BAD+∠EAB=12∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.分析: 先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论。

(含答案)九年级数学北师大版上册课时练第1章《矩形的性质与判定》 - 副本 - 副本

(含答案)九年级数学北师大版上册课时练第1章《矩形的性质与判定》 - 副本 - 副本

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第1单元矩形的性质与判定一、选择题(本大题共16小题,共48分)1.矩形不具有的性质是()A.四条边相等B.对角线互相平分C.对角相等D.对角线相等2.如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为()A.4B.6C.8D.103.如图,矩形ABCD的对角线AC=10,∠BOC=120∘,则AB的长度是()A.5B.6C.8D.534.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为3.2km,则M、C之间的距离是()A.0.8 B.1.6 C.2.0 D.3.2 5.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若∠1=25∘,则∠2等于()A.25∘B.30∘C.50∘D.60∘6.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm,则EF的长是()7.A.2.2B.2.3C.2.4D.2.58.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠=∠B.∠=∠C.=D.⊥9.在一组对边平行的四边形中,添加下列条件中的哪一个,可判定这个四边形是矩形?()A.另一组对边相等,对角线相等B.另一组对边相等,对角线互相垂直C.另一组对边平行,对角线相等D.另一组对边平行,对角线互相垂直10.已知平行四边形ABCD中,下列条件:11.AB=BC;AC=BD;AC⊥BD;AC平分∠BAD,12.其中能说明平行四边形ABCD是矩形的是()A. ①B. ②C. ③D. ④13.如果顺次连接四边形各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A.互相平分B.相等C.互相垂直D.互相垂直平分14.如图,在平行四边形ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是()B..=.A..=12C.⊥D.∠.=∠15.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=55∘,则∠OCD的度数为()16.A.35∘B.40∘C.45∘D.50∘17.如图,点O是菱形ABCD对角线的交点,DE//AC,CE//BD,连接OE,设AC=12,BD=16,则OE的长为().A.8B.9C.10D.1218.为了研究特殊四边形,刘老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C,B与D两点之间分别用一根橡皮筋拉直固定,课上,刘老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2),观察所得到的四边形,下列结论正确的有①∠BCA=45°;②AC的长度变小;③AC=BD;④AC⊥BD.A.1个B.2个C.3个D.4个19.如图,在△ABC中,∠C=90∘,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于点E,PF⊥BC于点F,连接EF,则线段EF的长的最小值为()A.125B.245C.185D.520.如图,在等腰直角△ABC中,AB=BC,点D是△ABC内部一点,DE⊥BC,DF⊥AB,垂足分别为E,F,若CE=3DE,5DF=3AF,DE=2.5,则AF=()A.8B.10C.12.5D.15二、填空题(本大题共6小题,共18分)21.如图,在矩形ABCD中,对角线AC,BD交于点O,点E是BC上一点,且AB=BE,∠1=15∘,则∠2=.22.23.24.如图,在△ABC中,∠BAC为钝角,AF,CE都是这个三角形的高,P为AC的中点,若∠B=42∘,则∠EPF的度数是.25.26.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=______°时,四边形AEDF是矩形.27.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件______,使四边形DBCE是矩形.28.29.如图是由三个边长分别为6,10,x的正方形组成的图形,若线段AB将它们分成面积相等的两部分,则x的值是.30.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.三、解答题(本大题共8小题,共54分)31.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,求DE的长度.32.33.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.34.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.35.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形.36.37.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.38.