MIT 信号与系统 Lecture 15

合集下载

MIT(麻省理工)信号与系统讲义-lecture9

MIT(麻省理工)信号与系统讲义-lecture9

x[n] = x[n] for any n as N → ∞
DTFT Derivation (Continued)
DTFS synthesis eq. DTFS analysis eq.
Define
− periodic in ω with period 2π
DTFT Derivation (Home Stretch)
Example #2 from last lecture
Example #7:
- a rational function of jω, ratio of polynomials of jω Partial fraction expansion
inverse FT
Example #8: LTI Systems Described by LCCDE’s (Linear-constant-coefficient differential equations)
Amplitude modulation (AM)
Drawn assuming:
The Discrete-Time Fourier Transform Derivation: (Analogous to CTFT) except ejwn = ej(w+2π)n)
• x[n] – aperiodic and (for simplicity) of finite duration • N is large enough so that x[n] = 0 if |n| ≥ N/2 • x[n] = x[n] for [n] ≤ N/2 and periodic with period N
Larger at high ωo phase shift
Example #3:

MIT(麻省理工)信号与系统讲义-lecture2

MIT(麻省理工)信号与系统讲义-lecture2

Observation: Even if the independent variable is time, there are interesting and important systems which have boundary conditions.
6
Ex. #5
• A rudimentary “edge” detector
“Proof” a) Suppose system is causal. Show that (*) holds.
b) Suppose (*) holds. Show that the system is causal.
19
LINEAR TIME-INVARIANT (LTI) SYSTEMS • Focus of most of this course - Practical importance (Eg. #1-3 earlier this lecture are all LTI systems.) - The powerful analysis tools associated with LTI systems
16
LINEARITY
A (CT) system is linear if it has the superposition property: If x1(t) →y1(t) and x2(t) →y2(t) then ax1(t) + bx2(t) → ay1(t) + by2(t)
y[n] = x2[n] Nonlinear, TI, Causal y(t) = x(2t) Linear, not TI, Noncausal Can you find systems with other combinations ? -e.g. Linear, TI, Noncausal Linear, not TI, Causal

MIT(麻省理工)信号与系统讲义-lecture3a

MIT(麻省理工)信号与系统讲义-lecture3a
Signals and Systems
Fall 2003 Lecture #3 11 September 2003
1) 2) 3) 4) Representation of DT signals in terms of shifted unit samples Convolution sum representation of DT LTI systems Examples The unit sample response and properties of DT LTI systems
Focus for now:
DT Shifted unit samples CT Shifted unit impulses
Representation of DT Signals Using Unit Samples
That is ..
Coefficients
Basic Signals
SignalsThe Sifting Property of the Unit Sample
Suppose the system is linear, and define hk[n] as the response to δ[n -k]:
From superposition:
Now suppose the system is LTI, and define the uhoose value of n and consider it fixed
View as functions of k with n fixed
prod of overlap for
prod of overlap for
Calculating Successive Values: Shift, Multiply, Sum

MIT(麻省理工)信号与系统讲义-lecture7

MIT(麻省理工)信号与系统讲义-lecture7

Includes both amplitude & phase
Includes both amplitudeห้องสมุดไป่ตู้& phase
The Frequency Response of an LTI System
CT Frequency response:
DT Frequency response:
Frequency Shaping and Filtering
• By choice of H(jω) (or H(ejω)) as a function of ω, we can shape the frequency composition of the output
- Preferential amplification - Selective filtering of some frequencies
Example #7:
A Filter Bank
HPF BPF #1
BPF #M LPF
Demo: Apply different filters to two-dimensional image signals.
Face of a monkey.
Image removed do to copyright considerations
Note: To really understand these examples, we need to understand frequency contents of aperiodic signals ⇒ the Fourier Transform
Passband
Stopband
Note for DT:
Highpass Filters

