2017年春季学期沪教版五年级数学下册3.1 列方程解应用题课件3

合集下载

五年级下册数学教案-3.1 列方程解应用题(三) ▏沪教版

五年级下册数学教案-3.1   列方程解应用题(三) ▏沪教版

五年级下册数学教案-3.1 列方程解应用题(三)▏沪教版教学内容本节教学内容为《五年级下册数学》中的“列方程解应用题(三)”,旨在引导学生通过列方程的方法解决实际问题,进一步巩固和提升学生对方程的理解和应用能力。

本节课程将围绕沪教版教材的相关内容进行展开,通过典型例题的分析和讲解,让学生掌握列方程解决应用题的基本步骤和技巧。

教学目标1. 让学生理解列方程解应用题的基本思路和方法。

2. 培养学生运用方程解决实际问题的能力。

3. 通过典型例题的讲解,让学生掌握列方程解决应用题的步骤和技巧。

4. 培养学生的逻辑思维能力和解决问题的能力。

教学难点1. 如何引导学生正确理解题目中的数量关系,并将其转化为方程。

2. 如何帮助学生掌握列方程解决应用题的基本步骤和技巧。

3. 如何提高学生解决问题的能力,特别是在面对复杂问题时能够迅速找到解决方案。

教具学具准备1. 教材:《五年级下册数学》沪教版。

2. PPT课件:用于展示典型例题和解析过程。

3. 白板和笔:用于板书和讲解。

4. 练习题:用于学生巩固所学知识。

教学过程1. 导入:通过复习上一节课的内容,引导学生回顾列方程解应用题的基本思路和方法。

2. 新课导入:通过PPT课件展示本节课的教学目标和内容,让学生明确学习任务。

3. 例题讲解:挑选典型例题,通过PPT课件展示解题过程,引导学生逐步理解和掌握列方程解应用题的步骤和技巧。

4. 课堂练习:让学生独立完成练习题,巩固所学知识。

5. 讲评:针对学生在练习中遇到的问题进行讲解和指导,帮助学生提高解题能力。

6. 总结:对本节课所学内容进行总结,强调重点和难点。

7. 作业布置:布置课后作业,要求学生在规定时间内完成。

板书设计板书设计应简洁明了,突出重点。

主要包括以下内容:1. 教学目标:列方程解应用题的基本思路和方法。

2. 教学难点:正确理解题目中的数量关系,将其转化为方程;掌握列方程解决应用题的步骤和技巧。

3. 例题解析:展示典型例题的解题过程。

五年级下册数学教案-3.1列方程解应用题(三)沪教版

五年级下册数学教案-3.1列方程解应用题(三)沪教版

五年级下册数学教案3.1 列方程解应用题(三)沪教版我今天要上的课程是五年级下册数学的第三单元第一课时,主要内容是列方程解应用题。

我的教学目标是让学生掌握列方程解应用题的方法,培养他们的数学思维能力和解决问题的能力。

在教学难点和重点上,我会重点讲解如何根据问题列出方程,并解出方程的答案。

难点在于如何引导学生理解问题中的数量关系,并将其转化为方程。

为了上好这节课,我准备了多媒体教学课件和一些实际的应用题让学生进行练习。

在板书设计上,我会将问题和答案用公式的方式展示出来,让学生清晰地看到解题的过程。

对于作业设计,我会布置一些类似的列方程解应用题,让学生在课后进行练习。

我会提供详细的答案和解题过程,以便学生可以自行检查自己的答案。

我会进行课后反思和拓展延伸。

我会思考这节课的讲解是否清晰易懂,学生是否掌握了列方程解应用题的方法。

同时,我也会给学生提供一些拓展延伸的材料,让他们可以进一步深入学习。

这就是我今天要上的五年级下册数学教案,列方程解应用题。

希望通过我的讲解和引导,学生能够掌握这个重要的数学技能。

重点和难点解析:1. 实际情景引入:我选择了小明买书的问题来引入课程,这个问题贴近学生的生活,能够激发他们的兴趣。

通过这个实际情景,我希望学生能够理解问题中的数量关系,并将其转化为方程。

2. 列方程的方法:在讲解如何将问题转化为方程时,我强调了找出问题中的已知量和未知量的重要性。

我让学生注意题目中给出的信息,并指导他们如何将这些信息转化为数学表达式。

3. 解方程的步骤:我详细讲解了解方程的步骤,包括化简方程、移项、合并同类项等。

我让学生跟随我的讲解,一步步解出方程的答案。

