高一数学基本概念——第4章 幂函数、指数函数和对数函数(上)
高一数学上册 第4章 幂函数、指数函数和对数函数 4.1 幂函数的性质与图像1课件 沪教版
-5
1
-6
y x -6
2
y x2
-2
-2
-6
?能否根据幂函数-3 的奇偶性给出 -3 k的规律
-4
?幂函数还有没有-4 其他不同类-5 型的图像 -5
-6
6
8
10
8
10
19
7
5
5
6
4
4
四、幂函5 数的奇3偶性
3
4
3
2
2
奇数
0
k 奇数 -6
-8
-4
-12
-6-2
2
1
7
-10
-4
-1 6
-2
5 -3
0.1
1
2
3
4
5
1
2
1
2
0.7 1.0
1.4
0.3 1.0
4.0
y xk,k 0 图像必过 (0, 0), (1,1) 在 [0, ) 上为增函数
在 x 1 的右侧:
6
7
指数越大图像位置越高
在 x 1, x 0 之间则相反
3
1.7 9.0
x3
0.0
0.1 1.0
8.0 27.0
12
二、幂函数的图像研究
k 1
k 1
2.2
2
0 k 1
1.8
1.6
1.4
1.2
1
k 0
0.8
-1
-8 -10
-6
-6
-10 -4
0.6
0.4 7
k0
0.2
6
6
-0.5
0.5
1
1.5
新教材高考数学 第四章 指数函数、对数函数与幂函数 4.1 指数与指数函数 4.1.2 指数函数的性
第1课时 指数函数的性质与图像课 标 解 读课标要求 核心素养1.理解指数函数的概念与意义,掌握指数函数的定义域、值域的求法.(重点、难点)2.能画出具体指数函数的图像,并能根据指数函数的图像说明指数函数的性质.(重点)1.通过指数函数概念的学习,培养数学抽象的核心素养.2.借助指数函数的图像与性质的学习,提升直观想象、逻辑推理的核心素养.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……,依此类推. 问题1:1个这样的细胞分裂2次得到多少个细胞?分裂x 次得到多少个细胞? 答案 22=4个,2x个.问题2:分裂多少次可得到16个呢?如何求解? 答案 设分裂y 次,由2y=16,得2y=24,解得y=4.1.指数函数的定义一般地,函数①y=a x称为指数函数,其中a 为②常数,a>0且a≠1. 思考:指数函数中为什么规定a>0且a≠1?提示 ①如果a=0,那么当x>0时,a x恒等于0,没有研究的必要;当x≤0时,a x无意义;②如果a<0,例如f(x)=(-4)x,那么x=12,14,…时,该函数无意义;③如果a=1,那么y=1x是一个常量,没有研究的价值.为了避免上述各种情况的出现,所以规定a>0且a≠1. 2.指数函数y=a x(a>0且a≠1)的图像和性质a>10<a<1图像性 质定义域 R 值域 (0,+∞) 过定点③(0,1)函数值 的变化当x>0时, ④y>1; 当x<0时, ⑤0<y<1当x>0时,⑥0<y<1; 当x<0时,⑦y>1单调性在R 上是⑧增函数在R 上是⑨减函数探究一 指数函数的概念例1 (易错题)函数y=(a-2)2a x是指数函数,那么( )A.a=1或a=3B.a=1C.a=3D.a>0且a≠1易错辨析:忽视指数函数对底数、系数的要求致误.要特别注意底数大于0且不等于1这一隐含条件.答案 C解析 由指数函数的定义知{(a -2)2=1,a >0,a ≠1,解得a=3. 易错点拨判断函数是指数函数时需抓住四点(1)底数是大于0且不等于1的常数. (2)指数函数的自变量必须位于指数的位置上. (3)a x的系数必须为1.(4)等号右边不是多项式,如y=a x+1(a>0且a≠1)不是指数函数.1.(1)假设函数f(x)是指数函数,且f(2)=9,那么f(x)= .(2)函数f(x)=(2a-1)x是指数函数,那么实数a 的取值范围是 . 答案 (1)3x(2)(12,1)∪(1,+∞)解析 (1)由题意设f(x)=a x(a>0且a≠1),那么f(2)=a 2=9,所以a=3,所以f(x)=3x.(2)由题意可知{2a -1>0,2a -1≠1,解得a>12且a≠1,所以实数a 的取值范围是(12,1)∪(1,+∞).探究二 指数函数的图像例2 (1)①y=a x;②y=b x;③y=c x;④y=d x的函数图像如下图,那么a,b,c,d 与0和1的关系是( )A.0<a<b<1<c<dB.0<b<a<1<d<cC.0<b<a<1<c<dD.1<a<b<c<d(2)函数f(x)=a x-1(a>0,且a≠1)满足f(1)>1,假设函数g(x)=f(x+1)-4的图像不过第二象限,那么a 的取值范围是( )A.(2,+∞)B.(2,5]C.(1,2)D.(1,5] 答案 (1)B (2)B解析 (1)由指数函数的图像可知,当底数大于1时,函数为增函数,并且底数越大图像上升得越快,因此得到c>d>1;当底数大于0且小于1时,函数为减函数,并且底数越大图像下降得越慢,因此得到1>a>b>0,所以0<b<a<1<d<c.应选B.(2)因为f(1)>1,所以a-1>1,即a>2,因为函数g(x)=f(x+1)-4的图像不过第二象限,所以g(0)=a 1-1-4≤0,所以a≤5,所以a 的取值范围是(2,5].思维突破处理指数函数图像问题的策略(1)抓住特殊点:指数函数的图像过定点(0,1).(2)巧用图像变换:函数图像的平移变换(左右平移、上下平移).2.(1)(多选)在同一平面直角坐标系中画出函数y=a x,y=x+a的图像,其中可能正确的是( )(2)函数y=a-|x|(0<a<1)的图像是( )答案(1)CD (2)A解析(1)函数y=x+a单调递增,且a为直线y=x+a在y轴上的截距,又当a>1时,函数y=a x单调递增,当0<a<1时,函数y=a x单调递减.应选项C、D中的图像符合条件,应选CD.(2)y=a-|x|=(1a )|a|,易知函数为偶函数,∵0<a<1,∴1a>1,故当x>0时,函数为增函数,当x<0时,函数为减函数,当x=0时,函数有最小值,最小值为1,应选A.探究三求指数函数与其他函数复合所得函数的定义域、值域例3 求函数y=0.31a-1的定义域、值域.解析由x-1≠0得x≠1,所以函数的定义域为{x|x≠1}.由1a-1≠0得y≠1,所以函数的值域为{y|y>0且y≠1}.思维突破指数函数y=a x与y=f(x)的复合方式主要是y=af(x)和y=f(a x ).函数y=af(x)(a>0且a≠1)与函数f(x)的定义域相同,求与指数函数有关的函数的值域时,要达到指数函数本身的要求,并利用好指数函数的单调性.3.(1)(变条件)函数改为y=3a1+3a,求此函数的定义域、值域;(2)(变条件)函数改为y=4x-2x+1,求此函数的定义域、值域. 解析 (1)∵对一切x∈R,3x≠-1,∴函数的定义域为R. y=1+3a -11+3a=1-11+3a ,∵3x >0,1+3x>1, ∴0<11+3a<1,∴-1<-11+3a<0,∴0<1-11+3a<1,∴函数的值域为(0,1).(2)函数的定义域为R.y=(2x )2-2x+1=(2a -12)2+34,∵2x>0,∴2x=12,即x=-1时,y 取得最小值,最小值为34,∴函数的值域为[34,+∞).1.以下函数一定是指数函数的是( ) A.y=2x+1B.y=x 3C.y=3·2xD.y=3-x答案 D2.指数函数y=a x与y=b x的图像如下图,那么( )A.a<0,b<0B.a<0,b>0C.0<a<1,b>1D.0<a<1,0<b<1答案 C 函数y=a x的图像是下降的,所以0<a<1;函数y=b x的图像是上升的,所以b>1.3.a取任意正实数,函数f(x)=a x+1-2的图像都恒过定点( )A.(-1,-1)B.(-1,0)C.(0,-1)D.(-1,-3)答案 A4.如果函数f(x)=a x(a>0,且a≠1)的图像经过点(2,9),那么实数a= .答案 3解析指数函数f(x)=a x(a>0,且a≠1)的图像经过点(2,9),∴9=a2,解得a=3.5.函数y=(13)a在[-2,-1]上的最小值是m,最大值是n,那么m+n的值为. 答案12解析因为y=(13)a在[-2,-1]上为减函数,所以m=(13)-1=3,n=(13)-2=9,所以m+n=12.直观想象——数形结合思路的理解与应用假设曲线|y|=2x+1与直线y=b没有公共点,求b的取值范围.