MIT信号与系统网络课程练习题答案

MIT信号与系统网络课程练习题答案

1 x(−t) 2
1 t
−4 −2
-1
2
4
1
xe (t)
t
−4 −2
-1
2
4
8
xo (t)
1 t
−4 −2
-1
2
4
The value of the even part (and the odd part for that matter) at t = 0 is ambiguous as it depends on how the plot for x(t) is defined at t = 0. The plots in this solution assume that the value of x(t) at t = 0 is halfway between 0 and 2, i.e. 1. Using a different definition you may get an even part that is discontinuous at t = 0. This is also correct provided it is consistent with your assumption of what the value of x(t) is at the discontinuity. For instance, if you assume that x(0) = 2, then the plot of the even part will have a “spike” at t = 0 of height 2.
� � n=0
� � n�n = � 1 + � + �2 + · · · + � + 2�2 + 3�3 + · · ·

MIT(麻省理工)信号与系统讲义-lecture5

MIT(麻省理工)信号与系统讲义-lecture5

Desirable Characteristics of a Set of “Basic” Signals a. We can represent large and useful classes of signals using these building blocks
b. The response of LTI systems to these basic signals is particularly simple, useful, and insightful
- As N→ ∞, xN(t) exhibits Gibbs’ phenomenon at points of discontinuity
Demo:Fourier Series for CT square wave (Gibbs phenomenon).
Portrait of Jean Baptiste Joseph Fourier
Image removed due to copyright considerations. Signals & Systems, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1997, p. 179.

For real periodic signals, there are two other commonly used forms for CT Fourier series:
or

Because of the eigenfunction property of e jωt , we will usually use the complex exponential form in 6.003.

信号与系统的概念

信号与系统的概念

f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))

a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5

MIT(麻省理工)信号与系统讲义-lecture7

MIT(麻省理工)信号与系统讲义-lecture7
Note: To really understand these examples, we need to understand frequency contents of aperiodic signals ⇒ the Fourier Transform
Note for DT:
Passband
Stopband
Highpass Filters
Remember: highest frequency in DT
high frequency
high frequency
Bandpass Filters
Demo: Filtering effects on audio signals
Example #1: Audio System
Adjustable Filter
Equalizer
Speaker
Bass, Mid-range, Treble controls
For audio signals, the amplitude is much more important than the phase.
Signals and Systems
Fall 2003 Lecture #7
25 September 2003
1.
Fourier Series and LTI Systems
2.
Frequency Response and Filtering
3.
Examples and Demos
The Eigenfunction Property of Complex Exponentials
Example #2: Frequency Selective Filters

《信号与系统》课程讲义课件

《信号与系统》课程讲义课件
《信号与系统》课程讲义 课件
这份课程讲义课件为大家提供了关于《信号与系统》的详细介绍,让您轻松 了解这一重要学科。
课程简介
这门课程涵盖了数字信号处理和系统分析的基础知识,旨在让学生了解信号的特性、表示和处理 方法,以及在实际应用中的相关工具和技能。
1 信号分析
了解不同类型的信号及其特性,如周期信号、离散信号和非周期信号等
1
分析总结
对意见和反馈进行深入分析和总结
3
改进课程
针对性改进课程和教学方法
作业和考核方式
为了评估学生对课程知识的掌握程度,我们采用以下方式进行作业和考核:
作业
• 每周一次作业 • 包括习题集、实验和项目作业等 • 占总评成绩的30%
考试
• 期中、期末闭卷考试 • 包括理论和实践题目 • 占总评成绩的70%
课程反馈和改进
我们非常重视您的反馈,它将帮助我们不断改进课程和教学方法。请通过学校邮件系统或班级论坛,随 时提出您的意见和建议。
数字信号处理应用
掌握数字信号处理相关的技 术和应用,如音频处理和图 像处理等
课程大纲
第一章 第二章 第三章 第四章 第五章 第六章
信号与系统的基本概念 时域分析方法 傅里叶分析方法 滤波器 离散信号的频域分析 离散信号的滤波器设计
教学方法
为了帮助学生更好的掌握课程内容,我们采用了以下教学方法:
小组讨论
2 系统分析
掌握系统的基本概念,如线性时不变系统、滤波器和傅立叶变换等
3 信号处理方法
学会数字信号处理的基本方法,如离散傅立叶变换、数字滤波器和采样等
课程目标
通过本课程,学生将获得以下核心能力:
分析信号
了解信号的特性并进行分析, 从而为实际应用提供解决方 案

