数学人教版高中全册课件精品
高中数学必修全册人教版PPT
Rt⊿ SOH
Rt⊿ SOB Rt⊿ SHB Rt⊿ BHO
棱台由棱锥截得而成,所以在棱台中也有类似 的直角梯形。
第十三页,共101页。
棱台
结构特征
用一个平行于棱锥 底面的平面去截棱锥,底
面与截面之间的部分是棱 台.
D’
D A’
C’
B’
C
A
B
第十四页,共101页。
圆柱
结构特征
以矩形的一边所在直线为
锥的体积是( A)
(A)9
(B) 9 (C)7 (D)
7
2
2
A1 练5:一个正三棱台的上、下底
面边长分别为3cm和6cm,
高是1.5cm,求三棱台的侧
面积。
27 3 cm2
A
2
C1 B1
C B
第二十三页,共101页。
6.如图,等边圆柱(轴截面为正方
形ABCD)一只蚂蚁在A处,想吃C1
处的蜜糖,怎么走才最快,并求最短路
O’ O
第十七页,共101页。
球
结构特征
以半圆的直径所 在直线为旋转轴,半圆 面旋转一周形成的旋 转体.
半径
O 球心
第十八页,共101页。
空间几何体的表面积和体积
圆柱的侧面积: S 2 rl
面积
圆锥的侧面积: S rl
圆台的侧面积: S (r r)l
球的表面积: S 4 R2
柱体的体积: V Sh
A.1 B.1 C. 1 D.1 2 36
正视图 侧视图 俯视图
V
1 3 S底h
1 111 3
1 3
1 1
1
第四十页,共101页。
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是___8_0__0_0_c.m 3
人教版高中数学选修2-2全套课件
(2)根据导数的定义
f′(x0)=Δlixm→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
= lim Δx→0
2x0+Δx2+4x0+Δx-2x20+4x0 Δx
= lim Δx→0
4x0·Δx+2Δx2+4Δx Δx
= lim Δx→0
(4x0+2Δx+4)
=4x0+4,
∴f′(x0)=4x0+4=12,解得 x0=2.
(1)函数f(x)在x1处有定义. (2)Δx是变量x2在x1处的改变量,且x2是x1附近的任意一点, 即Δx=x2-x1≠0,但Δx可以为正,也可以为负. (3)注意自变量与函数值的对应关系,公式中若Δx=x2-x1, 则Δy=f(x2)-f(x1);若Δx=x1-x2,则Δy=f(x1)-f(x2).
解析: (1)由已知∵Δy=f(x0+Δx)-f(x0) =2(x0+Δx)2+1-2x20-1=2Δx(2x0+Δx), ∴ΔΔyx=2Δx2Δx0x+Δx=4x0+2Δx. (2)由(1)可知:ΔΔxy=4x0+2Δx,当 x0=2,Δx=0.01 时, ΔΔyx=4×2+2×0.01=8.02.
(3)在 x=2 处取自变量的增量 Δx,得一区间[2,2+Δx]. ∴Δy=f(2+Δx)-f(2)=2(2+Δx)2+1-(2·22+1)=2(Δx)2+ 8Δx. ∴ΔΔyx=2Δx+8,当 Δx→0 时,ΔΔxy→8.
1.求瞬时变化率时要首先明确求哪个点处的瞬时
变化率,然后,以此点为一端点取一区间计算平均变化率,并逐步
已知f(x)=x2+3.
(1)求f(x)在x=1处的导数;
(2)求f(x)在x=a处的导数.
[思路点拨]
确定函数 的增量
人教版高中数学必修二全册PPT课件
圆柱、圆锥可以看作是由矩形或三角形绕其一边所在直线旋转而成,圆台是否也可看成是某图形绕轴旋转而成?
探究点3 圆台的结构特征
圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.如图:
轴
下底面
上底面
侧面
母线
表示方法:用表示它的轴的字母表示,如圆台O′O.
O′
B
【变式练习】
轴:旋转轴叫做圆柱的轴;
底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;
侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.