4. 例题讲解:我给出了几个例题进行讲解,让学生通过实际操作理解列方程解应用题的方法。

我让学生注意观察例题中的数量关系,并引导他们如何列出方程。

5. 随堂练习:在讲解完例题后,我让学生进行随堂练习,巩固他们刚刚学到的知识。

我鼓励学生积极思考,并及时给予他们反馈和指导。

五年级下册数学教案-3.1 列方程解应用题(三)-盈亏问题 ▏沪教版

五年级下册数学教案-3.1   列方程解应用题(三)-盈亏问题 ▏沪教版

五年级下册数学教案-3.1 列方程解应用题(三)-盈亏问题▏沪教版教学内容本节课将引导学生运用列方程的方法解决盈亏问题。

盈亏问题是一类经典的应用题,它通常涉及两个或多个数量的增减,通过设定未知数,列出方程,进而求解。

教学内容包括理解盈亏问题的概念,掌握列方程解盈亏问题的步骤,并能够灵活运用到实际情境中。

教学目标1. 让学生理解盈亏问题的基本概念和实际背景。

2. 培养学生通过设定未知数、列出方程解决盈亏问题的能力。

3. 引导学生将数学知识与生活实际相结合,增强数学应用意识。

教学难点教学难点在于如何引导学生从实际问题中抽象出数学模型,即如何将盈亏问题转化为方程,以及如何求解这些方程。

此外,如何让学生理解方程解的物理意义,并将其应用于实际问题,也是教学中的一个挑战。

教具学具准备- 教学课件或黑板,用于展示问题和方程的列写。

- 纸和笔,供学生做笔记和练习。

- 盈亏问题的实际案例,如商品买卖、水量调配等。

教学过程1. 导入:通过一个简单的盈亏问题实例引入本节课的主题,激发学生的兴趣。

2. 问题分析:与学生一起分析盈亏问题的特点,讨论如何将其转化为数学方程。

3. 方程列写:指导学生如何设定未知数,并列出相应的方程。

4. 方程求解:教授学生解方程的方法,并让他们尝试自己解决一些简单的盈亏问题。

5. 案例练习:提供一些实际的盈亏问题案例,让学生独立或分组解决。

6. 讨论与总结:全班讨论解决问题的方法,总结解决盈亏问题的步骤和策略。

7. 反馈与评价:对学生的理解和应用能力进行评价,并提供反馈。

板书设计板书设计将包括以下内容:- 盈亏问题的定义和例子。

- 列方程解决盈亏问题的步骤。

- 重要的公式和方程。

- 学生练习题的示例。

作业设计作业将包括几个不同难度的盈亏问题,要求学生独立完成。

这些问题将覆盖课堂教授的内容,并鼓励学生将所学应用到新的情境中。

课后反思课后反思将关注学生在解决盈亏问题时的常见错误和难点,以及如何改进教学方法以提高学生的理解和应用能力。

五年级下册数学导学案 3.1 列方程解应用题(三) ▏沪教版

五年级下册数学导学案 3.1 列方程解应用题(三) ▏沪教版

五年级下册数学导学案 3.1 列方程解应用题(三) | 沪教版一、概述在数学学习中,列方程解应用题已经成为基础知识之一,也是实际生活中常用的数学技能之一。

在本节课中,我们将学习如何通过列方程解应用题,来帮助我们解决各类实际问题。

二、知识点本节课的重点是列方程解应用题(三),涉及以下知识点:1.加减法的应用2.列方程求解三、学习目标通过本节课的学习,我们将能够:1.掌握加减法的应用;2.掌握列方程求解的方法;3.了解如何在实际场景中应用所学知识。

四、学习重点1.掌握应用加减法解决实际问题的方法;2.掌握列方程求解的技巧;3.解决应用问题时,注意数据的正确性和实际意义。

五、课程内容5.1、问题解析一位农夫在某一年春天购买了一台农用机械,购买时可选择两种方式:一种是全款支付,另一种是分期付款。

如果选择分期付款,农夫可以选择按季度支付,每季度支付500元,总共需要支付8个季度。

现在假设农夫选择分期付款,他需要计算出在分期付款的情况下,他需要多支付多少利息。

5.2、解题思路1.采用分期付款的情况下,需要支付的利息为:分期支付总额 - 全款支付总额;2.分期支付总额=每季度支付金额*季度数;3.全款支付总额为农夫购买农用机械的总价;4.设农夫购买农用机械的总价为X元,则每季度需要支付的金额为1/8*X元;5.根据以上信息,列出方程求解出农夫需要支付的利息。

