第一章质点的运动
第1章 质点运动学
100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z
第1章-质点运动学
位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率
大学物理——第1章-质点运动学
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C
第一章 质点运动学
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学
解
y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j
大学物理第一章
r (t) x(t)i y(t) j z(t)k
标量形式 x x(t), y y(t), z z(t)
t 从上式消去参数 得轨迹方程 f ( x, y, z) 0
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
例如 质点的运动方程为
r R costi R sintj
速度的方向余弦 cos 0, cos 15 , cos 10t
上页 下页 返回 帮助
1-3 速度 加速度
第一章 质点运动学
(2)当t=1s时, 18.03m s-1
cos 0, cos 0.832, cos 0.555
即 90 , 33 42', 56
再求加速度矢量。由定义得 a 10k
质点是实际物体的一个理想模型,后面我们还会建立刚体、 理想气体、点电荷等理想模型,建立理想模型的方法在处理 实际问题中是很有意义的.
上页 下页 返回 帮助
1-2 位置矢量 位移
第一章 质点运动学
一、位置矢量和运动方程
1 位置矢量
在物理学中用一个有向线段来表示质点的位置. 这个有向线段
的长度为质点到原点的距离,方向规定为由坐标原点指向质点 所在位置P点,称为质点的位置矢量,简称位矢,记做r
解 由加速度的定义式 a d 恒量
dt
d a dt
a d t at C1
设当t=0时, 0 ,代入上式可得 C1 0
因此 0 at
由速度的定义式得
0
at
dx dt
d x (0 at) d t
上页 下页 返回 帮助
1-4 直线运动
第一章 质点运动学
积分可得 x (0 at) d t 0 d t at d t
第一章运动学
第一章 运动学第1节 质点运动的基本概念一.质点运动的基本概念1.位置、位移和路程:位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z )来表示。
在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,如图所示,在直角坐标系中,位矢r 定义为自坐标原点到质点位置P(x,y,z)所引的有向线段,故有222z y x r ++=,r 的方向为自原点O 点指向质点P 。
位移指质点在运动过程中,某一段时间t ∆内的位置变化,即位矢的增量t t t r r s _)(∆+=,它的方向为自始位置指向末位置。
在直角坐标系中,在计算位移时,通常先求得x 轴、y 轴、z 轴三个方向上位移的三个分量后,再按矢量合成法则求合位移。
路程指质点在时间内通过的实际轨迹的长度,它是标量,只有在单方向的直线运动中,路程才等于位移的大小。
2.平均速度和平均速率:平均速度是质点在一段时间内通过的位移和所用时间之比:t s v ∆=平,平均速度是矢量,方向与位移s 的方向相同。
平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量。
3.瞬时速度和瞬时速率:瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即ts v t ∆=→∆0lim 。
瞬时速度是矢量,它的方向就是平均速度极限的方向。
瞬时速度的大小叫瞬时速率,简称速率。
4.加速度:加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化率,即t v a ∆∆=,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为tv a t ∆∆=→∆0lim。
加速度是矢量。
5.匀变速直线运动:质点运动轨迹是一条直线的运动称为直线运动,而加速度又恒定不变的直线运动称为匀变速直线运动,若a 的方向与v 的方向一致称为加速运动,否则称为减速运动。
匀变速直线的运动规律为: 20021at t v s s ++= )(20202s s a v v t -=-二、解题指导:例1:如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C两段绳子的夹角为ɑ时,A 的运动速度。
第一章 质点的运动
好第一章质点的运动1. 质点参考系运动方程2. 位移速度加速度3. 圆周运动及其描述4. 曲线运动方程的矢量形式5. 运动描述的相对性伽利略坐标变换运动的描述重点1. 模型质点、质点系、刚体、惯性系、非惯性系;2. 概念位矢、位移、速度、加速度、角位置、角位移、角速度、角加速度;3. 计算运动学的两类基本问题。
质点和刚体参考系坐标系运动的描述运动学两类基本问题相对运动§1-1 质点参考系1. 质点物体:具有大小、形状、质量和内部结构的物质形态。
一般情况下,物体各部分的运动不相同,在运动的过程中大小、形状可能改变,这使得运动问题变得复杂。
某些情况下,物体的大小、形状不起作用,或者起次要作用而可以忽略其影响——简化为质点模型。
质点:具有一定质量没有大小或形状的理想物体。
理想模型以下情况的实物均可以抽象为一个质点:1) 研究问题中物体的形状和大小可以忽略不计。
2)物体上各点的运动情况相同。
3) 各点运动对总体运动影响不大。
思考质点和数学上的点有什么不同?注意注意:1) 质点无大小,但有质量。
2) 具有相对的意义。
1. 质点定义:物体的线度和形状在研究问题中可以忽略不计时,把物体抽象为一个具有质量、占有位置,但无形状、大小的“点”,称为质点。
