解析几何考试题型分析及解题方法指导
高考复习中解析几何题型分析及解法梳理
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
解析几何常规题型及解题的技巧方法
解析几何常规题型及解题的技巧方法(1)中点弦问题1.给定双曲线xy2221-=。
过A(2,1)的直线与双曲线交于两点P1及P2,求线段P1P2的中点P的轨迹方程。
(2)直线与圆锥曲线位置关系问题2.设椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为 2. (1)求椭圆C的方程;(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN 的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.(3)圆锥曲线的有关最值(范围)问题3.设双曲线x 2-y 23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ,则θ的最大值为________.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点为F 1,F 2,椭圆上一点M ⎝ ⎛⎭⎪⎫263,33满足MF 1→·MF 2→=0. (1)求椭圆的方程; (2)若直线L :y =kx +2与椭圆恒有不同交点A 、B ,且OA →·OB →>1(O 为坐标原点),求k 的取值范围.5.直线m :y=kx+1和双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 过点P (-2,0)和线段AB 的中点,则直线l 在y 轴上的截距b 的取值范围为(4)求曲线的方程问题6.已知双曲线的两个焦点为F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( )7.设椭圆的中心是坐标原点,长轴x 在轴上,离心率23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程.8.已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列,(1)点P 的轨迹是什么曲线?(2)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ.(5) 存在两点关于直线对称问题在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
解答题题型归纳之解析几何(解析版)
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b +y 2a =1,由已知条件推导出a 2=b 2+50,6b 2a +9b =12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b +y 2a =1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k −2>3,即有(k 2+1)(k−2)k −2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m (3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =2=2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a +1b =1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k ,x 1x 2=−21+2k ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k =21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|22=√2,即|−1+p2|2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a +y 2b =1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)2,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =2√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a +12b =1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
高中数学平面解析几何的常见题型及解答方法
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
数学解析几何的常见题型解析
数学解析几何的常见题型解析解析几何是数学中的分支学科,通过运用代数和几何的知识,以方程和不等式为工具,研究几何对象的性质和关系。
解析几何的题型主要包括直线方程、曲线方程、平面方程和空间曲面方程等。
本文将对解析几何的常见题型进行解析。
一、直线方程的解析1. 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C是常数,且A和B不同时为0。
2. 斜截式方程直线的斜截式方程为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。
3. 点斜式方程直线的点斜式方程为(y - y₁) = k(x - x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。
二、曲线方程的解析1. 圆的方程圆的标准方程为(x - a)² + (y - b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。
2. 椭圆的方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别是椭圆在x轴和y轴上的半轴长度。
3. 双曲线的方程双曲线的标准方程为(x²/a²) - (y²/b²) = 1,其中a和b分别是双曲线在x轴和y轴上的半轴长度。
三、平面方程的解析1. 一般式方程平面的一般式方程为Ax + By + Cz + D = 0,其中A、B、C和D是常数,且A、B和C不同时为0。
2. 法向量和点的关系式平面的法向量为(A,B,C),平面上一点为(x₁,y₁,z₁),则平面方程为A(x - x₁) + B(y - y₁) + C(z - z₁) = 0。
四、空间曲面方程的解析1. 球的方程球的标准方程为(x - a)² + (y - b)² + (z - c)² = r²,其中(a,b,c)是球心的坐标,r是球的半径。
2. 圆锥曲线的方程圆锥曲线的方程根据不同类型的圆锥曲线而不同,比如椭圆锥的方程为(x²/a²) + (y²/b²) - (z²/c²) = 0,双曲锥的方程为(x²/a²) + (y²/b²) - (z²/c²)= 1等。
数学新高考二卷解析几何题答题技巧
数学新高考二卷解析几何题答题技巧数学新高考二卷解析几何题答题技巧引言在数学新高考二卷中,解析几何题占据了相当的比重。
解析几何作为数学的重要分支和应用工具,在高考中占据了相当的重要性。
本文将介绍一些针对解析几何题的答题技巧,帮助考生高效解题。
技巧一:熟悉基本公式和定理•需要熟练掌握点、线、面之间的距离公式和斜率公式,这是解析几何题解答的基础。
•熟悉三角形、四边形等图形的周长和面积公式,能够快速运用并进行变形。
技巧二:画图解题•解析几何题通常需要通过画图来帮助理解和分析。
