集合练习题(1)
第1节 集合(经典练习及答案详解)
第1节集合知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)常用数集及表示符号名称自然数集正整数集整数集有理数集实数集记法N N*或N+Z Q R2.集合间的基本关系(1)子集:一般地,对于两个集合A,B,如果集合A中任意一个元素,都是集合B中的元素,就称集合A为集合B的子集.记作A⊆B(或B⊇A).(2)真子集:如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集,记作A B(或B A).(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A的补集为∁U A{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()答案(1)×(2)×(3)×(4)√解析(1)错误.空集只有一个子集.(2)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y=x2+1上的点集.(3)错误.当x=1时,不满足集合中元素的互异性.2.(多选题)已知集合A={x|x2-2x=0},则有()A.∅⊆AB.-2∈AC.{0,2}⊆AD.A⊆{y|y<3}答案 ACD解析 易知A ={0,2},A ,C ,D 均正确.3.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|x ,y ∈R 且y =x },则A ∩B 中元素的个数为________. 答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点的集合,集合B 表示直线y =x 上的点的集合,圆x 2+y 2=1与直线y =x 相交于两点,则A ∩B 中有两个元素.4.(2020·全国Ⅱ卷)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B )=( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 ∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2}.又U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3}.5.(2020·全国Ⅰ卷)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a =( ) A.-4 B.-2 C.2 D.4答案 B 解析A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2. 由A ∩B ={x |-2≤x ≤1},知-a2=1,所以a =-2.6.(2021·济南模拟)设全集U =R ,A ={x |y =2x -x 2},B ={y |y =2x ,x ∈R },则 (∁U A )∩B =( ) A.{x |x <0}B.{x |0<x ≤1}C.{x |1<x ≤2}D.{x |x >2}答案 D解析 易知A ={x |0≤x ≤2},B ={y |y >0}. ∴∁U A ={x |x <0或x >2},故(∁U A )∩B ={x |x >2}.考点一 集合的基本概念1.(2020·全国Ⅲ卷)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( ) A.2 B.3 C.4 D.6答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,且y ≥x }={(1,7),(2,6),(3,5),(4,4)}.2.(2021·百校联盟联考)已知集合A ={2a -1,a 2,0},B ={1-a ,a -5,9},且A ∩B ={9},则a =( ) A.±3,5 B.3,5 C.-3D.5答案 C解析 易知a 2=9或2a -1=9,∴a =±3或a =5.当a =3时,则1-a =a -5=-2,不满足集合中元素的互异性,舍去. 当a =5时,则A ∩B ={9,0},与题设条件A ∩B ={9}矛盾,舍去.当a =-3时,A ={-7,9,0},B ={4,-8,9},满足A ∩B ={9},故a = -3. 3.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A.2B.3C.4D.5答案 C 解析 ∵32-x∈Z ,∴2-x 的取值有-3,-1,1,3,又∵x ∈Z ,∴x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.4.设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________. 答案 (1,2]解析 由题意得⎩⎨⎧(2-a )2<1,(3-a )2≥1,解得⎩⎨⎧1<a <3,a ≤2或a ≥4. 所以1<a ≤2.感悟升华 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性. 考点二 集合间的基本关系【例1】 (1)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M(2)(2020·南阳一模)已知集合A ={x |(x +1)(x -6)≤0},B ={x |m -1≤x ≤2m +1}.若B ⊆A ,则实数m 的取值范围为________. 答案 (1)D (2)(-∞,-2)∪⎣⎢⎡⎦⎥⎤0,52解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)A ={x |-1≤x ≤6}. ∵B ⊆A ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m <-2.符合题意.当B ≠∅时,⎩⎨⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52. 得m <-2或0≤m ≤52.感悟升华 1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.合理利用数轴、Venn 图帮助分析及对参数进行讨论.确定参数所满足的条件时,一定要把端点值代入进行验证,否则易增解或漏解.【训练1】 (1)(多选题)已知集合M ={x |x 2=1},N ={x |ax =1}.若N ⊆M ,则实数a 的值可能为( )A.-1B.0C.1D.2(2)已知集合A ={x |log 2(x -1)<1},B ={x ||x -a |<2},若A ⊆B ,则实数a 的取值范围为( ) A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]答案 (1)ABC (2)B解析 (1)∵集合M ={x |x 2=1}={-1,1},N ={x |ax =1}, ∴当a =0时,N =∅,N ⊆M 成立; 当a ≠0时,N =⎩⎨⎧⎭⎬⎫1a ,∵N ⊆M ,∴1a =-1或1a =1,解得a =-1或a =1. 综上,实数a 的值可能为1,-1,0.故选ABC. (2)由log 2(x -1)<1,得0<x -1<2,所以A =(1,3). 由|x -a |<2得a -2<x <a +2,所以B =(a -2,a +2). 因为A ⊆B ,所以⎩⎨⎧a -2≤1,a +2≥3,解得1≤a ≤3.所以实数a 的取值范围为[1,3]. 考点三 集合的运算角度1 集合的基本运算【例2】 (1)(2020·天津卷)设全集U ={-3,-2,-1,0,1,2,3},集合A ={-1,0,1,2},B ={-3,0,2,3},则A ∩(∁U B )=( ) A.{-3,3} B.{0,2}C.{-1,1}D.{-3,-2,-1,1,3} (2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1) D.(-∞,1]答案 (1)C (2)B解析 (1) ∁U B ={-2,-1,1},∴A ∩(∁U B )={-1,1}. 故选C.(2)易得M ={x |2x 2-x -1<0} ={x ⎪⎪⎪-12<x <1}.∵N ={x |2x +a >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,∴∁U N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-a 2. 由M ∩(∁U N )=∅,则-a 2≤-12,得a ≥1. 角度2 利用集合的运算求参数【例3】 (1)(2020·日照检测)已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 中有三个元素,则实数m 的取值范围是( ) A.[3,6) B.[1,2) C.[2,4)D.(2,4](2)已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)答案 (1)C (2)C解析 (1)因为x 2-4x -5<0,解得-1<x <5,则集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},易知集合B ={x ⎪⎪⎪x >m2}.又因为A ∩B 中有三个元素,所以1≤m 2<2,解之得2≤m <4.故实数m 的取值范围是[2,4). (2)集合A ={x |y =4-x 2}={x |-2≤x ≤2}, 因A ∪B =A ,则B ⊆A .又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1.感悟升华 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算. 2.数形结合思想的应用:(1)离散型数集或抽象集合间的运算,常借助Venn 图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.【训练2】(1)(多选题)(2021·长沙调研)已知集合M={1,2,3,4,5},M∩N ={4,5},则集合N可能为()A.{1,2,3,4,5}B.{4,5,6}C.{4,5}D.{3,4,5}(2)(多选题)(2020·潍坊质检)已知集合A={x|-1<x≤3},集合B={x||x|≤2},则下列关系式正确的是()A.A∩B=∅B.A∪B={x|-2≤x≤3}C.A∪∁R B={x|x≤-1或x>2}D.A∩∁R B={x|2<x≤3}答案(1)BC(2)BD解析(1)由集合M={1,2,3,4,5},M∩N={4,5},可得集合N必含有元素4和5,但不能含有1,2,3,根据选项,可得集合N可能为{4,5,6},{4,5}.故选BC.(2)∵A={x|-1<x≤3},B={x||x|≤2}={x|-2≤x≤2},∴A∩B={x|-1<x≤3}∩{x|-2≤x≤2}={x|-1<x≤2},A不正确;A∪B={x|-1<x≤3}∪{x|-2≤x≤2}={x|-2≤x≤3},B正确;∵∁R B={x|x<-2或x>2},∴A∪∁R B={x|-1<x≤3}∪{x|x<-2或x>2}={x|x<-2或x>-1},C不正确;A∩∁R B={x|-1<x≤3}∩{x|x<-2或x>2}={x|2<x≤3},D正确.以集合为背景的创新问题集合的新定义问题,体现了高考命题从能力立意到素养提升的一种命题导向,常见的命题形式有新概念、新法则、新运算等.解答这类问题,关键是理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答.【例1】对于任意两集合A,B,定义A-B={x|x∈A且x∉B},A*B=(A-B)∪(B -A),记A={x|x≥0},B={x|-3≤x≤3},则A*B=________.答案{x|-3≤x<0或x>3}解析 ∵A ={x |x ≥0},B ={x |-3≤x ≤3}, ∴A -B ={x |x >3},B -A ={x |-3≤x <0}. ∴A *B ={x |-3≤x <0或x >3}.【例2】若一个集合是另一个集合的子集,称两个集合构成“全食”;若两个集合有公共元素,但互不为对方子集,则称两个集合构成“偏食”.对于集合A =⎩⎨⎧⎭⎬⎫-1,12,1,B ={x |ax 2=1,a ≥0},若两个集合构成“全食”或“偏食”,则a的值为________. 答案 0或1或4解析 因为B ={x |ax 2=1,a ≥0},若a =0,则B =∅,满足B 为A 的真子集,此时A 与B 构成“全食”,若a >0,则B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 2=1a =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a ,-1a . 若A 与B 构成“全食”或“偏食”,则1a =1或1a=12,解得a =1或a =4.综上a 的值为0或1或4.【例3】定义:设有限集合A ={x |x =a i ,i ≤n ,n ∈N *},S =a 1+a 2+…+a n -1+a n ,则S 叫做集合A 的模,记作|A |.若集合P ={x |x =2n -1,n ≤5,n ∈N *},集合P 含有四个元素的全体子集为P 1,P 2,…,P k ,k ∈N *,则|P 1|+|P 2|+…+|P k |=________. 答案 100解析 集合P ={1,3,5,7,9},依题意,集合P 含有四个元素的全体子集为{1,3,5,7},{1,3,5,9},{1,3,7,9},{3,5,7,9},{1,5,7,9},根据“模”的定义,|P 1|+|P 2|+…+|P k |=(1+3+5+7)+(1+3+5+9)+(1+3+7+9)+(3+5+7+9)+(1+5+7+9)=4×(1+3+5+7+9)=100.A 级 基础巩固一、选择题1.已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩(∁U A )=( ) A.{1,6} B.{1,7} C.{6,7}D.{1,6,7}答案 C解析 由题意知∁U A ={1,6,7}.又B ={2,3,6,7}, ∴B ∩(∁U A )={6,7}.2.(2020·西安调研)设集合A ={x |3x -1<m },若1∈A 且2∉A ,则实数m 的取值范围是( ) A.(2,5) B.[2,5) C.(2,5]D.[2,5]答案 C解析 ∵A ={x |3x -1<m },1∈A 且2∉A , ∴3×1-1<m 且3×2-1≥m ,解得2<m ≤5.3.(2020·浙江卷)已知集合P ={x |1<x <4},Q ={x |2<x <3},则P ∩Q =( ) A.{x |1<x ≤2} B.{x |2<x <3} C.{x |3≤x <4} D.{x |1<x <4}答案 B解析 由题意得⎩⎨⎧1<x <4,2<x <3,可得2<x <3,即P ∩Q ={x |2<x <3}.故选B.4.(2021·河南部分重点中学联考)已知集合A ={x |x <0},B ={x |x 2+mx -12=0},若A ∩B ={-2},则m =( ) A.4 B.-4C.8D.-8答案 B解析 ∵A ∩B ={-2},可知-2∈B , 所以(-2)2-2m -12=0,解得m =-4.5.(多选题)(2020·益阳质检)已知集合M ={0,1,2},N ={x ||x -1|≤1},则( ) A.M =N B.N ⊆MC.M ∩N =MD.( ∁R M )∪N =R答案 CD解析 由|x -1|≤1得0≤x ≤2,即N =[0,2],又M ={0,1,2},所以M ∩N =M ,M ⊆N ,(∁R M )∪N =R ,故选CD.6.