2. 质点系质点的集合分离质点系:∑=i m m 连续分布体:d m ∫=m m d Vd ρ=m d 3. 刚体在外力作用下不产生形变的物体特点:任意两点间的距离始终保持不变质点质点系刚体集合特例Sd σld λ可以作为质点处理的物体的条件:大小和形状对运动没有影响或影响可以忽略。
研究地球公转kmkm R R E ES 38104.6105.1××=1104.24>>×≈地球上各点的公转速度相差很小,忽略地球自身尺寸的影响,作为质点处理。
质点研究地球自转Rv ω=地球上各点的速度相差很大,因此,地球自身的大小和形状不能忽略,这时不能作质点处理。
第1章 质点运动学共48页文档
(2) 位矢法 以O点为参考点
r
x(
t
)i
y(
t
)j
R
cos
t
i
R
sin
t
j
(3) 自然法
以O’点为参考点,逆时为正。
S R t
第一章 质点运动学
7
§1-2 质点的位移、速度和加速度
一、位移 描述质点位置变化的物理量
S
几何描述: 数学描述:
PrQ
r(
t
t
)
r(
t
)
r( t ) r( t t )
2、联系 从数学上看是微分与积分的关系
微分法 r a 积分法
微分法
积分法
ar ra
第一类问题(微分法) 第二类问题(积分法)
第一章 质点运动学
14
例:直杆AB两端可以分别在两固定而 相互垂直的直线导槽上滑动,已知杆 的倾角按φ=ωt 随时间变化,试求杆 上M点的运动规律。(运动方程、轨 迹、速度、加速度)
直角坐标系
j
i
k
i jk
分别是x、y、z方 向的单位矢量
在直角坐标系中可写成:
r xi yj zk
a
x i y axi ay
j
z
k
j azk
(A)
大小
2 x
2 y
2 z
a
ax2
a
2 y
az2
第一章 质点运动学
12
由基本关系式
有:
dx
i
dy
j
dz
k
dt dt dt
a
dx
b
2
sin
t
第一章 质点 运动学
rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt
R
s
A
角加速度:
t 0
O
x
lim
t 0
t
d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。
质
点
研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。
第一章- 质点运动学
间位置而设置的坐标系统,是固结于参考系上的一个数
学抽象。 常见的坐标系:
角向
r
Oα
径向
•P(r,α)
极轴
z
P•(x,y,z)
r
Or
y
x
极坐标系
r n
τr
P(n,τ)
O
•P(r,ϕ ,θ ) r
直角坐标系
自然坐标系
球坐标系
§1-2 描述质点运动的物理量
1-2-1 位置矢量与运动方程
上海
热带风暴
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
设质点: t+
t ∆t
时位时移刻刻::: AB∆,, rvrvrBvA
z
A v
∆rv
B
rA
v rB
O
y
x
平均速度: vr = ∆rv ∆t
单位:m⋅s-1
平均速度的方向与∆t时间内位移的方向一致
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 瞬时速度(速度) 精细地描述质 z
avt
=
dv dt
evt
=
d2s dt 2
evt
v 讨论 det
dt
∆evt
=
v et
(t
+
∆t)
-
v et
(t
)
当: ∆t → 0 , ∆θ → 0
有 ∆et = et ⋅ ∆θ = ∆θ
方向 ∆evt ⊥ evt
v d et dt
= lim ∆evt ∆t→0 ∆t
= lim ∆θ ∆t→0 ∆t
第1章 质点运动学
第1章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.解:(1)质点在第1s 末的位移大小为x (1) = 6×12 - 2×13 = 4(m). 在第2s 末的位移大小为x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为v (t ) = d x /d t = 12t - 6t 2, 因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0, 质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为a (t ) = d v /d t = 12 - 12t , 因此1s 末的瞬时加速度为a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2). [注意]第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t -=+.并由上述数据求出量值.证:依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t ------- (1) 根据速度与位移的关系式 v t 2 = v o 2 + 2as , 得a = (n 2 – 1)v o 2/2s ------- (2) (1}平方之后除以 (2)式证得22(1)(1)n sa n t -=+.计算得加速度为22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问: (1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角?解:方法一:分步法.(1)夹角用θ表示,人和车(他)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当他达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式v t 2 - v 02 = 2a s , 可得上升的最大高度为h 1 = v y 02/2g = 30.94(m).他从最高点开始再做自由落体运动,下落的高度为h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为图1.32t =. 因此他飞越的时间为t = t 1 + t 2 = 6.98(s).