MIT(麻省理工)信号与系统讲义-lecture8

MIT(麻省理工)信号与系统讲义-lecture8

b) x(t) real and odd
Purely imaginary &
c) For real
Properties of the CT Fourier Transform
1) Linearity
2) Time Shifting Proof: FT magnitude unchanged
Linear change i源自 FT phaseProperties (continued)
3) Conjugate Symmetry
— All the energy is concentrated in one frequency — ωo
More generally
Example #4:
“Line spectrum”
Example #5:
— Sampling function
Same function in the frequency-domain! Note: (period in t) T ⇔ (period in ω) 2π/T Inverse relationship again!
Fourier’s Derivation of the CT Fourier Transform

• •
x(t) - an aperiodic signal - view it as the limit of a periodic signal as T → ∞
For a periodic signal, the harmonic components are spaced ω0 = 2π/T apart ... As T → ∞, ω0 → 0, and harmonic components are spaced closer and closer in frequency

信号与系统概论课件

信号与系统概论课件
系统的数学模型
03
描述信号通过系统的响应,通常使用差分方程或微分方程来建立系统的数学模型。通过求解这些方程,可以得到系统对不同类型信号的响应。
信号的时域和频域表示
在信号处理中,信号可以在时域或频域进行表示和分析。系统对信号的变换可以在时域或频域进行,从而改变信号的特性。
傅里叶变换和拉普拉斯变换
傅里叶变换和拉普拉斯变换是两种常用的信号变换方法。通过傅里叶变换,可以将信号从时域转换到频域,分析信号的频率成分;通过拉普拉斯变换,可以将信号从时域转换到复平面,用于分析信号的稳定性和收敛性。
通过傅里叶变换将信号转换为频域表示,可以对信号进行压缩编码,减小存储和传输的数据量。
01
频谱分析
通过傅里叶变换将信号分解成不同频率分量的组合,可以分析信号的频率成分和特征。
02
信号去噪
利用傅里叶变换将信号转换到频域,对噪声进行滤除,从而实现信号的去噪处理。
在进行傅里叶变换之前,需要对信号进行采样,采样频率应满足一定条件,否则会产生频谱混叠。
稳定性定义
1
2
3
通过计算系统的极点和零点,可以确定系统的稳定性。如果所有极点都位于复平面的左半部分,则系统是稳定的。
劳斯-赫尔维茨判据
通过分析系统的频率响应,可以确定系统的稳定性。如果系统的频率响应在负频率范围内没有穿越虚轴,则系统是稳定的。
奈奎斯特判据
通过绘制系统的伯德图,可以观察系统的稳定性。如果系统的相角在无穷远处趋于-π,则系统是稳定的。
对于某些非稳定信号,傅里叶变换可能无法得到正确的结果,需要进行适当的预处理或采用其他变换方法。
稳定性
采样定理
05
系统的稳定性分析
பைடு நூலகம்
VS

《信号与系统说课》课件

《信号与系统说课》课件

系统理论的发展方向
信号处理技术的发展:如数字信号处理、信号压缩、信号识别等 系统理论与控制理论的结合:如自适应控制、智能控制等 系统理论与通信技术的结合:如无线通信、卫星通信等 系统理论与计算机科学的结合:如人工智能、大数据分析等
信号与系统在其他领域的应用前景
通信领域:信号处理技术在通信领 域的广泛应用,如无线通信、卫星 通信等
信号与系统说课PPT课件
汇报人:
单击输入目录标题 课件介绍 课程导入 信号与系统基础知识 信号与系统的应用实例
信号与系统的发展趋势与展望
添加章节标题
课件介绍
课件内容概览
信号与系统的基本概念 信号与系统的分析方法 信号与系统的应用实例 信号与系统的发展趋势
课件设计思路
引入信号与系统的 概念,解释其重要 性
课程总结与展望
课程内容的回顾与总结
信号与系统的基本概念
信号与系统的分析方法
信号与系统的应用实例
信号与系统的发展趋势与 展望
课程学习成果的展示与交流
课程内容回顾:信号与系统的 基本概念、理论、应用等
学习成果展示:学生作业、实 验报告、项目成果等
交流与讨论:学生之间的交流、 教师与学生的互动等
展望未来:信号与系统在现代 科技中的应用与发展趋势
计算机科学领域:信号处理技术在 计算机科学领域的应用,如图像处 理、语音识别等
添加标题
添加标题术领域:信号处理技术在电 子技术领域的应用,如数字信号处 理、模拟信号处理等
生物医学领域:信号处理技术在生 物医学领域的应用,如生物信号处 理、医学图像处理等
技术发展对信号与系统的影响和推动作用
控制系统的应用
机器人控制:通过信号与系 统实现机器人的运动控制和 路径规划