如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,即△ABD,△BCE,△ACF,连接DE,EF.请回答下列问题:39.(1)四边形ADEF是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEF是矩形?40.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.41.(1)求证:四边形AEFD是矩形;42.(2)若BF=8,DF=4,求CD的长.43.如图,P为等腰三角形ABC的底边AB上的任意一点,PE⊥AC于点E,PF⊥BC于点F,AD⊥BC于点D,44.(1)求证:PE+PF=AD;(2)若点P为直线AB上的一点,请直接写出PE,PF和AD的关系.45.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.46.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.参考答案1.A2.C3.A4.B5.C6.D7.B8.C9.B10.C11.A12.A13.C14.B15.B16.C17.30∘18.96∘19.4520.EB=DC21.4或622.4.823.解:∵四边形ABCD是矩形,AC=10,∴∠ADC=90∘,OA=OC=OB=OD=1AC=5.2∵∠EDC:∠EDA=1:2,∠EDC+∠EDA=90∘,∴∠EDC=30∘.∵DE⊥AC,∴∠DEC=90∘,∴∠OCD=90∘-∠EDC=60∘.又∵OC =OD ,∴△OCD 是等边三角形,∴CD =OC =5,∴CE =12CD =52,∴DE =2−2=24.(1)证明:∵四边形ABCD 是矩形,∴AD //BC ,∴∠EDO =∠FBO .在△DOE 和△BOF 中,∠=∠,=,∠=∠,∴△DOE ≌△BOF (ASA ).(2)解:易得ED //BF ,ED =BF ,∴四边形BFDE 是平行四边形.∵EF ⊥BD ,∴四边形BFDE 是菱形.设AE =x ,可得BE =ED =8-x ,在Rt △ABE 中,根据勾股定理可得:2=2+2,即(8−)2=2+62,解得x =74.∴BE =8-74=254,∴四边形BFDE 的周长=254×4=25.25.证明:∵四边形ABCD是平行四边形,∴AB//CD,AD=BC,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E为BC的中点,∴EB=EC,∴△ABE≌△FCE(AAS),∴AB=CF.∵AB//CF,∴四边形ABFC是平行四边形,∵AD=BC,AD=AF,∴BC=AF,∴四边形ABFC是矩形.26.解:(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠OAD+∠ADO=2∠OAD,∴∠OAD=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴AB//CD,∴∠ABO=∠ODC,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54∘,∵∠BAD=90∘,∴∠ADO=90∘-54∘=36∘. 27.解:(1)四边形ADEF是平行四边形.理由如下:∵△ABD,△BEC都是等边三角形,∴BD=AB=AD,BE=BC,∠DBA=∠EBC=60∘.∵∠DBE=60∘-∠EBA,∠ABC=60∘-∠EBA,∴∠DBE=∠ABC.∴△DBE≌△ABC(SAS).∴DE=AC.∵△ACF是等边三角形,∴AC=AF.∴DE=AF.同理可得△ABC≌△FEC,∴EF=BA=DA.∵DE=AF,DA=EF,∴四边形ADEF为平行四边形.(2)若四边形ADEF为矩形,则∠DAF=90∘.易知∠DAB=∠FAC=60∘,∴∠BAC=360∘-∠DAB-∠FAC-∠DAF=360∘-60∘-60∘-90∘=150∘.∴当△ABC满足∠BAC=150∘时,四边形ADEF是矩形.28.(1)证明:∵在菱形ABCD中,∴AD∥BC且AD=BC,∵BE=CF,∴BC=EF,∴AD=EF,∵AD∥EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴四边形AEFD是矩形;(2)解:设BC=CD=x,则CF=8-x,在Rt△DCF中,∵2+2=2,∴x2=(8-x)2+42,∴x=5,∴CD=5.29.解:(1)过P作PG⊥BD于G,如图∵BD⊥AC,PF⊥AC,∴PG∥DF,GD∥PF,∴四边形PGDF是平行四边形;又∵∠=90°,∴四边形PGDF是矩形,∴PF=GD①,∵四边形PGDF是矩形,∴PG∥DF,即PG∥AC,∴∠BPG=∠C,又∵AB=AC,∴∠ABC=∠C,∴∠BPG=∠ABC,在△BPE与△PBG中,∠PEB=∠BGP,∠BPG=∠ABP,BP=PB,∴△BPE≌△PBG(AAS)∴PE=BG②,①+②:PE+PF=BG+GD,即PE+PF=BD.(2)①当点P在线段AB上时,同(1)有PE+PF=AD;②当点P在点A左侧时,有PF-PE=AD;③当点P在点B右侧时,有PE-PF=AD.30.解:(1)证明:∵四边形ABCD是菱形,∴OB=OD,∵E是AD的中点,∴OE是△ABD的中位线,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90∘,∴平行四边形OEFG是矩形.(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90∘,∵E是AD的中点,∴OE=AE=1AD=5.2由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=2−2=3,∴BG=AB-AF-FG=10-3-5=2.。