画图可以更直观地看出问题中的条件和求解思路。
•细心观察图形中给出的线段、角度等信息,合理选择参考点和坐标系,有助于简化计算。
技巧三:几何性质的灵活运用•利用几何性质来解析几何题是解题的关键。
比如利用垂直角、对称性、相似三角形、共线等性质来辅助求解。
•注意总结并熟悉一些常见的几何性质和定理,如垂心、重心、外心等,能够快速应用于解题过程中。
技巧四:建立方程求解•对于一些解析几何题目,可以通过建立方程解决问题。
这要求我们善于将几何条件转化为方程,并利用方程进行进一步的推导。
•熟悉直线、圆等几何图形的方程表达式,并掌握解方程的方法,能够帮助快速解决相关问题。
技巧五:几何题与代数题互相转化•高考数学考题中的解析几何与代数题经常有联系,可以通过将几何问题转化为代数问题或者将代数问题图像化的方式来解决。
•将几何问题转化为代数问题可以通过引入变量、利用直线的斜率等方式进行,能够帮助快速解决相关问题。
结论解析几何作为数学的一部分,在高考中占有重要地位。
熟悉基本公式和定理,善于画图、灵活运用几何性质,掌握建立方程和几何与代数互相转化的技巧,将会有助于考生在解析几何题上取得更好的成绩。
通过不断练习和积累,相信考生们能够更加熟练地运用这些技巧,提高解题效率。
技巧六:分类讨论•在解析几何题中,有时候问题较为复杂,无法直接得到结论。
这时候可以采用分类讨论的方法,将问题进行分情况讨论,找到每种情况下的解决方法。
初中解析几何题型及解题方法
初中解析几何题型及解题方法解析几何是初中数学中的一个重要部分,主要涉及直线、圆、抛物线、双曲线等图形的性质和特点。
以下是一些常见的初中解析几何题型及解题方法:1. 求直线的方程题型描述:给定直线上两点或一点及斜率,要求求出直线的方程。
解题方法:+ 两点式:$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$+ 点斜式:$y - y_1 = m(x - x_1)$2. 求圆的方程题型描述:给定圆上的三点或两点及半径,要求求出圆的方程。
解题方法:$(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆心,$r$ 是半径。
3. 直线与圆的位置关系题型描述:给定直线和圆的方程,要求判断直线与圆的位置关系(相交、相切、相离)。
解题方法:计算圆心到直线的距离,与半径比较。
4. 求抛物线的方程题型描述:给定抛物线上的两点或一点及焦点,要求求出抛物线的方程。
解题方法:标准方程为 $y = ax^2 + bx + c$。
如果知道焦点和准线,则可以求出 $a$ 和 $b$ 的值。
5. 求最值问题题型描述:在给定的图形中,求某一点的坐标或某条线段的长度,使得该值最大或最小。
解题方法:使用配方法、顶点式、导数等方法求最值。
6. 实际应用题题型描述:给定生活中的实际问题,如最短路径、最大面积等,要求用解析几何知识求解。
解题方法:建立数学模型,转化为几何问题,然后使用解析几何的知识求解。
在解决解析几何问题时,除了掌握上述方法外,还需要培养自己的空间想象能力和逻辑推理能力。
同时,多做练习题也是提高解题能力的有效途径。
解析几何问题的题型与解题方法
分析几何问题的题型和解题方法一、知识整合高考中分析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组和链接,使知识形成网络,着重考查直线和圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究和直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的使用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解分析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线和圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的使用;掌握直线和椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高测试题知识点分析各地试题中分析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,分析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的分析几何内容,值得我们在二轮复习中引起足够的重视.高测试题中对分析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 以点(1,2)为圆心,和直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26 (B )23(C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3若过定点(1,0)M -且斜率为k 的直线和圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是(A )05k << (B )50k -<<(C )013k <<(D )05k <<2.解答题分析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 和y 轴交于点M. QF MQ =,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F QF MQ -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m kmMQ QF x m y km +-⨯-=-==-==---当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 和y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 和t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率2211 1.021,6226(2)(2,).a e a a a a e e e +==+<<≠∴>≠+∞且即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 和C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA 与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x OB OA.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x.41143||||),cos(-=⋅=OB OA OB OA 所以与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ 即⎩⎨⎧-=-=-.1212),1(1y y x x λλ由②得21222yy λ=, ∵,4,4222121x y x y == ∴.122x x λ=③联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或 当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或 由,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ 直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高测试题中往往是交替出现的。
高考数学解析几何9种题型的解题技巧!