他飞越的水平速度为v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得他落地的竖直速度大小为v y = gt = 69.8(m·s -1), 落地速度为v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上的方向为正,他在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得0(sin t v g θ=. 这里y = -70m ,根号项就是他落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为t = 6.98(s). 由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k=+. 证:(1)分离变量得2d d vk t v=-, 积分020d d vtv vk t v =-⎰⎰, 可得 011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分 00001d d(1)(1)xtx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕. [讨论] 当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma .由于a = d 2x /d t 2,而 d x /d t = v ,所以 a = d v /d t ,分离变量得方程 d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-,积分得ln v = -kt + C . 当t = 0时,v = v 0,所以C = ln v 0,因此ln v/v 0 = -kt ,得速度为 v = v 0e -kt .而d v = v 0e -kt d t ,积分得0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此 0(1-e )ktv x k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-.当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-, 读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值?解:(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =2r r ω=, 即22(12)24t = 解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2,即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a =m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? 解:建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ,v 0y = v 0sin θ.加速度的大小为a x = a cos α,a y = a sin α.运动方程为2012x x x v t a t =+,2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅,201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,例如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.解:圆盘边缘的切向加速度大小等于物体A 下落加速度. 由于212t h a t =∆,所以a t = 2h /Δt 2 = 0.2(m·s -2). 物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算: (1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+; 螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t =.算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程 h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.证:(1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为1222l l vlt v u v u v u=+=+-- 022222/1/1/t l v u v u v ==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.AAB vv + uv - uABvu uvv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?解:雨对地的速度2v r 等于雨对车的速度3v r 加车对地的速度1v r,由此可作矢量三角形.根据题意得tan α = l/h . 方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ,因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+, 即 12(sin cos )lv v hθθ=+.方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t ,h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.图1.101h l α。
大学物理学(上册)第1章 质点运动学
须在参考系上固连某种坐标系,这样,物体在某时刻的位置
即可用一组坐标表示.可见坐标系不仅在性质上具有参考系
的作用,而且还具有数学抽象作用.最常用的坐标系有:直角
坐标、球坐标、极坐标、柱坐标、自然坐标等.对物体运动
的描述决定于参考系而不是坐标系.