轴
底面
底面
侧面
母线
表示方法:圆柱用表示它的轴的字母表示,如圆柱O′O.
A
B
探究点2 圆锥的结构特征
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.如图:
练习
练习
1. 对几何体三视图,下列说法正确的是:( )
A . 正视图反映物体的长和宽
B . 俯视图反映物体的长和高
C . 侧视图反映物体的高和宽
D . 正视图反映物体的高和宽
C
2 . 若某几何体任何一种视图都为圆,那么这个几何体是 ___________
球体
5、正棱锥的直观图的画法
研一研·问题探究、课堂更高效
画板演示
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
A
练一练·当堂检测、目标达成落实处
人教A版数学必修二高中全册课堂教学用精品PPT模版
• 2.根据“球”的定义,我们用的篮球、排球 、铅球都是球吗?
• 提示:球是球体的简称.球体包括球面及所围 成的空间部分.从集合观点看,球可看做是空 间中与一个定点的距离小于或等于定长的点的 集合,这个定点就是球心,定长就是球的半径 .通常我们用的篮球、排球是指球面,而铅球 才是球体.
平行于棱锥 底面
棱 台 的平面去截 棱锥,底面 与截面之间 的部分叫做 棱台
图形及表示
如图可记作: 棱台 ABCD-
A′B′C′D′
相关概念
上底面:原棱锥的 截面 ;下底面: 原棱锥的 底面 ; 侧面:其余各面; 侧棱:相邻侧面的 公共边; 顶点:侧面与上(下 )底面的公共顶点
• 多面体最少有几个面,几个顶点,几条棱? • 提示:多面体最少有4个面、4个顶点和6条棱.
→ 回答有关问题
• 【规范解答】截面BCFE右侧部分是棱柱,因 为它满足棱柱的定义. 2分
• 它是三棱柱BEB′-CFC′,其中△BEB′和 △CFC′是底面.4分
• EF,B′C′,BC是侧棱.
6分
• 截面BCFE左侧部分也是棱柱. 8分
• 它是四棱柱ABEA′-DCFD′,其中四边形 ABEA′和四边形DCFD′是底面.
• 【题后总结】棱柱的定义中有两个面互相平行 ,指的是两底面互相平行,但棱柱的放置方式 不同,两底面的位置也不同.但无论怎样放置 ,都应满足棱柱的定义.
• 2.本例中平面BCFE左侧的几何体A′EFD′- ABCD是棱台吗?简述理由.
人教版高中数学必修二全册课件ppt
探究点1 多面体和旋转体 观察下面的图片,这些图片中的物体具有怎
样的形状?日常生活中,我们把这些物体的形状 叫做什么?我们如何描述它们的形状?
其中(2),(5),(7),(9),(13),(14), (15),(16)具有相同的特点:组成几何体的每个 面都是平面图形,并且都是平面多边形.
多面体:一般地,我们把由若干个平面多边形围成 的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面. 相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
半径是指什么?如何用字母表示球?
本 答 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋
课 时
转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径
栏 叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字
目
开 母 O 表示,如球 O.
关
研一研·问题探究、课堂更高效
例 2 判断下列各命题是否正确:
柱是怎样形成的呢?与圆柱有关的几个概念是
如何定义的?
答 圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转
本 课
形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴;垂直于
时 轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的
栏
目 曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫
课 时
垂直于轴的边旋转而成的圆面叫做圆柱的 底面 ;平行于
栏 目
轴的边旋转而成的曲面叫做圆柱的 侧面 ;无论旋转到
开 关
什么位置,不垂直于轴的边叫做圆柱侧面的 母线 .
2.以直角三角形的一条直角边所在直线为旋转轴,其余两
边旋转形成的面所围成的旋转体叫做 圆锥 .
人教版高中数学必修二全册PPT课件
第1课时
问题 3 类比棱柱的分类,棱锥如何根据底面多边形的边数进行分 类?如何用棱锥各顶点的字母表示问题 1 中的三个棱锥?