解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。
考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。
考研数学解析几何题型解析与解题思路整理
解题方法:分析几何元素之间的关系,找出解题思路
几何性质与方程的综合应用
几何性质:直线、圆、椭圆、双曲线、抛物线的性质
方程:直线方程、圆方程、椭圆方程、双曲线方程、抛物线方程
综合应用:将几何性质与方程相结合,解决实际问题
解题技巧:分析问题、建立模型、求解验证、总结反思
直线与圆相切的问题
直线与圆相切的定义:直线与圆只有一个公共点,且这个点在直线上,也在圆上。
直线与圆相切的应用:在解析几何中,直线与圆相切的问题经常出现在求最值、证明等问题中。
直线与圆相切的性质:直线与圆相切时,直线的斜率等于圆的切线斜率。
直线与圆相切的条件:直线与圆的方程联立,消去未知数后得到的方程只有一个解。
离心率:圆锥曲线到焦点的距离与到准线的距离之比
准线:与圆锥曲线相切的直线
圆锥曲线的切线问题
切线定义:与圆锥曲线相切的直线
添加标题
切线方程:通过点斜式、截距式等方法求解
添加标题
切线性质:切线与圆锥曲线相交于一点,且切线与圆锥曲线的斜率相等
添加标题
切线应用:求解圆锥曲线的切线问题,可以转化为求解直线与圆锥曲线的交点问题,从而简化解题过程。
03
旋转变换:将图形绕某一点旋转一定角度,不改变图形的形状和大小
缩放变换:将图形沿某一方向拉伸或压缩,改变图形的大小
反射变换:将图形关于某一直线或平面进行反射,改变图形的位置关系
05
组合变换:将上述几种变换组合使用,解决更复杂的几何问题
几何变换的综合问题解析
几何变换的定义和分类
添加标题
几何变换的性质和特点
例题分析:通过具体的例题,分析参数方程与极坐标的综合问题的解题方法和步骤
解析几何题型及解题方法
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
解析几何的常见题型解题方法
解析几何的常见题型解题方法几何学是数学的一个分支,研究与形状、大小、位置等相关的问题。
在解析几何中,常见的题型包括直线方程、平面方程、距离公式、中点公式、向量运算等。
本文将从这些常见题型出发,介绍解析几何的解题方法。
1. 直线方程直线方程是解析几何中常见的题型之一。
一条直线可以用斜率截距法、两点法或点斜式等多种方式表示。
例如,已知直线过点A(2,3)且斜率为2,求直线的方程。
解法如下:首先,利用点斜式可以得到直线的方程为y-3=2(x-2)。
进一步化简,得到直线方程为y=2x-1。
2. 平面方程平面方程是解析几何中另一个常见的题型。
平面可以用点法、法向量法或截距法表示。
例如,已知平面过点A(2,3,4)、B(1,2,3)和C(3,4,5),求平面的方程。
解法如下:首先,利用两个向量来确定平面的法向量。
设AB和AC两向量,则平面的法向量可以通过叉积运算得到。
即AB×AC=(-1,1,1)。
进一步,利用点法可得平面的方程为-1(x-2)+1(y-3)+1(z-4)=0。
化简可得-x+y+z-5=0,即平面的方程为x-y-z+5=0。
3. 距离公式在解析几何中,我们常需要计算两点之间的距离。
两点间的距离可以通过距离公式来计算。
例如,已知点A(2,3)和点B(4,5),求AB两点间的距离。
解法如下:根据距离公式,AB的距离可以表示为√[(x2-x1)²+(y2-y1)²]。
带入坐标可得√[(4-2)²+(5-3)²],化简后得√8。
因此,点A(2,3)和点B(4,5)之间的距离为√8。
4. 中点公式中点公式是解析几何中常见的一个定理,用来求线段的中点坐标。
例如,已知线段AB的两个端点A(2,3)和B(4,5),求线段AB的中点坐标。
解法如下:根据中点公式,线段AB的中点坐标可以表示为[(x1+x2)/2,(y1+y2)/2]。
带入坐标可得[(2+4)/2, (3+5)/2],化简后得(3,4)。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
解析几何问题的题型与解题方法
1.2 部分小题体现一定的水平要求水平,注意到对学生解题方法的考查
例3若过定点 且斜率为 的直线与圆 在第一象限内的部分有交点,则 的取值范围是
(A) (B)
(C) (D)
2.解答题
解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.