y
A
K
y
O
x
z
z
x 直角坐标系
K
r θ
A
O
x
极坐标系
O
y
o法向 sz
r x22 y22 z22 x12 y12 z12
讨论 (1)位移与位置矢量
位移表示某段时间内质点位置的变 化,是个过程量;位置矢量表示某个时
y
s' s p1 r
p2
刻质点的位置,是个状态量. (2)位移与路程
r(t1) r (t2 )
P1P2 两点间的路程 s是不唯一的,可 O
2)轨道方程表示为 x2 y2 r 2
1.2.2 位移与路程
y
A r B
rA
rB
y
yB A r
r y A A
rB
B
yB yA
o
x
o
xA
xB x
xB xA
1.位移 经过时间间隔 t 后,质点位置矢量发生变化,由始
点A指向终点B 的有向线段AB称为点A到B 的位移矢量 r.位
因为 v(t) v(t dt)
所以 dv 0 dt
而 a a 0 所以
v(t)
O
dv
v(t dt)
a dv dt
例 设质点的运动方程为
r t xti y t j
第一章 质点运动学
六. 单位 本课程采用国际单位制( ), ),其中 本课程采用国际单位制(SI),其中 长度单位 时间单位 速度单位 加速度单位 米(符号 m) ) 秒(符号 s) ) 米每秒( 米每秒(符号 m/s ) 米每二次方秒( 米每二次方秒(符号 m/s2 )
例题1-4 已知质点作匀加速直线运动,加速度 已知质点作匀加速直线运动, 例题 求这质点的运动方程。 为 a ,求这质点的运动方程。 dv = a 常量),积分得 ),积分得 解 由定义 (常量), dt
∆r = r1 − r
即等于质点位矢在∆t O 即等于质点位矢在∆ 时间内的增量。 时间内的增量。且有
r
r ∆t 时间内位移 1
t +∆t 时刻位矢 ∆
x
∆r = x1i + y1 j − xi − yj = ( x1 − x )i + ( y1 − y ) j
时间内质点通过的路程 为标量 路程∆ 为标量, ∆t 时间内质点通过的路程∆s为标量,仅当 ∆t→0时,位移的大小 时 lim ∆r = ∆s
d 2 x dv x ax = 2 = = −ω 2 R cos ω t dt dt d 2 y dv y ay = 2 = = −ω 2 R sin ω t dt dt
由此得加速度的大小
v a = ω R cos ωt + sin ωt = ω R = R
2 2 2 2
2
如果把加速度写成矢量式, 如果把加速度写成矢量式,则有
本课程中只讨论平面内的运动问题, 本课程中只讨论平面内的运动问题,常用坐标 系有平面直角坐标系 极坐标系和自然坐标系。 平面直角坐标系、 系有平面直角坐标系、极坐标系和自然坐标系。
二. 质点 一般情况下, 一般情况下,运动物体的形状和大小都可能变化
第1章 质点运动学
第1章 质点运动学
1.1 质点运动的描述
一、几个基本概念
运动是绝对的,对运动的描述是相对的。
1. 参考系 为了描述物体的运动而被选作参考的 物体叫做参考系.
任何实物物体均可被选作参考系;场不能作为参考系。
2. 坐标系 为了定量的描述物体的运动,在选定的参考 系上建立的带有标尺的数学坐标,简称坐标系。 坐标系是固结于参考系上的一个数学抽象。
?
即:
v v lim lim ? t 0 t t 0 t
v
vB
A
v
v v dv dv dt dt
第1章 质点运动学
总结:
描述对象 位置
描述质点运动的基本物理量
物理量 位矢 定义
r , r (t )
中心
位置变化
位移
v v0
a (t )
,如何求解
即
dv a dt
t dv adt
t0
同理:
r
r0
t dr v dt
t0
积分上、 下限!