答 底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、
四棱锥、五棱锥……其中三棱锥又叫四面体.三个棱锥从左到右
本
课 可分别表示为 S-ABC,S-ABCD,P-ABCDE.
关
练一练·当堂检测、目标达成落实处
第1课时
1.下列说法中正确的是 A.棱柱的面中,至少有两个面互相平行
(A )
本
B.棱柱中两个互相平行的平面一定是棱柱的底面
课 时
C.棱柱中一条侧棱就是棱柱的高
栏 目
D.棱柱的侧面一定是平行四边形,但它的底面一定不是
开 关
平行四边形
解析 棱柱的两底面互相平行,故 A 正确;
置关系等角度紧扣定义进行判断.
研一研·问题探究、课堂更高效
第1课时
跟踪训练 1 根据下列关于空间几何体的描述,说出几何体名称:
(1)由 6 个平行四边形围成的几何体.
(2)由 7 个面围成,其中一个面是六边形,其余 6 个面是有一个公共
本 课
顶点的三角形.
时 栏
解 (1)这是一个上、下底面是平行四边形,四个侧面也是平行四边
棱柱的侧面也可能有平行的面(如正方体),故 B 错;
立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,
它的侧棱就不是棱柱的高,故 C 错; 由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面
可以是平行四边形,也可以是其他多边形,故 D 错.
练一练·当堂检测、目标达成落实处
第1课时
2.下列说法中,正确的是
(1)棱柱中互相平行的两个面叫做棱柱的底面;
-学年度高中数学课件全集人教版共37页
a11,a26,a311
( 5 n 8 ) S n 1 ( 5 n 2 ) S n A B n A2,0 B8
( 5 n 8 ) S n 1 ( 5 n 2 ) S n 2 n 8 0 ( 5 n 3 ) S n 2 ( 5 n 7 ) S n 1 2 n 2 08 ( 5 n 3 ) S n 2 ( 1 n 1 ) 0 S n 1 ( 5 n 2 ) S n 20 ( 5 n 2 ) S n 3 ( 1 n 9 ) 0 S n 2 ( 5 n 7 ) S n 1 20 ( 5 n 2 ) S n 3 ( 1 n 6 ) S n 5 2 ( 1 n 6 ) S n 5 1 ( 5 n 2 ) S n 0
5m5n8aman 2 aman
15m15n291
8.已知函数 f(x)(x满足R)下列条件:对任意的
实数 x1 , x都2 有 ( x 1 x 2 ) 2 ( x 1 x 2 )f( [ x 1 ) f( x 2 )]
和 f(x1)f(x2), 其x1 中x 是2大于0λ的常数.
设实数a0 ,a满, b足 f(和a0)0 baλf(a)
知 a11,a26,,a3 且11
( 5 n 8 ) S n 1 ( 5 n 2 ) S n A B , n n 1 , 2 , 3 ,
,其中A,B 为常数。
新疆 王新敞
奎屯
⑴ 求A 与B 的值;
新疆 王新敞
奎屯
⑵ 证明:数列 a为n 等差数列;
⑶ 证明:不等式 5amn a对ma任n 何1正 整数 都成立m,。n
-学年度高中数学课件全集人教版
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
高中数学必修五全册课件PPT(全册)人教版
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
人教版高中数学必修一全套PPT课件
点与平面的位置关系
点在平面内、点在平面外或点在平面上(即点在平面的边界上)。
直线与平面的位置关系
直线在平面内、直线与平面相交或直线与平面平行。
2024/1/25
31
直线、平面平行的判定及其性质
直线平行的判定
同一平面内,不相交的两条直线互相平行。
平面平行的判定
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个 平面平行。
。
幂函数增长模型
函数值随自变量幂次增长,增 长速度介于线性和指数之间,
如幂函数。
2024/1/25
19
函数模型的应用实例
经济学中的应用
利用函数模型研究成本、收益 、利润等经济问题。
2024/1/25
物理学中的应用
利用函数模型描述物体的运动 规律、波动现象等。
工程学中的应用
利用函数模型进行工程设计、 优化等问题。
2023 WORK SUMMARY