北师大版九年级数学上册矩形的性质与判定课时精练(附答案)

北师大版九年级数学上册矩形的性质与判定课时精练(附答案)

北师大版九年级数学上册矩形的性质与判定课时精练(附答案)一、单选题1.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A. 4.8B. 5C. 6D. 7.22.下列判断错误的是()A. 两组对边分别相等的四边形是平行四边形B. 四个内角都相等的四边形是矩形C. 一条对角线平分一组对角的平行四边形是菱形D. 对角线相等的四边形是矩形3.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为A. 3B. 4C. 5D. 64.如图,把一张长方形纸条ABCD沿EF折叠,使点C的对应点C′恰好与点A重合,若∠1=70°,则∠FEA 的度数为()A. 40°B. 50°C. 60°D. 70°5.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB 于E ,PF⊥AC于F ,则EF的最小值为().A. 4B. 4.8C. 5.2D. 6二、填空题6.如图,在矩形ABCD中,AB=8,AD=6,E为AB边上一点,将△BEC沿CE翻折,点B落在点F处,当△AEF为直角三角形时,BE=________.7.如图,在矩形中,,,点是上的动点(不与端点重合),在矩形内找点,使得,且满足,则线段的最小值是________.8.如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、. 若,则图中阴影部分图形的面积和为________.9.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF =________.10.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为________.三、解答题11.如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.12.在矩形ABCD中,AB=3,AD=9,对角线AC、BD交于点O,一直线过O点分别交AD、BC于点E、F,且ED=4,求证:四边形AFCE为菱形。

北师大版九年级数学上册习题:1.2《矩形的性质与判定》习题1

北师大版九年级数学上册习题:1.2《矩形的性质与判定》习题1

A
E
D
C
B
O 《矩形的性质与判定》习题
1、如图,矩形ABCD 中,AC 与BD 交于点O ,BE ⊥AC , CF ⊥BD ,垂足分别为E ,
F .
求证:BE CF =.
2、如图矩形ABCD 对角线相交于点O ,CE ∥BD 交AB 的延长线于点E ,求证:AC =CE
3、如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC ,DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.
4.如图,已知矩形ABCD .(1)在图中作出CDB △沿对角线BD 所在的直线对折后的
C DB '△,C 点的对应点为C '(用尺规作图,保留清晰的作图痕迹,简要写明作法);(2)
设C B '与AD 的交点为E ,若EBD △的面积是整个矩形面积的1
3
,求DBC ∠的度数.
5.已知:四边形ABCD 中,AB =CD ,∠A +∠D =180°,AC 、BD 相交于点O
,△AOB 是等边三角形.求证:四边形ABCD 是矩形.
A
D C
B
A
B
C
D
E
F O
B
C
A
E
D
F
6.如图,在 平行四边形ABCD 中,以AC 为斜边作直角三角形ACE ,∠BED =90°、说明四边形ABCD 是矩形
A
B
C
D
O
E。