素养探究:指数函数问题比较抽象,解题时尽量先借助函数图像将问题直观化、形象化、明朗化,然后利用数形结合的思想使问题灵活直观,过程中表达直观想象核心素养.解析作出曲线|y|=2x+1与直线y=b,如下图,由图像可得,假设曲线|y|=2x+1与直线y=b没有公共点,那么b应满足的条件是b∈[-1,1].直线y=2a 与函数y=|2x-1|的图像有两个公共点,求实数a 的取值范围. 解析 y=|2x-1|={1-2a ,x <0,2a -1,x ≥0,函数图像如下:由图可知,要使直线y=2a 与函数y=|2x-1|的图像有两个公共点, 需0<2a<1,即0<a<12.故实数a 的取值范围是0<a<12.——————————————课时达标训练—————————————1.函数y=a x-a -1(a>0,且a≠1)的图像可能是( )答案 D 函数y=a x-a -1的图像是由函数y=a x的图像向下平移1a个单位长度得到的,A 项显然错误;当a>1时,0<1a <1,平移距离小于1,所以B 项错误; 当0<a<1时,1a >1,平移距离大于1,所以C 项错误.应选D.2.函数y=√a a -1的定义域是(-∞,0],那么a 的取值范围是( ) A.a>0 B.a<1 C.0<a<1D.a≠0答案 C 由a x-1≥0,得a x≥a 0. ∵函数的定义域为(-∞,0], ∴a 的取值范围是0<a<1.3.一批设备价值a 万元,由于使用磨损,每年比上一年的价值降低b%,那么n 年后这批设备的价值为( ) A.na(1-b%)万元 B.a(1-nb%)万元 C.a[1-(b%)n]万元D.a(1-b%)n万元答案 D 一年后这批设备的价值为a-ab%=a(1-b%)万元,两年后这批设备的价值为a(1-b%)-a(1-b%)b%=a(1-b%)2万元,……,n 年后这批设备的价值为a(1-b%)n万元,应选D. 4.假设函数f(x)=a 2a 2-3x +1在(1,3)上是增函数,那么关于x 的不等式a x-1>1的解集为( )A.{x|x>1}B.{x|x<1}C.{x|x>0}D.{x|x<0}答案 A ∵y=2x 2-3x+1的图像的对称轴是直线x=34,且开口向上, ∴函数f(x)在(1,3)上递增,根据复合函数同增异减的原那么,知a>1, 又a x-1>1=a 0,∴x -1>0,解得x>1,应选A.5.(原创题)函数f(x)={3a -12,x ≥1,4-a +1,x <1,那么f [a (-12)]的值为 .答案 15解析 由题意得,f (-12)=4-(-12)+1=3,那么f [a (-12)]=f(3)=33-12=15.6.定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x -a -x+2(a>0,且a≠1).假设g(2)=a,那么a= ,f(2)= . 答案 2;154解析 ∵f(x)是奇函数,g(x)是偶函数, ∴由f(x)+g(x)=a x-a -x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a -x-a x+2,② ①+②,得g(x)=2; ①-②,得f(x)=a x-a -x. 又g(2)=a,∴a=2, ∴f(x)=2x-2-x, ∴f(2)=22-2-2=154.7.x∈[-3,2],求f(x)=14a -12a +1的最小值与最大值.解析 f(x)=14a -12a +1=4-x-2-x+1=2-2x-2-x+1=(2-a -12)2+34,∵x∈[-3,2],∴14≤2-x≤8,当2-x=12,即x=1时,f(x)有最小值,且最小值为34,当2-x=8,即x=-3时,f(x)有最大值,且最大值为57.8.(多选)假设函数f(x)=a x+b-1(a>0,a≠1)的图像经过第一、三、四象限,那么一定有( ) A.a>1 B.0<a<1 C.b>0 D.b<0答案 AD ∵函数f(x)=a x +b-1(a>0,a≠1)的图像经过第一、三、四象限, ∴{a >1,a -1<-1,解得a>1且b<0,应选AD.9.定义一种运算:g☉h={a (a ≥a ),a (a <a ),函数f(x)=2x☉1,那么函数y=f(x-1)的大致图像是( )答案 B f(x)={2a (x ≥0),1(a <0),∴f(x -1)={2a -1(x ≥1),1(a <1),应选B.10.函数f(x)=a x-1-2(a>0且x≠1)的图像恒过定点 ,f(x)的值域为 . 答案 (1,-1);(-2,+∞) 解析 由x-1=0得x=1, f(1)=a 0-2=1-2=-1,即函数f(x)的图像恒过定点(1,-1). ∵a x-1>0,∴a x-1-2>-2, ∴f(x)的值域为(-2,+∞).11.方程|2x-1|=a有唯一实数解,那么a的取值范围是.答案a≥1或a=0解析作出函数y=|2x-1|的图像,如图,由题意知,直线y=a与函数y=|2x-1|的图像的交点只有一个,∴a≥1或a=0.12.函数y=f(x)的定义域为(1,2),那么函数y=f(2x)的定义域为.答案(0,1)解析由函数的定义,得1<2x<2⇒0<x<1,所以y=f(2x)的定义域为(0,1).)a,那么:13.设f(x)=3x,g(x)=(13(1)在同一平面直角坐标系中作出f(x),g(x)的图像;(2)计算f(1)与g(-1),f(π)与g(-π),f(m)与g(-m)的值,从中你能得到什么结论?解析(1)函数f(x),g(x)的图像如下图:)-1=3;(2)f(1)=31=3,g(-1)=(13)-π=3π,f(π)=3π,g(-π)=(13)-a=3m.f(m)=3m,g(-m)=(13从以上计算的结果看,当两个函数的自变量的取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,两函数的图像关于y轴对称.14.函数f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定义域为[-1,1].(1)求3a的值及函数g(x)的解析式;(2)试判断函数g(x)的单调性;..专心. (3)假设方程g(x)=m 有解,求实数m 的取值范围.解析 (1)因为f(x)=3x ,所以f(a+2)=3a+2=32·3a =18, 所以3a =2,所以g(x)=(3a )x -4x =2x -4x .(2)g(x)=2x -4x =-(2x )2+2x ,x∈[-1,1],令2x =t,那么t∈[12,2], 所以g(x)=μ(t)=-t 2+t=-(a -12)2+14在t∈[12,2]上单调递减,又t=2x单调递增,所以g(x)在x∈[-1,1]上单调递减.(3)由(2)知g(x)=μ(t)=-t 2+t=-(a-12)2+14在t∈[12,2]上单调递减,所以g(x)∈[-2,14],即m∈[-2,-14]. 故实数m 的取值范围是[-2,-14].。
单元复习 幂函数、指数函数与对数函数-高一数学(苏教版2019必修第一册)
故 f(x)=lg
+1
(2)由(1)知,f(x)=lg 1- (-1<x<1),
-+1
1-
1+ -1
1+
所以 f(-x)=lg1-(-)=lg1+=lg 1- =-lg 1- =-f(x),
所以 f(x)为奇函数.
+1
(3)原不等式可化为 lg 1- ≥lg(3x+1)(-1<x<1),
改进数学模型.
题型探究
一、直观想象
在本章中,函数图象的识别及应用均突出体现了直观想象的核心素养.
图象的识别
[例 1]
m
n
(1)已知函数 y=x (m,n∈N *,且互质)的图象如图所示,
那么下面说法正确的是
(
)
m
A.m,n 是奇数, n <1
m
B.m 是偶数,n 是奇数, n >1
m
C.m 是偶数,n 是奇数, n <1
m
n
是奇数.根据函数图象,当 x∈(1,+∞)时,y=x 的图象在 y=x 图象的下方,
m
n
m
所以 n <1.故选 C.
(2)当 0<a<1 时,函数 y=ax 的图象过定点(0,1),在 R 上单调递减,
1
于是函数 y=ax的图象过定点(0,1),在 R 上单调递增,函数ຫໍສະໝຸດ 1 1
1
y=logax+2的图象过定点2,0,在-2,+∞上单调递减.