设集合A ={(x ,y )|x +y =1},B ={(x ,y )|x -y =3},则满足M ⊆(A ∩B )的集合M的个数是( )A.0B.1C.2D.3 答案 C解析 由⎩⎨⎧x +y =1,x -y =3得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}.7.已知集合A ={x |x 2-5x +6>0},B ={x |x -1≥0},全集U =R ,则A ∩(∁U B )=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞) 答案 A解析 由题意A ={x |x <2或x >3}.又B ={x |x ≥1},知∁U B ={x |x <1},∴A ∩(∁U B )={x |x <1}.8.(2021·广东重点中学联考)设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为( )A.-2B.2C.3D.4答案 C解析 因为A ={x |(x +2)(x -3)≤0},所以A ={x |-2≤x ≤3}.又因为B ={a },且A ∪B =A ,所以B ⊆A ,所以a 的最大值为3.二、填空题9.(2020·北京卷改编)已知集合A ={-1,0,1,2},B ={x |0<x <3},则A ∩B =________.答案 {1,2}解析 ∵A ={-1,0,1,2},B ={x |0<x <3},∴A ∩B ={1,2}.10.(2021·长沙检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.答案 (1,3)解析 因为A ={x |y =x -3},所以A ={x |x ≥3},所以∁R A ={x |x <3}. 又B ={x |1<x ≤9},所以(∁R A )∩B =(1,3).11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.12.若全集U =R ,集合A ={x |x 2-x -2≥0},B ={x |log 3(2-x )≤1},则A ∩(∁U B )=________.答案 {x |x <-1或x ≥2}解析 由题意,得集合A ={x |x 2-x -2≥0}={x |x ≤-1或x ≥2},因为log 3(2-x )≤1=log 33,所以0<2-x ≤3,解得-1≤x <2,所以B ={x |-1≤x <2},从而∁U B ={x |x <-1或x ≥2},故A ∩(∁U B )={x |x <-1或x ≥2}.B 级 能力提升13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为( )A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}答案 D解析 B ={x |x 2-1=0}={-1,1},阴影部分所表示的集合为∁U (A ∪B ).又A ∪B ={-2,-1,1,2},全集U ={-2,-1,0,1,2},所以∁U (A ∪B )={0}.14.(2020·济宁质检)已知全集为R ,设集合A ={x |⎝ ⎛⎭⎪⎫12x >116},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5x -3<-1,则下列关系正确的是( )A.A ∪B =RB.A ∩B =AC.( ∁R A )(∁R B )D.( ∁R A )∪B =R 答案 C解析 易知A ={x |x <4},B ={x |-2<x <3},∴B A ,则(∁R A )(∁R B ).15.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|1<2x<4},Q={y|y=2+sin x,x∈R},那么P-Q=________.答案(0,1)解析由题意得P={x|0<x<2},Q={y|1≤y≤3},∴P-Q={x|0<x<1}.16.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.答案-11解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)
1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。
高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含答案及解析)
1.2 集合间的基本关系1.若集合M 满足{}1M ≠∅,{}*3|1M x x ⊆∈N ,则符合条件的集合M 的个数为( ) A .2B .3C .4D .52.设集合6|2B x Z N ⎧⎫=∈∈⎨⎬+⎩⎭x ,则集合B 的子集个数为( ). A .3B .4C .8D .16 3.满足条件{1,2,3}M{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .5 4.集合{|3,}n M x x n ==∈N ,集合{|3,}x x n N n =∈=N ,则集合M 与集合N 的关系为( ) A .M N ⊆ B .N M ⊆ C .MND .MN 且NM5.已知集合{}|11A x x =-≤≤,{}|0B x x a =-≤,若A B ⊆,则实数a 的取值范围是( )A .(],1-∞B .[)1,-+∞C .(],1-∞-D .[)1,+∞6.设集合{}1012U =-,,,,2{|1}A y y x x U ==+∈,则集合A 的真子集个数为A .2B .3C .7D .8 7.集合A=﹣1,5,1},A 的子集中,含有元素5的子集共有A .2个B .4个C .6个D .8个8.已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是 A .A C φ⋂= B .A C C = C .B C B =D .AB C =9.集合{}2,1,2,3A =-的真子集个数为( ) A .16B .15C .14D .1310.已知集合{}12A x x =≤≤,{}2,B y y x a x A ==+∈,若A B ⊆,则实数a 的取值范围为( ) A .[]1,2B .[]2,1--C .[]22-,D .[]1,1-11.已知集合{}{}2|4,|1.A x x B x ax ====若B A ⊆,则实数a 的值是( )A .12B .2C .11,22-D .110,,22-12.已知函数1()lg1xf x x+=-的定义域为A , 函数()lg(1)lg(1)g x x x =+--的定义域为B ,则下述关于A B 、的关系中,不正确的为A .AB ⊇ B .A B B ⋃=C .A B B =D .B A13.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .7个B .5个C .3个D .8个14.下列集合中表示同一集合的是 A .(){}2,3M =,(){}3,2N =B .2,3M,{}3,2N =C .(){},1M x y y x ==+,{}1N y y x ==+D .{}1M y y x ==+,{}21N y y x ==+15.已知集合{}1,2,{|20}A B x ax ==-=,若B A ⊆,则a 的值不可能是( ) A .0B .1C .2D .316.给出下列关系式:①23Q ⊆;②{}210x x x ∅∈++=;③(){}(){}21,4,23x y y x x -⊆=--;④{}[)22,x x <=+∞,其中正确关系式的个数是( ) A .0 B .1C .2D .317.下列符号表述正确的是( )A .*0N ∈B .1.732Q ∉C .{}0∅∈D .{}2x x ∅⊆≤18.已知集合{2,4}A ,则集合A 的子集个数是( ) A .2B .3C .4D .819.设集合{}2|1P x x ==,则集合P 的非空真子集的个数是( )A .2B .3C .7D .820.已知集合A =a ,b ,c },下列可以作为集合A 的子集的是A .aB .a ,c}C .a ,e}D .a ,b ,c ,d }参考答案1.C2.D3.C4.D5.D6.C7.B详解:试题分析:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得结论.解:由集合A中的元素有﹣1,5,1共3个,含有元素5的子集,可能含有﹣1,1,代入公式得:22=4,故选B.考点:子集与真子集.8.C9.B10.B11.D12.D13.A14.B15.D16.B17.D18.C19.A20.B详解:由集合的子集的定义可知:集合A=a,b,c}的子集为:∅,a},b},c},a,b},a,c},b,c},a,b,c},对应选项,则可以作为集合A的子集的是a,c}.故选B.点睛:集合A={}12n a a a ,,,的子集个数为2n ,非空真子集个数为22n -.【参考解析】1.解析:依题可知M 致少有元素1,结合子集定义即可求解. 详解:由题意可知,{}1M =或{1,2}或{1,3}或{1,2,3}. 故选:C2.解析:首先用列举法,分别取出满足题目时x 值,从而得出集合B 的元素,从而得出集B 的子集. 详解: 当666603,12,41,1620212421x x x x =⇒==⇒==⇒==-⇒=+++- 所以集合{}3,2,1,6B =,所以集合B 的子集个数为4216=. 故选D 点睛:本题主要考查就集合中子集的求法:若集合B 中有n 个元素,则集合B 的子集有2n 个,属于基础题.3.解析:根据题意,分析可得集合M 中必须有1,2,3这三个元素,且至少含有4、5、6中的一个但不能同时包含3个元素,即M 的个数应为集合{4,5,6}的非空真子集的个数,由集合的子集与元素数目的关系,分析可得答案. 详解:解:根据题意,满足题意条件的集合M 中必须有1,2,3这三个元素, 且至少含有4、5、6中的一个但不能同时包含3个元素, 则M 的个数应为集合{4,5,6}的非空真子集的个数, 集合{4,5,6}有3个元素,有3226-=个非空真子集; 故选:C . 点睛:本题考查集合间的基本关系,以及非空真子集的个数的运算.4.解析:分析集合M 和N 中元素的性质,进行比较即可得出答案. 详解:由{|3,}n M x x n ==∈N ,可得集合M 中的元素为:1,3,9,27,,3,n ;由{|3,}x x n N n =∈=N ,可得集合N 中的元素为:0,3,6,9,12,,3,n ,比较得1M ∈,但1N ∉,0N ∈,但0M ∉,3M ∈,3N ∈.∴MN 且NM .故选:D. 点睛:本题考查了两个集合关系的判断,准确分析集合中元素的特点并进行比较是解题的关键,属于一般难度的题.5.解析:根据集合的包含关系,即可求得参数a 的取值范围. 详解:集合{}|11A x x =-≤≤,{}|0B x x a =-≤,即{}|B x x a =≤ 因为A B ⊆, 则1a ≥ 即[)1,a ∈+∞ 故选:D 点睛:本题考查了集合的包含关系,求参数的取值范围,属于基础题.6.解析:先求出集合A ,进而求出其真子集的个数. 详解:因为集合{}1012U =-,,,,∴集合{|}A y y x U =∈=1, ∴真子集个数为23﹣1=7个, 故选C . 点睛:本题考查了真子集的概念及性质,考查集合的表示方法:列举法,是一道基础题. 7.8.解析:先求集合C ,再根据集合与集合的关系判断即可. 详解:由题设,{0,2,4}C =,则B C ⊆,故B C B = 选C . 点睛:本题考查的知识点是集合的包含关系判断及应用,属于基础题.9.解析:根据集合真子集的计算公式,直接得出结果. 详解:集合{}2,1,2,3A =-的真子集个数为42115-=. 故选:B. 点睛:本题主要考查求集合的真子集个数,属于基础题型.10.解析:根据题意,求得集合B ,结合A B ⊆,列出不等式组,即可求解. 详解:由题意,集合[]1,2A =,可得{}[]2,2,4B y y x a x A a a ==+∈=++, 因为A B ⊆,所以2142a a +≤⎧⎨+≥⎩,解得[]2,1a ∈--.故选:B.11.解析:计算{}2,2A =-,考虑{}2B =,{}2B =-,B =∅三种情况,计算得到答案. 详解:{}{}2|42,2A x x ===-,B A ⊆,当{}2B =时,21a =,12a =;当{}2B =-时,21a -=,12a =-;当B =∅时,0a =. 即0a =或12a =或12a =-. 故选:D. 点睛:本题考查了根据集合的包含关系求参数,意在考查学生的计算能力,忽略掉空集是容易发生的错误.12.解析:分别求出两函数的定义域,再判断集合关系. 详解: 因为1()lg1xf x x +=-,所以101x x +>-即()()110x x +-> ,解得11x -<< 故{}11A x x =-<<因为()lg(1)lg(1)g x x x =+--,所以1010x x +>⎧⎨->⎩,解得11x -<<故{}11B x x =-<< 所以A B = 故选D. 点睛:本题考查函数的定义域与集合之间的关系,属于简单题.13.解析:根据集合的补集判断集合的个数,进而求得集合的真子集个数. 详解:由题可知,集合A 有三个元素.所以A 的真子集个数为:32-1=7个.选A 点睛:集合中子集的个数为2n ,真子集的个数为2n -1,非空真子集的个数为2n -214.解析:因为有序数对()2,3与()3,2不相同,所以A 错误;由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确;因为集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而集合N 是当1,y x x R =+∈时所得的y 值所构成的集合,所以C 错误;因为M R =,[)1,N =+∞,所以D 错误, 详解:对于A 选项:有序数对()2,3与()3,2不相同,所以集合M 与集合N 不是同一集合,故A 错误; 对于C 选项:由于{}(,)1,M x y y x x R ==+∈,所以集合M 表示的是当1,y x x R =+∈时,所得的有序实数对(),x y 所构成的集合,而由{}1,N y y x x R ==+∈得集合N 是当1,y x x R =+∈时所得的y 值所构成的集合, 所以集合M 与集合N 不是同一集合,故C 错误;对于D 选项,{}1M y y x R ==+=,{}{}[)21,11,N y y x x R y y ==+∈=≥=+∞,所以集合M 与集合N 不是同一集合,故D 错误;对于B 选项:由于集合中的元素具有无序性,所以集合M 与集合N 是同一集合,故B 正确; 故选B. 点睛:本题考查集合所表示的元素的意义,在判断时需分清集合中表示的是点集还是数集,理解元素的具体含义是什么,属于基础题.15.解析:由B A ⊆,分0a =和0a ≠两种情况讨论,结合集合间的关系,即可求解. 详解:由题意,集合{}1,2,{|20}A B x ax ==-=, 因为B A ⊆,当0a =时,集合B 为空集,此时满足B A ⊆;当0a ≠时,集合2{|20}{}B x ax a =-==,可得21a或22a=,解得1a =或2a =, 综上可得,实数a 的值为{}0,1,2,所以则a 的值不可能是3. 故选:D. 点睛:本题主要考查了根据集合的包含关系求解参数问题,其中解答中熟记集合间的包含关系,合理分类讨论求解是解答的关键,着重考查推理与运算能力,属于基础题.16.解析:对于①,23Q ∈;对于②,{}210x x x ∅⊆++=;对于③,点(1,4)-在抛物线223y x x =--上,对于④,{}[)22,x x <⊆+∞.详解:对于①,元素与集合不是包含关系,故①不正确;对于②,{}210x x x ∅∉++==∅,故②不正确;对于③,点(1,4)-在抛物线223y x x =--上,故(){}(){}21,4,23x y y xx -⊆=--正确;对于④,{}[)22,x x <⊆+∞,故④不正确. 故选:B. 点睛:本题考查了元素与集合的关系,考查了集合与集合的关系,考查了空集,属于基础题.17.解析:根据元素与集合、集合与集合的关系可判断各选项的正误. 详解:对于A 选项,0N *∉,A 选项错误;对于B 选项,1.732Q ∈,B 选项错误; 对于C 选项,{}0∅⊆,C 选项错误;对于D 选项,{}2x x ∅⊆≤,D 选项正确. 故选:D. 点睛:本题考查元素与集合、集合与集合关系的判断,属于基础题.18.解析:根据子集的定义依次列出集合的子集即可得出答案. 详解:集合{}2,4A =的子集分别是:φ,{}2,{}4,{}2,4,共有4个子集. 故选:C. 点睛:本题考查集合子集的概念,属于基础题.19.解析:解出集合P ,再写出集合P 的非空真子集即可. 详解:集合{}2|1P x x ==,即{}1,1P =-,集合P 的非空真子集有{}{}1,1-, 共2个. 故选:A . 点睛:本题考查的是集合子集,真子集,是基础题. 20.。