5.3、解题步骤根据解题思路,我们可以采取以下步骤来求解这道问题:1.假设农夫购买农用机械的总价为X元,则每季度需支付1/8*X元;2.分期支付总额为每季度支付金额季度数,即500元8季度=4000元;3.则农夫分期付款需要支付的利息为:4000元-X元;4.设农夫需要支付的利息为Y元,则可以列出方程500*8=Y+X;5.解方程,解出X=2000元,即农夫购买农用机械的总价为2000元;6.再次代入方程计算,可得农夫需要支付的利息为3000元。

5.4、思考题1.如果农夫选择按年付款,每年需要支付2000元,分别需要支付4年,请问这种情况下需要支付的利息是多少?2.如果农夫每个季度支付的金额不同,而是分别为500元,450元,400元,350元,请问农夫需要支付的总金额是多少?六、学习总结通过本节课的学习,我们掌握了应用加减法解决实际问题和列方程求解的方法,了解了在实际场景中应用所学知识的重要性。

沪教版五年级数学下册3.1《列方程解应用题》公开课课件

沪教版五年级数学下册3.1《列方程解应用题》公开课课件

一班的人数是二班的2倍,从一班调 4人到二班后,两班人数相同,两个 班原来分别有多少人?
1. 1 、合理找出未知量; 合理找出未知量; ( 正确写出设句。 ) 2.正确找出等量关系,列出方程; 3.熟练解出方程; 4.仔细检查或验算,写出答句。
1.合理找出未知量;
正确写出设句。
2.正确找出等量关系,列出方程;
沪教版五年级数学下册
本节课我们主要来学习列方程解应用 题,同学们要能够找出题中的未知量 和已知量之间的等量关系,能够根据 这个等量关系列出相应的方程,并能 熟练地解方程找出问题的答案。
1.合理找出未知量; 2.正确找出等量关系,列出方程; 3.熟练解出方程; 4.仔细检查或验算,写出答句。
说一说用等式表示数量之间的关系;
1. 甲数比乙数少 多2.4 + 甲数 = 乙数-2.4 2. 甲数是乙数的3倍. 多2 。 甲数 = 乙数×3 +2
3. 甲数减少x等于乙数增加x。
甲数-x
=
乙+x
判断: 一只足球售价25元,比一只 小排球售价的3倍少2元, 一只小排球多少元?
A: B: C: D:
3x-2=25 25-3x=2 3x=25-2 3x-25=2
一班原有人数-调走人数
=
二班原有人数
1.合理找出未知量; 2.正确找出等量关系,列出方程;
根据题目的叙述找等量关系。
3.熟练解出方程; 4.仔细检查或验算,写出答句。
虹光小学五年级学生参加植树劳动,一 班有46人,二班有38人,从一班中调走 多少人到二班后,二班的人数就比一班 多2人?
虹光小学五年级学生参加植树劳动,一 班有46人,二班有38人,从一班中调走 多少人到二班后,二班的人数就是一班 的2倍?

五年级下册数学教案-3.1 列方程解应用题(三) 沪教版 (2)

五年级下册数学教案-3.1 列方程解应用题(三) 沪教版 (2)

课题:列方程解决问题----------相遇问题教学内容:五年级第二学期P25教材分析:相遇问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运动的较复杂的行程问题,其中体现了“运动地点”、“出发时间”、“运动方向”、“运动结果”等新的运动要素,给学生的思维带来一定的难度。

教材中借助线段图帮助学生理解题意,找到相应的等量关系,让学生认识“相遇问题”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

学情分析:学生已经在三年级接触了简单的行程问题,并能利用速度、时间、路程三者之间的数量关系来解决行程问题。

而本节课正是运用这些学生已有的知识基础和生活经验的基础上进行相遇问题的探究。

由于相遇问题中的概念较多,学生对相遇问题的理解也有难度,所以我想只有站在学生学习的起点上,尊重学生发展的基础上多设计一些活动,引导学生积极参与到过程中,才能使所有学生通过本堂课都能有所收获。