是由函数 f(x)=ax 的图象向下平移一个单位长度,再将 x 轴下方的图象翻折到 x 轴上
方得到,分 a>1 和 0<a<1 两种情况作图,如图.当 a>1 时,直线 g(x)=2a 与函数 f(x)
高一上学期数学(必修一)《第四章 幂函数、指数函数和对数函数》练习题及答案-湘教版
高一上学期数学(必修一)《第四章幂函数、指数函数和对数函数》练习题及答案-湘教版第I卷(选择题)一、单选题1. 已知幂函数f(x)的图象过点(16,18),则f(4)=( )A. √ 24B. √ 22C. 14D. 122. 设a=log37,b=21.1,c=0.83.1,则.( )A. b<a<cB. c<a<bC. c<b<aD. a<c<b3. 设a=log54,则b=log1513,c=0.5−0.2则a,b,c的大小关系是( )A. a<b<cB. b<a<cC. c<b<aD. c<a<b4. 方程√ x−lnx−2=0的根的个数为( )A. 0B. 1C. 2D. 35. 已知a>1,则下列命题中正确的是( )A. ∃x0,∀x>x0有a x>x a>log a x成立B. ∃x0,∀x>x0有a x>log a x>x a成立C. ∃x0,∀x>x0有x a>a x>log a x成立D. ∃x0,∀x>x0有x a>log a x>a x成立6. 果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度ℎ与其采摘后时间t(天)满足的函数关系式为ℎ=m⋅a t.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A. 23天B. 33天C. 43天D. 50天7. 已知函数f(x)={a x−2,x≤−2,x+9,x>−2,(a>0,a≠1)的值域是(7,+∞),则实数a的取值范围是( )A. 13<a<1 B. 0<a≤13C. a>1D. 0<a<138. 已知函数y=log a(x+3)−1(其中a>0且a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b 的图象上,则f(log94)的值为( )A. 89B. 79C. 59D. 299. 利用二分法求方程log3x+x−3=0的近似解,可以取的一个区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)10. 深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为L=L0DGG0,其中L表示每一轮优化时使用的学习率,L0表示初始学习率,D表示衰减系数,G表示训练迭代轮数,G0表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为18,且当训练迭代轮数为18时,学习率衰减为0.4,则学习率衰减到0.1以下(不含0.1)所需的训练迭代轮数至少为(参考数据:lg2≈0.3010)( )A. 128B. 130C. 132D. 134二、多选题11. 已知幂函数f(x)=(m 2−2m −2)x m 的图象过点(2,12),则( ) A. f(x)=x 3B. f(x)=x −1C. 函数f(x)在(−∞,0)上为减函数D. 函数f(x)在(0,+∞)上为增函数12. 下列说法正确的有( )A. 命题“∀x ∈R ,x 2+x +1>0”的否定为“∃x ∈R 。
幂函数、指数函数和对数函数·对数及其运算法则·教案
幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。
2. 掌握对数的定义及其运算法则。
3. 能够运用幂函数、指数函数和对数函数解决实际问题。
教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。
2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。
3. 通过例题和实际问题,培养学生的应用能力。
教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。
2. 布置课后作业,巩固所学知识。
3. 进行单元测试,评估学生的掌握情况。
教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。
2. 教材和辅导书,提供相关知识点的详细讲解和例题。
3. 网络资源,查阅实际问题中的应用案例。
教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。
高考数学第四章指数函数、对数函数与幂函数4.1指数与指数函数4.1.1实数指数幂及其运算
4.1.1 实数指数幂及其运算课标解读课标要求核心素养1.理解n次方根及根式的概念.2.正确运用根式的运算性质进行根式运算.(重点)3.掌握根式与分数指数幂的互化.(重点、易错点)4.掌握有理指数幂的运算性质.(重点、难点)1.通过根式与分数指数幂互化的学习,培养数学运算的核心素养.2.通过利用指数式的条件解决求值问题,提升逻辑推理的核心素养.公元前五世纪,古希腊有一个数学学派名叫毕达哥拉斯学派,其学派中的一个成员希帕索斯思考了一个问题:边长为1的正方形的对角线的长度是多少呢?他发现这一长度既不能用整数表示,也不能用分数表示,希帕索斯的发现使数学史上第一个无理数诞生了.问题:若x2=3,则这样的x有几个?它们叫做3的什么?如何表示?答案这样的x有2个,它们都称为3的平方根,记作±.1.有关幂的概念一般地,a n中的a 称为①底数,n称为②指数.2.根式的相关概念和性质(1)根式的概念:一般地,给定大于1的正整数n和实数a,如果存在实数x,使得x n=a,则③x称为a的n 次方根;当有意义的时候,④称为根式,n称为⑤根指数,a称为⑥被开方数.(2)根式的性质:(i)()n=⑦a.(ii)=思考1:类比平方根、立方根,猜想:当n为偶数时,一个数的n次方根有多少个?当n为奇数时呢?提示a为正数:a为负数:零的n次方根为零,记为=0.3.分数指数幂(1)定义:一般地,如果n是正整数,那么:当有意义时,规定=⑧;当没有意义时,称没有意义.(2)意义:分数指数幂正分数指数幂=(a>0),=()m =⑨负分数指数幂a-s =⑩(a s有意义且a≠0)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂没有意义(3)运算法则:(i)前提:s,t为任意有理数.(ii)法则:a s a t=a s+t;(a s)t=a st;(ab)s=a s b s.思考2:分数指数幂的运算性质是什么?提示分数指数幂的运算性质形式上与整数指数幂的运算性质完全一样.记忆分数指数幂的运算性质的口诀:乘相加,除相减,幂相乘.4.实数指数幂一般地,无理指数幂a t(a>0,t是无理数)是一个确定的实数,有理指数幂的运算性质对于无理指数幂同样适用.因此当a>0,t为任意实数时,实数指数幂a t 都有意义,对任意实数s和t,类似有理指数幂的运算法则仍然成立.探究一n次方根的化简与求值例1 (易错题)化简:(1);(2)()2++(a-1≥0).解析(1)=|3-π|=π-3.(2)原式=a-1+|1-a|+1-a=a-1+a-1+1-a=a-1.易错点拨n的奇偶性a的n次方根的表示a的取值范围n为奇数a∈Rn为偶数±[0,+∞)1.已知-3<x<3,求-的值.解析原式=-=|x-1|-|x+3|,∵-3<x<3,∴当-3<x<1时,原式=-(x-1)-(x+3)=-2x-2;当1≤x<3时,原式=x-1-(x+3)=-4,∴原式=探究二根式与指数幂的互化例2 (1)下列根式与分数指数幂的互化正确的是( )A.-=(-x(x>0)B.=(y<0)C.=(x>0)D.=-(x≠0)(2)用指数幂的形式表示(x>0,y>0).答案(1)C解析(1)A选项,-=-(x>0);B选项,=(y2=-(y<0);C选项,=(x-3=(x>0);D选项,=(x≠0).故C正确.(2)解法一:由里向外化为分数指数幂.===.解法二:由外向里化为分数指数幂.===·=.思维突破(1)记结论:=和==(a>0).(2)明途径:一是由里向外化为分数指数幂;二是由外向里化为分数指数幂.2.化简:(1)(a>0);(2)(2)(-6)÷(-3).解析(1)===(=.(2)原式=[2×(-6)÷(-3)]·=4ab0=4a.探究三指数幂的化简与求值例3 已知x+x-1=3,求x2+x-2的值.解析∵(x+x-1)2=x2+x-2+2,∴x2+x-2=(x+x-1)2-2=9-2=7.思维突破式子中包含的指数互为相反数时,通常用平方法进行解决,平方后观察条件和结论的关系,变形求解即可.3.(1)(变结论)已知x+x-1=3,求x2-x-2的值.(2)(变条件)已知x-x-1=3,求x2+x-2的值.解析(1)由例3知x2+x-2=7,∴x4+x-4=47,∴(x2-x-2)2=x4-2+x-4=45,即x2-x-2=±3.(2)∵(x-x-1)2=x2+x-2-2=9,∴x2+x-2=11.1.下列各式正确的是( )A.=-3B.=aC.()3=-2D.=2答案 C2.已知a>0,则=( )A. B.C. D.答案 D =,则===.故选D.3.化简(a3÷()(a>0,b>0)结果为( )A.aB.bC.D.答案 A 原式=÷()==a.故选A.4.化简:(x>0,y>0)= .答案2x2y解析∵x>0,y>0,∴==(24·x8y4=2x2y.5.若10m=2,10n=3,则103m-n= .答案解析由已知得103m=(10m)3=23=8,∴103m-n==.逻辑推理——指数运算与均值不等式的应用已知a>0,b>0,若2a·2b=2,则ab的最大值是.审:由指数运算法则以及2a·2b=2,可得a+b=1,再根据均值不等式ab≤,当且仅当a=b时取得最大值得出答案.联:求积的最值,会联想到基本不等式,那就需要和为常数,这个和刚好由指数运算求得.解:∵函数g(x)=2x,且有g(a)·g(b)=2,∴①2=2a·2b=2a+b,∴a+b=1,∵a>0且b>0,∴②ab≤=,当且仅当a=b=时,ab取得最大值.思:从已知条件中解出字母的值,然后代入求值,这种方法一般是不可取的,应设法从整体寻求结果与条件的联系,进而整体代入求值,体现了数据分析、逻辑推理的核心素养.设x∈R且x≠0,若x+x-1=3,猜想x2n+x-2n(n∈N*)的个位数字是( )A.2B.5C.6D.7答案 D ∵x+x-1=3,∴当n=1时,x2+x-2=(x+x-1)2-2=32-2=7,当n=2时,x4+x-4=(x2+x-2)2-2=72-2=47,当n=3时,x8+x-8=(x4+x-4)2-2=472-2=2207,……则x2n+x-2n(n∈N*)的个位数字是7.——————————————课时达标训练—————————————1.计算:++(2019)0=( )A.6B.7C.8D.答案 B2.下列各式正确的是( )A.=aB.a0=1C.=-4D.=-π答案 D 对于A,当a为负数时等式不成立,故不正确;对于B,当a=0时,a0无意义,故不正确;对于C,=4,故不正确.故选D.3.若(3-2x有意义,则实数x的取值范围是( )A.(-∞,+∞)B.∪C. D.答案 C 要使(3-2x=有意义,需使3-2x>0,解得x<,即实数x的取值范围是.故选C.4.化简(2a-3)·(-3a-1b)÷(4a-4)=( )A.-b2B.b2C.-D.答案 A 原式==-b2.5.设α,β是方程2x2+3x+1=0的两根,则的值为( )A.8B.C.-8D.-答案 A 由题意可知α+β=-,则====8,故选A.6.(x>0)用分数指数幂表示为.答案解析=(x·=·=·==.7.化简:(1)π0+2-2×= ;(2)()4()4(a>0)= .答案(1)(2)a4解析(1)π0+2-2×=1+×=1+×=.(2)()4()4=()4()4=()4()4=a2×a2=a4.8.已知2x=8y+1,9y=3x-9,则x+y= .