第一章 集合试题库
第一章 集合一、选择题1、以下语句能够确定一个集合的是 ( )A 、今天天气真好B 、很小的数C 、我校技能水平很高的学生D 、26个英文字母2、下面语句中可以确定一个集合的是 ( )A 、你比较喜欢的课B 、我校附近的学生C 、你班所有高个子学生D 、你所在班级的全体班干部3、下面语句中可以确定一个集合的是 ( )A 、杭州市所有小朋友B 、比1相差不大的数C 、你班所有高个子学生D 、比1大0.0009的数4、下列关系中不正确的是 ( )A 、0∈NB 、{}{}32112,,,⊂C 、A ⊆φD 、2R ∉5、在下列各式中,正确的是 ( )A 、0∈NB 、∈πQC 、0.2∈ZD 、2∈Q6、下列关系正确的是 ( )A 、 -1N ∈B 、R ∈3C 、 Z ∈31D 、 +∈-Q 317、用列举法表示小于3的自然数全体构成的集合是 ( )A 、{0,1,2,3}B 、{1,2,3}C 、{1,2}D 、{0,1,2}8、用列举法表示集合A={}032|2=--x x x ,正确的是 ( )A 、 {-1,3}B 、{1,-3}C 、{1,3}D 、{-1,-3}9、用性质描述法表示大于2且小于4的全体有理数构成的集合是 ( )A 、{x |2<x <4,x ∈Q }B 、{x |2<x ≤4,x ∈Q}C 、{x |2<x <4}D 、{x |2<x ≤4}10、集合{a,b,c }的子集个数为 ( )A 、3个B 、9个C 、7个D 、8个11、集合{1,2,3,4},下列集合中,不是它子集的是 ( )A 、{1,3}B 、{1,2,3,4}C 、ΦD 、{0}12、数集R 、Q 、Z 、N ,下列关系正确的是 ( )A 、Z ⊆N ⊆Q ⊆RB 、N ⊆Z ⊆Q ⊆RC 、N ⊆Q ⊆Z ⊆RD 、R ⊆Q ⊆Z ⊆N13、设集合A={N x x x ∈<,3|},B={023|2=+-x x x },则A 与B 的关系为( )A 、A ∈B B 、A ⊆BC 、A ⊇BD 、A=B14、设A={1,2,3} , B={-1,0,1,3},则A ∩B 为 ( )A 、{-1,0,1,2,3}B 、 {-1,0,2}C 、{1,3}D 、 { 2 }15、设集合A={a ,b ,c,d,e} , B={a ,d ,f},则A ∪B 为 ( )A 、{a ,b ,c,d,e,f}B 、 {a ,d}C 、ФD 、 {a,d,e}16、下列关系中不正确的是 ( )A 、0∈NB 、{}{}32112,,,⊂C 、A ⊆φD 、2R ∉17、若A={整数},B={分数},则A ∪B 为 ( )A 、ФB 、QC 、RD 、N18、设U={三角形},A={锐角三角形},B={钝角三角形},则CuA ∩CuB 为( )A 、AB 、BC 、{直角三角形}D 、U19、若A={04|2=-x x },B={x x x 32|2=+},则A ∪B 为 ( )A 、{1,2}B 、{-2,1,2}C 、{2}D 、R20、设U={1,3,5,7,9,11} , A={5,7,9},B={1,5,9,11},则A ∩CuB 为()A 、{3,5,7,9}B 、{3,7}C 、{ 7 }D 、{5,7,9}21、设集合A={3|>x x },10=a ,下列关系正确的是 ( )A 、A a ∉B 、A a ∈}{C 、}{a ⊇AD 、}{a ⊆A22、设A={x |0≤x ≤2},B={x |2≤x ≤5},则A ∩B 为 ( )A 、{x |0≤x ≤5}B 、ФC 、{0,1,2,3,4,5}D 、{ 2 }23、若A∪B=A,则集合A与B的关系是 ( )A 、A⊆BB 、A∈BC 、A⊇BD 、A⊆B24、若A ∪B=B ,则A 与B 的关系是 ( )A 、A ⊆B B 、A ⊇BC 、B ⊆ AD 、A ∈B25、图中U 是全集,A ⊆U ,B ⊆U ,阴影部分用正确的集合运算表示为( )A 、A ∩B B 、A ∪BC 、A ∩CuBD 、CuA ∩B26、下列表示集合{}11-,不正确的是 ( ) UA BA 、{1|=x x }B 、{1|2=x x }C 、{}1|2=x xD 、(){}1|2=x x27、A={1,2,3,4},B={5,6,7,8},则A B= ( )A 、{1,2,5,6}B 、{7,8,3,4}C 、ΦD 、{1,2,3,4,5,6,7,8}28、设A={菱形},B={长方形},则A B= ( )A 、{平行四边形}B 、{正方形}C 、{梯形}D 、{四边形}29、若N={自然数},Z={整数},则N Z= ( )A 、NB 、ZC 、ΦD 、{正整数}30、如果a=0.01,那么下列关系中正确的是 ( )A 、a ⊆N ,B 、a ∈Z ,C 、 a ∈Q ,D 、 a ⊆Q31、{0}和空集φ的关系正确的是 ( )A 、{0}⊇φB 、 {0}∈φC 、{0}=φD 、{0}⊆φ32、A={X,Y,Z},B={S,T,Y},则A B= ( )A 、{X,Y,Z,S,T}B 、{Y}C 、ΦD 、{X,Y}33、已知集合A={1,2,3},U={1,2,3,4,5,6},A C U 为 ( )A 、{1,2,3}B 、{4,5,6}C 、{1,2,3,4,5,6}D 、Φ34、已知U={3、5、7、9、11},A={3、9},则CuA =( )。
人教版数学必修一集合专项练习(一)(含答案)
人教版数学必修一集合专项练习(一)第I卷(选择题)一、选择题(共10题,每题5分,共50分)1.已知全集U={0,1,2,3}且C U A={0,2},则集合A的真子集共有A.3个B.4个C.5个D.6个2.设U是全集,M,P,S是U的三个子集,则阴影部分所示的集合为A.(M∩P)∩SB.(M∩P)∪(∁U S)C.(M∩P)∪SD.(M∩P)∩(∁U S)3.若A={x|﹣1<x<2},B={x|1<x<3},则A∩B=A.{x|1<x<2}B.{x|﹣1<x<3}C.{x|1<x<3}D.{x|﹣1<x<2} 4.若U={1,2,3,4},M={1,2},N={2,3},则∁U(M∩N)=A.{1,2,3}B.{1,3,4}C.{2}D.{4}5.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断,对于任一戴德金分割(M,N),下列选项中不可能成立的是A.M没有最大元素,N有一个最小元素B.M没有最大元素,N也没有最小元素C.M有一个最大元素,N有一个最小元素D.M有一个最大元素,N没有最小元素6.已知集合A={0,1,2,3},集合B={x∈N||x|≤2},则A∩B=A.{3}B.{0,1,2}C.{1,2}D.{0,1,2,3}7.已知A={x|3-3x>0},则有A.3∈AB.1∈AC.0∈AD.-1∉A8.下列图形中,表示M⊆N的是A. B.C. D.9.下列四个命题::①a∈(A∪B)⇒a∈A; ②a∈(A∩B)⇒a∈(A∪B); ③A⊆B⇒A∪B=B; ④A∪B=A⇒A∩B=B.其中正确命题的个数是A.1B.2C.3D.410.设全集为U,定义集合M与N的运算:M*N={x|x∈M∪N且x∉M∩N},则N*(N*M)= A.M B.N C.M∩∁U N D.N∩∁U M第II卷(非选择题)二、填空题(共5题,每题5分,共25分)11.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=.12.某班共50人,其中21人喜爱篮球运动,18人喜爱乒乓球运动,20人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.13.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=.},N=14.已知全集U=R,实数a,b满足a>b>0,集合M={x|b<x<a+b2{x|√ab<x<a},则M∩∁U N= .15.若数集A同时满足:(1)至少含有2个元素;(2)对任意不相等的a,b∈A,都有ab∈A,则称数集A关于乘法运算封闭.试写出一个关于乘法运算封闭的有限集合A=.三、解答题(共6题,共75分)16.(本题11分)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有:A×B={(1,3),(1,4),(2,3),(2,4)}, B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)}, B×B={(3,3),(3,4),(4,3),(4,4)}.据此,试回答下列问题:(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)若集合A中有3个元素,集合B中有4个元素,试确定A×B有几个元素.17.(本题12分)已知:集合A={x|x2+4x=0},集合B={x|x2+2(a+1)x+a2-1=0}(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.18.(本题13分)设非空数集A={x|-2≤x≤a},B={y|y=2x+3,x∈A},C={y|y=x2,x∈A},若B∪C=B,求实数a的取值范围.19.(本题13分)己知集合A={x|0≤x−1≤2},R为实数集,B={x|1<x−a<2a+3}.(1)当a=1时,求A∪B及A∩C R B;(2)若A∩B≠φ,求a的取值范围.和g(x)=ln(−x2+4x−3)的定义域分别为集合A和B. 20.(本题13分)设函数f(x)=√a−x(1)当a=2,求函数y=f(x)+g(x)的定义域;(2)若A∩(∁R B)=A,求实数a的取值范围.21.(本题13分)已知集合A={x|ax2+x+1=0,x∈R},且A∩{x|x≥0}=∅,求实数a的取值范围.参考答案1.A【解析】本题考查集合的运算和真子集.因为U={0,1,2,3}且C U A={0,2},所以A={1,3},则A的真子集有3个;故选A.【备注】无2.D【解析】本题主要考查运用集合表示阴影部分.由题意,U是全集,M,P,S是U的三个子集,阴影部分是M与P的交集中的元素,同时还不在集合S中,即为(M∩P)∩(∁U S),故选D.【备注】无3.A【解析】本题考查集合的基本运算.由题意得A∩B={x|1<x<2}.选A.【备注】无4.B【解析】本题主要考查集合的交集补集的运算.由题意,M={1,2},N={2,3},M∩N ={2},则∁U(M∩N)={1,3,4},选B【备注】无5.C【解析】本题考查了学生对新定义的接受与应用能力,属于基础题.解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<√2},N={x∈Q|x≥√2};则M没有最大元素,N也没有最小元素;故B正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;故选C.【备注】无6.B【解析】B={x∈N||x|≤2}={0,1,2},A∩B={0,1,2}.【备注】无7.C【解析】集合A是不等式3-3x>0的解集,即A={x|x<1},可知3∉A,1∉A,0∈A,-1∈A.故选C. 【备注】无8.C【解析】本题考查用韦恩图表示集合间的基本关系.对A,M与N相交;对B,N⊆M;对D,M与N没关系;对C,M⊆N.选C.【备注】无9.C【解析】a∈(A∪B)⇒a∈A或a∈B,所以①错,由交集、并集的定义,易知②③④正确.【备注】无10.A【解析】本题考查新定义问题.如图所示,由定义可知N*M为图中的阴影区域,∴N*(N*M)为图中阴影Ⅰ和空白的区域,∴N*(N*M)=M.选A.【备注】无11.{1,4,7}【解析】因为M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.【备注】无12.12【解析】本题主要考查了集合中元素的个数问题.根据题意可知喜爱篮球运动的人数为21,喜爱乒乓球运动的人数为18,20人对这两项运动都不喜爱,设既喜爱篮球运动又喜爱乒乓球运动的人数为x,则21+18+20−x=50,解得x=9,所以喜爱篮球运动但不喜爱乒乓球运动的人数为21−9=12,故填12.【备注】无13.4【解析】思维导图由S和∁S A可求得A中元素确定x2-5x+m=0的根确定m的值因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得:m=1×4=4.【备注】无14.(b,√ab]【解析】本题主要考查不等式的性质、基本不等式、集合的基本运算.因为a>b>0,所以>√ab>b,则∁U N={x|x≤√ab或x≥a}, 则M∩∁U N={x|b<x≤√ab}a>a+b2【备注】无15.{0,1}(或{0,-1},{0,1,-1},{1,2}等)【解析】若集合A中有0,则0与任何实数的乘积均为0,满足条件,所以集合中可以有元素0.同理,可知集合中也可以有元素1.再适当补充其他元素即可.【备注】无16.(1)C×D={(a,1),(a,2),(a,3)}.(2)因为A×B={(1,2),(2,2)},所以A={1,2},B={2}.(3)从以上解题过程可以看出,A×B中元素的个数与集合A和B中的元素个数有关,即集合A 中的任何一个元素与B中的任何一个元素对应后,得到A×B中的一个新元素.若A中有m个元素,B中有n个元素,则A×B中应有(m×n)个元素.于是,若集合A中有3个元素,集合B中有4个元素,则A×B中有12个元素.【解析】集合中的创新问题是近年来高考命题的热点,这类问题主要以教材知识为背景,进行移植、迁移,旨在考查学生的理解能力和运用数学思想方法分析问题、解决问题的能力.求解集合中的新定义问题,主要抓两点:(1)紧扣新定义——首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在;(2)用好集合的性质——集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键处用好集合的性质.【备注】无17.(1)A ={-4,0},若A ∪B =B,则B =A ={-4,0},解得a =1.(2)若A ∩B =B,则①若B 为空集,则Δ=4(a +1)2-4(a 2-1)=8a +8<0,则a <-1;②若B 为单元素集合,则Δ=4(a +1)2-4(a 2-1)=8a +8=0,解得a =-1,将a =-1代入方程x 2+2(a +1)x +a 2-1=0,得x 2=0得,x =0,即B ={0},符合要求;③若B =A ={-4,0},则a =1,综上所述,a ≤-1或a =1.【解析】本题主要考查集合的基本运算、集合间的基本关系,考查了分类讨论思想思想.(1)根据题意,由A ∪B =B 可得B =A ={-4,0},则结论易得;(2)由A ∩B =B 可得B ⊆A ,再分B 为空集、B 为单元素集合、B =A 三种情况讨论求解即可.【备注】无18.因为A ={x|-2≤x ≤a },B ={y|y =2x+3,x ∈A },所以B ={y|-1≤y ≤2a+3}.又B ∪C =B ,所以C ⊆B.①当-2≤a <0时,C ={y|a 2≤y ≤4},所以2a+3≥4,所以a ≥12,与条件矛盾. ②当0≤a ≤2时,C ={y|0≤y ≤4},所以4≤2a+3,解得a ≥12,此时12≤a ≤2.