2019九年级数学上册 矩形的性质与判定课时练习 (新版)北师大版

2019九年级数学上册 矩形的性质与判定课时练习 (新版)北师大版

矩形的性质与判定一.填空题(共6小题)1.如果▱ABCD成为一个矩形,需要添加一个条件,那么你添加的条件是.2.如图,在平行四边形中,∠B=60°,AB=4,AD=6,动点F从D出发,以1个单位每秒的速度从D向A运动,同时动点E以相同速度从点C出发,沿BC方向在BC的延长线上运动,设运动时间为t,连接DE、CF.探究:①当t= s,四边形DECF是菱形;②当t= s,四边形DECF是矩形.3.的平行四边形是矩形(填一个合适的条件).4.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为BC的中点,P为BC上一点,PF⊥AB于F,PE⊥AC于E,则DF 与DE的关系为.5.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.6.如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则(1)PQ= ;(2)第n个矩形的边长分别是.二.选择题(共10小题)7.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)﹣(θ2+θ3)=30° B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180°8.矩形具有而一般的平行四边形不一定具有的特征()A.对角相等 B.对角线相等 C.对角线互相平分 D.对边相等9.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A. B.C. D.10.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()A. B. C. D.不确定11.如图,在矩形ABCD中,AD=30,AB=20,若点E、F三等分对角线AC,则△ABE的面积为()A.60 B.100 C.150 D.20012.如图,利用四边形的不稳定性改变矩形ABCD的形状,得到▱A1BCD1,若▱A1BCD1的面积是矩形ABCD面积的一半,则∠ABA1的度数是()A.15° B.30° C.45° D.60°13.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=4cm,则矩形ABCD的面积为()A.12cm2 B.4cm2 C.8cm2 D.6cm214.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=2,则AC的长是()A.4 B.6 C.8 D.1015.如图,矩形ABCD中,AB=4,BC=2,O为对角线AC的中点,点P、Q分别从A和B两点同时出发,在边AB 和BC上匀速运动,并且同时到达终点B、C,连接PO、QO并延长分别与CD、DA交于点M、N.在整个运动过程中,图中阴影部分面积的大小变化情况是()A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小16.如图,矩形ABCD由3×4个小正方形组成,此图中不是正方形的矩形有()A.34个 B.36个 C.38个 D.40个三.解答题(共5小题)17.如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.18.如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.(1)当∠BEF=50°(图1),试求∠H的度数.(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.19.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.(1)判断△BEC的形状,并说明理由?(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.20.已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,求证:DF=AB.21.如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F(1)求证:CE=EF;(2)若EF=2,CD=4,求矩形ABCD的面积.参考答案与试题解析一.填空题1.∠A=90°2.①4;②2.3.有一个角是直角(答案不唯一)4.DF=DE且DF⊥DE5.≤AM<26.10×,5×二.选择题7.A8.B9.C10.C11.B12.D13.B14.A15.C16.D三.解答题17.分析:由矩形的性质,可得AC=BD,欲求AC=CE,证BD=CE即可.可通过证四边形BDEC是平行四边形,从而得出BD=CE的结论.解答: 解:在矩形ABCD中,AC=BD,AD∥BC.又∵CE∥DB,∴四边形BDEC是平行四边形.∴BD=EC,∴AC=CE.18.分析:(1)根据三角形的内角和是180°,可求∠EFB=40°,所以∠EFH=20°,又由平角定义,可求∠AEF=130°,所以∠GEF=65°,又根据三角形的外角等于与它不相邻的两内角之和,可得∠H=45度.(2)运用(1)中的计算方法即可得到,∠H的大小不发生变化.解答: 解:(1)∵∠B=90°,∠BEF=50°,∴∠EFB=40°.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=65°,∠EFH=20°.∵∠GEF=∠H+∠EFH,∴∠H=65°﹣20°=45°.(2)不变化.∵∠B=90°,∴∠EFB=90°﹣∠BEF.∵GE是∠AEF的平分线,HF是∠BFE的平分线,∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).∵∠GEF=∠H+∠EFH,∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.19.分析:(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBG和AECG,推出EH∥FG,EF∥HG,推出平行四边形EFGH,根据矩形的判定推出即可.解答:解:(1)△BEC是直角三角形:理由如下:∵四边形ABCD是矩形,∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,由勾股定理得:CE===,同理BE=2,∴CE2+BE2=5+20=25,∵BC2=52=25,∴BE2+CE2=BC2,∴∠BEC=90°,∴△BEC是直角三角形.(2)四边形EFGH为矩形,理由如下:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵DE=BG,∴四边形DEBG是平行四边形,∴BE∥DG,∵AD=BC,AD∥BC,DE=BG,∴AE=CG,∴四边形AECG是平行四边形,∴AG∥CE,∴四边形EFGH是平行四边形,∵∠BEC=90°,∴平行四边形EFGH是矩形.20.分析:根据矩形性质得出∠B=∠DFA=90°,AD∥BC,求出∠DAF=∠AEB,△AFD≌△EBA,根据全等得出即可.解答:证明:∵四边形ABCD是矩形,DF⊥AE,∴∠B=∠DFA=90°,AD∥BC,∴∠DAF=∠AEB,在△AFD和△EBA中,,∴△AFD≌△EBA(AAS),∴DF=AB.21.分析:(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE≌Rt△DCE,则可证得结论;(2)设BE=x,则AF=x,AE=x+2,在Rt△ABE中,利用勾股定理,可求得AE,则可求得BC的长,可求得矩形ABCD的面积.解答:证明:(1)如图,连接DE,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°.又∵AD=AE,∴Rt△ABE≌Rt△DFA.∴AB=CD=DF.又∵∠DFE=∠C=90°,DE=DE,∴Rt△DFE≌Rt△DCE.∴EC=EF;(2)∵EF=EC=2,CD=AB=4,∴设BE=x,则AF=x,AE=x+2.在Rt△ABE中,∵BE2+AB2=AE2,∴42+x2=(x+2)2.解这个方程得:x=3,∴BC=5.∴矩形ABCD的面积=5×4=20.。