答案27解析由2x=8y+1得2x=23y+3,所以x=3y+3,①由9y=3x-9得32y=3x-9,所以2y=x-9,②由①②解得x=21,y=6,所以x+y=27.9.计算下列各式的值:(1)(×(÷;(2)2(×)6+(-4×-×80.25+(-2019)0.解析(1)原式=(×(1÷1=2-1×103×1=2-1×1=.(2)原式=2(×)6+(×-4×-×+1=2×22×33+2-7-2+1=210.10.(多选)下列各式中正确的是( )A.=n7B.=C.=(x+yD.=答案BD =n7m-7,A错误;==,B正确;=(x3+y3,C错误;=(=(=,D正确.故选BD.11.x=1+2b,y=1+2-b,则y=( )A. B.C. D.答案 D ∵x=1+2b,∴2b=x-1.∴y=1+2-b=1+==.12.化简(1+)(1+)(1+)(1+)(1+)的结果是( )A.(1-)-1B.(1-)-1C.1-D.(1-)答案 B 因为(1+)(1-)=1-,故将原式化为分数形式,并且分子、分母同乘(1-),得原式===(1-)-1.故选B.13.已知实数x满足x2-3x+1=0,则x2+x-2= ;= .答案7;4解析因为实数x满足x2-3x+1=0,所以x2+1=3x,即x+x-1=3,两边平方,得x2+x-2+2=9,所以x2+x-2=7.又===x+x-1+1=4.14.若x>0,y>0,且x--2y=0,求的值.解析∵x--2y=0,x>0,y>0,∴()2--2()2=0,∴(+)(-2)=0,由x>0,y>0得+>0,∴-2=0,∴x=4y,∴==.15.若a,b,c为正实数,a x=b y=c z,++=0,则abc= .答案 1解析设a x=b y=c z=k,则k>0,则a=,b=,c=,因此abc===k0=1.16.已知实数x,y满足(x+2y)3+x3+2x+2y=0,则x+y-1= .答案-1解析因为(x+2y)3+x3+2x+2y=(2x+2y)[(x+2y)2-x(x+2y)+x2]+2(x+y)=2(x+y)[(x+2y)2-x(x+2y)+x2+1] =2(x+y)(x2+2xy+4y2+1)=2(x+y)[(x+y)2+3y2+1]=0,又易知(x+y)2+3y2+1>0,所以x+y=0,所以x+y-1=-1.。
高中数学各章节知识点汇总
高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。
第四章指数函数与对数函数知识点清单总结梳理-高一上学期数学人教A版
新教材人教A版2019版数学必修第一册第四章知识点清单目录第四章指数函数与对数函数4. 1 指数4. 2 指数函数4. 3 对数4. 4 对数函数4. 5 函数的应用(二)第四章 指数函数与对数函数4. 1 指数一、根式1. n 次方根(1)定义:一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n>1,且n∈N *.(2)表示:注意:负数没有偶次方根;0的任何次方根都是0,记作√0=0.2. 根式(1)定义:式子√a n 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)性质(其中n>1,且n∈N *): ①(√a n )n =a.②当n 为奇数时, √a n n =a ;当n 为偶数时, √a n n =|a|={a ,a ≥0,−a ,a <0.二、分数指数幂1. 正数的正分数指数幂: a m n =√a m n (a>0,m ,n∈N *,n>1).2. 正数的负分数指数幂: a −mn =1a m n =√a mn (a>0,m ,n∈N *,n>1). 规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.三、实数指数幂1. 一般地,无理数指数幂a α(a>0,α为无理数)是一个确定的实数. 这样,指数幂a x (a>0)中指数x 的取值范围就从整数逐步拓展到了实数. 实数指数幂是一个确定的实数.四、实数指数幂的运算性质1. a r a s = a r+s(a>0,r ,s∈R);2. (a r )s =a rs (a>0,r ,s∈R);3. (ab)r =a r b r (a>0,b>0,r∈R).4. 拓展:a r a s =a r-s (a>0,r ,s∈R). 五、根式与分数指数幂的化简、求值1. 运用根式的性质解题时的注意点(1)分清根式是奇次根式还是偶次根式:n>1,且n 为奇数时,( √a n )n =√a n n=a ,a 为任意实数;n>1,且n 为偶数,a ≥0时,(√a n )n 才有意义,且(√a n )n =a ;n>1,且n 为偶数,a 为任意实数时, √a n n 均有意义,且√a n n =|a|.(2)注意变式、整体代换,以及平方差公式、立方差(和)公式、完全平方公式、完全立方公式的运用,必要时要进行分类讨论.2. 根式与分数指数幂化简、求值的技巧(1)将根式化为幂的形式,小数指数幂化为分数指数幂,负指数幂化为正指数幂的倒数.(2)底数是小数的,要先化成分数;底数是带分数的,要先化成假分数,然后要尽可能用幂的形式表示,便于利用指数幂的运算性质.注意:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.六、指数幂的条件求值问题解决指数幂的条件求值问题的一般方法——整体代换法1. 将已知条件或所求代数式进行恰当变形,从而通过“整体代换法”求出代数式 的值. 整体代换法是数学变形与计算常用的方法,分析观察条件与所求代数式的 结构特点,灵活运用恒等式是关键.2. 常用的变形公式如下:(1)a±2a 12b12+b=(a12±b12)2;(2)(a 12+b12)(a12-b12)=a-b;(3)a 32+b32=(a12+b12)(a-a12b12+b);(4)a 32-b32=(a12-b12)(a+a12b12+b).4. 2 指数函数一、指数函数的概念1. 一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中指数x是自变量,定义域是R.二、指数函数的图象和性质指数函数y=a x(a>0,且a≠1)0<a<1 a>1图象定义域R值域(0,+∞)性质过定点过定点(0,1),即x=0时,y=1单调性在R上是减函数在R上是增函数函数值的变化当x>0时,0<y<1;当x<0时,y>1当x>0时,y>1;当x<0时,0<y<1对称性y=a x与y=(1a)x的图象关于y轴对称三、与指数函数有关的函数的定义域、值域问题1. 与指数函数有关的函数的定义域、值域的求法(1)函数y=a f(x)的定义域与f(x)的定义域相同;(2)求函数y=a f(x)的值域,需先确定f(x)的值域,再根据指数函数y=a x的单调性确定函数y=a f(x)的值域;(3)求函数y=f(a x)的定义域,需先确定y=f(u)的定义域,即u的取值范围,亦即a x的取值范围,由此构造关于x的不等式(组),确定x的取值范围,即y=f(a x)的定义域;(4)求函数y=f(a x)的值域,需先利用函数u=a x的单调性确定其值域,即u的取值范围,再确定函数y=f(u)的值域,即y=f(a x)的值域. (以上a均满足a>0,且a≠1)四、与指数函数有关的函数的单调性问题1. 形如y=a f(x)(a>0,且a≠1)的函数的单调性的判断方法:当a>1时,函数u=f(x)的单调递增(减)区间即为函数y=a f(x)的单调递增(减)区间;当0<a<1时,函数u=f(x)的单调递减(增)区间即为函数y=a f(x)的单调递增(减)区间.2. 形如y=f(a x)(a>0,且a≠1)的函数的单调性的判断方法:通过内层函数u=a x的值域确定外层函数y=f(u)的定义域,在此定义域内讨论外层函数的单调区间,再根据复合函数“同增异减”的规律确定复合函数的单调性.五、指数幂的大小比较1. 比较指数幂大小的方法(1)底数形同,指数不同:利用指数函数的单调性来判断(2)底数不同,指数相同:利用幂函数的单调性来判断(3)底数不同,指数不同:通过中间量来比较六、指数方程与不等式的解法1. 指数方程的解法(1)对于a f(x)=b(a>0,且a≠1)型的指数方程,通常将方程两边化为同底数幂的形式,用指数相等进行求解.(2)解复杂的指数方程时,常用换元法转化为解一元二次方程. 用换元法时要特别 注意“元”的范围,用一元二次方程求解时,要注意对二次方程根的取舍.2. 简单指数不等式的解法(1)形如a f(x)>a g(x)的不等式,可借助y=a x (a>0,且a ≠1)的单调性求解;(2)形如a f(x)>b 的不等式,可将b 化成以a 为底数的幂的形式,再借助y=a x (a>0,且a ≠1)的单调性求解;(3)形如a x >b x 的不等式,可借助函数y=a x 与y=b x (a ,b>0,且a ,b ≠1)的图象求解.4. 3 对数一、对数的概念1. 对数的概念:一般地,如果a x =N(a>0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.2. 常用对数与自然对数(1)以10为底的对数叫做常用对数,并把log 10N 记为lg N ;(2)以e(e=2. 718 28…)为底的对数称为自然对数,并把log e N 记为ln N.3. 对数与指数的关系当a>0,a ≠1时,a x =N ⇔x=log a N ,这是指数式与对数式互化的依据. 相关结论如下:(1)负数和0没有对数;(2)log a 1=0,log a a=1(a>0,且a ≠1);(3) log a N a =N ,log a a N =N(a>0,且a ≠1,N>0).二、对数的运算性质1. 如果a>0,且a≠1,M>0,N>0,那么(1)log a(MN)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M (n∈R).三、对数换底公式1. 对数换底公式:log a b=log c blog c a(a>0,且a≠1;b>0;c>0,且c≠1).2. 相关结论:log a b=1log b a ,log a n b m=mnlog a b(a>0,且a≠1;b>0,且b≠1;n≠0).四、对数的运算1. 利用对数的运算性质求值的关键是化异为同,先使各项底数相同,再找真数间的关系2. 对于复杂的算式,可先化简再计算. 化简的常用方法:①“拆”,将积(商)的对数拆成两对数之和(差);②“收”,将同底对数的和(差)收成积(商)的对数.3. 在利用换底公式进行化简、求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,一般可以选择以10为对数式的底数进行换底.4. 利用换底公式化简与求值的思路:(1)用对数的运算性质进行部分运算→换成同一底数.(2)统一换为常用对数(或自然对数、指定底的对数) →化简、求值.五、对数运算性质的综合应用1. 在对数式、指数式的互化运算中,要注意灵活运用定义和运算性质,尤其要注意条件和待求式之间的关系.2. 解决对数应用问题时,首先要理解题意,弄清关键词及字母的含义,然后恰当设未知数,建立数学模型,最后转化为对数问题求解.4. 4 对数函数一、对数函数的概念1. 一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).二、对数函数的图象与性质对数函数y=log a x(a>0,且a≠1)0<a<1 a>1图象定义域(0,+∞)值域R性质过定点过定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数函数值的变化当x>1时,y<0;当0<x<1时,y>0当x>1时,y>0;当0<x<1时,y<0对称性y=log a x与y=log1ax的图象关于x轴对称三、反函数1. 一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数. 它们的定义域与值域正好互换.2. 拓展:(1)互为反函数的两个函数的单调性相同,但单调区间不一定相同.