第1章 质点运动学 例: 质量为5kg可视为质点的物体从原点开始运动, 其加速度为 a (0.4 1.2t )i 1.6 j (设运动开始记时,t 为运动时间),求任意时刻质点的速度及运动方程。
rB
r
r r
第1章 质点运动学
讨论: 比较位移和路程
r AB
s AB
s
A
B
r
位移:是矢量,表示质点位置变化的净效果,与质点 运动轨迹无关,只与始末点有关。 路程:是标量,是质点通过的实际路径的长,与质点 运动轨迹有关 直线(直进)运动 r s 何时取等号? 曲线运动 t 0时, dr ds
第1章_质点运动学
加速度为速度对时间的
一阶导数
13
1-2 质点运动的描述
由于
v vxi vy j
a
dv
dvx
i
dv
y
j
axi
ay
j
dt dt dt
ax
dvx dt
ay
dv y dt
为加速度在 x、y 方向的分量。
a
加速度方向为速度变化的方
向,指向运动轨迹的凹的一侧。
3、质量的国际单位是千克(kg): 保存在巴黎国际计量局的铂铱圆 柱体质量为1千克。
7
1-1 质点运动的描述
二、参考系
运动是绝对的。同一物体的运动,由于我们选
取的参照系不同,对它的运动的描述就不同,这称 为运动描述的相对性。因此,描述运动必须指出参 照标准。
参考系:描写物体运动选择的标准物。
y
P (x, y, z)
18
1-2 质点运动的描述
四、圆周运动的描述 1、角量描述
角位置 质点的位置矢量与参考
方向的夹角。
角速度 d
dt
y v2 r B v1 A
x
角加速度
d
dt
d2
dt 2
若一个质点做圆周运动的角速度为恒定值,称
为匀速圆周运动,否则为变速圆周运动。
19
1-2 质点运动的描述
1-1 物理基准 1-2 质点运动的描述 1-3 相对运动 1-4 牛顿运动定律 1-5 动量 1-6 能量
6
1-1 物理基准
一、长度、时间和质量标准
物体运动相关的单位有三个——长度、时间和质量。 1、长度的国际单位是米(m):一米等于光在真空 中传播1/299,792,458秒所走的距离。 2、时间的国际单位是秒(s):一秒是从铯原子中放射 出9,192,631,770次光振动所需要的时间。
大学物理第一章 质点运动学
a 常量,v v0 at,
•匀变速直线运动:
1 2 x x0 v0t at 2 2 2 v v0 2a( x x0 )
注意:以上各式仅适用于匀加速情形。
t t
要求 v( y ),可由
dv dv dy dv a v dt dy dt dy
有
积分得
v
dv kv v dy
2
dv kdy v
y dv v ky v0 v k 0 dy ln v0 ky, v v0e
1-3 曲线运动
一.运动的分解
如图,A、B为在同一高度的两个小球。在同一 时刻,使A球自由落体,B球沿水平方向射出,虽然 两球的轨道不同,但是两球总是在同一时刻落地。 说明,B球的运动可分解为在水平方向作匀速直线运 动,在竖直方向作自由落体运动。
其大小注意a aa a2 x 2 y2 z
dv dv a a dt dt
•描述质点运动的状态参量的特性 状态参量包括
r , v, a
应注意它们的
(1)矢量性。注意矢量和标量的区别。
(2)瞬时性。注意瞬时量和过程量的区别。 (3)相对性。对不同参照系有不同的描述。
1 gx y xtg 2 2 2 v0 cos 19.6 2 50tg 50tg 19.6(1 tg ) 2 cos
两边一起定积分得
dv dv adt kv dt kdt 2 v
2
v
v0
t dv k dt 2 0 v
v0 v(t ) kv0t 1
第1章 质点运动学
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别
∫
∫
第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
大学物理上册第一章-质点运动的描述
z ox
x
式中 i、j 、k 分别为x、y、z z
方向的单位矢量.
位矢r的值为 r rv x2 y2 z2
1 – 1 质点运动的描述
r 位矢 的方向余弦
第一章质点运动学
y
cos x r
cos y r
r P
cos z r
o
r(t)
2
运动方程 x(t)i y(t
)
j
z
(t
)k
z
1 – 1 质点运动的描述
第一章质点运动学
讨论 位移与路程
(A)P1P2 两点间的路程
是而不位移唯一r的是, 唯可一以的是.s或 s'
(B) 一般情况, 位移
大小不等于路程.
y
s
p1
'
rs
p2
r(t1)
r(t2 )
vr s
O
z
x
(C)什么情况 r s?