人教版高中数学必修 一全套PPT课件
REPORTING
2024/1/25
1
目录
• 高中数学必修一概述 • 集合与函数概念 • 基本初等函数(Ⅰ) • 空间几何体 • 点、直线、平面之间的位置关系
2024/1/25
2
PART 01
高中数学必修一概述
2024/1/25
以直角梯形的垂直于底边的腰所在直线为旋转轴,其余各边旋转 形成的曲面所围成的几何体。
球
半圆以它的直径为旋转轴,旋转一周形成的曲面所围成的几何体 。
2024/1/25
24
空间几何体的三视图和直观图
三视图
正视图(从正面看)、侧视图(从左面看)、俯视图(从上面看)。
高中数学必修二全册课件ppt人教版
解析答案
反思与感悟
解 (1)∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱. (2)在四边形ABB1A1中,在AA1上取E点,使AE=2;在BB1上取F点,使BF=2;连接C1E、EF、C1F,则过C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC—EFC1,其侧棱长为2;截去部分是一个四棱锥C1—EA1B1F,该几何体的特征为:有一个面为多边形,其余各面都是有一个公共顶点的三角形.
①③
1.在理解的基础上,要牢记棱柱、棱锥、棱台的定义,能够根据定义判断几何体的形状.2.各种棱柱之间的关系(1)棱柱的分类
棱柱
(2)常见的几种四棱柱之间的转化关系
3.棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表:
名称
底面
侧面
侧棱
高
平行于底面的截面
棱柱
斜棱柱
平行且全等的两个多边形
平行四边形
第一 章 § 1.1 空间几何体的结构
第1课时 多面体的结构特征
1.认识组成我们的生活世界的各种各样的多面体;2.认识和把握棱柱、棱锥、棱台的几何结构特征;3.了解多面体可按哪些不同的标准分类,可以分成哪些类别.
问题导学
题型探究
达标检测
学习目标
问题导学 新知探究 点点落实
如图棱柱可记作:棱柱
相关概念:底面(底):两个互相 的面侧面: 侧棱:相邻侧面的顶点: 的公共顶点
互相平行
四边形
互相平行
平行
其余各面
公共边
侧面与底面
ABCDEF—
A′B′C′D′E′F′
答案
分类:①依据:底面多边形的 ②类例: (底面是三角形)、 (底面是四边形)……
人教版高中数学必修5精品课件 24%20等比数列(19张)
这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
其定义式:
判断一个数列是否为等比数列的依据
an q(n 2) an1
或 an1 q(n N *) an
an 0
人教版高中数学必修5精品课件 24%20等比数列(19张)
人教版高中数学必修5精品课件 24%20等比数列(19张)
课堂互动
名称
等比数列
概念 从第2项起,每一项与它前一项的比等于 同一个非零常数
常数
公比 q 0
定义式 通项公式
an q,n 2 an1
an a1 q n1
通项
变形
an amqnm n, m N *
中项 公式
G2 ab 或 G ab
人教版高中数学必修5精品课件 24%20等比数列(19张)
a1q3
……
a a q n1
n
1
人教版高中数学必修5精品课件 24%20等比数列(19张)
3.等比数列的通项公式: an a1qn1
思考:如何用 a1 和 q 表示 an?
❖ 方法:累加法
等 a2 a1 d
差 数
a3 a2 d
列 a4 a3 d ……
+)an an1 d
类比
累乘法
若 a,G成,b等比数列,那么G叫做 与 的a等比b中项,
有:
G2 ab
G ab
注意:1)“ a,G,b 成等比数列” 是 “ G2 ab ”的 充分不必要条件
2)任意两个数 a, b 都有唯一等差中项为 a b ;
2
当 ab 0 时,才有等比中项,且有两个 ab 。
人教版高中数学必修5精品课件 24%20等比数列(19张)
人教版高中数学必修二全册课件PPT
2、过球面上的两点作球的大圆,可以作( )个。
1或无数多
3.下图中不可能围成正方体的是( )
B
4.在棱柱中………………..( )
A . 只有两个面平行
B . 所有的棱都相等
C . 所有的面都是平行四边形
D . 两底面平行,并且各侧棱也平行
侧视
改一改:某同学画的下图物体的三视图,对吗?若有错,请指出并改正.