九年级数学上册1.2矩形的性质与判定习题课件1(新版)北师大版

九年级数学上册1.2矩形的性质与判定习题课件1(新版)北师大版

) C
第六页,共14页。
10.如图,在△ABC中,D,E,F分别是AB,AC,BC的中点(zhōnɡ diǎn), AH⊥BC于点H,若DF=10 cm,则EH等于( ) B
A.8 cm B.10 cm C.16 cm D.24 cm
第七页,共14页。
11.如图,在△ABC中,BD,CE是高,G,F分别是BC,DE的中点(zhōnɡ diǎn),
CE∥BD,交AB的延长线于点E,求证:AC=CE. 解:证四边形BDCE是平行四边形得CE=BD,又∵AC=BD,∴AC=CE
第四页,共14页。
7.如图,在矩形(jǔxíng)ABCD中,E,F为BC上两点,且BE=CF,连接 AF,DE交于点O.求证:
(1)△ABF≌△DCE; (2)△AOD是等腰三角形. 解:(1)在矩形(jǔxíng)ABCD中,∠B=∠C=90°,AB=DC,∵BE=CF, ∴BF=CE,∴△ABF≌△DCE(SAS) (2)∵△ABF≌△DCE,∴∠BAF= ∠CDE,∴∠DAF=∠EDA,∴△AOD是等腰三角形
则下列结论中错误的是(
)
D
A.GE=GD B.GF⊥DE
C.GF平分∠DGE D.∠DGE=60°
12.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE
=15°,则∠BOE=(
)
D
A.30° B.45° C.60° D.75°
第八页,共14页。
13.(2014·聊城)如图,在矩形ABCD中,边AB的长为3,点E,F分别在
C.对角线相等 D.对边平行
2.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角
形的个数是(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的性质与判定
一.填空题(共6小题)
1.如果▱ABCD成为一个矩形,需要添加一个条件,那么你添加的条件是.
2.如图,在平行四边形中,∠B=60°,AB=4,AD=6,动点F从D出发,以1个单位每秒的速度从D向A运动,同时动点E以相同速度从点C出发,沿BC方向在BC的延长线上运动,设运动时间为t,连接DE、CF.
探究:①当t= s,四边形DECF是菱形;
②当t= s,四边形DECF是矩形.
3.的平行四边形是矩形(填一个合适的条件).
4.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为BC的中点,P为BC上一点,PF⊥AB于F,PE⊥AC于E,则DF与DE的关系为.
5.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点(P不与B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的取值范围是.
6.如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则(1)PQ= ;(2)第n个矩形的边长分别是.
二.选择题(共10小题)
7.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()
A.(θ1+θ4)﹣(θ2+θ3)=30° B.(θ2+θ4)﹣(θ1+θ3)=40°C.(θ1+θ2)﹣(θ3+θ4)=70° D.(θ1+θ2)+(θ3+θ4)=180°
8.矩形具有而一般的平行四边形不一定具有的特征()
A.对角相等 B.对角线相等 C.对角线互相平分 D.对边相等
9.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()
A. B.C. D.
10.如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是()
A. B. C. D.不确定
11.如图,在矩形ABCD中,AD=30,AB=20,若点E、F三等分对角线AC,则△ABE的面积为()
A.60 B.100 C.150 D.200
12.如图,利用四边形的不稳定性改变矩形ABCD的形状,得到▱A1BCD1,若▱A1BCD1的面积是矩形ABCD面积的一半,则∠ABA1的度数是()
A.15° B.30° C.45° D.60°
13.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=4cm,则矩形ABCD 的面积为()
A.12cm2 B.4cm2 C.8cm2 D.6cm2
14.如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=2,则AC的长是()
A.4 B.6 C.8 D.10
15.如图,矩形ABCD中,AB=4,BC=2,O为对角线AC的中点,点P、Q分别从A和B两点同时出发,在边AB和BC上匀速运动,并且同时到达终点B、C,连接PO、QO并延长分别与CD、DA交于点M、N.在整个运动过程中,图中阴影部分面积的大小变化情况是()