不改变方向的直线运动; 当 t 0 时 r s .
dt dt dt
dt
1 – 1 质点运动的描述
第一章质点运动学
平均速率 v s t
瞬时速率 v ds
y r(t t)
B s r
讨论
dt
r (t)
A
o
x
一运动质点在某瞬时位于矢径 r(x, y) 的端点
处,其速度大小为
dr (A) dt
d r (C) dt
dr (B) dt
(D)
(dx)2 (dy)2 dt dt
(D)位移是矢量, 路程是标量.
1 – 1 质点运动的描述
第一章质点运动学
三 速度
1 平均速度
在t 时间内, 质点从点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初试真题1、做下列运动的物体,能当做质点处理的是( ) A 、自转中的地球B 、旋转中的风力发电机叶片C 、匀速直线运动的火车D 、在冰面上旋转的花样滑冰运动员2、某人骑自行车在平直道路上行进,图中的实线记录了自行车开始一段时间内的t v 图像。
某同学为了简化计算,用虚线做近似处理,下列说法正确的是( ) A 、在1t 时刻,虚线反映的加速度比实际的大B 、在1~0t 时间内,由虚线计算出的平均速度比实际的大C 、在21~t t 时间内,由虚线计算出的位移比实际的大D 、在43~t t 时间内,由虚线反映的是匀速运动3、关于自由落体运动,下列说法正确的是( ) A 、物体竖直向下的运动就是自由落体运动B 、加速度等于重力加速度的运动就是自由落体运动C 、在自由落体运动过程中,不同质量的物体运动规律相同D 、物体做自由落体运动位移比时间成正比4、图是某物体做直线运动的速度图像,下列有关物体运动情况判断正确的是( )A 、前两秒加速度为2/5s m B 、s 4末物体回到出发点 C 、s 6末物体距出发点最远 D 、s 8末物体距出发点最远初试真题(1)1、在研究物体的运动时,下列物体中可以当做质点处理的是( ) A 、研究一端固定并可绕该端转动的木杆的运动时B 、研究用cm 20长的细线拴着的一个直径为cm 10的小球的摆动时C 、研究一体操运动员在平衡木上的运动时D 、研究月球绕地球运动时2、在平直铁路上行驶的火车里,有一乘客从探出的手中自由释放一个物体,乘客发现物体随车一起前进,最后竖直落在地面上;而在物体下落过程中,地面上的人却发现该物体做抛体运动,请问地面上的人和车厢中的乘客分别是什么为参考系得出上述结论的( ) A 、火车、地面 B 、火车、车厢中的乘客 C 、地面、火车 D 、地面、车厢3、如图所示是汽车的速度计,某同学在汽车中观察速度计指针位置的变化。
开始时指针指示在如图甲所示位置,经过s 8后指针指示在如图乙所示位置,若汽车做 直线运动,那么它的加速度约为( )A 、2/11s m B 、2/0.5s mC 、2/4.1s mD 、2/6.0s m4、汽车关闭发动机后做匀减速直线运动,当它滑行m 300时速度减为初始速度的一半,接着滑了s 20停下来,则汽车关闭发动机后滑行的总距离为() A 、m 400 B 、m 500 C 、m 600 D 、m 6505、一列车队从同一地点先后开出n 辆汽车在平直的公路上排成直线行驶,各车均由静止出发先做加速度为a 的匀加速直线运动,达到同一速度v 后改做匀速直线运动,欲使n 辆车都匀速行驶时彼此距离约为x ,则各辆车依次启动的时间间隔为(不计汽车的大小)() A 、a v 2 B 、a v 2 C 、vx2 D 、v x6、铁球从高处自由下落,在落地前的最后s 1内的平均速度是s m /35,g 取2/10s m ,求:(1)铁球下落的高度;(2)铁球下落一半高度时的速度。
7、为了安全,在公路上行驶的汽车之间应保持必要的距离,我国公安部门规定:高速公路上行驶的汽车的安全距离为m 200,最高时速为h km /120。