③当a >2时,C ={y|0≤y ≤a 2},所以a 2≤2a+3,结合二次函数y =a 2-2a-3的图象,可得-1≤a ≤3,此时2<a ≤3.综合①②③,得实数a 的取值范围为{a|12≤a ≤3}.【解析】无【备注】无19.(1)A ={x|0≤x −1≤2}={x|1≤x ≤3},当a =1时,B ={x|1<x −1<2×1+3}={x|2<x <6},A ∪B ={x|1≤x <6},C R B ={x|x ≤2或x ≥6},A ∩C RB ={x|1≤x ≤2},(2)由已知得A ={x|1≤x ≤3},B ={x|a +1<x <3a +3},∵A ∩B ≠φ,∴{a +1<33a +3>1a +1<3a +3,解得−23<a <2, 则a 的取值范围为(−23,2). 【解析】本题考查集合间的基本运算及关系.(1)先化简两集合,再借助数轴完成求解;(2)根据数轴分析两集合中不等式端点的大小关系,列出不等式即可得到参数a 的取值范围.【备注】无20.(1)a =2时,函数f (x )=√a−x =√2−x,g (x )=ln(−x 2+4x −3),∴函数y =f (x )+g (x )=√2−x ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得{x <21<x <3,即1<x <2, 所以函数y 的定义域为(1,2).(2)∵A =(−∞,a),B =(1,3),∴∁R B =(−∞,1]∪[3,+∞),若A ∩(∁R B)=A ,则a ≤1,∴实数a 的取值范围是(−∞,1].【解析】本题考查对数函数,函数定义域的求解,集合的基本运算.(1)a =2时,求得y =f (x )+g (x )=√2−x +ln(−x 2+4x −3),应满足{2−x >0−x 2+4x −3>0,解得1<x <2,所以函数y 的定义域为(1,2).(2)求得A =(−∞,a),∁R B =(−∞,1]∪[3,+∞),因为A ∩(∁R B)=A ,则a ≤1.【备注】无21.当a =0时,A ={x|x+1=0,x ∈R }={-1},此时A ∩{x|x ≥0}=∅;当a ≠0时,∵A ∩{x|x ≥0}=∅,∴A =∅或关于x 的方程ax 2+x+1=0的根均为负数.①当A =∅时,关于x 的方程ax 2+x+1=0无实数根,Δ=1-4a <0,解得a >14 .②当关于x 的方程ax 2+x+1=0的根x 1,x 2均为负数时,{Δ=1-4a ≥0x 1+x 2=-1a <0x 1x 2=1a >0,解得{a ≤14a >0,即0<a ≤14. 综上所述,实数a 的取值范围为{a|a ≥0}.【解析】无【备注】无。
(完整)2019-2020年高考数学专题练习——集合与逻辑(一)(含解析)
2019-2020年高考数学专题练习——集合与逻辑(一)一、选择题1.已知集合{}2320A x x x =-+≥,(){}321B x log x +<,则A B =( ) A. {}21x x -<< B.{} 12x x x ≤≥或 C.{} 1x x < D.∅2.集合{}2log 2A x Z x =∈≤的真子集个数为( ) A .7 B .8 C .15 D .163.若复数z =(x 2-4)+(x +3)i (x ∈R ),则“z 是纯虚数”是“x =2”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.设有下面四个命题:1P :若z 满足z C ∈,则 z z R ⋅∈;2P :若虚数(),a bi a R b R +∈∈是方程32 1 0x x x +++=的根,则a bi -也是方程的根: 3P :已知复数12,z z 则12z z =的充要条件是12z z R ∈: 4P ;若复数12z z >,则12,z z R ∈.其中真命题的个数为( )A .1B .2C .3D .45. “221a b +=”是“sin cos 1a b θθ+≤恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.已知集合{}{}2320,230A x x x B x x =-+<=->,则R A C B ⋂= ( )A .31,2⎛⎫-- ⎪⎝⎭B.31,2⎛⎫ ⎪⎝⎭C .31,2⎛⎤⎥⎝⎦D .3,22⎛⎫⎪⎝⎭7.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则A ∩B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{-1,0,1,2}8.已知p :x R ∀∈,220x x a ++>;q :28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .(1,3)D .(-∞,1)∪(3,+∞)9.设R θ∈,则“66ππθ-<”是“3sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.设集合{}2|670A x x x =--<,{}|B x x a =≥,现有下面四个命题: p 1:a R ∃∈,A B =∅;p 2:若0a =,则(7,)A B =-+∞; p 3:若(,2)R C B =-∞,则a A ∈;p 4:若1a ≤-,则A B ⊆. 其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 411.已知命题P :存在n R ∈,使得223()n nf x nx-=是幂函数,且在(0,+∞)上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是 A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝12.已知集合M ={x |22194x y +=},N ={y|132x y+=},则M ∩N =A .∅B .{(3,0),(2,0)}C .{3,2}D .[-3,3]13.设集合{}{}m B m A 2,2,42==,,若φ≠⋂B A ,则m 的取值可能是( ) A.1 B.2 C.3 D.214.下列判断错误..的是 ( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若p ,q 均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x15.已知A ,B ,C ,D ,E 是空间五个不同的点,若点E 在直线BC 上,则“AC 与BD 是异面直线”是“AD 与BE 是异面直线”的( ) A .充分不必要条件 B .充分必要条件 C.必要不充分条件 D .既不充分也不必要条件16.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,20010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题17.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要D .既不充分也不必要条件18.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是()A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的19.设集合S={1,2,3,4,5,6},定义集合对(A ,B)::,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足的集合对(A ,B)的总个数为m ,满足的集合对(A ,B)的总个数为n ,则的值为( )A.111 B.161C.221 D.29220.定义非空集合A 的真子集的真子集为A 的“孙集”,则集合{1,3,5,7,9}的孙集的个数为 () A .23B .24C .26D .3221.已知:集合2012,3,2,{1,A =},A B ⊆,且集合B 中任意两个元素之和不能被其差整除。
集合练习卷(1)---集合的概念
集合练习卷(1)---集合的概念一、知识点:1、集合:某些 的对象集在一起就形成一个集合,简称集。
2、元素:集合中的每个 叫做这个集合的元素。
3、元素性质:集合的元素具有 、 、 。
4、集合和元素地符号:集合用 字母表示,元素用 字母表示。
5、集合分类:按元素的多少,集合可分为 、 、 三类。
6、集合的表示方法:常用的有 与 。
7、元素与集合的关系:a 是集合A 的元素,记做 、a 不是集合A 的元素,记做 。
8、常用数集的记法:N 表示 、N *表示 、Z 表示 、Q 表示 、R 表示 、R +表示 、Q +表示9、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说集合A 集合B ,或集合B 集合A 。
也说集合A 是集合B 的子集。
即:若“B x A x ∈⇒∈”则B A ⊆。
10、任何一个集合是 的子集。
11、空集是 集合的子集。
12、相等:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,同时集合B 的 元素都是集合A 的元素,我们就说A B 。
即:若A B ,同时B A ,那么B A =。
13、真子集:对于两个集合A 与B ,如果A B ,并且A B ,我们就说集合A 是集合B 的真子集。
14、空集是 集合的真子集。
15、含n 个元素的集合,子集数为 ,真子集数为 ,非空真子集数为 。
答案:1、指定,2、对象,3、确定性、互异性、无序性,4、大写、小写,5、无限集、有限集、空集,6、列举法、描述法,7、A a ∈、A a ∉,8、自然数集、正整数集、整数集、有理数集、实数集、正实数集、正有理数集,9、任何一个、包含于、包含,10、它本身,11、任何一个12、任何一个、任何一个、等于、⊆、⊆,13、⊆、≠,14、任何一个非空,15、n 2、12-n 、22-n。
例1、下面给出的四类对象中,构成集合的是 ( )A.某班个子较高的同学B.相当大的实数C.我国著名数学家 D .倒数等于它本身的数练习:下列各项中,不可以组成集合的是 ( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数例2、下列八个关系式 ①{0}=φ ②0∈φ ③φ⊆{φ} ④φ∈{φ} ⑤{0}⊇φ⑥0∉{{0},φ} ⑦{φ}⊆{0} ⑧φ∈{0}其中正确的个数 ( )(A )4 (B )5 (C )6 (D )7 练习:若集合*}16|{N x Z x S ∈-∈=,用列举法表示集合S 。
集合的概念_练习题(1)_
集合的概念练习题(1)学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列对象能构成集合的是()A.高一年级全体比较高的同学B.香港市跑的比较快的汽车C.赤峰市所有的高中生D.上海市的高楼2. 设集合A={x|x>2},则()A.3∉AB.√5∈AC.2∈AD.0∈A3. 集合A={(x,y)|x+y=3,x∈N∗,y∈N∗},则集合A为()A.{1,2}B.{(1,2)}C.{(2,1)}D.{(1,2),(2,1)}4. 对于R上的可导函数f(x),满足(x−1)f′(x)≥0,则下列说法错误的是()A.f(x)在(0,+∞)上是增函数B.f(x)在(−∞,0)上是减函数C.当x=1时,f(x)取得最小值D. f(0)+f(2)≥2f(1)5. 已知集合A={a−2, a2+4a, 10},若−3∈A,则实数a的值为()A.−3B.−1C.−3或−1D.无解6. 下列所给对象不能构成集合的是( )A.一个平面内的所有点B.所有小于零的正数C.某校高—(4)班的高个子学生D.某一天到商场买过货物的顾客7. 已知集合A={x|x≤√13},若a=4,则()A.a⊊AB.a∉AC.{a}∉AD.{a}⊊A8. 定义集合A、B的一种运算:A∗B={x|x=x1+x2, x1∈A, x2∈B},若A= {1, 2, 3},B={1, 2},则A∗B中的所有元素之和为()A.21B.18C.14D.99. (3分)下列说法中不正确的是()A.0与{0}表示同一个集合B.集合M={3, 4}与N={(3, 4)}表示同一个集合C.方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 1, 2}D.集合{x|4<x<5 }不能用列举法表示10. 设集合A={−1, a},B={2, b},若A=B,则a+b=________.11. 已知集合A={1, 2},B={(x, y)|x∈A, y∈A, x+y∈A},则B中所含元素的个数为________.12. 若集合A={−1, 0, 1},集合B={x|x=t2, t∈A},用列举法表示B=________.13. 三条直线ax+2y+8=0,4x+3y=10,2x−y=10相交于一点,则实数a的值为________.14. 设A为非空实数集,若∀x,y∈A,都有x+y,x−y,xy∈A,则称A为封闭集.①集合A={−2, −1, 0, 1, 2}为封闭集;②集合A={n|n=2k, k∈Z}为封闭集;③若集合A1,A2为封闭集,则A1∪A2为封闭集;④若A为封闭集,则一定有0∈A.其中正确结论的序号是________.∈N, m∈N},用列举法表示集合A,A=________.15. 已知集合A={m|y=12m16. 已知等差数列{a n}的前n项和为S n,且a2=18−a7,S8=________.17. 由所有奇数组成的集合可用下列哪几个集合表示()(1){x|x=2k+1, k∈Z}(2){x|x=2k−1, k∈Z}(3){x|x=4k±1, k∈Z}(4){...−3, −1, 1, 3, 5...}A.1,2B.1,2,4C.1,2,3D.1,2,3,418. 如图所示,在三棱锥S−BCD中,平面SBD⊥平面BCD,A是线段SD上的点,△SBD为等边三角形,∠BCD=30∘,CD=2DB−4.(1)若SA=AD,求证:SD⊥CA;,求AD的长.(2)若直线BA与平面SCD所成角的正弦值为4√1956519. 已知集合A={x∈R|ax2−3x−4=0}.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.参考答案与试题解析集合的概念练习题(1)一、选择题(本题共计 8 小题,每题 3 分,共计24分)1.【答案】C【考点】集合的含义与表示【解析】根据集合元素应满足确定性,分析四个答案中的元素是否满足确定性,即可得到答案.【解答】解:高一年级全体比较高的同学具有不确定性,故构不成集合;香港跑的比较快的汽车具有不确定性,故构不成集合;赤峰市所有的高中生是确定的,故可以构成集合;上海市的高楼具有不确定性,故构不成集合;故选C.2.【答案】B【考点】元素与集合关系的判断【解析】根据集合的表示法,只需判断√5与2的大小.【解答】解:∵√5>2,∴√5∈A.故选B.3.【答案】D【考点】集合的含义与表示【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】集合的含义与表示【解析】此题暂无解析【解答】解:当x≥1时,f′(x)≥0,函数f(x)在[1,+∞)上是增函数,当x<1时,f′(x)≤0,f(x)在(−∞,1)上是减函数,故说法A错误,说法B正确;当x=1时,f(x)取得极小值,也是最小值,说法C正确;f(1)为函数f(x)的最小值,故有f(0)≥f(1),f(2)≥f(1),得f(0)+f(2)≥2f(1),说法D正确.故选A.5.【答案】A【考点】元素与集合关系的判断【解析】由于−3∈A则a−2=−3或a2+4a=−3,求出a的值然后再代入再根据集合中元素的互异性对a进行取舍.【解答】解:∵−3∈A,∴−3=a−2或−3=a2+4a∴a=−1或a=−3,∴当a=−1时,a−2=−3,a2+4a=−3,不符合集合中元素的互异性,故a=−1应舍去;当a=−3时,a−2=−5,a2+4a=−3,满足.