当a>1时,函数y=a x在R上是增函数,函数y=log a x在(0,+∞)上是增函数;当0<a<1时,函数y=a x在R上是减函数,函数y=log a x在(0,+∞)上是减函数. (2)互为反函数的两个函数图象关于直线y=x对称.四、不同函数增长的差异五、对数函数的图象及其应用1. 对数型函数图象过定点问题:求函数y=m+log a f(x)(a>0,且a≠1,f(x)>0)的图象所过定点时,只需令f(x)=1,求出x,即得定点为(x,m).2. 根据对数函数图象判断底数大小的方法作直线y=1与所给图象相交,比较交点的横坐标即得各个底数的大小关系.3. 函数图象的变换规律(1)一般地,函数y=f(x+a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度后,再沿y轴向上或向下平移|b|个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.六、与对数函数有关的函数的定义域、值域问题1. 对数型函数的定义域(1)求对数型函数的定义域,要注意真数大于0,即在y=log a f(x)(a>0,且a≠1)中应首先保证f(x)>0;(2)若底数中也含有变量,则底数应大于0且不等于1.2. 求对数型函数值域的常用方法(1)直接法:根据函数解析式的特征,从函数自变量的范围出发,通过对函数定义域、性质的观察,结合解析式,直接得出函数的值域.(2)配方法:当所给的函数可化为二次函数形式(形如y=m[f(log a x)]2+nf(log a x)+c(m≠0,a>0,且a≠1))时,可以用配方法求函数的值域.(3)单调性法:根据所给函数在其定义域(或定义域的某个子集)上的单调性,求出函数的值域.(4)换元法:求形如y=log a f(x)(a>0,且a≠1,f(x)>0)的函数的值域的步骤:①换元,令u=f(x),利用函数的图象和性质求出u的范围;②利用y=log a u的单调性、图象求出y的取值范围.七、与对数函数有关的函数的单调性1. 求与对数函数有关的函数的单调性的要点(1)单调区间是定义域的子集.(2)若a>1,则y=log a f(x)的单调性与y=f(x)的单调性相同;若0<a<1,则y=log a f(x)的单调性与y=f(x)的单调性相反.八、比较对数值的大小1. 比较对数值大小常用的四种方法(1)同底数的利用对数函数的单调性进行比较.(2)同真数的利用对数函数的图象或用换底公式转化进行比较.(3)底数和真数都不同的,找中间量比较.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.九、解对数不等式1. 对数不等式的常见类型及解题方法(1)形如log a f(x)>log a b的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论;(2)形如log a f(x)>b的不等式,应将b化成以a为底数的对数式的形式(即b=log a a b),再借助函数y=log a x的单调性求解;(3)形如log f(x)a>log g(x)a的不等式,利用换底公式化为同底的对数进行求解,或利用图象求解.十、几种常见的函数模型的选择1. 常见的函数模型及增长特点(1)线性函数模型y=kx+b(k>0)的增长特点是增长速度不变,可称为“直线上升”.(2)指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓,可称为“对数增长”.2. 不同的函数模型能刻画现实生活中不同的变化规律(1)线性函数模型适合描述增长速度不变的变化规律;(2)指数函数模型适合描述增长速度急剧的变化规律;(3)对数函数、幂函数模型适合描述增长速度平缓的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.4. 5 函数的应用(二)4. 5. 1 函数的零点与方程的解4. 5. 2 用二分法求方程的近似解一、函数的零点1. 函数的零点的概念:对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2. 方程、函数、函数图象之间的关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.二、函数零点存在定理1. 如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.三、用二分法求函数y=f(x)零点的近似值1. 二分法:对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2. 用二分法求函数y=f(x)零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0 (此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤2~4.四、一元二次方程ax2+bx+c=0(a>0)的根的分布问题1. 设x 1,x 2是实系数一元二次方程ax 2+bx+c=0 (a>0)的两个实数根,,令f(x)=ax 2+bx+c (a>0),则x 1,x 2的分布情况如下表: 根的分布 图象等价条件 x 1<x 2<k 0,f (k)0,b 2a k ⎧⎪∆>⎪>⎨⎪⎪-<⎩k<x 1<x 2 0,f (k)0,b 2a k ⎧⎪∆>⎪>⎨⎪⎪->⎩m<x 1<k<x 2<nf (m)0,f (k)0,f (n)0>⎧⎪<⎨⎪>⎩x 1,x 2∈(k 1,k 2)12120,f (k )0,f (k )0,b k k 2a ∆≥⎧⎪>⎪⎪⎨>⎪⎪<-<⎪⎩ 只有一根在(k 1,k 2)内120,b k k 2a ∆=⎧⎪⎨<-<⎪⎩ 或f(k 1)·f(k 2)<0五、函数零点个数的判断及应用1. 判断函数f(x)的零点个数的主要方法 (1)转化为解相应的方程,根据方程的解进行判断.(2)画出函数y=f(x)的图象,判断它与x 轴的交点个数,从而判断零点的个数.(3)利用函数零点存在定理进行判断,若函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在区间(a,b)上单调,满足f(a)·f(b)<0,则函数f(x)在区间(a,b)上有且仅有一个零点.(4)转化成两个函数图象的交点个数问题.2. 已知函数f(x)的零点个数求参数范围,通常要对已知条件进行变形,变形的方向:(1)化为常见的基本初等函数;(2)尽量使参数与变量分离,实在不能分离,也要使含参数的函数解析式尽可能简单.六、用二分法求方程的近似解1. 二分法求方程近似解的适用条件(1)在初始区间内函数图象是连续不断的;(2)函数在初始区间的两个端点的函数值异号,即是变号零点.2. 利用二分法求方程近似解的步骤(1)构造函数,选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.(2)用列表法清晰地表达函数零点所在的区间,依次进行计算.(3)求出满足精确度的方程的解所在的区间M.(4)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.4. 5. 3 函数模型的应用一、常见的函数模型二、利用函数模型解决实际问题的基本过程三、利用函数模型解决实际问题1. 利用函数模型解决实际问题的步骤(1)审题——弄清题意,分清条件和要求的结论,理顺数量关系;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的函数模型;(3)求模——推理并求解函数模型;(4)还原——用得到的函数模型描述实际问题的变化规律.2. 建立拟合函数模型解决实际问题函数拟合与预测的一般步骤(1)根据原始数据、表格,绘制散点图;(2)通过观察散点图,画出拟合直线或拟合曲线;(3)求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测,为决策和管理提供依据.。
幂函数、指数函数和对数函数对数及其运算法则教案
幂函数、指数函数和对数函数对数及其运算法则教案一、教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。
2. 掌握对数的定义、性质及运算法则。
3. 能够运用幂函数、指数函数和对数函数解决实际问题。
二、教学内容:1. 幂函数的定义与性质2. 指数函数的定义与性质3. 对数的定义与性质4. 对数的运算法则5. 实际问题中的应用三、教学重点与难点:1. 重点:幂函数、指数函数和对数函数的定义与性质,对数的运算法则。
2. 难点:对数函数的理解和应用,对数运算法则的推导。
四、教学方法:1. 采用讲授法,讲解幂函数、指数函数、对数函数的定义与性质。
2. 采用案例分析法,分析实际问题中的幂函数、指数函数和对数函数。
3. 采用小组讨论法,探讨对数运算法则的推导。
五、教学过程:1. 导入:通过生活中的实例,引入幂函数、指数函数和对数函数的概念。
2. 讲解:讲解幂函数、指数函数和对数函数的定义与性质。
3. 案例分析:分析实际问题中的幂函数、指数函数和对数函数。
4. 小组讨论:探讨对数运算法则的推导。
6. 练习:布置课后作业,巩固所学知识。
教学反思:在教学过程中,关注学生的学习反馈,针对学生的掌握情况,调整教学节奏和难度。
注重引导学生思考,激发学生的学习兴趣。
加强实际问题中的应用,提高学生的解决问题的能力。
对数函数的理解和应用是教学难点,可通过举例、小组讨论等方式,帮助学生理解和掌握。
六、教学评价:1. 课后作业:布置相关的习题,巩固学生对幂函数、指数函数、对数函数的理解和应用。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
3. 小组讨论:评估学生在小组讨论中的表现,包括思考问题的深度和广度,以及团队合作能力。
七、教学资源:1. 教材:提供相关的教材或教学参考书,以便学生可以在家中复习和学习。
2. 课件:制作详细的课件,辅助学生理解和记忆幂函数、指数函数、对数函数的概念和性质。
3. 实际问题案例:收集一些实际问题,用于课堂分析和讨论,帮助学生理解函数的应用。
第四章-§4-指数函数、幂函数、对数函数增长的比较高中数学必修第一册北师大版
C.∀ > 0, > log
D.不一定存在0 ,当 > 0 时,总有 > > log
【解析】对于A,幂函数与一次函数的增长速度分别受幂指数及一次项系数的影响,
幂指数与一次项系数不确定,增长速度不能比较.对于B,C,当0 < < 1时,显然不
1.5
4.04
7.5
12
18.01
现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的一个是
( D
)
A. = 2 − 2
B. =
1
2
C. = log 2
D. =
1
2
2 − 1
【解析】由于一次函数 = 2 − 2是均匀增加的,因此A不对;指数函数 =
1
是
2
单调递减的,也不符合要求,因此B不对;对数函数 = log 2 的增长速度先快后慢,
当 > 2 时, > ,
∴ 2 021 > 2 021 .
又 2 021 > 6 ,
∴ 2 021 > 2 021 > 6 > 6 .
题型2 函数增长模型的应用
例7 某公司为了实现1 000万元的利润目标,准备制订一个激励销售人员的奖励方案:
在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利
【答案】函数 = , = 和 = 在 , +∞ 上都是增函数,随着的增大,
= 的增长速度越来越快,会超过并远远大于 = 和 = 的增长速度,而
= 的增长速度越来越慢, = 的增长速度介于两者之间.
新教材高中数学第4章幂函数指数函数和对数函数1
已知幂函数y=x3m-9(m∈N+)的图象关于y轴对称,且y=x3m-9(m∈N+)在(0,+∞)上单
调递减,求满足
(a
1)
m 3
<
(3
2a)
m 3
的a的取值范围.
思路点拨
由幂函数的性质确定参数m的值,再由函数的单调性解不等式.