MIT(麻省理工)信号与系统讲义-lecture11

MIT(麻省理工)信号与系统讲义-lecture11
Fourier Transform is highly symmetric CTFT: Both time and frequency are continuous and in general aperiodic
Same except for these differences
Suppose f() and g() are two functions related by
Letт = t and r = w: Letт = -w and r = t:
The n
Example of CTFT duality
Square pulse in either time or frequency domain
DTF Discrete & periodic in time S periodic & discrete in frequency
9 October 2003
Convolution Property Example
ratio of polynomials in
A, B – determined by partial fraction expansion
DT LTI System Described by LCCDE’s
From time-shifting property:
Derivation:
Periodic Convolution
Calculating Periodic Convolutions
Suppose we integrate from –π to π:
where
otherwise
Example:
Duality in Fourier Analysis

MIT信号与系统网络课程练习题答案

MIT信号与系统网络课程练习题答案

1 x(−t) 2
1 t
−4 −2
-1
2
4
1
xe (t)
t
−4 −2
-1
2
4
8
xo (t)
1 t
−4 −2
-1
2
4
The value of the even part (and the odd part for that matter) at t = 0 is ambiguous as it depends on how the plot for x(t) is defined at t = 0. The plots in this solution assume that the value of x(t) at t = 0 is halfway between 0 and 2, i.e. 1. Using a different definition you may get an even part that is discontinuous at t = 0. This is also correct provided it is consistent with your assumption of what the value of x(t) is at the discontinuity. For instance, if you assume that x(0) = 2, then the plot of the even part will have a “spike” at t = 0 of height 2.
t x(1 − 3 )
2 1 9 t
−6 −3
3
6
−1
t Figure 2.a.3: x(1 − 3 )

《信号与系统讲义》课件

《信号与系统讲义》课件
《信号与系统讲义》PPT 课件
信号与系统是理解和分析信号处理的基础。本课件将介绍信号与系统的基本 概念、时域信号与频域信号、连续信号与离散信号、线性时不变系统、卷积 运算、采样与重构,以及系统的频率响应和频率特性。
信号与系统的基本概念
了解信号与系统的基本概念是理解信号处理的关键。本节将介绍信号的定义、 分类以及常见的信号类型,以及系统的定义和特性。
卷积运算
卷积运算是信号处理中常用的操作。本节将介绍卷积运算的定义和性质,并 通过实例演示如何使用卷积运算来处理信号。
采样与重构
采样是将连续信号转换为离散信号的过程,而重构则是将离散信号还原为连续信号的过程。本节将介绍 采样和重构的原理和方法。
பைடு நூலகம்
系统的频率响应和频率特性
系统的频率响应和频率特性描述了系统对不同频率的信号的响应情况。本节 将介绍频率响应和频率特性的概念,以及它们在信号处理中的应用。
时域信号与频域信号
在信号处理中,时域信号和频域信号是两种常见的表示方式。本节将解释时 域和频域的概念,以及如何在两个域中相互转换。
连续信号与离散信号
信号可以是连续的,也可以是离散的。本节将讨论连续信号和离散信号的区别,以及在信号处理中如何 处理这两种类型的信号。
线性时不变系统
线性时不变系统是信号处理中常用的模型。本节将介绍线性时不变系统的基本概念和特性,以及如何利 用系统的响应来分析信号的处理过程。