正视图
侧视图
俯视图
对
错
错
俯视
【变式练习】
三视图的作图步骤
2.运用长对正、高平齐、宽相等的原则画出其三视图.
1. 位置正视图 侧视图 俯视图
【提升总结】
正视图
俯视图
侧视图
从前面正对着物体观察,画出正视图,正视图反映了物体的长和高及前后两个面的投影.
从上向下正对着物体观察,画出俯视图,布置在正视图的正下方,俯视图反映了物体的长和宽及上下两个面的投影.
三视图表达的意义
从左向右正对着物体观察,画出侧视图,布置在正视图的正右方,侧视图反映了物体的宽和高及左右两个面的投影.
例2 画出下面几何体的三视图.
正视图
俯视图
侧视图
画出下面正三棱锥的三视图.
棱柱
棱锥
圆柱
圆锥
圆台
棱台
球
结构特征
用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
棱柱
棱锥
圆柱
圆锥
圆台
棱台
球
结构特征
O
半径
球心
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.
球的结构特征
球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。
人教版高中数学必修二全册教学课件ppt
开
关
答 旋转轴叫做圆台的轴,垂直于轴的边
旋转而成的圆面叫做圆台的底面,斜边旋
转而成的曲面叫做圆台的侧面,斜边在旋
转中的任何位置叫做圆台侧面的母线.
圆台用表示它的轴的字母表示,如上图的圆台表示为圆台 O′O.
研一研·问题探究、课堂更高效
填一填 研一研 练一练
问题 3 圆柱、圆锥、圆台都是旋转体,它们在结构上有哪些相同点
答案 图1是由圆柱中挖去圆台形成的, 图2是由球、棱柱、棱台组合而成的.
答案
返回
达标检测
1.下图是由哪个平面图形旋转得到的( D )
1 23 4
答案
2.下列说法正确的是( D ) A.圆锥的母线长等于底面圆直径 B.圆柱的母线与轴垂直 C.圆台的母线与轴平行 D.球的直径必过球心
解析 圆锥的母线长与底面直径无联系; 圆柱的母线与轴平行; 圆台的母线与轴不平行.
答案
球的结构特征
球
图形及表示
定义:以 半圆的直径 所在直线为旋转轴, 半圆面旋转一周形成的旋转体叫做球体, 简称球
相关概念: 球心:半圆的 圆心 半径:半圆的 半径 直径:半圆的 直径
图中的球表示为: 球O
答案
知识点五 简单组合体
思考 下图中的两个空间几何体是柱、锥、台、球体中的一种吗? 它们是如何构成的?
课
时
上看是由八个圆柱组合成的一个组合体,我们周围的很多建筑物
栏 目
和它一样,也都是由一些简单几何体组合而成的组合体.本节我
开 关
们就来学习旋转体与简单组合体的结构特征.