请你根据下面提供的资料,通过计算来说明安全距离为m 200的理论依据(取2/10s m g =)。
资料一:驾驶员的反应时间:s 6.0~3.0之间 资料二:各种路面的轮胎之间的动摩擦因数(1)在计算中驾驶员的反应时间、路面与轮胎之间的动摩擦因数各应取多少? (2)通过你的计算来说明安全距离为m 200的必要性。
初试真题(2)1、某物体的运动的t v -图像如图所示,则下列说法正确的是()A 、物体在第s 1末运动方向发生改变B 、物体在第s 2内、第s 3内的加速度是相同的C 、物体在第s 4末返回出发点D 、物体在第s 5时离出发点最远,且最大位移为m 5.02、某质点做直线运动的位移x 和时间t 的关系如图所示,那么该点在s 3内通过的路程是() A 、m 2 B 、m 3 C 、m 1 D 、m 5.03、某人在静止的湖面上竖直上抛一小铁球(可看成质点),小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中一段深度。
不计空气阻力,取向上为正方向,在下列t v -图像中,最能反映小铁球运动过程的速度-时间图线是()4、小球由空中某点自由下落,与地面相碰后弹至某以高度,小球自由下落和弹起过程的速度图像如图所示,不计空气阻力,2/10s m g =则() A 、小球下落的最大速度为s m /5 B 、小球向上弹起的最大速度为s m /3 C 、小球能弹起m 8.0D 、小球在运动的全过程中路程为m 8.05、如图所示,A 、B 两物体相距m x 7=,物体A 以s m v A /4=的速度向右匀速运动、而物体B 此时的速度s m v /10B =,只在摩擦力作用下向右做匀减速运动,加速度2/2s m a -=。
那么物体A 追上物体B 所用的时间为 ( )A 、s 7B 、s 8C 、s 9D 、s 106、公路上一辆汽车以速度s m v /101=匀速行驶,汽车行至A 点时,一人为搭车,从距公路m 30的C 处开始以s m v /32=的速度正对公路匀速跑去,司机见状途中刹车,汽车做匀减速运动,结果车和人同时到达B 点,已知m AB 80=,问:汽车在距A 多远处开始刹车,刹车后汽车的加速度有多大?7、一列货车以h km /.828的速度在平直铁路上运行,由于调度失误,在后面m 600处有一列快车以h km /72的速度向它靠近。
快车司机发觉后立即合上制动器,但快车要滑行m 2000才能停止。
试判断两车是否会相撞。
(一)辽宁模拟题组训练1、一辆汽车从静止开始匀加速开出,然后保持匀速运动,最后匀减速运动直到停止。
从汽车开始运动起计时,下表给出了某些时刻汽车的瞬时速度,根据表中的数据通过分析计算可以得出()A 、汽车加速运动经历的时间为s 4B 、汽车加速运动经历的时间为s 5C 、汽车匀速运动的时间为s 2D 、汽车减速运动的时间为s 12、一列车沿直线轨道从静止出发由A 地驶向B 地,,并停止B 地,列车做加速运动时,其加速度的最大值为1a ;做减速运动时,其加速度的绝对值的最大值为2a 。
要让列车由A 地到B 地所用时间最短,图中列车的t v -图像应是(其中1tan a =α;2tan a =β)()3、如图所示的位移)(x —时间)(t 图像和速度)(v )(x —时间)(t 图像中,给出四条曲线1、2、3、4代表四个不同物体的运动情况,关于他们的物理意义,下列描述正确的是()A 、图线1表示物体做曲线运动B 、t x -图像中1t 时刻21v v >C 、t x -图像中0至3t 时间内3和4的平均速度大小相等D 、两图像中,2t 、4t 时刻分别表示2、4开始反向运动4、取一根长m 2左右的细线,5个铁垫圈和一个金属盘。