1.选择、填空题
1.1 绝大部分选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主
(1)对直线、圆的基本概念及性质的考查
例1 以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.
(2)对圆锥曲线的定义、性质的考查
例2已知点 、 ,动点P满足 . 当点P的纵坐标是 时,点P到坐标原点的距离是
例4已知椭圆的中心在原点,离心率为 ,一个焦点是F(-m,0)(m是大于0的常数).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线 与y轴交于点M. 若 ,求直线l的斜率.
本题第一问求椭圆的方程,是比较容易的,对绝大部分同学来说,是应该得分的;而第二问,需要实行分类讨论,则有一定的难度,得分率不高.
3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.
4.掌握圆的标准方程: (r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程: ,知道该方程表示圆的充要条件并准确地实行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程 (θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.
解析几何考试题型分析和解题方式指导
解析几何考试题型分析及解题方式指导余咏梅肖继东最近几年来各地高考试题中解析几何内容在全卷的平均分值为分,考查的知识点约为20个左右。
其命题一般紧扣讲义,突出重点,全面考查。
题目突出骨干知识、注重“知识交汇处”、强化思想方式、突出创新意识。
从题型来看,选择题和填空题考查直线、圆、圆锥曲线和参数方程的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何的大体知识和向量的大体方式。
因此,在温习进程中这一点值得强化。
从内容来看,《直线与圆的方程》是解析几何中最基础的内容,在高考试题中,主要以客观试题的形式出现,属于低档题,直线以倾斜角,斜率,夹角,距离,平行与垂直,线性计划等有关问题为大体问题;对称问题(包括点对称,直线对称),要熟记解答的具体方式;与圆的位置有关的问题,其常规的解答方式是研究圆心到直线的距离;所考查的思想方式仍将是坐标法,数形结合,分类整合,方程的思想和待定系数法。
《圆锥曲线》主要考查的内容是圆锥曲线的概念和性质,直线和圆锥曲线的位置关系等。
坐标法是解析几何的大体方式,已知曲线的方程,通过方程研究曲线的有关性质,通过曲线知足的性质,探求曲线的轨迹方程及圆锥曲线的参数的取值范围问题是高考的常考常新的话题。
关于圆锥曲线问题解决的大体方式是概念法,配方式,换元法,待定系数法和化归法。
本文结合2009年考纲要求和对2008年全国各地解析几何题型和解题方式的分析,期望从中窥见2009年考试方向。
一、09年考纲要求①掌握过两点的直线的斜率公式,掌握直线方程的点斜式,两点式,一般式,能熟练求出直线方程。
掌握两条直线平等与垂直的条件,两条直线所成的角和点到直线的距离公式,能够判断两条直线的位置关系。
理解直线的倾斜角和斜率的概念,了解二元一次不等式表示平面区域,了解线性计划的意义,并会简单的应用,了解解析几何的大体思想,了解坐标法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何考试题型分析及解题方法指导罗田一中余咏梅肖继东近年来各地高考试题中解析几何内容在全卷的平均分值为27.1分,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
题目突出主干知识、注重“知识交汇处”、强化思想方法、突出创新意识。
从题型来看,选择题和填空题考查直线、圆、圆锥曲线和参数方程的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平面几何的基本知识和向量的基本方法。
因此,在复习过程中这一点值得强化。