解析 因为幂函数y=x3m-9(m∈N+)在(0,+∞)上单调递减,
2 |实数次幂函数的性质 一般地,对于实数次幂函数y=xα(α≠0):当a>0时,它在[0,+∞)上有定义且递增, 值域为② [0,+∞) ,函数图象过(0,0)和(1,1)两点;当a<0时,它在(0,+∞)上有定义 且递减,值域为③ (0,+∞) ,函数图象过点(1,1),向上与y轴正向无限接近,向右与 x轴正向无限接近.
解得 2 <a< 3 或a<-1,
32
故a的取值范围是 a a<-1或 2 <a<函数y=xα的图象是一条直线. ( ✕ )
提示:当α=0时,幂函数y=xα的定义域为{x|x∈R,且x≠0},因此其图象不是一条直线.
5.若幂函数y=xα的图象关于原点对称,则在定义域内y随x的增大而增大. ( ✕ )
提示:幂函数y=
1 x
的图象关于原点对称,但它不是定义域内的增函数.
所以3m-9<0,
解得m<3.
又m∈N+,
所以m=1或m=2.
因为幂函数y=x3m-9的图象关于y轴对称,
所以3m-9为偶数,
故m=1,
则原不等式可化为(a+1
)
1 3
第4章+指数函数与对数函数知识点汇总
《人教A 版必修一知识点汇总》第4章 《 指数函数与对数函数 》知识点汇总4.1 指 数1.n 次幂的概念n 个相同因子a 的连乘积称为a 的n 次幂, 记作 a n ,其中 a 称为幂的底数,简称底, n 称为幂的指数,即 a ∙a ∙a ∙⋯⋯∙a =a n .注:规定 (1)a 1=a ,即“任何一个数的1次幂都等于它本身”(2)当a ≠0时,a 0=1,即 “任何一个不为零的数的0次幂等于1”(3) a −n =(1a)n,即负指数幂满足 “底倒指反”. 例 计算下列各式:(1)5×5×5=53=125 ; (2) (−3)3=−33=−27;(3)(−3)2=+32=9; (4) a 3∙a 2=a 3+2=a 5;(5)(a 3)2=a 3×2=a 6; (6)(ab )3=a 3b 3;(7)(−3)−2=(−13)2=19 ; (8)(π−3)0=1; (9)a 10÷a 7=a 10−7=a 3;2.n 次方根(1)n 次方根的概念与分类一般地,如果数 x 的 n 次方等于a , 即 x n =a (n ∈N ∗,且n >1),那么称数x 为a 的n 次方根.①当n 为偶数时,正实数a 的n 次方根有两个,且它们互为相反数.其中正实数a 的正的n 次方根用符号√a n 表示(√a n 称为a 的n 次算术根),负的n 次方根用符号−√a n 表示,且√a n 与−√a n 可以合并写成±√a n .注:负数没有偶次方根.例如:∵(±2)4=16,∴16的4次方根为±2,记作±√164=±2 ,其中16的4次算术根为2,记作√164=2 .②当n 为奇数时,实数a 的n 次方根只有一个,且它与被开方数符号保持一致(即正数a 的n 次方根为正数,负数a 的n 次方根为负数),这时实数a 的n 次方根用符号√a n (a ∈R )表示.例如:∵25=32,,∴32的5次方根为2,记作√325=2;∵(−2)5=−32,∴-32的5次方根为−2,记作√−325=−2;③0的任何次方根都是0(∵0n =0),记作√0n =0.3.根式的概念及性质(1)根式的定义形如√a n(n ∈N ∗,且n >1)的式子称为根式, 其中“√n”称为n 次根号,n 称为根指数, a 称为被开方数. (2)根式的性质(据n 次方根的定义可得)①性质1(还原性):(√a n )n =a (注:还原性的被开方数为a )例如:(√5)2=5,(√−35)5=−3 .②性质2:A.当n 为奇数时,√a n n =a ;B.当n 为偶数时,√a n n =|a |={a,a >0−a,a <0(注:绝对值性的被开方数为a 2) 例如:√(−2)33=−2,√(−3)44=|−3|=3. 4.分数指数幂我们规定,(1)正数的正分数指数幂:a mn =√a m n (a >0,m,n ∈N ∗,n >1) 即正数的正分数指数幂满足: ①分数指数幂中的底数与根式中被开方数底数相同;②分数指数幂中指数的分子为根式中被开方数的指数; ③分数指数幂中指数的分母为根式中的根指数.例如:432=√432=√64=8(2)正数的负分数指数幂: a−m n =(1a )m n =1a m n =√a m n 即正数的负分数指数幂满足 :“底倒指反” 例如:8−13=(18)13=1813=√813=√83=12 (3)0的正分数指数幂等于0,0的负分数指数幂没有意义.注:特别地,1的任何次幂都为1,即 1α=1(α∈R )5.无理数指数幂及其运算性质一般地,无理数指数幂 a x (a >0,x 为无理数)是一个确定的实数.这样,我们就将指数幂 a x (a >0)中指数x 的取值范围从整数逐步拓展到了实数,且实数指数幂是一个确定的实数.整数指数幂的运算性质也适用于实数指数幂,即对于∀r ,s ∈R,a >0,b >0,都有(1) a r ∙a s =a r+s ;(2)(a r )s =a r×s ;(3)(ab )r =a r b r ;(4)a r ÷a s =a r−s ;(5)a 1=a ; (6)当a ≠0时,a 0=1;a −n =(1a )n =1a n (底倒指反) (7)a r s =√a r s .4.2 指数函数1.指数函数的概念(1)定义像 y =2x 与y =(12)x 这样, 一般地,我们把形如y =a x (a >0,且a ≠1)的函数就叫做指数函数,其中x 是自变量,定义域是R . 注:①a x 的系数为1;②a x 的底数为一个常数a(a >0且a ≠1);反例:(−2)12=√−2没有意义; 1x =1(x ∈R),此时 y =1 是一个常数函数;③a x 的指数为自变量x,且x ∈R ;④形如“y =a x ”形式.(2)实例运用例1 判断下列函数是否为指数函数:(1)y =4x ; ✔ (2)y =(−4)x ;✘底数a =−4<0.(3)y =x 4;✘,底数为自变量x ,指数为常数4,它是幂函数. (4)y =4x+1;✘不形如y =a x 形式.(5)y =3∙2x ;✘2x 的系数为3,不为1.2.指数函数的图象与性质(1)底数互为倒数的两个指数函数的图像变换底数互为倒数的两个指数函数的图象关于 y 轴对称.根据这种对称性,就可以利用一个函数的图象,画出另一个函数的图象.例如 利用函数y =2x 的图象,根据轴对称性就能画出y =(12)x 的图象.(2)指数函数的图象与性质由以上实例,可以归纳得出指数函数y =a x (a >0,且a ≠1)的图像和性质,如表所示(3)实例运用例1 比较下列各题中两个值的大小. (1)1.72.5,1.73;解:∵ 底数1.7>1∴ 指数函数y=1.7x是增函数又∵ 2.5<3∴ 1.72.5<1.73(2)0.8−√2,0.8−√3;解:∵ 底数 0<0.8<1∴ 指数函数y=0.8x是减函数又∵ −√2>−√3∴ 0.8−√2<0.8−√3(3)1.70.3,,0.93.1;解:∵底数 1.7>1∴指数函数y=1.7x是增函数又∵ 0<0.3∴ 1.70<1.70.3即 1<1.70.3又∵ 底数 0<0.9<1∴ 指数函数 y =0.9x 是减函数又∵ 0<3.1∴ 0.90>0.93.1即 1>0.93.1综上所述,∵1.70.3>1>0.93.1∴1.70.3>0.93.14.3 对 数1.对数的概念、分类及其性质(1)对数的概念一般地 , 如果a x =N(a >0,且a ≠1),则称x 为以a 为底N 的对数,记作x =log a N , 其中a 称为对数的底数,N 称为真数(且N >0).例如:∵ 23=8 , ∴ log 28=3;再如:∵ (12)2=14 , ∴ log 1214=2. (2)对数式与指数式的关系据对数的定义可知:当a >0,且a ≠1,N >0时,指数式a x =N 与对数式x =log a N 的关系为 ①指数式中的指数x 就是对数式的结果;②指数式的结果N 就是对数式中的真数;③指数式中的底数a就是对数式中的底数;注:由指数与对数的关系可知——指数运算与对数运算互为逆运算.(3)对数的分类①普通对数:log a N(底数a>0,且a≠1,a≠10,a≠e);例如log28=3;(∵23=8)②常用对数:以10为底的对数称为常用对数,并把log10N记作lgN,即lgN=log10N;例如 lg10=1(∵101=10),lg100=2(∵102=100)③自然对数:在科学研究和工程计算中,经常使用以无理数 e (e=2.71828…)为底的对数log e N,以e为底的对数称为自然对数,简记为lnN,即lnN=log e N.例如log e5=ln5.(4)对数的性质①性质1:log a1=0(a>0,且a≠1) (即真数为1的对数等于0);②性质2:log a a=1(a>0,且a≠1) (即真数与底数相同的对数等于1);③性质3:对数log a N(a>0,且a≠1) 的真数大于0,即 N>0(注:负数和零没有对数)(5)实例运用例求下列对数式的值.①log381;解:∵指数式34=81,∴对数式log81=4;3②log0.80.8;解:∵指数式0.81=0.8,∴对数式log0.8=1;0.8③lg1;解:∵指数式100=1,∴对数式lg1=0;④lne;解:∵指数式e1=e,∴对数式lne=1;2.对数的运算法则如果a>0,且a≠1,M>0,N>0, 那么(1)法则1:积化和公式log a MN=log a M+log a N 注:注意运用时公式的逆用(和化积公式)log a M+log a N=log a MN (2)法则2:商化差公式log a MN=log a M−log a N注:注意运用时公式的逆用(差化商公式)log a M−log a N=log a M N(3)法则3:幂的对数公式(指数提前性)log a M n=nlog a M(n∈R)注:注意运用时公式的逆用(系数置后指数性)nlog a M=log a M n(n∈R)(4)法则4:换底公式log a b=log c a log c b注:注意运用时公式的逆用log c alog c b=log a b(5)法则5:倒数性log a b=1log b a, 或log a b∙log b a=1例1 求下列各式的值.