在线下端系上第一个垫圈,隔cm 12再系一个,以后垫圈之间的距离分别为cm 36、cm 60、cm 84,如图所示,站在椅子上,向上提起线的上端,让线自由下垂,且第一个垫圈紧靠放在地上的金属盘。
松手后开始计时,若不计空气阻力,则第2、3、4、5个垫圈()A 、落到盘上的声音时间间隔越来越大B 、落到盘上的声音时间间隔相等C 、依次落到盘上的速率关系为2:3:2:1D 、依次落到盘上的时间关系为)()32:2-3(:)12(:1-- 5、一辆电动玩具车,由静止开始沿平直轨道以加速度1a 匀加速运动,一段时间t 后,立即以加速度2a 匀减速运动,当速度变为零后,立即掉头(不计掉头所需时间),并保持加速度2a 不变匀加速原路返回。
小车改变加速度后恰好经过相同时间t 回到原出发点。
试求加速度1a 与2a 的大小之比。
6、甲、乙两辆汽车同时经过A 地,沿直线到达B 地,甲车以h km /90的速度做匀速直线运动,乙车先以h km /108的速度匀速运动,中途遇到紧急情况,以2/2s m 的加速度刹车,停止后立即以2/1s m 的加速度加速到原来的速度,已知甲、乙两车刚好同时到达B 地,求A 、B 两地间的距离是多少米?(二)2年模拟题组训练1、在平直道路上,甲汽车以速度v 匀速行驶,当甲车司机发现前方距离为d 处的乙汽车时,立即以大小为1a 的加速度匀减速行驶,与此同时,乙车司机也发现了甲,立即从静止开始以大小为2a 的加速度沿甲运动的方向匀加速运动。
则()A 、甲、乙两车之间的距离一定不断减小B 、甲、乙两车之间的距离一定不断增大C 、若d a a v )(221+>,则两车一定不会相撞D 、若d a a v )(221+<,则两车一定不会相撞2、利用速度传感器与计算机结合,可以自动作出物体运动的图像,某同学在一次实验中得到的运动小车的t v -图像如图所示,由此可以知道()A 、小车先做加速运动,后做减速运动B 、小车运动的最大速度约为s m /8.0C 、小车的最大位移是m 8.0D 、小车做曲线运动3、一个沿竖直方向运动的物体,其速度图像如图所示,设向上为正方向。
则可知() A 、这是竖直下抛运动B 、这是竖直上抛又落回原地的过程C 、这是从高台上竖直上抛又落回地面的过程D 、抛出后s 2物体又落回抛出点4、物体B A 、在同一直线上做匀变速直线运动,它们的t v -图像如图所示,则() A 、物体B A 、运动方向一定相反B 、物体B A 、在s 4~0内的位移相同C 、物体B A 、在s t 4=时的速度相同D 、物体A 的加速度比物体B 的加速度大5、空降兵从飞机上跳伞时,为了保持安全着陆,着陆签最后阶段降落伞匀速下落的速度约为s m /6,空降兵平时模拟训练时,经常从高台上跳下,则训练用高台的合适高度约为(2/10s m g =)()A 、m .50B 、m 0.1C 、m 8.1D 、m 0.56、在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定。
近年来测g 值的一种方法叫“对称自由下落法”,它是将测g 归于测长度和时间,以稳定的氦氖激光波长为长度标准,用光学干涉的方法测距离,以铷原子钟或其他手段测时间,能将g 值测得很准,具体做法是:将真空长直管沿竖直方向放置,自其中O 点向上抛小球又落至原处的时间为2T ,在小球运动过程中经过比O 点高H 的P 点,小球离开P 点至又回到P 点所用的时间为1T ,测得1T 、2T 和H ,可求得g 等于() A 、21228T T H - B 、21224T T H - C 、21228T T H - D 、2122T T H-7、有一物体以初速度0v 沿倾角为θ的粗糙斜面上滑,如果物体与斜面间的动摩擦因数θμtan <,那么能正确表示物体速度v 随时间t 的变化关系的图线是图中的()8、汽车由甲地开出,沿平直公路开到乙地时,刚好停止运动它的速度—时间图像如图所示。