从内容来看,《直线与圆的方程》是解析几何中最基础的内容,在高考试题中,主要以客观试题的形式出现,属于低档题,直线以倾斜角,斜率,夹角,距离,平行与垂直,线性规划等有关问题为基本问题;对称问题(包括点对称,直线对称),要熟记解答的具体方法;与圆的位置有关的问题,其常规的解答方法是研究圆心到直线的距离;所考查的思想方法仍将是坐标法,数形结合,分类整合,方程的思想和待定系数法。
《圆锥曲线》主要考查的内容是圆锥曲线的概念和性质,直线和圆锥曲线的位置关系等。
坐标法是解析几何的基本方法,已知曲线的方程,通过方程研究曲线的有关性质,通过曲线满足的性质,探求曲线的轨迹方程及圆锥曲线的参数的取值范围问题是高考的常考常新的话题。
关于圆锥曲线问题解决的基本方法是定义法,配方法,换元法,待定系数法和化归法。
本文结合2009年考纲要求和对2008年全国各地解析几何题型和解题方法的分析,期望从中窥见2009年考试方向。
一、09年考纲要求①掌握过两点的直线的斜率公式,掌握直线方程的点斜式,两点式,一般式,能熟练求出直线方程。
掌握两条直线平等与垂直的条件,两条直线所成的角和点到直线的距离公式,能够判断两条直线的位置关系。
理解直线的倾斜角和斜率的概念,了解二元一次不等式表示平面区域,了解线性规划的意义,并会简单的应用,了解解析几何的基本思想,了解坐标法。
②掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。
掌握椭圆,双曲线,抛物线的定义,标准方程,及其简单几何性质,了解椭圆的参数方程,了解圆锥曲线的简单应用。
二、2008年高考平面解析几何题型归类分析1.基础知识、基本运算的考查:例1(2008山东·文)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-= C .22(1)(3)1x y -+-= D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭ 解析:设圆心坐标为(m,1),由圆心到直线的距离公式可求m =2.故选B点评:本题考查求圆的方程,已知曲线类型求轨迹时常用待定系数法。
涉及到圆与直线的位置关系,常用到几何方法。
本题中圆与x 轴相切,则圆心的纵坐标与半径的值相等。
注意用数形结合,画草图帮助理解。
例2.(2008北京·理)若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:即到点与到直线的距离相等的轨迹为抛物线,选D点评: 本题考查抛物线的定义,将点P 到1x =-的距离,转化为点P 到x =-2的距离,体现了转化与化归的思想。
例3.(08湖北·文·15)圆34cos ,()24sin x C y θθθ=+⎧⎨=-+⎩为参数的圆心坐标为(3,-2),和圆C 关于直线0x y -=对称的圆C ′的普通方程是(x +2)2+(y -3)2=16(或x 2+y 2+4x -6y -3=0). 点评:考查圆的参数方程,及圆的对称问题(一般的曲线对称问题简单)。
2.基本方法与基本技能的考查:例4.(2008重庆·理)圆O1:x 2+y 2-2x =0和圆O2:x 2+y 2-4y =0的位置关系是 ( )(A)相离 (B)相交 (C)外切 (D)内切 解析:由两圆心间的距离在(R 1-R 2)和(R 1+R 2)间,故选B 。
点评:两圆的位置关系有五种。
此类问题通常是求两圆心之间的距离,再与两圆的半径之和或之差来比较,确定位置关系.例5.(安徽·理·15)若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 74点评:本题考查线性规划知识,本质上是对数形结合方法的考查。
近年来以线性规划为载体而考查其变形问题较多,为代数问题找到几何模型值得注意。
体现转化与化归的思想。
3. 圆锥曲线几何性质的考查:例6.(2008福建·文、理)双曲线的两个焦点为2222:1(0,0)x y C a b a b-->>,若P 为其上的一点,且12||2||PF PF =,则双曲线离心率的取值范围为( B )A.(1,3) B.(1,3] C.(3,)+∞ D.[3,)+∞ 解析:由32221≤-≥==-e a c PF a PF PF 可得,又双曲线离心率大于1,故B 正确。
点评:本题考查双曲线的离心率,离心率是圆锥曲线的重要特征,是命题的热点。
圆锥曲线中的基本元素:长短轴,焦距,渐近线,离心率等,在自身多处综合就会演变成中档题,要求熟练掌握其关系,灵活运用图形帮助分析。