Mitco交通信号控制系统介绍课件

Mitco交通信号控制系统介绍课件
新一代交通信号控制器研发内部系列技术交流之一
MiTCO交通信号控制系统 介绍与分析
上海宝康电子技术部 2009年4月
前言
MITCO信号控制系统是我公司面向城市交通管理,于 本世纪初投放市场的一款产品,包括信号控制系统、 信号机等一整套技术,为公司的发展做出了不可磨灭 的贡献。
为了便于读者能够系统、详细的了解整个MiTCO交通 信号控制系统,本文档按照交通信号控制系统的组成 方式,力争用通俗易懂的方式对各组成部分分别进行 介绍,每部分均包括设计阶段、实现阶段、优点、缺 点、下一步的发展方向等。
一个交通流向的饱和度(x)是它相应车辆活 动水平的一个定义。
0.2 0.4 0.6 0.8 1.0
一个高饱和度值对应于拥挤状况,而低饱和 度是具有较自由流的状况。
饱和度
智能交通环境下的交通信号 控制
随着社会科技水平的进步,诞生了智能交通系统,智能交 通的核心之一就是交通信息化,把交通状态实时的用具体 的数字表示出来,实现更为精确的控制,车辆检测手段较 以前更为快捷、准确;
交通流量可以用小客车单位 pcu (passenger car unit)来表示。
这是一个使不同类型和流向的车辆标准化的过程。(比如货运车 对小客车以及不同速度的“转弯”车对“直行”车之比较。)
这就使得二个可能具有完全不同组成的交通流可以直接比较。
不同车种和流向之间的关系举例:(澳大利亚) * 一辆直行小车 =1 PCU * 一辆直行货车 =2 PCU’s * 一辆右转小车 =1.25 PCU’s (小转弯) * 一辆左转小车 =3 PCU’s (大转弯) * 一辆右转货车 =2.5 PCU’s (小转弯) * 一辆左转货车 = 6 PCU’s (大转弯)
MiTCO系统推出至今已经将近10年,为了满足新时代 条件下交通管理的需求,公司决定开发新一代交通信 号控制系统,在开发之前,从交通工程的角度对 MITCO系统进行系统的分析,希望能够吸取以往开发、 使用过程中的经验教训,有助于我们更加明确新一代 信号控制系统开发的方向。

MIT 公开课程 信号与系统 Lecture 2

MIT 公开课程 信号与系统 Lecture  2

6.003:Signals and SystemsDiscrete-Time SystemsFebruary4,2010Discrete-Time SystemsWe start with discrete-time(DT)systems because they•are conceptually simpler than continuous-time systems•illustrate same important modes of thinking as continuous-time•are increasingly important(digital electronics and computation)From Samples to SignalsLumping all of the(possibly infinite)samples into a single object—the signal—simplifies its manipulation.This lumping is an abstraction that is analogous to•representing coordinates in three-space as points•representing lists of numbers as vectors in linear algebra•creating an object in PythonLet Y=R X.Which of the following is/are true:1.y[n]=x[n]for all n2.y[n+1]=x[n]for all n3.y[n]=x[n+1]for all n4.y[n−1]=x[n]for all n5.none of the aboveOperator ApproachApplies your existing expertise with polynomials to understand block diagrams,and thereby understand systems.Example: AccumulatorThese systems are equivalent in the sense that if each is initially atrest, they will produce identical outputs from the same input.(1 −R ) Y 1 = X 1⇔ ?Y 2 =(1+ R + R 2+ R 3+ ···) X 2Proof: Assume X 2 = X 1:Y 2 =(1+ R+ R 2 + R 3 + ···) X 2 =(1+ R + R 2 + R 3 + ···) X 1 = (1+ R + R 2 + R 3 + ···)(1 −R ) Y 1= ((1 + R + R 2 + R 3 + ···) −(R + R 2 + R 3 + ···)) Y 1 = Y 1It follows that Y 2 = Y 1.It also follows that (1 −R) and (1 + R + R 2 + R 3 + ···) are reciprocals .Example: AccumulatorThe reciprocal of 1−R can also be evaluated using synthetic division.1+R +R 2 +R 3 + ···1 −R 11 −RRR −R 2R 2R 2 −R 3R 3R 3 −R 4···Therefore1=1+ R + R 2 + R 3 + R 4 + ··· 1 −RAnalysis of Cyclic Systems:Geometric GrowthIf traversing the cycle decreases or increases the magnitude of the signal,then the fundamental mode will decay or grow,respectively.If the response decays toward zero,then we say that it converges. Otherwise,we it diverges.M IT OpenCourseWare6.003 Signals and SystemsSpring 2010For information about citing these materials or our Terms of Use, visit: /terms.。