∴a=−3.故选A.6.【答案】C【考点】集合的含义与表示【解析】利用集合的元素确定性,逐个判断即可.【解答】解:集合是把一些可以确定的不同对象看做整体.A,"一个平面内的所有点”能构成集合;B,“所有小于零的正数”能构成集合;C,“某校高一(4)班的高个子学生”的标准不确定,不能构成集合;D,“某一天到商场买过货物的顾客”能构成集合.故选C.7.【答案】B【考点】元素与集合关系的判断【解析】利用元素与集合的关系直接求解.【解答】∵集合A={x|x≤√13},a=4,8.【答案】C【考点】元素与集合关系的判断【解析】根据新定义A∗B={x|x=x1+x2, x1∈A, x2∈B},把集合A与集合B中的元素分别代入再求和即可求出答案.【解答】解:∵A∗B={x|x=x1+x2, x1∈A, x2∈B},A={1, 2, 3},B={1, 2},∴A∗B={2, 3, 4, 5},∴A∗B中的所有元素之和为:2+3+4+5=14,故选C.二、多选题(本题共计 1 小题,共计3分)9.【答案】A,B,C【考点】集合的确定性、互异性、无序性元素与集合关系的判断集合的含义与表示【解析】利用元素与集合的关系、集合的性质及其表示法、集合的运算即可判断出.【解答】解:A,0是一个元素(数),而{0}是一个集合,二者是属于与不属于的关系,选项不正确;B,集合M={3, 4}表示数3,4构成的集合,而N={(3, 4)}表示点集,选项不正确;C,集合的元素具有互异性,不允许重复,因此方程(x−1)2(x−2)=0的所有解的集合可表示为{1, 2},选项不正确;D,集合{x|4<x<5}含有无穷个元素,不能用列举法表示,选项正确.故选ABC.三、填空题(本题共计 7 小题,每题 3 分,共计21分)10.【答案】1【考点】集合的相等【解析】根据已知条件便得,a=2,b=−1,所以a+b=1.【解答】解:根据已知条件得:a=2,b=−1,∴a+b=1;故答案为:1.11.【答案】1元素与集合关系的判断【解析】由集合A ={1, 2},求出B ={(x, y)|x ∈A, y ∈A, x +y ∈A}={(1, 1)},由此能求出B 中所含元素的个数.【解答】∵ 集合A ={1, 2},∴ B ={(x, y)|x ∈A, y ∈A, x +y ∈A}={(1, 1)},∴ B 中所含元素的个数为1.12.【答案】{0, 1}【考点】集合的含义与表示【解析】分别令t =−1,1,0,求出相对应的x 的值,从而求出集合B .【解答】解:当t =±1时,x =1,当t =0时,x =0,∴ B ={0, 1}.故答案为:{0, 1}.13.【答案】−1【考点】两条直线的交点坐标【解析】联立{4x +3y =102x −y =10,解得{x =4y =−2,把(4, −2)代入直线ax +2y +8=0,解出即可. 【解答】解:联立{4x +3y =102x −y =10,解得{x =4y =−2, 把(4, −2)代入直线ax +2y +8=0,可得4a −4+8=0,解得a =−1.故答案为:−1.14.【答案】②④【考点】元素与集合关系的判断【解析】由题意,根据封闭集的定义依次对四个命题判断即可.【解答】解:若x =−2,y =−1,则x +y =−3∉A ;故集合A ={−2, −1, 0, 1, 2}为封闭集不正确,即①不正确;若x ,y ∈A ,则x =2k 1,k 1∈Z ,y =2k 2,k 2∈Z ;故x +y =2(k 1+k 2)∈A ;x −y =2(k 1−k 2)∈A ,xy=4k1k2∈A;故②正确;反例A1={n|n=√3k, k∈Z},A2={n|n=√2k, k∈Z};但A1∪A2不是封闭集;故③不正确;若A为封闭集,则取x=y得,x−y=0∈A;故④正确;故答案为:②④.15.【答案】{1, 2, 3, 4, 6, 12}【考点】集合的含义与表示【解析】由题意,令m=1,2,3,4,6,12,求y=12;从而列举表示.m【解答】解:由题意,=12;若m=1,y=12m=6;若m=2,y=12m=4;若m=3,y=12m=3;若m=4,y=12m=2;若m=6,y=12m=1;若m=12,y=12m则集合A={1, 2, 3, 4, 6, 12}.故答案为:{1, 2, 3, 4, 6, 12}.16.【答案】72【考点】等差数列的前n项和【解析】此题暂无解析【解答】此题暂无解答四、解答题(本题共计 3 小题,每题 10 分,共计30分)17.【答案】D【考点】集合的含义与表示【解析】此题暂无解析【解答】此题暂无解答18.【答案】解:解:【考点】集合的含义与表示【解析】此题暂无解析【解答】解:解:“”19.【答案】解:(1)∵ A 中有两个元素,∴ 关于x 的方程ax 2−3x −4=0有两个不等的实数根, ∴ Δ=9+16a >0,且a ≠0,即a >−916且a ≠0. 故所求的取值范围是{a|a >−916且a ≠0};(2)当a =0时,方程为−3x −4=0,x =−43,集合A ={−43}; 当a ≠0时,若关于x 的方程ax 2−3x −4=0有两个相等的实数根, 则A 中只有一个元素,此时a =−916; 若关于x 的方程ax 2−3x −4=0没有实数根, 则A 没有元素,此时a <−916.综上可知,所求的范围是{a|a ≤−916或a =0}.【考点】元素与集合关系的判断【解析】此题暂无解析【解答】解:(1)∵ A 中有两个元素,∴ 关于x 的方程ax 2−3x −4=0有两个不等的实数根, ∴ Δ=9+16a >0,且a ≠0,即a >−916且a ≠0. 故所求的取值范围是{a|a >−916且a ≠0};(2)当a =0时,方程为−3x −4=0,x =−43,集合A ={−43};当a≠0时,若关于x的方程ax2−3x−4=0有两个相等的实数根,则A中只有一个元素,此时a=−9;16若关于x的方程ax2−3x−4=0没有实数根,.则A没有元素,此时a<−916或a=0}.综上可知,所求的范围是{a|a≤−916。
第一章 集合典型例题(1)(含答案及解析)-苏教版人教版必修1高一数学上册同步培优训练
专题01 集合中的典型题(1)(满分120分时间:60分钟)班级姓名得分一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 42.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 153.已知集合A=(1,3),集合B={x|2m<x<1−m}.若A∩B=⌀,则实数m的取值范围是()A. 13⩽m<32B. m⩾0C. m⩾32D. 13<m<324.设M,P是两个非空集合,规定M−P={x|x∈M,且x∉P},根据这一规定,M−(M−P)等于()A. MB. PC. M∪PD. M∩P5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23二、多选题7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集∈A,则称集合8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.13.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.16.已知全集,集合M={x|−2≤x≤5},N={x|a+1≤x≤2a+1}.(Ⅰ)若a=2,求;(Ⅱ)若M∪N=M,求实数a的取值范围.17.已知集合A={x|a−12<x<a2},B={x|0<x<1}(Ⅰ)若a=12,求A⋃(∁R B).(Ⅱ)若A⋂B=⌀,求实数a的取值范围.一、选择题:1.下列各式中,正确的个数是:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③⌀⊆{0,1,2};④⌀={0};⑤{0,1}={(0,1)};⑥0={0}.()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】本题主要考查元素与集合、集合与集合之间的基本关系,特别要注意空集这一概念在题中的特殊性,根据集合中的相关概念,对每个命题进行一一判断.【解答】解:对①,集合与集合之间不能用∈符号,故①不正确;对②,由于两个集合相等,任何集合都是本身的子集,故②正确;对③,空集是任何集合的子集,故③正确;对④,空集是不含任何元素的集合,而{0}是含有1个元素的集合,故④不正确;对⑤,集合{0,1}是数集,含有2个元素,集合{(0,1)}是点集,只含1个元素,故⑤不正确;对⑥,元素与集合只能用∈或∉符号,故⑥不正确.故选B.2.已知非空集合A,B满足以下两个条件:(ⅰ)A∪B={1,2,3,4,5,6},A⋂B=⌀;(ⅰ)若x∈A,则x+1∈B.则有序集合对(A,B)的个数为()A. 12B. 13C. 14D. 15【答案】A【解析】【分析】本题考查交集、并集及其运算,考查了学生理解问题的能力.分别讨论集合A,B元素个数,即可得到结论.根据元素关系分别进行讨论是解决本题的关键.【解答】解:若集合A 中只有1个元素,则集合B 中有5个元素,则A 可以为{1},{2},{3},{4},{5},有5种; 若集合A 中只有2个元素,则集合B 中有4个元素,则A 可以为{1,3},{1,4},{1,5},{2,4},{2,5},{3,5},有6种;若集合A 中只有3个元素,则集合B 中有3个元素,则A 只能是{1,3,5},只有1种,则共有有序集合对(A,B)12个,故选A .3. 已知集合A =(1,3),集合B ={x|2m <x <1−m}.若A ∩B =⌀,则实数m 的取值范围是( )A. 13⩽m <32B. m ⩾0C. m ⩾32D. 13<m <32【答案】B【解析】【分析】本题考查集合的包含关系判断与应用,交集及其运算等基础知识分类讨论m 的取值,得出使A ∩B =Ø成立时m 的取值范围.【解答】解:由A ∩B =Ø,得:①若2m ≥1−m ,即m ≥13时,B =Ø,符合题意;②若2m <1−m ,即m <13时,需{m <131−m ≤1或{m <132m ≥3,解得0≤m <13,综合可得m ≥0,∴实数m 的取值范围是m ≥0.故选B .4. 设M ,P 是两个非空集合,规定M −P ={x|x ∈M ,且x ∉P},根据这一规定,M −(M −P)等于() A. M B. P C. M ∪P D. M ∩P【答案】D【解析】【分析】本题考查了集合新定义问题,属于较难题.分M ∩P =⌀与M ∩P ≠⌀讨论,可证明M −(M −P)=M ∩P .解:当M∩P=⌀时,∵任意x∈M都有x∉P,∴M−P=M,∴M−(M−P)=⌀=M∩P;当M∩P≠⌀时,M−P表示了在M中但不在P中的元素,M−(M−P)表示了在M中但不在M−P中的元素,∵M−P中的元素都不在P中,所以M−(M−P)中的元素都在P中,∴M−(M−P)中的元素都在M∩P中,∴M−(M−P)=M∩P.故选D.5.若集合M={x|x≤6},a=2√2,则下面结论中正确的是A. {a}⫋MB. a⫋MC. {a}∈MD. a∉M【答案】A【解析】【分析】本题考查元素与集合的关系及集合与集合的关系,由a=2√2<6即可求解.【解答】解:因为集合M={x|x≤6},a=2√2<6,所以{a}⫋M.故选A.6.中国古代重要的数学著作孙子算经下卷有题:今有物,不知其数,三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N∗}, B={x|x=5n+3,n∈N∗},C={x|x=7n+2,n∈N∗},若x∈A∩B∩C,则整数x的最小值为()A. 128B. 127C. 37D. 23【解析】【分析】本题考查集合的应用,描述法的定义,交集及其运算,元素与集合的关系.先从四个选择中最小的数开始进行检验是否满足x∈A∩B∩C,即x属于A,B,C中每一个集合,找出最小的一个即可.【解答】解:∵23=3×7+2=5×4+3=7×3+2,∴23∈A,23∈B,23∈C,∴23∈A∩B∩C,所以23是四个答案中最小的一个,故选:D.二、多选题∈P(除数b≠0)则7.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a−b、ab、ab 称P是一个数域,例如有理数集Q是数域,下列命题中正确的是()A. 数域必含有0,1两个数B. 整数集是数域C. 若有理数集Q⊆M,则数集M必为数域D. 数域必为无限集【答案】AD【解析】【分析】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的四个命题代入进行检验,要满足对四种运算的封闭,只有一个个来检验.本题考查的主要知识点是新定义概念的理解能力.我们可根据已知中对数域的定义:设P是一个数集,且至少含有两个数,若对∈P(除数b≠0)则称P是一个数域,对四个命题逐一进行判断即任意a、b∈P,都有a+b、a−b、ab、ab可等到正确的结果.解:当a=b时,a−b=0、ab=1∈P,故可知A正确.当a=1,b=2,12∉Z不满足条件,故可知B不正确.当M中多一个元素复数i则会出现1+i∉M,所以它也不是一个数域,故可知C不正确.根据数据的性质易得数域有无限多个元素,必为无限集,故可知D正确.故选AD.8.若集合A具有以下性质:(1)0∈A,1∈A;(2)x,y∈A,则x−y∈A,且x≠0时,1x∈A,则称集合A是“完美集”,给出以下结论,其中正确结论的序号是()A. 集合B={−1,0,1}是“完美集”;B. 有理数集Q是“完美集”;C. 设集合A是“完美集”,若x,y∈A,则x+y∈A;D. 设集合A是“完美集”,若x,y∈A,则xy∈A;【答案】BCD【解析】【分析】本题主要考查新定义,利用条件进行推理,考查学生的推理能力,根据“完美集”的定义,分别进行判断即可.【解答】解:A.∵1,−1∈B,1−(−1)=2∉B,不满足性质(2),∴A不正确;B.∵0∈Q,1∈Q,x、y∈Q,∴0−y=−y∈Q,∴x+y=x−(−y)∈Q,且x≠0时,1x∈Q,∴B正确;C.∵0∈A,x、y∈A,∴0−y=−y∈A,∴x+y=x−(−y)∈A,故C正确;D.x,y∈A时,①若x=0,或1,则x2∈A;②若x≠0,且x≠1,则x−1,1x−1,1x∈A,∴1x−1−1x=1x2−x∈A;∴x2−x∈A,x2−x+x=x2∈A;∴x∈A得到x2∈A;∴同理可得y2∈A,x2+y2∈A,(x+y)2∈A;∴2xy=(x+y)2−(x2+y2)∈A;若x,y有一个为0,则xy∈A,若x,y都不为0,则:1 xy =12xy+12xy∈A,∴xy∈A;∴x∈A,y∈A,能得到xy∈A,故D正确.故选BCD.9.对任意A,B⊆R,记AⅰB= { x|x∈A∪B,x∉A∩B},并称AⅰB为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则AⅰB={1,4}.下列命题中,正确的是()A. 若A,B⊆R,且AⅰB=B,则A=⌀B. 若A,B⊆R,且AⅰB=⌀,则A=BC. 若A,B⊆R,且AⅰB⊆A,则A⊆BD. 存在A,B⊆R,使得AⅰB=(∁R A)ⅰ(∁R B)【答案】ABD【解析】【分析】本题主要考查新定义,属于较难题.根据新定义,逐一判断即可.【解答】解:由题意可得:,故正确;,所以正确;若A,B⊆R,且A⊕B⊆A,则B⊆A,故不正确;存在A,B⊆R,使得A⊕B=(∁R A)⊕(∁R B,)如A=B,故正确.故答案为ABD.三、单空题10.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有______ 个.【答案】16【解析】解:∵M={a2,0},N={1,a,2},且M∩N={1},∴a=−1,∴M∪N={−1,0,1,2},故M∪N的子集有24=16个.故答案为:16.由题意先确定集合M,N,再求M∪N={−1,0,1,2},从而求子集的个数.本题考查了集合的运算及集合的化简,同时考查了集合的子集个数问题,11.已知集合M={x|x2−2x−8=0},N={x|ax+4=0},且N⊆M,则由a的取值组成的集合是_________.