4.有关直线与圆锥曲线及曲线与曲线的综合题例7.(湖北·文·20) 已知双曲线2222:1(0,0)x y C a b a b-->>的两个焦点为:(2,0),:(2,0),F F P -点 在曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程解:(Ⅰ)依题意,由a 2+b 2=4,得双曲线方程为142222=--a y a x (0<a 2<4), 将点(3,7)代入上式,得147922=--aa .解得a 2=18(舍去)或a 2=2, 故所求双曲线方程为.12222=-y x (Ⅱ)解:依题意,可设直线l 的方程为y =kx +2,代入双曲线C 的方程并整理,得(1-k 2)x 2-4kx -6=0.∵直线I 与双曲线C 相交于不同的两点E 、F , ∴⎩⎨⎧-±≠⇔⎪⎩⎪⎨⎧-⨯+-=∆≠-,33,10)1(64)4(,01222<<,>k k k k k ∴k ∈(-1,3-)∪(1,3).设E (x 1,y 1),F (x 2,y 2),则由①式得x 1+x 2=,16,142212k x x k k -=-于是 |EF |=2212221221))(1()()(x x k y y x x -+=-+- =|1|32214)(1222212212k k k x x x x k --+=-++∙∙ 而原点O 到直线l 的距离d =212k +,∴S ΔOEF =.|1|322|1|32211221||21222222k k k k k k EF d --=--++=∙∙∙∙ 若S ΔOEF =22,即,0222|1|3222422=--⇔=--k k k k 解得k =±2, 满足②.故满足条件的直线l 有两条,其方程分别为y =22+x 和.22+-=x y点评:本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待定系数法、不等式的解法以及综合运用数学知识进行推理运算的能力.涉及到三角形的面积问题。
在直线与圆锥曲线的位置关系处命题一直是个热点,基本方法是联立方程,利用判别式、韦达定理求解,运算量一般较大。
这类综合题中常涉及的问题有弦长问题,面积问题,对称问题,轨迹问题,定点、定值问题,是历年来高考中的热点问题,复习时要注重通性通法的训练。
5.解析几何相关的应用题例9.(08湖北·理·10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 1; ④3212c c c a ≤. 其中正确式子的序号是( B )A.①③B.②③C.①④D.②④解析:由题意及图知2211c a c a -=-,故②正确,又因为21a a >,所以222111a c a a c a -<-整理得2121c a a c >故③正确,因此答案选B点评:本题实际上是由课本上的一道例题改变而来,主要是考查椭圆与椭圆、椭圆与圆之间焦距、长轴及圆半径三者之间的转化关系,考查学生阅读资料、提取信息和建模能力。
取材于课本,要求在复习过程中重视课本,用好例题与练习题。
6.解析几何相关的定义信息开放创新题例10.(湖南·理·20)若A 、B 是抛物线y 2=4x 上的不同两点,弦AB (不平行于y 轴)的垂直平分线与x 轴相交于点P ,则称弦AB 是点P 的一条“相关弦”.已知当x >2时,点P (x ,0)存在无穷多条“相关弦”.给定x 0>2.(I )证明:点P (x 0,0)的所有“相关弦”的中点的横坐标相同;(II) 试问:点P (x 0,0)的“相关弦”的弦长中是否存在最大值?若存在,求其最大值(用x 0表示):若不存在,请说明理由.解: 略点评:定义新概念,知识点发生有效的迁移是解决此题的关键,充分体现了在新情境下考查学生综合运用知识解决问题的能力,同时一系列的存在性问题,给原本静态的问题赋于了动态活力,使问题更具开放性,对学生探索能力的考查更直观,区分度更大。
7.解析几何与其它知识综合题①解析几何与立体几何的交汇问题例:(08浙江·理·10).如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( B )A .圆B .椭圆C .一条直线D .两条平行直线 点评:本题以立体几何为载体考查用平面截圆柱所得的截面这一椭圆的几何定义,这是课本阅读A BPα (第10题)材料当中的内容,紧扣高考题源于课本的理念。