美国MIT信号与系统课程的基本结构

美国MIT信号与系统课程的基本结构

MIT 2009 年秋季学期信号与系统课程教学日程表 Wednesday / Recitation 备注 教学内容 Thursday / Lecture 教学内容 L1 : Signals and Systems L3 : Feedback, Cycles and Modes L5 : Feedback Control Schemes L7 : Laplace Transforms and Z Friday / Recitation 教学内容 R2 : Difference Equations R4 : Feedback, Cycles and Modes R6 : Feedback Control Schemes R8 : Laplace Transforms and Z
பைடு நூலகம்
由 S. Mahajan 和 D. Freeman 于 2009 年编著的《离 。教 学 内 容 涵 盖 了 散时间 信 号 与 系 统: 算 子 法 》 Oppenheim著作的全部主要内容。 此外, 还包括补充
表1 日期 / 课型 周次 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tuesday / Lecture 教学内容 ( Registration Day) L2 : DT Systems L4 : Feedback and Position Control L6 : CT Systems,Difference Eqs. L8 : CT Operator Representations ( For Columbus Day) L11 : Frequency sponse ReHW1 due HW2 due HW3 due EX4 HW5 due HW6 due EX7 HW8 due HW9 due EX10 HW11 due HW12 due EX13

信号与系统 精解课件§1.5 奇异函数

信号与系统 精解课件§1.5 奇异函数
t0
0
K
f t
0 0
t
单边指数信号 0 f t t e
1
O
f t 1
t0
O t
通常把 称为指数信号的时间常数,记作,代表信 号衰减速度,具有时间的量纲。 重要特性:其对时间的微分和积分仍然是指数形式。
X
2.正弦信号
f (t ) K sin( t )
1 jt cost e e jt 2




e j t cost j sint
X
3.抽样信号(Sampling Signal)
sin t Sa( t ) t
1 Sat
性质
2π πO
tቤተ መጻሕፍቲ ባይዱ
π
① Sa t Sat ,偶函数 ② t 0 , Sa( t ) 1,即limSa( t ) 1 t 0 ③ Sa(t ) 0, t nπ,n 1,2,3 sin t sin t π ④ dt , dt π 0 t 2 t ⑤ lim Sa( t ) 0 t ⑥ sinc( t ) sinπ t π t
1、


t

(t ) d t t

( t ) f ( t )dt f (t ) (t ) f (t ) (t )dt f (0) 2、
时移,则:



(t t 0 ) f (t ) d t f (t 0 )