填一填 研一研 练一练
研一研·问题探究、课堂更高效
探究点一 圆柱的结构特征
问题 1 如图所示的空间几何体叫做圆柱,那么圆
人教版A版高中数学必修二全册课件【完整版】
人教版A版高中数学必修二全册课件【完整版】一、直线与方程1. 直线的斜率定义:直线斜率是指直线上任意两点之间的纵坐标之差与横坐标之差的比值。
计算公式:k = (y2 y1) / (x2 x1)性质:斜率k与直线倾斜角度的关系为k = tan(θ),其中θ为直线与x轴正方向的夹角。
2. 直线的截距定义:直线截距是指直线与y轴的交点的纵坐标。
计算公式:b = y kx,其中k为直线斜率,x为直线与x轴的交点的横坐标,y为直线与y轴的交点的纵坐标。
3. 直线方程点斜式:y y1 = k(x x1),其中k为直线斜率,(x1, y1)为直线上的一点。
斜截式:y = kx + b,其中k为直线斜率,b为直线截距。
一般式:Ax + By + C = 0,其中A、B、C为常数,且A、B 不同时为0。
4. 两条直线的位置关系平行:两条直线的斜率相等。
垂直:两条直线的斜率互为负倒数。
相交:两条直线的斜率不相等。
二、圆与方程1. 圆的定义定义:圆是平面上所有与一个固定点(圆心)距离相等的点的集合。
2. 圆的标准方程方程:(x a)² + (y b)² = r²,其中(a, b)为圆心坐标,r 为半径。
3. 圆的一般方程方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
4. 圆与直线的位置关系相离:直线与圆没有交点。
相切:直线与圆有且仅有一个交点。
相交:直线与圆有两个交点。
三、椭圆与方程1. 椭圆的定义定义:椭圆是平面上所有与两个固定点(焦点)距离之和等于常数的点的集合。
2. 椭圆的标准方程方程:(x h)²/a² + (y k)²/b² = 1,其中(h, k)为椭圆中心坐标,a为椭圆长轴的一半,b为椭圆短轴的一半。
3. 椭圆的一般方程方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E 为常数,且A、B不同时为0。
人教版高中数学必修课件全册共142页文档
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
人教版高中数学必修课件全册
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— 威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题:求由方程x2-1=0的实数解构成的集合。 解:(1)列举法:{-1,1}或{1,-1}。 (2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2、两个集合相等
∈ 例如:1∈N, -5 Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4{}(1,4 )}
2020年9月30日
永切隔数形数焉数
远莫离形少无能与
联忘分结数形分形
,
,
——
华 罗 庚
系 万 事 休
合 百 般 好
时 难 入 微
时 少 直 觉
作 两 边 飞
本 是 相 倚 依
体
第一章:集合与函数 第二章:基本初等函数 第三章:函数的应用
第一章:集合与函数
第一节:集合
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数集
R:
实数集
2、集合与元素的关系(属于∈或不属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
练习题
1、直线y=x上的点集如何表示?
x+y=2 2、方程组
x-y=1
的解集如何表示?
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
如何用数学的语言描述这些对象??
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
集合的含义与表示
一、请关注我们的生活,会发现………
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集, 通常记作U。
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
思考:
1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
读作:A包含于B,或者B包含A 可以联系数与数之间的“≤”
BA
2、真子集:
3、空集:
我们把不含任何元素的集合叫做空集,记作Φ,并规定:空集是任何集合 的子集,空集是任何非空集合的真子集。
4、补集与全集
设AS,由S中不属于集合A的所有元素组成的集合称为S的子集A的补集, 记作CSA ,即CSA ={x|x∈S,且xA}
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般形式
为:{ x | p(x) }
例如:book中的字母的集合表示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一(2)班女生的全体组成的集合,
B为这个班学生的全体组成的集合; ⑶ 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
一、子集和真子集的概念
1、子集:一般地,对于两个集合A、B, 如果集合A中任意一个元素都是 集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子 集.
6、设集合A {x | x2 4x 0},B {x | x2 2(a 1)x a2 - 1 0,a R}, 若B A,求实数a的值.
3.已知A {x | 2 x 5},B {x | a 1 x 2a 1},B A, 求实数 a的取值范围 .
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
练习题
1、下列命题: 重点考察对空集的理解!
(1)空集没有子集;
(2)任何集合至少有两个子集;
(3)空集是任何集合的真子集;
(4)若 A,则A .其中正确的有(
)
A.0个
B.1个 C.2个
D.3个
2.设x ,y
R,A
{(x,y) |
y
-
3
x
-
2},B
{(x,y) |
y x
-
3 2
1},
则A,B的关系是 ______.
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集