【答案】{0,−1,2}【解析】【分析】本题考查集合关系中参数取值问题,根据集合M={x|x2+x−8=0}写出集合M最简单的形式,然后再根据N⊆M,求出a的值,【解答】解:∵集合M={x|x2−2x−8=0}={−2,4},∵N⊆M,N={x|ax+4=0},∴N=⌀,或N={−2}或N={4}三种情况,当N=⌀时,可得a=0,此时N=⌀;当N={−2}时,−2a+4=0,可得a=2;当N={4}时,4a+4=0,可得a=−1.∴a的可能值组成的集合为{0,−1,2}.故答案为{0,−1,2}.12.已知集合A={x|ax+1=0},B={x|x2−3x+2=0},若A⊆B,则a的取值集合为_______.【答案】{−1,0,−12}.【解析】【分析】本题考查集合的包含关系及应用.根据A⊆B,利用分类讨论思想求解即可,特别要注意A=⌀不可忽略.【解答】解:当a=0时,A=⌀,满足A⊆B;当a≠0时,A={−1a }⊆B,−1a=1或−1a=2,解得a=−12或−1,}.综上实数a的所有可能取值的集合为{−1,0,−12}.故答案为{−1,0,−1213.设集合A={1,a2−3},B={−4,a−1},若A⋃B中恰有3个元素,则a=________.【答案】−1【解析】【分析】本题考查了并集及其运算,熟练掌握交集的定义是解本题的关键.由A,B,以及A与B的交集恰有3个元素,确定出a的值即可.【解答】解:因为a2−3≥−3>−4,所以由题意得a2−3=a−1或a−1=1,解得a=2或a=−1.当a=2时,集合A中的两个元素重合,舍去,所以a=−1.四、解答题14.已知集合A={x∈R|mx2−2x+1=0},在下列条件下分别求实数m的取值范围.(1)A=⌀;(2)A恰有两个子集;.【答案】解:(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,且△=4−4m<0,所以m>1;(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,,满足题意;讨论:①当m=0时,x=12②当m≠0时,△=4−4m,所以m=1.综上所述,m=0或m=1;,2)≠⌀,(3)若A∩(12,2)内有解,则关于x的方程mx2=2x−1在区间(12这等价于当x∈(12,2)时,求m=2x−1x2=1−(1x−1)2的值域,∴m∈(0,1].【解析】本题考查空集的概念、子集的个数问题以及含参数的集合运算问题,综合性较强,属于拔高题.(1)若A=⌀,则关于x的方程mx2−2x+1=0没有实数解,则m≠0,由此能求出实数m的取值范围.(2)若A恰有两个子集,则A为单元素集,所以关于x的方程mx2−2x+1=0恰有一个实数解,分类讨论能求出实数m的取值范围.(3)若A∩(12,2)≠⌀,则关于x的方程mx2=2x−1在区间(12,2)内有解,这等价于求m=2x−1x2,x∈(12,2)时的值域.15.设集合A={x|x2−3x+2=0},B={x|x2+(a−1)x+a2−5=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.【答案】解:(1)由题意得A={x|x2−3x+2=0}={1,2}∵A∩B={2},∴2∈B∴22+(a−1)×2+a2−5=0,即4+2a−2+a2−5=0化简得:a2+2a−3=0,所以(a+3)(a−1)=0,解得:a=−3或a=1.检验:当a=−3时,B={x|x2−4x+4=0}={2},满足A∩B={2},当a=1时,B={x|x2−4=0}={−2,2},满足A∩B={2},∴a=−3或a=1;(2)∵A∪B=A,故B⊆A,①当B=⌀,则(a−1)2−4(a2−5)<0,即a2−2a+1−4a2+20<0,即−3a2−2a+21<0,即3a2+2a−21>0,即(3a−7)(a+3)>0,解得:a>73或a<−3,②当B为单元素集,则,即(a−1)2−4(a2−5)=0,得a=73或a=−3当a =73时,B ={−23}⊄A ,舍当a =−3时, B ={2}⊆A 符合,③当B 为双元素集,则B =A ={1,2}则有{1+2=1−a 1×2=a 2−5无解, 综上:a >73或a ≤−3【解析】本题主要查了交集、并集以及一元二次方程的解法,考查了学生分类讨论的思想,培养了学生的综合能力.(1)由A ∩B ={2},知2∈B ,将2代入求出a ,进而进行检验,得出集合B ,得出结论.(2)由A ∪B =A ,知B ⊆A ,再根据一元二次方程根的情况讨论B 的情况,得出a 的取值范围.16. 已知全集,集合M ={x|−2≤x ≤5},N ={x|a +1≤x ≤2a +1}. (Ⅰ)若a =2,求;(Ⅱ)若M ∪N =M ,求实数a 的取值范围.【答案】解:(Ⅰ)若a =2,则N ={x|3≤x ≤5},则或x <3}; 则;(Ⅱ)若M ∪N =M ,则N ⊆M ,①若N =⌀,即a +1>2a +1,得a <0,此时满足条件;②当N ≠⌀,则满足{a +1≤2a +12a +1≤5a +1≥−2,得0≤a ≤2,综上a ≤2,故a 的取值范围是(−∞,2].【解析】本题主要考查集合的基本运算,根据集合的基本关系以及基本运算是解决本题的关键,属于拔高题.(Ⅰ)根据集合的基本运算进行求解即可;(Ⅱ)根据M ∪N =M ,得N ⊆M ,讨论N 是否是空集,根据集合的关系进行转化求解即可.17. 已知集合A ={x |a −12<x <a 2},B ={x |0<x <1}(Ⅰ)若a =12,求A⋃(∁R B ).(Ⅱ)若A⋂B =⌀,求实数a 的取值范围.【答案】(Ⅰ)当a =12时A ={x|0<x <14},C R B ={x|x ≤0或x ≥1},∴A ∪(∁R B)={x|x <14或x ≥1};(Ⅱ)当A =ϕ时,即a −12⩾a 2解得a ⩾1,当A ≠ϕ时,需满足{a <1a −12⩾1或{a <1a 2⩽0,解得a ⩽0,综上a ⩽0或a ⩾1 .【解析】本题考查集合的运算以及集合的关系(1)当a =12时,得到集合A ,C R B 利用并集概念即可求出A ∪(∁R B); (2)分A =Φ和A ≠Φ两种情况即可求解,然后再求并集.。
集合测试题一及答案
集合测试题一及答案XXX高一集合单元测试题一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间90分钟。
一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合M={x∈N|4-x∈N},则集合M中元素个数是()A。
3B。
4C。
5D。
62.下列集合中,能表示由1、2、3组成的集合是()A。
{6的质因数}B。
{x|x<4,x∈N*}C。
{y||y|<4,y∈N}D。
{连续三个自然数}3.已知集合A={-1,1},则如下关系式正确的是A∈AXXXC{}∈AD∅⊆A4.集合A={x-2<x<2},B={x-1≤x<3},那么A∪B=()A。
{x-2<x<3}B。
{x1≤x<2}C。
{x-2<x≤1}D。
{x2<x<3}5.已知集合A={x|x^2-1=0},则下列式子表示正确的有()①1∈A②{-1}∈A③∅⊆A④{1,-1}⊆AA。
1个B。
2个C。
3个D。
4个6.已知U={1,2,a^2+2a-3},A={|a-2|,2},C∩U={0},则a的值为()A。
-3或1B。
2C。
3或1D。
17.若集合A={6,7,8},则满足A∪B=A的集合B的个数是()A。
1B。
2C。
7D。
88.定义A—B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A—B等于()A。
{1,7,9}B。
{2}C。
AD。
B9.设I为全集,S₁,S₂,S₃是I的三个非空子集,且S₁∪S₂∪S₃=I,则下面论断正确的是()A。
(CiS₁)∩(S₂∪S₃)=∅B。
S₁⊆[(CiS₂)∩(CiS₃)]C。
(CiS₁)∩(CiS₂)∩(CiS₃)=∅D。
S₁⊆[(CiS₂)∪(CiS₃)]10.如图所示,I是全集,M,P,S是I的三个子集,则阴影部分所表示的集合是()A。
(M∩P)∩SB。
(M∩P)∪S'C。
(M∩P)∩(CiS)D。
集合的练习题 高一数学必修1集合练习题
集合的练习题高一数学必修1集合练习题集合是高一数学的基本概念之一,学生需要通过练习深入知道集合内容,才能够在高一数学期末考试中获得好成绩。
下面是作者给大家带来的高一数学必修1集合练习题,期望对你有帮助。
高一数学必修1集合练习题一、挑选题1.下列各组对象能构成集合的有( )①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中美丽接近零的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是肯定的,故能够构成集合;④中比较好,没有明确的界限,不满足元素的肯定性,故不能构成集合.【答案】 A2.小于2的自然数集用罗列法可以表示为( )A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】 C3.下列各组集合,表示相等集合的是( )①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】 B4.集合A中含有三个元素2,4,6,若a A,则6-a A,那么a为( )A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4 A,符合要求;若a=4,则6-a=6-4=2 A,符合要求;若a=6,则6-a=6-6=0 A,不符合要求.a=2或a=4.【答案】 B5.(2013 曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是( )A.x 0B.x -1C.x 0且x -1D.x 0且x 1【解析】由x2 0,x2 -x,-x 0,解得x 0且x -1.【答案】 C二、填空题6.用符号或填空(1)22________R,22________{x|x(2)3________{x|x=n2+1,n N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】 (1)22 R,而22=8 7,22 {x|x 7}.(2)∵n2+1=3,n= 2 N+,3 {x|x=n2+1,n N+}.(3)(1,1)是一个有序实数对,在座标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1) {y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,(1,1) {(x,y)|y=x2}.【答案】 (1) (2) (3)7.已知集合C={x|63-x Z,x N},用罗列法表示C=________.【解析】由题意知3-x= 1, 2, 3, 6,x=0,-3,1,2,4,5,6,9.又∵x N ,C={1,2,4,5,6,9}.【答案】 {1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6 A,则x=________.【解析】由于6 A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】 -2或3三、解答题9.挑选适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用罗列法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用罗列法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描写法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3 A,求a的值.【解】由-3 A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a A,则11-a A(a 1),如果a=2,试求出A中的所有元素.【解】∵2 A,由题意可知,11-2=-1由-1 A可知,11--1=12由12 A可知,11-12=2 A.故集合A中共有3个元素,它们分别是-1,12,2.高一数学必修1集合知识点集合的含义:集合这个词第一让我们想到的是上体育课或者开会时老师常常喊的全部集合。
高中数学必修一练习题(一)集合(详细答案)
高中数学必修一练习题(一)集合(详细答案)班号姓名集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈NC.某2-1=0的解集是{-1,1}2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程某2-4=0和方程|某-1|=1的解构成了一个四元集3.用列举法表示{(某,y)|某∈N+,y∈N+,某+y=4}应为()A.{(1,3),(3,1)}B.{(2,2)}D.{(4,0),(0,4)}B.a∈Z,则a∈ND.以上结论均不正确C.{(1,3),(3,1),(2,2)}4.下列命题:(1)方程某-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=某2-1,某∈R}与{y|y=某-1,某∈R}的公共元素所组成的集合是{0,1};(3)集合{某|某-1<0}与集合{某|某>a,a∈R}没有公共元素.其中正确的个数为()A.0B.1C.2D.35.对于集合A={2,4,6,8},若a∈A,则8-a∈A,则a的取值构成的集合是________.6.定义集合A某B={某|某=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A某B中所有元素之和为________.7.若集合A={-1,2},集合B={某|某2+a某+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②{0};③{(0,1)}{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2C.3D.42.已知集合A={某|-1BB.ABC.BAD.AB3.已知{1,2}M{1,2,3,4},则符合条件的集合M的个数是()A.3B.4C.6D.8M,则a的取值为()4.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且NA.-1 B.4C.-1或-4D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=某2-2某-1,某∈R},N={某|-2≤某≤4},则集合M与N之间的关系是________.7.若集合M={某|某2+某-6=0},N={某|(某-2)(某-a)=0},且NM,求实数a的值.8.设集合A={某|a-2<某<a+2},B={某|-2<某<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使BA并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.ACB.CAC.A=CD.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为()A.0B.1C.2D.43.已知全集U=R,集合M={某|-2≤某-1≤2}和N={某|某=2k-1,k∈N某}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={某|-3≤某<7},N={某|2某+k≤0},若M∩N≠,则k 的取值范围是()A.k≤3B.k≥-3C.k>6D.k≤65.已知集合M={某|-35},则M∪N=________,M∩N=________.6.已知集合A={(某,y)|y=某2,某∈R},B={(某,y)|y=某,某∈R},则A∩B中的元素个数为___.7.