(t ) f (t ) d t f (0)
t


( t ) f (t ) d t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
6.003: Signals and Systems
Check Yourself
Lecture 15
Speech
Vowel sounds are quasi-periodic.
April 1, 2010
How many of the following pairs of functions are orthog­ onal (⊥) in T = 3? 1. cos 2πt ⊥ sin 2πt ? 2. cos 2πt ⊥ cos 4πt ? 3. cos 2πt ⊥ sin πt ? 4. cos 2πt ⊥ e j 2πt ?
T 2π T
ቤተ መጻሕፍቲ ባይዱ
t �
0 −1 2 x(t) = 1 jω0 kt e ; jπk k odd 1 |H (jω )| 0.1 0.01 ∠H (jω )| 0 −π 2 0.01 0.1 0.01 0.1 ω0 =
T 2π T
t
1
10
ω 100 1/RC ω 100 1/RC
1
10
ω 100 1/RC ω 100 1/RC
Example: Low-Pass Filtering with an RC circuit R + vi
+ −
C
vo −
Lowpass Filter
Calculate the frequency response of an RC circuit. R + vi
+ −
Lowpass Filtering
Filtering
Notion of a filter.
April 1, 2010
LTI systems • cannot create new frequencies. • can only scale magnitudes and shift phases of existing components.
2
6.003: Signals and Systems
Speech Production
Vibrations of the vocal cords are “filtered” by the mouth and nasal cavities to generate speech.
Lecture 15
(“analysis” equations)
(“synthesis” equation)
Fourier series: let x(t) represent a signal with harmonic components {a0 , a1 , . . ., ak } for harmonics {e j 0t , e j ak = � 2π 1 x(t)e−j T kt dt T T
Looking down the throat:
Vocal cords open
Glottis
Nasal cavity Hard palate Soft palate (velum) Pharynx Epiglottis Larynx Lips Tongue
Diagram removed due to copyright restrictions.
Last Time: Fourier Series
Determining harmonic components of a periodic signal. � 2π 1 x(t)e−j T kt dt T T
∞ � k=−∞
ak =
(“analysis” equation)
2π kt T
x(t)= x(t + T ) =
Solving: vi (t)
Vi (s) = (1 + sRC )Vo (s) 1 Vo (s) H (s) = = Vi (s) 1 + sRC
0 −1 2 1 jω0 kt ; e jπk k odd 1 |X (jω )| 0.1 0.01 ∠X (jω )| 0 −π 2 0.01 0.1 0.01 0.1 ω0 =
ak e j
(“synthesis” equation)
We can think of Fourier series as an orthogonal decomposition.
Orthogonal Decompositions
Vector representation of 3-space: let r ¯ represent a vector with components {x, y , and z } in the {x ˆ, y ˆ, and z ˆ} directions, respectively. x=r ¯· x ˆ y=r ¯· y ˆ z=r ¯· z ˆ r ¯ = xx ˆ + yy ˆ + zz ˆ
Vocal cords closed
Vocal cords
Esophogus
Vocal cords (glottis) Trachea
G r a y's A n a t o my
Stomach Lungs
Adapted from T.F. Weiss
A dapt ed f r om T. F. Wei ss
Last Time: Describing Signals by Frequency Content
Harmonic content is natural way to describe some kinds of signals. Ex: musical instruments (/MIS) piano piano t k violin violin t k bassoon bassoon t k
X-ray movie showing speech in production.
1 2
Lecture 15
Lowpass Filtering
High frequency square wave: ω0 > 1/RC .
1 2
April 1, 2010
0 −1 2 x(t) = 1 jω0 kt e ; jπk k odd 1 |H (jω )| 0.1 0.01 ∠H (jω )| 0 −π 2 0.01 0.1 0.01 0.1 � ω0 =
∞ � k=−∞
2π t T ,
. . ., e j
2π kt T }
respectively.
(“analysis” equation)
2π kt T
x(t)= x(t + T ) =
ak e j
(“synthesis” equation)
The complex conjugate (∗ ) makes the inner product of the k th and mth components equal to 1 iff k = m: � � � � 2π 2π 2π �∗ � j 2π mt � 1 1 1 if k = m e−j T kt e j T mt dt = e j T kt e T dt = T T T T 0 otherwise
1
10
1
10
Source-Filter Model of Speech Production
Vibrations of the vocal cords are “filtered” by the mouth and nasal cavities to generate speech.
Speech Production
6.003: Signals and Systems
6.003: Signals and Systems
Fourier Series
Lecture 15
Mid-term Examination #2
Wednesday, April 7, 7:30-9:30pm
April 1, 2010
.
No recitations on the day of the exam. Coverage: Lectures 1–15 Recitations 1–15 Homeworks 1–8
T 2π T
t
1
10
ω 100 1/RC ω 100 1/RC
1
10
ω 100 1/RC ω 100 1/RC
1
10
1
10
3
6.003: Signals and Systems
Lowpass Filtering
Still higher frequency square wave: ω0 = 1/RC .
bat t bit t
bait t bite t but t
bet t bought
beet t boat t t
boot t
Speech
Harmonic content is natural way to describe vowel sounds. bat bait bet beet
Speech
Homework 8 will not collected or graded. Solutions will be posted. Closed book: 2 pages of notes (8 1 2 × 11 inches; front and back). Designed as 1-hour exam; two hours to complete. Review sessions during open office hours. April 1, 2010
T 2π T
t
0.1
1
10
ω 100 1/RC ω 100 1/RC
相关文档
最新文档