①lg √1005=lg10015=15lg100=15×2=25 ; ②log 2(47×25)=log 247+log 225=7log 24+5log 22=7×2+5×1=19. 例2 用lnx,lny,lnz 表示2√y√z 3 , 其中x >0,y >0,z >0.解:∵ 已知x >0,y >0,z >0,∴ 2√y √z 3=lnx 2√y −ln √z 3(商化差公式)=lnx 2+ln √y −ln √z 3(积化和公式)=lnx 2+lny 12−lnz 13=2lnx +12lny −13lnz (指数提前性)4.4 对数函数1.对数函数的概念像y =log 2x(x >0) ,y =log 12x (x >0) 这样, 一般地,我们把形如 y =log a x (a >0,且a ≠1) 的函数就叫做对数函数,其中x 是自变量,定义域是 (0,+∞) .注:(1)log a x 的底数为一个常数 a(a >0,且a ≠1) ;(2)log a x 的真数为自变量x , 且 x >0;(3) 形如“ y =log a x”形式例1 判断下列函数是否为对数函数:(1)y =log 3x (x >0); ✔(2) y =log 13x (x >0) ; ✔ (3)y =log −2x (x >0); ✘,底数a =−2<0(4)y=log x2. ✘,底数为自变量x,真数为常数2例2 求下列函数的定义域:(1)y=log3x2;解:∵已知y=log3x2∴真数x2>0∴√x2>√0∴|x|>0∴x<0或x>0(即x≠0)故函数y=log3x2的定义域为 (−∞,0)∪(0,+∞)(2)y=log a(4−x)(a>0,且a≠1)解:∵y=log a(4−x)(a>0,且a≠1)∴真数4−x>0∴x<4故函数y=log a(4−x)的定义域为 (−∞,4).2.对数函数的图象与性质(1)底数互为倒数的两个对数函数的图像变换答:由图可知,底数互为倒数的两个对数函数的图象关于x轴对称.根据这种对称性,就可以利用一个函数的图象,画出另一个函数的图象.例如利用函数y=log2x(x>0)的图象,根据轴对称性就能x (x>0)的图象画出y=log12(2)对数函数的图象与性质由以上实例,可以归纳得出对数函数 y=且a≠log a x (a>0,1)的图像和性质,如表所示.(3)实例运用例比较下列各题中两个值的大小.①log3.4,log28.5;2解:∵底数 2>1∴对数函数y=log2x是增函数又∵ 3.4<8.5∴log23.4<log28.5②log1.8,log0.32.7;0.3解:∵底数 0<0.3<1∴对数函数y=log0.3x是减函数又∵ 1.8<2.7∴log0.31.8>log0.32.7③log5.1,log a5.9(a>0,a≠1);a解:log5.1,log a5.9可以看作函数y=log a x 的两个函数值,a∵已知底数a>0,a≠1∴可分如下两种情况来讨论:情况1:当底数0<a<1时∵对数函数y=log a x是减函数又∵5.1<5.9∴log a5.1>log a5.9情况2:当底数 a>1时∵对数函数y=log a x是增函数又∵ 5.1<5.9∴log a5.1<log a5.93.反函数的概念及图象特征(1)反函数的概念与图象特征像指数函数y=2x(x∈R)与对数函数y=log2x(x>0)这样,一般地,如果一个函数的定义域与值域分别是另一个函数的值域与定义域,那么就称这样的两个函数互为反函数,其中一个函数叫做另一个函数的反函数, 即函数y =f(x)与x =g(y)互为反函数.为了书写方便,常将函数y =f(x)的反函数记作y =f −1(x).注:互为反函数的两个函数的图象关于直线y =x 对称.例如:指数函数y =2x (x ∈R)与对数函数y =log 2x(x >0)互为反函数,它们的图象关于直线y =x 对称.(2)指数函数与对数函数的关系由反函数的定义可知:指数函数y =a x (a >0且a ≠1,x ∈R )与对数函数y =log a x (a >0且a ≠1,x >0)互为反函数,它们的定义域和值域正好互换,且它们的图像关于直线y =x 对称.例 若函数y =f(x)是函数y =(13)x 的反函数,则f(3)= . 解:∵已知函数y =f(x)是函数y =(13)x 的反函数 ∴ f(x)=log 13x,(x >0) 故f(3)=log 133=−1. 4.5 函数的应用(二)——函数的零点与方程的根1.函数的零点与零点存在定理(1)函数的零点像上面问题中二次函数这样,对于函数 y=f(x) ,当 x=c 时,使得f(c)=0成立,我们就称x=c 为函数 y=f(x)的零点.注:①求方程f(x)=0的实数解,就是确定函数 y=f(x)的零点.②对于不能用公式求解的方程f(x)=0,我们可以把它与相应的函数 y=f(x)联系起来,利用函数的图象与x轴的交点找出零点,从而得到方程的解.例如 x1=−1,x2=3叫做二次函数f(x)=x2−2x−3的2个零点.(2)零点存在性定理一般地,①如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线;②且有f(a)·f(b)<0(即 f(a)与f(b)异号);那么,函数 y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个 x=c 也就是方程f(x)=0的解.注:零点存在定理只能说明函数 y=f(x)在区间(a,b)内有零点,而不能确定函数 y=f(x)在区间(a,b)内零点的个数.(3)实例运用例1 函数f(x)=log2(2x−1)的零点是;解:∵已知f(x)=log2(2x−1)∴可令 f(x)=0,则有log2(2x−1)=0∴2x−1=202x−1=12x=2x=1故函数f(x)=log2(2x−1)的零点是x=1.例2 函数f(x)=x3−3x−3有零点的区间为()A.(−1,0)B.(0,1)C.(1,2)D.(2,3)解:∵已知f(x)=x3−3x−3∴f(x)的定义域为R,即函数 f(x)的图象在(−∞,+∞)上连续不断,据零点存在定理可做如下判断:又∵ f(−1)=(−1)3−3×(−1)−3=−1<0f(0)=03−3×0−3=−3<0f(1)=13−3×1−3=−5<0f(2)=23−3×2−3=−1<0f(3)=33−3×3−3=15>0即 f(2)∙f(3)<0∴据零点存在性定理可知函数f(x)=x3−3x−3有零点的区间为(2,3),故选D.2.用二分法求方程的近似解(1)用二分法求函数y=f(x)零点的近似值的一般步骤①确定零点x0的初始区间[a,b],验证 f(a)∙f(b)<0(即验证是否满足零点存在定理)②求区间(a,b)的中点 c ,且c=a+b(区间中点坐标公式) ;2③计算 f(c),并进一步确定零点所在的区间:i.若f(c)=0,则x=c 就是函数的零点;ii.若{f(a)∙f(c)<0,则f(x)在区间(a,c)上存在零点(即此时零点x0∈(a,c)),区间(c,b)舍去;f(c)∙f(b)>0iii.若{f(a)∙f(c)>0∈(c,b)),区f(c)∙f(b)<0,则f(c)∙f(b)<0),则f(x)在区间(c,b)上存在零点(即此时零点x0间(a,c)舍去;iv.不断重复1、2、3的过程,直到区间的中点c i能使f(c i)=0或f(c i)≈0,则x=c i即为函数y=f(x)的零点或零点的近似值.例已知函数f(x)=8x3−16x+7 在区间(−1,1)上有一个零点,试求方程f(x)=0在区间(−1,1)上的根.解:∵ 区间(−1,1)的中点为 x=(−1)+1=02又 f(−1)=8×(−1)3−16×(−1)+7=−8+16+7=15>0f(0)=8×03−16×0+7=7>0f(1)=8×13−16×1+7=−1<0∴ 据零点存在定理可知f(x)的零点在区间(0,1)上 又∵ 区间(0,1)的中点为 x =0+12=12而 f(12)=8×(12)3−16×12+7=0又 ∵ 已知函数 f(x)=8x 3−16x +7 在区间(−1,1)上只有一个零点 ∴方程f(x)=0在区间(−1,1)上的根为x =12.。
高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义
指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。
指数函数、幂函数、对数函数增长的比较-课件 高一数学(北师大版2019必修第一册)
综上所述,模型 y=log7x+1 符合公司要求.
导入课题 新知探究 典例剖析 课堂小结
一、幂函数y = x c x > 0, c > 1 与对数
函数y = log b x b > 1 的增长情况比较
二,指数函数y = ax a > 1 与幂函数
(2)若1 ∈ , + 1 ,2 ∈ , + 1 ,且, ∈
1,2,3,4,5,6,7,8,9,10,11,
12 ,指出, 的值,并说明理由.
导入课题 新知探究 典例剖析 课堂小结
思考探究:函数增长快慢比较
解:(1)根据指数函数与幂函数的增长速度知:
C1 对应函数 g(x)=x3,C2 对应函数 f(x)=2x;
1
2
1
解:(2)
,
4
ℎ = 2 当
1
4
即
1
2
1
4
>
1
4
1
2
,
1
2
1
4
,
1
1 2
,
可分别视为函数
2
4
1
= 时的函数值,在同一坐标系内
4
分别作出这三个函数的图象,
由图象易知
1
4
1
2
1
4
>
>
1 2
.
4
1
4
>ℎ
1
4
,
1 2
.