教学目标:1.通过创设问题情境,提出问题,引导学生探索研究,理解两地、相向(相对)、同时、相遇的含义。

2.在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系一般为:甲行的路程+乙行的路程=相距的路程;3.经历解决问题的过程,体验数学与日常生活密切相关,提高学生收集信息、处理信息的能力。

教学重点:理解相遇问题的等量关系,并会列方程解答。

教学难点:理解相遇问题的等量关系,并会列方程解答。

教学准备:习题单、多媒体课件教学过程:一、情境引入1.创设鼓掌情境,初步感知行程四要素。

2.小结:像这样的两个物体从两地相向而行,最终相遇的情形在数学上叫做相遇问题。

两地、同时、相向、相遇是相遇问题的四要素。

3.今天我们就来研究列方程解决问题中的相遇问题。

(揭示课题)【以鼓掌情境引入,让学生充分理解“两地”、“同时”、“相向(相对)”、“相遇”的含义,使枯燥的数学问题变为活生生的生活现实,让学生去感知,体验,引起他们强烈的求知欲。

五年级下册数学课件3.1列方程解应用题沪教版13张PPT

五年级下册数学课件3.1列方程解应用题沪教版13张PPT

( 小巧 )
(第一段路程 )
(小丁丁 )
200米
第二段路程
一共跑的路程
解:小巧平均每分钟跑X米. 200 + 5X = 170×5
5 ( 170-X ) = 200
探究二:
甲乙两人赛跑,甲的速度是7米/秒,乙的速度是4米/
秒,甲在乙后面21米,两人同时同向跑步,问甲经过几秒
钟追上乙?
4米/秒 乙
7米/秒 21米
等量关系: 小胖第一段路程 + 小胖第二段路程 = 爸爸一共行的路程
512 + 72X = 200X
速度差 × 时间 = 追及路程
( 200-72 ) X = 512
跟进练习二:
小丁丁和小巧跑步锻炼身体,小巧跑出200米后小丁 丁从起点出发,小丁丁平均每分钟跑170米,5分钟后在途 中追上小巧,小巧平均每分钟跑多少米?

乙行的路程
甲行的路程
等量关系: 21米+乙行的路程 = 甲行的路程
速度差×时间 = 追及路程
选择题:
好马每天走120千米,劣马每天走75千米,劣马先走12
天,好马( B C )天能追上劣马?
解:设好马X天能追上劣马. A (120-75)X = 12×120 B (120-75)X = 12×75 C 75×12 + 75X =120X D 120X + 75X = 12×120
答:经过2.5小时两车在途中相遇。
跟进练习一:
小胖上学时忘了带文具盒,爸爸发现时,小胖刚好离家
512米,正以72米/分的速度走向学校,爸爸骑车以200米/分的
速度追赶,爸爸几分钟后在途中追上小胖? 一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同地同向出发,经过多长时间,小强第一次追上小星?

五年级下册 列方程解应用题沪教版7张PPT

五年级下册 列方程解应用题沪教版7张PPT
(等1)量姐关姐系有:43网本球课原外来读的物个,比数妹=羽妹毛的球3倍原还来多的7个本数,妹妹有多少本? 重(4)多水少果千店克运?来梨和橘子共500千克,梨的重量比橘子重50千克,橘子
羽毛球还剩下9个。一共取了多少次?网球和羽毛球 (取4几)次检后验,—红写球出正答好案取。完,白球还剩下6个,一共取了几次?
白(球1)和审红题球—原弄来清各题有意多,少找个出?未知数,并用x表示;
如果每人栽5棵分,析就缺:少9棵树苗。
等或每(2)量者次四关 为 取五系:出年:4的级×网学3球+生9原比为=2来羽每希1(的毛望个次个球小) 数多取学=3捐个羽出书,毛的9而球00取原网本出来,球五的年网个比级球数羽学总生数毛捐比球的羽是毛多四球年3总个数,多了而9个取。出的网球总数比羽毛球总数多了9个。
7x=4x+9
探究二:(用算术方法解答)
箱子里有相同个数的网球和羽毛球,每次取出7个 题(目1)已审经题说—过弄,清两题种意球,是找一出样未多知的数。,并用x表示;
题或目者已 为经:说4×过3,+9两=2种1(球个是) 一样多的。
网球和4个羽毛球,取出了若干次后,网球没有了, 个箱考子里场有正相好同坐个30数人的。网球和羽毛球,每次取出7个网球和4个羽毛球,取出了若干次后,网球没有了,羽毛球还剩下9个。
羽设毛一球 共有取2了1x个次。的球,那么网球会有7x个,羽毛球会有(4x+9)个。
羽毛球有21个。
或者为:4×3+9=21(个)
比用一含比 有字,母赛的一式赛子表示下列数量关系
每如次果取 每出人的栽网5棵球,比就羽缺毛少球9多棵3树个苗,。而取出的网球总数比羽毛球总数多了9个。
(3、1)某审校题参—加六弄一清杯题小意学,数找学出竞未赛知,数答原,定并:考用一场x表若共示干;取个。了3次的球,网球有21个, (43)小)ⅹ丁的丁5和倍他与父9亲的的差年。龄之和是54岁,今年父亲羽的毛年龄球是有小丁21丁个。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解决问题
教学目标