已知集合A={某|某2+p某+q=0},B={某|某2-p某-2q=0},且A∩B={-1},求A∪B.8.已知A={某|某3},B={某|4某+m<0,m∈R},当A∩B=B时,求m的取值范围.集合的补集运算1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N ={5,6,7},则U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}2.已知全集U={2,3,5},集合A={2,|a-5|},若UA={3},则a的值为()A.0B.10C.0或10D.0或-103.已知全集U=R,集合A={某|-2≤某≤3},B={某|某<-1或某>4},那么集合A∩(UB)等于()A.{某|-2≤某<4}B.{某|某≤3或某≥4}C.{某|-2≤某<-1}D.{某|-1≤某≤3}4.如图所示,U是全集,A,B是U的子集,则阴影部分所表示的合是()A.A∩BB.A∪BC.B∩(UA)D.A∩(UB)5.已知全集S=R,A={某|某≤1},B={某|0≤某≤5},则(SA)∩B=________.6.定义集合A某B={某|某∈A,且某B},若A={1,2,3,4,5},B={2,4,5},则A某B的子集的个数是________.7.已知全集U=R,A={某|-4≤某≤2},B={某|-12},(1)求A∩B;(2)求(UB)∪P;(3)求(A∩B)∩(UP).8.已知集合A={某|2a-2集参考答案集合的含义与表示1.选C对于A,a属于有理数,则a属于自然数,显然是错误的,对于B,a属于整数,则a属于自然数当然也是错的,对于C的解集用列举法可用它来表示.故C正确.2.选CA项中元素不确定;B项中两个集合元素相同,因集合中的元素具有无序性,所以两个集合相等;D项中两个方程的解分别是±2,0,2,由互异性知,可构成一个三元集.3.选C某=1时,y=3;某=2时,y=2;某=3时,y=1.某=2,某-2=0,4.选A(1)故解集为{(2,-2)},而不是{2,-2};y=-2.|y+2|=0(2)集合{y|y=某2-1,某∈R}表示使y=某2-1有意义的因变量y的范围,而y=某2-1≥-1,故{y|y=某2-1,某∈R}={y|y≥-1}.同理集合{y|y=某-1,某∈R}=R.结合数轴(图1)知,两个集合的公共元素所组成的集合为{y|y≥-1};(3)集合{某|某-1<0}表示不等式某-1<0的解集,即{某|某<1}.而{某|某>a,a∈R}就是某>a的解集.结合图2,当a≥1时两个集合没有公共元素;当a<1时,两个集合有公共元素,形成的集合为{某|a5.解析:当a=2时,8-a=6∈A;a=4时,8-a=4∈A;a=6时,8-a=2∈A;a=8时,8-a=0A.∴所求集合为{2,4,6}.答案:{2,4,6}6.解析:A某B={1,-1,2,0},∴A某B中所有元素之和为1-1+2+0=2.答案:27.解:由题意知-1,2是方程某2+a某+b=0的两个根,1-a+b=0,由根与系数的关系可知有故有a=-1,b=-2.4+2a+b=0,当a-3=-3时,a=0,集合A={-3,-1,1},满足题意;当2a-1=-3时,a=-1,集合A={-4,-3,2},满足题意;当a2+1=-3时,a无解.综上所述,a=0或a=-1.(2)若元素不互异,则集合A的表示不正确若a-3=2a-1,则a=-2;若a-3=a2+1,则方程无解;若2a-1=a2+1,则方程无解.综上所述,a=-2.集合间的基本关系1.选C①、②、③均正确;④不正确.a≠b时,(a,b)与(b,a)是不同的元素.2.C3.选A符合条件的集合M有{1,2},{1,2,3},{1,2,4}共3个.4.选B(1)若a=3,则a2-3a-1=-1,即M={1,2,3,-1},显然NM,不合题意.(2)若a2-3a-1=3,即a=4或a=-1(舍去),当a=4时,M={1,2,4,3},满足要求.5.解析:由2m+1-2m=2·2m-2m=2m.答案:2m6.解析:∵y=(某-1)2-2≥-2,∴M={y|y≥-2},∴NM.答案:NM7.解:由某2+某-6=0,得某=2或某=-3.因此,M={2,-3}.若a=2,则N={2},此时NM;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.a-2>-2,a-2≥-2,8.解:(1)借助数轴可得,a应满足的条件为或解得0≤a≤1.a+2≤3,a+2<3,a-2≤-2,(2)同理可得a应满足的条件为得a无解,所以不存在实数a使BA.a+2≥3,并集与交集1.选AA∩B=AAB,B∪C=CBC,∴AC.a=4,2.选D∵A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则∴a=4.a=16.23.选AM={某|-1≤某≤3},N={某|某=2k-1,k∈N某},∴M∩N ={1,3}.kk4.选D因为N={某|2某+k≤0}={某|某≤-},且M∩N≠,所以-≥-3k≤6.225.解析:借助数轴可知:M∪N={某|某>-5},M∩N={某|-3-5}{某|-3y=某2,某=0,某=1,6.解析:由得或答案:2y=某,y=0y=1.7.解:因为A∩B={-1},所以-1∈A且-1∈B,将某=-1分别代入两个方程,得1-p+q=0p=3,解得.所以A={某|某2+3某+2=0}={-1,-2},1+p-2q=0q=2B={某|某2-3某-4=0}={-1,4},所以A∪B={-1,-2,4}.m8.解:由题知,B={某|某4m所以由数轴(如图)可得-≤-2,所以m≥8,即m的取值范围是m≥8. 4集合的补集运算1.选CM∪N={1,3,5,6,7}.∴U(M∪N)={2,4,8}.2.选C由UA={3},知3A,3∈U.∴|a-5|=5,∴a=0或a=10.3.选D由题意可得,UB={某|-1≤某≤4},A={某|-2≤某≤3},所以A∩(UB)={某|-1≤某≤3}.端点处的取舍易出错.4.选C阴影部分表示集合B与集合A的补集的交集.因此,阴影部分所表示的集合为B∩(UA).5.解析:由已知可得SA={某|某>1},∴(SA)∩B={某|某>1}∩{某|0≤某≤5}={某|1答案:{某|16.解析:由题意知A某B={1,3}.则A某B的子集有22=4个.答案:47.解:借助数轴,如图.(1)A∩B={某|-15(2)∵UB={某|某≤-1或某>3},∴(UB)∪P={某|某≤0或某≥}.255(3)UP={某|0228.解:RB={某|某≤1或某≥2}≠,∵ARB,∴分A=和A≠两种情况讨论.(1)若A=,此时有2a-2≥a,∴a≥2.2a-2<a2a-2综上所述,a≤1或a≥2.。
集合练习题1
1. 1.1 集合的含义及其表示方法(1)1、一般地,指定的某些对象的全体称为集合,标记:A ,B ,C ,D ,… 集合中的每个对象叫做这个集合的元素,标记:a ,b ,c ,d ,…2、元素与集合的关系a 是集合A 的元素,就说a 属于集合A , 记作 a ∈A , a 不是集合A 的元素,就说a 不属于集合A , 记作 a ∉A 3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2.)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
比如:book 中的字母构成的集合(3).元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
集合元素的三个特性使集合本身具有了确定性和整体性。
常见数集的专用符号.N :非负整数集(或自然数集)(全体非负整数的集合); N *或N +:正整数集(非负整数集N 内排除0的集合); Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合); R:实数集(全体实数的集合). 三、 例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 分析:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A 、C 、D 中的元素符合集合的确定性;而选项B 中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B 变式训练11.下列条件能形成集合的是( D )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工 例题2.下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则R a ∈3分析:(1)元素与集合的关系及其符号表示;(2)特殊集合的表示方法; 答案:A变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”(1)所有在N中的元素都在N*中(×)(2)所有在N中的元素都在Z中( √)(3)所有不在N*中的数都不在Z中(×)(4)所有不在Q中的实数都在R中(√)(5)由既在R中又在N*中的数组成的集合中一定包含数0(×)(6)不在N中的数不能使方程4x=8成立(√)四、课堂小结1、集合的概念2、集合元素的三个特征,其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号.1.1.1 集合的含义及其表示方法(1)课前预习学案一、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法二、预习内容:阅读教材填空:1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高一数学集合练习题(一)及答案
一、选择题(每题4分,共40分)1、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 104、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}5、方程组 11x y x y +=-=- 的解集是 ( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,{}2|20,x xx Z -=∈是空集中,错误的个数是 ( )A 4B 3C 2D 17、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤9、 满足条件M}{1=}{1,2,3的集合M 的个数是 ( )A 1B 2C 3D 410、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( )A a b P +∈B a b Q +∈C a b R +∈D a b +不属于P 、Q 、R 中的任意一个 二、填空题(每题3分,共18分)11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________13、设全集U={}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。
集合练习题(含答案)
集合练习题通过本节练习,应掌握以下几点:1.知识目标:巩固和深化对基础知识的理解与掌握2.知识重点:掌握好集合间的关系与集合的基本运算3.知识难点:集合间的运算一、选择题1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2B.3C.4D.53.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是()A.M=P B.M PC.P M D.M与P没有公共元素4.如图所示,M,P,S是V的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩S)∩(∁S P) D.(M∩P)∪(∁V S)5.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.∅二、填空题6.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.7.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为____.8.已知全集U={3,7,a2-2a-3},A={7,|a-7|},∁U A={5},则a=________.9.设U=R,M={x|x≥1},N={x|0≤x<5},则(∁U M)∪(∁U N)=________________.三、解答题10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.11.某班50名同学参加一次智力竞猜活动,对其中A,B,C三道知识题作答情况如下:答错A者17人,答错B者15人,答错C者11人,答错A,B者5人,答错A,C者3人,答错B,C者4人,A,B,C都答错的有1人,问A,B,C都答对的有多少人?12.对于k∈A,如果k-1∉A且k+1∉A,那么k是A的一个“孤立元”,给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有几个?13.设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M,N都是集合U={x|0≤x≤1}的子集,定义b-a为集合{x|a≤x≤b}的“长度”,求集合M∩N 的长度的最小值.参考答案1.B [Q ={x |-2<x <2},可知B 正确.]2.B [集合P 内除了含有元素a 外,还必须含b ,c 中至少一个,故P ={a ,b },{a ,c },{a ,b ,c }共3个.]3.B [∵a ∈N *,∴x =a 2+1=2,5,10,….∵b ∈N *,∴y =b 2-4b +5=(b -2)2+1=1,2,5,10,….∴M P .]4.C [阴影部分是M ∩S 的部分再去掉属于集合P 的一小部分,因此为(M ∩S )∩(∁S P ).]5.B [根据题意可画出下图.∵a +2>a -1,∴A ≠∅.有⎩⎨⎧ a -1≤3,a +2≥5.解得3≤a ≤4.]6.a ≤2解析 如图中的数轴所示,要使A ∪B =R ,a ≤2.7.1解析 当x =1时,x -1=0∉A ,x +1=2∈A ;当x =2时,x -1=1∈A ,x +1=3∈A ;当x =3时,x -1=2∈A ,x +1=4∉A ;当x =5时,x -1=4∉A ,x +1=6∉A ;综上可知,A 中只有一个孤立元素5.8.4解析 ∵A ∪(∁U A )=U ,由∁U A ={5}知,a 2-2a -3=5,∴a =-2,或a =4.当a =-2时,|a -7|=9,9∉U ,∴a ≠-2.a=4经验证,符合题意.9.{x|x<1或x≥5}解析∁U M={x|x<1},∁U N={x|x<0或x≥5},故(∁U M)∪(∁U N)={x|x<1或x≥5}或由M∩N={x|1≤x<5},(∁U M)∪(∁U N)=∁U(M∩N) ={x|x<1或x≥5}.10.解(1)∵B={x|x≥2},∴A∩B={x|2≤x<3}.(2)∵C={x|x>-a2},B∪C=C⇔B⊆C,∴-a2<2,∴a>-4.11.解由题意,设全班同学为全集U,画出Venn图,A表示答错A的集合,B 表示答错B的集合,C表示答错C的集合,将其集合中元素数目填入图中,自中心区域向四周的各区域数目分别为1,2,3,4,10,7,5,因此A∪B∪C中元素数目为32,从而至少错一题的共32人,因此A,B,C全对的有50-32=18人.12.解依题意可知,“孤立元”必须是没有与k相邻的元素,因而无“孤立元”是指在集合中有与k相邻的元素.因此,符合题意的集合是:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.13.解在数轴上表示出集合M与N,可知当m=0且n=1或n-13=0且m+34=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N={x|23≤x≤34},长度为34-23=112;当n=13且m=14时,M∩N={x|14≤x≤13},长度为13-14=112.综上,M∩N的长度的最小值为1 12.。