4
1
2
= , =
1
2
,
导入课题 新知探究 典例剖析 课堂小结
高一数学对数与对数函数、幂函数知识精讲
高一数学对数与对数函数、幂函数【本讲主要内容】对数与对数函数、幂函数对数定义及运算性质,对数函数的定义、图象和性质,幂函数的定义、图象和性质【知识掌握】 【知识点精析】1. 对数(1)对数的定义:如果)1a 0a (N a b ≠>=,,那么b 叫做以a 为底N 的对数,记作b N log a =。
(2)指数式与对数式的关系:)0N 1a 0a (b N log N a a b >≠>-⇔-,,两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化。
(3)对数运算性质:①N log M log )MN (log a a a += ②N log M log NMlog a a a-= ③)1a 0a 0N 0M (M log n aM log a n ≠>>>=,,, ④对数换底公式:)0N 1b 0b 1a 0a (blog Nlog N log a a b >≠>≠>=,,,,2. 对数函数(1)对数函数的定义函数)1a 0a (x log y a ≠>=,叫做对数函数,其中x 是自变量,函数的定义域是(0,+①定义域:(0,+∞) ②值域:R ③过点(1,0),即当x=1时,y=0④当a>1时,在(0,+∞)上是增函数;当0<a<1时,在(0,+∞)上是减函数。
3. 幂函数(1)形如)R n (x y n ∈=的函数叫做幂函数。
(2)幂函数的性质:①所有幂函数在(0,+∞)上都有意义,并且图象都过点(1,1)。
②如果α>0,则幂函数图象过原点,并且在区间(0,+∞)上为增函数。
③如果α<0,则幂函数图象在区间(0,+∞)上是减函数。
在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴。
当x 趋向于+∞时,图象在y 轴右方无限地逼近x 轴。
④当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数。
高中数学目录(沪教版)
高一上第一章集合与命题一集合1.1 集合及其表示法1.2 集合之间的关系1.3 集合的运算二四种命题的形式1.4 命题的形式及等价关系三充分条件与必要条件1.5 充分条件、必要条件1.6 子集与推出关系第二章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其应用*2.5 不等式的证明第三章函数的基本性质3.1 函数的概念高中数学教材(沪教版)目录3.2 函数关系的建立3.3 函数的运算3.4 函数的基本性质第四章幂函数、指数函数和对数函数(上)一幂函数4.1 幂函数的性质与图像二指数函数4.2 指数函数的性质与图像*4.3 借助计算器观察函数递增的快慢高一下第四章幂函数、指数函数和对数函数(下)三对数4.4 对数的概念及其运算四反函数4.5 反函数的概念五对数函数4.6 对数函数的性质与图像六指数方程和对数方程4.7 简单的指数方程4.8 简单的对数方程第五章三角比一任意角的三角比5.1 任意角及其度量5.2 任意角的三角比二三角恒等式5.3 同角三角比的关系和诱导公式5.4 两角和与差的正弦、余弦和正切5.5 二倍角与半角的正弦、余弦和正切三解斜三角形5.6 正弦定理、余弦定理和解斜三角形第六章三角函数一三角函数的图像及性质6.1 正弦函数和余弦函数的图像与性质6.2 正切函数的图像与性质6.3 函数 y A sin x的图像与性质二反三角函数与最简三角方程6.4 反三角函数6.5 最简三角方程高二上第七章数列与数学归纳法一数列7.1 数列7.2 等差数列7.3 等比数列二数学归纳法7.4 数学归纳法7.5 数学归纳法的应用7.6 归纳—猜想—证明三数列的极限7.7 数列的极限7.8 无穷等比数列各项的和第八章平面向量的坐标表示8.1 向量的坐标表示及其运算8.2 向量的数量积8.3 平面向量的分解定理8.4 向量的应用第九章矩阵和行列式初步一矩阵9.1 矩阵的概念9.2 矩阵的运算二行列式9.3 二阶行列式9.4 三阶行列式第十章算法初步13.3 复数的加法和减法10.1 算法的概念13.4 复数的乘法和除法10.2 程序框图13.5 复数的平方根和立方根*10.3 计算机语句和算法程序13.6 实系数的一元二次方程高二下高三上第十一章坐标平面上的直线第十四章空间直线与平面11.1 直线的方程14.1 平面及其基本性质11.2 直线的倾斜角和斜率14.2 空间直线与直线的位置关系11.3 两条直线的位置关系14.3 空间直线与平面的位置关系11.4 点到直线的距离14.4 空间平面与平面的位置关系第十二章圆锥曲线第十五章简单集合体12.1 曲线和方程一多面体12.2 圆的方程15.1 多面体的概念12.3 椭圆的标准方程15.2 多面体的直观图12.4 椭圆的性质二旋转体12.5 双曲线的标准方程15.3 旋转体的概念12.6 双曲线的性质三几何体的表面积、体积和球面距离12.7 抛物线的标准方程15.4 几何体的表面积12.8 抛物线的性质15.5 几何体的体积15.6 球面距离第十三章复数13.1 复试的概念第十六章排列组合与二项式定理13.2 复数的坐标表示16.1 计数原理Ⅰ——乘法原理16.2 排列16.3 计数原理Ⅱ——加法原理16.4 组合16.5 二项式定理高三下第十七章概率论初步17.1 古典概型17.2 频率与概率第十八章基本统计方法18.1 总体和样本18.2 抽样技术18.3 统计估计18.4 实例分析*18.5 概率统计实验。
高中数学第4章幂函数指数函数和对数函数3.2对数的运算法则课件湘教版必修第一册
第4章
4.3.2 对数的运算法则
内
容
索
引
01
课前篇 自主预习
02
课堂篇 探究学习
课标阐释
1.理解对数运算法则,并能运用运算法则化简、求值.(数学运算)
2.知道用换底公式能将一般对数转化成自然对数或常用对数.(数学
运算)
3.能运用运算法则和换底公式进行一些简单的化简和证明.(逻辑推
理)
思维脉络
log2(4×8)=log24+log28=5.
知识梳理
知识点一:对数的运算法则
条件
a>0且a≠1,M>0,N>0
(1)loga(M·N)=logaM+logaN
法则
(2)logaMn=nlogaM(n∈R)
(3)loga=logaM-logaN
名师点析 1.逆向应用对数的运算法则,可以将几个对数式化为一个对数式,
lg3
2lg2
×
lg2
lg3
+
lg3
3lg2
×
lg2
lg3
1
2
= +
反思感悟 1.换底公式的本质是化异底为同底,主要用途是将一般对数化为
常用对数或自然对数,解决一般对数的求值问题.
2.利用换底公式计算、化简、求值的一般思路:
变式训练2计算:(1)log23×log36×log68;
(2)(log23+log43)×(log32+log274).
(3)由题意,得
90=20lg ,则 =104.5,
0
0
所以P=104.5P0=104.5×2×10-5
=2×10-0.5≈0.63(帕),
高中数学第4章幂函数指数函数和对数函数3.3对数函数的图象与性质课件湘教版必修第一册
)
A.y=5x
B.y=lg x+2
C.y=x2+1
D.y=log 1 x
2
(3)函数f(x)=loga(x-2)-2x(a>0且a≠1)的图象必经过定点
答案 (1)AB
(2)D
(3)(3,-6)
.
课堂篇 探究学习
探究一
对数函数的概念
例1(1)已知对数函数f(x)=(m2-3m+3)logmx,则m=
4
则
1
lg20
y=log 3 0.05=log 3 =- 3
函数
指数函数y=ax
对数函数y=logax
(-∞,+∞)
(0,+∞)
(0,+∞)
(-∞,+∞)
(0,1)
(1,0)
a>1时递增;0<a<1时递减
图象
定义域
值域
图象经
过点
增减性
名师点析 1.对数函数的符号常受到底数和真数的范围的制约,注意对底数
a的分类讨论.
2.当底数a>1时,图象在第一象限内越接近x轴,a越大;当底数0<a<1时,图象
(2)∵f(x)=log5|x|,∴f(x)是偶函数,其图象如图2所示.其定义域为
(-∞,0)∪(0,+∞),值域为R,函数的单调递增区间为(0,+∞),单调递减区间为
(-∞,0).
图1
图2
素养形成
对数函数在实际问题中的应用
典例 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始
反思感悟 比较两个对数式大小的常用方法
(1)当底数相同、真数不相同时,直接利用对数函数的单调性进行比较.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章幂函数、指数函数和对数函数(上)
一、幂函数
4.1幂函数的性质与图象
一、定义
二、性质
二、指数函数
4.2指数函数的图像与性质
一、定义
指数函数解析式的特征
二、图象与性质
三、比较指数幂大小的方法:
①、单调性法:利用函数的单调性,数的特征
是底同指不同(包括可以化为同底的)。
②、中间值法:找一个“中间值”如“1”来过渡,
数的特征是底不同指不同。
补充内容
一、函数间的图像关系
1、
2、图像y=f(x)和y=f(|x|),y=|f(x)|的关系
•y=f(|x|)的图像是y轴右侧和y=f(x)右侧一样,左侧由y=f(x)图像在y轴右侧的反折对称形成的图像
•y=|f(x)|的图像是将x轴下部图像沿x轴反折上去形成的图像
3、图像y=f(x)和y=f(-x),y=-f(x)的关系
•图像y=f(x)和y= f(-x)关于y轴(x=0)对称
•图像y=f(x)和y= -f(x)关于x轴(y=0)对称
•图像y=f(x)和y= -f(-x)关于原点对称
4、对称关系
•若函数y=f(x) 对任意x∈R都满足f(a+x)=f(a-x),则f(x)的图像关于直线x=a对称;•若函数y=f(x) 对任意x∈R都满足f(a+x)=f(b-x),则f(x)的图像关于直线x=(a+b)/2对称;
5、指数函数的图像
6、
二、一元二次方程的根的分布
1.
2.
3.
4.
5.。