1.在理解题意的基础上寻找等量关系,初步学 习相遇问题的列方程解决问题的一般方法。 2.联系生活,以大家互动为主线,以说促思, 让大家在探索、认识相遇的过程中理解运用等 量关系的解决问题,帮助大家建立行程问题的 观念。 3.培养大家独立思考、解决问题的习惯和能力。
解下列方程(口答):
1、少年宫舞蹈队有23人,合唱队的人数比舞蹈队多 61人,合唱队有多少人?
23+61=84(人) 答:合唱队有84人。
2、少年宫舞蹈队有23人,合唱队的人数比 舞蹈队的3倍多15人,合唱队有多少人? 23×3+15=84(人) 答:合唱队有84人?
(问)请你 改 变准备题(2)的第二个条件把它 改成已知合唱队的人数求舞蹈队的人数
例4:少年宫合唱队有84人,合唱队的人数比 是舞蹈队的3倍多15人,舞蹈队有多少人?
分析: 合唱队的人数
舞蹈人数的3倍
等量关系:
舞蹈人数3倍+15人=合唱队人数
15人
原合唱队人数-舞蹈队人数3倍 =15人 列出方程
左边

84-3х=15
3х+15=84
例4:少年宫合唱队有84人,合唱队的人数比舞 蹈队的3倍多15人,舞蹈队有多少人?
讨论:(1)例4与复习题有什么异同? (2)例4中有哪些等量关系? (3)用线段图怎样表示?
例4:少年宫合唱队有84人,合唱队的人 数比舞蹈队的3倍多15人,舞蹈队有多少 人?
X
舞蹈队人数:
3X
合唱队人数:
15人
84人
你今年几岁?(请你补充一个条件,让老师猜猜你 是多少 岁)
这堂课你学了什么? 列方程解决问题的关键是什么?
2 X+47=495
2 X=495—47 2 X=448
X=224
答:文艺书有224本。
巩固练习:1、说出下列等量关系: (1)爸爸的年龄比小红的3倍还多5岁。
(2)轿车的价钱比货车的价钱的5倍少5万元。
(3)平行四边形的底是高的2倍多6厘米。
2、书本第116页第1题。
3倍多1岁 , 3、老师今年34岁,老师的年龄是我的 _________________________
做一做:
1、少年宫合唱队有84人,合唱队的人数比 舞蹈队的4倍少8人,舞蹈队有多少人? 解:设舞蹈队有X人?
4 X—8=84 4 X=84+8 4 X=92 X=23
答:舞蹈队有23人。
2、学校图书馆里科技书的本数比 文艺书的2倍多47本。科技书有495 本,文艺书有多少本?
解:设文艺书有X本。
⑴1+X=10 ⑵X-8=12 ⑶6X=36 ⑷X÷2.5=4 X=9 X=20 X=6 X=10

在(
)里填上含有字母的式子.
1、舞蹈队有х,合唱队的人数比舞蹈队的3倍多 15人,合唱队有( )人。
3X+15
2、舞蹈队有х,合唱队的人数比舞蹈队的4倍少8 人,合唱队有( )人。
4X-8
准备题:
相关文档
最新文档