A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
16.如图,矩形ABCD由3×4个小正方形组成,此图中不是正方形的矩形有()
A.34个 B.36个 C.38个 D.40个
三.解答题(共5小题)
17.如图所示,在矩形ABCD中,对角线AC、BD相交于点O,CE∥DB,交AD的延长线于点E,试说明AC=CE.
18.如图,在长方形ABCD中,点E,F分别在边AB和BC上,∠AEF的平分线与边AD交于点G,线段EG的反向延长线与∠EFB的平分线交于点H.
(1)当∠BEF=50°(图1),试求∠H的度数.
(2)当E,F在边AB和BC上任意移动时(不与点B重合)(图2),∠H的大小是否变化?若变化,请说明理由;若不变化,求出∠H的度数.
19.如图:矩形ABCD中,AB=2,BC=5,E、G分别在AD、BC上,且DE=BG=1.
(1)判断△BEC的形状,并说明理由?
(2)判断四边形EFGH是什么特殊四边形?并证明你的判断.
20.已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,
求证:DF=AB.
21.如图,在矩形ABCD中,E是BC上的一点,且AE=AD,又DF⊥AE于点F
(1)求证:CE=EF;
(2)若EF=2,CD=4,求矩形ABCD的面积.
参考答案与试题解析
一.填空题
1.∠A=90°
2.①4;②2.
3.有一个角是直角(答案不唯一)
4.DF=DE且DF⊥DE
5.≤AM<2
6.10×,5×
二.选择题
7.A
8.B
9.C
10.C
11.B
12.D
13.B
14.A
15.C
16.D
三.解答题
17.
分析:由矩形的性质,可得AC=BD,欲求AC=CE,证BD=CE即可.可通过证四边形BDEC是平行四边形,从而得出BD=CE的结论.
解答: 解:在矩形ABCD中,AC=BD,
AD∥BC.
又∵CE∥DB,
∴四边形BDEC是平行四边形.
∴BD=EC,
∴AC=CE.
18.
分析:(1)根据三角形的内角和是180°,可求∠EFB=40°,所以∠EFH=20°,又由平角定义,可求∠AEF=130°,所以∠GEF=65°,又根据三角形的外角等于与它不相邻的两内角之和,可得∠H=45度.
(2)运用(1)中的计算方法即可得到,∠H的大小不发生变化.
解答: 解:(1)∵∠B=90°,∠BEF=50°,
∴∠EFB=40°.
∵GE是∠AEF的平分线,HF是∠BFE的平分线,
∴∠GEF=65°,∠EFH=20°.
∵∠GEF=∠H+∠EFH,
∴∠H=65°﹣20°=45°.
(2)不变化.
∵∠B=90°,
∴∠EFB=90°﹣∠BEF.
∵GE是∠AEF的平分线,HF是∠BFE的平分线,
∴∠GEF=∠AEF=(180°﹣∠BEF),∠EFH=∠EFB=(90°﹣∠BEF).
∵∠GEF=∠H+∠EFH,
∴∠H=∠GEF﹣∠EFH=(180°﹣∠BEF)﹣(90°﹣∠BEF)=45°.
19.
分析:(1)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出即可;
(2)根据矩形的性质和平行四边形的判定,推出平行四边形DEBG和AECG,推出EH∥FG,EF∥HG,推出平行四边形EFGH,根据矩形的判定推出即可.
解答:解:(1)△BEC是直角三角形:理由如下:
∵四边形ABCD是矩形,
∴∠ADC=∠ABP=90°,AD=BC=5,AB=CD=2,
由勾股定理得:CE===,
同理BE=2,
∴CE2+BE2=5+20=25,
∵BC2=52=25,
∴BE2+CE2=BC2,
∴∠BEC=90°,
∴△BEC是直角三角形.
(2)四边形EFGH为矩形,理由如下:
∵四边形ABCD是矩形,
∴AD=BC,AD∥BC,
∵DE=BG,
∴四边形DEBG是平行四边形,
∴BE∥DG,
∵AD=BC,AD∥BC,DE=BG,
∴AE=CG,
∴四边形AECG是平行四边形,
∴AG∥CE,
∴四边形EFGH是平行四边形,
∵∠BEC=90°,
∴平行四边形EFGH是矩形.
20.
分析:根据矩形性质得出∠B=∠DFA=90°,AD∥BC,求出∠DAF=∠AEB,△AFD≌△EBA,根据全等得出即可.
解答:证明:∵四边形ABCD是矩形,DF⊥AE,
∴∠B=∠DFA=90°,AD∥BC,
∴∠DAF=∠AEB,
在△AFD和△EBA中,

∴△AFD≌△EBA(AAS),
∴DF=AB.
21.
分析:(1)连接DE,利用矩形的性质,则可证得Rt△ABE≌Rt△DFA,进一步可证得Rt△DFE ≌Rt△DCE,则可证得结论;
(2)设BE=x,则AF=x,AE=x+2,在Rt△ABE中,利用勾股定理,可求得AE,则可求得BC 的长,可求得矩形ABCD的面积.
解答:证明:
(1)如图,连接DE,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠AFD=∠B=90°.
又∵AD=AE,
∴Rt△ABE≌Rt△DFA.
∴AB=CD=DF.
又∵∠DFE=∠C=90°,DE=DE,
∴Rt△DFE≌Rt△DCE.
∴EC=EF;
(2)∵EF=EC=2,CD=AB=4,
∴设BE=x,则AF=x,AE=x+2.。

相关文档
最新文档