集合1-练习题
集合1-练习题----e3b52802-7165-11ec-89b7-7cb59b590d7d 第一章集合与函数概念1.1集合1.1.1集合的含义和表示1.下列集合的表示方法正确的是()a.{1,2,3,3,}b.{全体有理数}c.0={0}d、不等式x-3>2的解集为{x | x>5}2.下列元素与集合的关系中,表示正确的有()①2∈r;②3∉q;③|-5|∉n*;④|-2|∈q;⑤0∈{0}.a、 1 B.2 C.3 D.43.(2021年广东广州一模改编)已知集合a=x|x∈z,且2-xz,用列举法表示集合a()中的元素a.{-1,1}b.{-1,1,3}c、 {-1,1,3,5}D.{-1,1,2,3,5}4。
如果集合M={1,2,X2},那么x满足()a.x≠ 1和X≠ 2B。
十、≠±1C。
十、≠±2D。
十、≠±1和X≠ 2.5.下列说法正确的是()a、如果∈ 请注意∈ n、然后A-B∈ 注意。
如果x∈ n*,然后是x∈ RC。
如果x∈ R、然后x∈ n*D.如果x≤ 0,然后是x∉ N6.已知集合s={a,b,c}中的三个元素可构成△abc的三条边,那么△abc一定不是()a、锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7.已知集合a={1,3,a2},若3a-2∈a,求实数a的取值集合.8.设P和Q是两组非空实数,并定义集合P+Q={a+B | a∈ P、B∈ Q} 。
如果P={0,2,5},q={1,2,6},则P+q中的元素数为()a.9个b.8个c.7个d.6个9.已知集合M=三十一集合n={0,X2,x+y}代表同一集合,然后是实数x2022+y2022=________.10.使用枚举表示以下集合:(1)c={x∈n|y=-x2+6,y∈n};(2)d={y∈n|y=-x2+6,x∈n};(3) e={(x,y),x∈n、y∈n|y=x2+6}。
新教材1.3 集合的基本运算 练习(1)-人教A版高中数学必修第一册含答案版在后面
第一章集合与常用逻辑用语第3节集合的基本运算一、选择题1.(2018·江西高一课时练习)(2017·天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}2.(2018·陕西石泉县江南高级中学高一课时练习)已知M,N都是U的子集,则图中的阴影部分表示( )A.M∪NB.∁U(M∪N)C.(∁U M)∩ND.∁U(M∩N)3.(2018·陕西石泉县江南高级中学高一课时练习)已知全集U=R,集合M={x|-1≤x≤3},则∁U M=( )A.{x|-1<x<3} B.{x|-1≤x≤3}C.{x|x<-1或x>3} D.{x|x≤-1或x≥3}4.(2018·全国高一课时练习)设全集,,,则()A.B.C.D.5.(2018·全国高一课时练习)已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于()A.{1,6} B.{4,5} C.{2,3,4,5,7} D.{1,2,3,6,7}6.(2018·全国高一课时练习)设M,P是两个非空集合,定义M与P的差集M-P={x|x∈M且x∉P},则M-(M-P)等于( )A.P B.M C.M∩P D.M∪P二、填空题7.(2018·全国高一课时练习)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则∁R(M∩N)=________.8.(2018·陕西石泉县江南高级中学高一课时练习)设全集I={1,3,5,7,9},集合A={1,|a-5|,9},∁I A={5,7},则a的值为_____.9.(2018·江西高一课时练习)已知全集U={1,2,a2-2 a+3},A={1,a},∁U A={3},则实数a等于________.10.(2017·全国高一课时练习)已知M={x|x≤-1},N={x|x>a-2},若M∩N≠∅,则a的范围是________.三、解答题11.(2018·全国高一课时练习)设全集为R,集合A={x|3≤x<7},B={x|2<x<6},求∁R(A∪B),∁R(A∩B),(∁R A)∩B,A∪(∁R B).12.(2018·全国高一课时练习)若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m,n的值.第一章集合与常用逻辑用语第3节集合的基本运算一、选择题1.(2018·江西高一课时练习)(2017·天津卷)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}【答案】B【解析】由题意选B2.(2018·陕西石泉县江南高级中学高一课时练习)已知M,N都是U的子集,则图中的阴影部分表示( )A.M∪NB.∁U(M∪N)C.(∁U M)∩ND.∁U(M∩N)【答案】B【解析】由题意,图中非阴影部分所表示的集合是,所以图中阴影部分所表示的集合为的补集,即图中阴影部分所表示的集合为,故选B.3.(2018·陕西石泉县江南高级中学高一课时练习)已知全集U=R,集合M={x|-1≤x≤3},则∁U M=( ) A.{x|-1<x<3} B.{x|-1≤x≤3}C.{x|x<-1或x>3} D.{x|x≤-1或x≥3}【答案】C【解析】由题意,全集,集合,所以或,故选C.4.(2018·全国高一课时练习)设全集,,,则()A.B.C.D.【答案】B【解析】全集,,,.故选B.5.(2018·全国高一课时练习)已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(∁U A)∪(∁U B)等于()A.{1,6} B.{4,5} C.{2,3,4,5,7} D.{1,2,3,6,7}【答案】D【解析】由补集的定义可得:∁U A={1,3,6},∁U B={1,2,6,7},所以(∁U A)∪(∁U B)={1,2,3,6,7}.本题选择D选项.6.(2018·全国高一课时练习)设M,P是两个非空集合,定义M与P的差集M-P={x|x∈M且x∉P},则M -(M-P)等于( )A.P B.MC.M∩P D.M∪P【答案】C【解析】由题意,作出Venn图,如图所示:可得M-(M-P)= M∩P,故选C.二、填空题7.(2018·全国高一课时练习)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则∁R(M∩N)=________. 【答案】{x|x<-2或x≥1}【解析】由题意,集合M={x|-2≤x≤2},N={x|x<1},则M N={x|-2≤x<1},所以∁R(M∩N)={x|x<-2或x≥1}.8.(2018·陕西石泉县江南高级中学高一课时练习)设全集I={1,3,5,7,9},集合A={1,|a-5|,9},∁I A={5,7},则a的值为_____.【答案】2或8【解析】由题意,可得,所以或.9.(2018·江西高一课时练习)已知全集U={1,2,a2-2 a+3},A={1,a},∁U A={3},则实数a等于________.【答案】0或2.【解析】因为∁U A={3},所以a2-2a+3=3,解得a=0或a=2.10.(2017·全国高一课时练习)已知M={x|x≤-1},N={x|x>a-2},若M∩N≠∅,则a的范围是________. 【答案】a<1【解析】集合M={x|x≤-1},N={x|x>a-2},M∩N≠∅,则a<1,故填a<1.三、解答题11.(2018·全国高一课时练习)设全集为R,集合A={x|3≤x<7},B={x|2<x<6},求∁R(A∪B),∁R(A∩B),(∁R A)∩B,A∪(∁R B).【答案】见解析【解析】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.12.(2018·全国高一课时练习)若A={3,5},B={x|x2+mx+n=0},A∪B=A,A∩B={5},求m,n的值.【答案】【解析】解:∵A∪B=A,A∩B={5},A={3,5},∴B={5}.∴方程x2+mx+n=0只有一个根为5,∴∴解得。
《集合》典型例题(1)
(6)设全集U={2,3,m2+2m-3},a={|m+1|,2}, UA={5},求m.
(7)设全集U={1,2,3,4},A={x2-5x+m=0,x∈U},求 UA、m.
师生共同完成上述题目,解题的依据是定义
典型例题
请填充(参考)
(1)若S={2,3,4},A={4,3},则 SA=____________.
(2)若S={三角形},B={锐角三角形},则 SB=___________.
(3)若S={1,2,4,8},A= ,则 SA=_______.
(4)若U={1,3,a2+2a+1},A={1,3}, UA={5},则a=_______
评述:此题解决过程中渗透分类讨论思想.
例(1)解: SA={2}
评述:主要是比较A及S的区别.
例(2)解: SB={直角三角形或钝角三角形}
评述:注意三角形分类.
例(3)解: SA=3
评述:空集的定义运用.
例(4)解:a2+2a+1=5,a=-1±
评述:利用集合元素的特征.
例(5)解:利用文恩图由A及 UA先求U={-1,0,1,2,4},
再求B={1,4}.
例(6)解:由题m2+2m-3=5且|m+1|=3解之m=-4或m=2
例(7)解:将x=1、2、3、4代入x2-5x+m=0中,m=4或m=6
当m=4时,x2-5x+4=0,即A={1,4}
又当m=6时,x2-5x+6=0,即A={2,3}
故满足题条件: UA={1,4},m=4; UB={2,3},m=6.
高中数学-集合习题1
课时作业(一)1.【多选题】下列说法正确的是( )A .联合国安理会常任理事国组成一个集合B .我校很喜欢足球的同学组成一个集合C .{1,2,3}是由不大于3的自然数组成的集合D .数1,0,5,12,32,64,14组成的集合中有5个元素答案 AD2.下列表示正确的是( )A .0∈N B.27∈NC .-3∉ZD .π∈Q 答案 A解析 0是自然数,即有0∈N ,故A 正确;27是不可约分数,即有27∉N ,故B 错误;-3是负整数,即有-3∈Z ,故C 错误;π是无理数,即有π∉Q ,故D 错误.3.【多选题】集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( ) A.5∈M B .0∉MC .1∉MD .-π2∈M答案 CD 解析5>1,∴5∉M ;-2<0<1,0∈M ;1=1,1∉M ;-2<-π2<1,-π2∈M .综上,A 、B不正确,C 、D 正确.4.已知集合M ={(2,-2),2,-2},则集合M 中元素的个数是( ) A .2 B .3 C .4 D .6 答案 B5.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 M ={-1,2,3}.6.若2∈{1,x 2+x },则x 的值为( ) A .-2 B .1C .1或-2D .-1或2答案 C解析 由题意知x 2+x =2,即x 2+x -2=0,解得x =-2或x =1. 7.设a ,b ∈R ,集合{1,a }={0,a +b },则b -a =( ) A .1 B .-1 C .2 D .-2 答案 A解析 ∵{1,a }={0,a +b },∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1.故选A. 8.下列说法:①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.9.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?________(填“是”或“不是”). 答案 是 不是10.设集合A ={x ,y },B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B 不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上,x =1,y =0.11.若以集合A 中的四个元素a ,b ,c ,d 为边长构成一个四边形,则这个四边形可能是( ) A .梯形 B .平行四边形 C .菱形 D .矩形 答案 A解析 集合中元素具有互异性.12.【多选题】已知集合M 中的元素x 满足x =a +2b ,其中a ,b ∈Z ,则下列实数中属于集合M 的是( ) A .0 B .-1C .32-1 D.23-22答案 ABCD解析 0=0+2×0;-1=-1+2×0;32-1=-1+2×3;23-22=2×(3+22)=6+2×4,都在M 中.13.若{a ,0,1}=⎩⎨⎧⎭⎬⎫c ,1b ,-1,则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1.又0∈⎩⎨⎧⎭⎬⎫c ,1b ,-1且1b≠0,∴c =0,从而可知1b=1,∴b =1.14.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或415.已知x ∈N ,且6x +1∈Z ,若x 的所有取值构成集合M ,则集合M =________.答案 {0,1,2,5}解析 因为x ∈N ,且6x +1∈Z ,则x +1=1,2,3,6,即x =0,1,2,5,所以集合M ={0,1,2,5}.16.甲、乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3分,答错或不答得0分,甲和乙都解答了所有的试题,经比较,他们只有2道题的答案不同,如果甲最终的得分为54分,那么乙的所有可能的分值组成的集合为________. 答案 {48,51,54,57,60}解析 ∵甲的得分为54分,∴甲答错了2道题.又∵甲和乙有两道题的答案不同,则乙答错题的个数可能为4,3,2,1,0,故乙的所有可能的分值组成的集合为{48,51,54,57,60}.1.下列每组对象,能构成集合的是( ) ①中国最美的乡村;②直角坐标系中横、纵坐标相等的点; ③不小于3的自然数;④援助湖北抗击新冠疫情的医护人员. A .③④ B .②③④ C .②③ D .②④答案 B解析 最美是没有标准的,不具有确定性.2.给出下列各组对象:①我们班中比较高的同学;②无限接近于0的数的全体;③比较小的正整数的全体;④平面上到点O 的距离等于1的点的全体;⑤正三角形的全体;⑥2的近似值的全体.其中能够构成集合的有( ) A .1个 B .2个 C .3个 D .4个 答案 B解析 ①②③⑥不能构成集合,因为没有明确的判断标准;④⑤可以构成集合,“平面上到点O 的距离等于1的点”和“正三角形”都有明确的判断标准. 3.【多选题】若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A .3.14 B .πC .-78 D.7答案 BD解析 由题意知a 应为无理数,故a 可以为π,7. 4.用符号“∈”和“∉”填空:(1)设集合A 是正整数的集合,则0________A ,2________A ;(2)设集合B 是小于11的所有实数的集合,则23________B ,22________B . 答案 (1)∉ ∉ (2)∉ ∈解析 (1)正整数是不包含0的自然数,如1,2,3,…,显然0和2都不属于A . (2)因为23=12>11,所以23不属于B ;因为22=8<11,所以22属于B . 5.下列关系中,①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N . 正确的是________. 答案 ①②⑥6.已知集合A ={1,2},集合B 表示方程x 2+ax +b =0的解组成的集合,并且A =B ,则a =________,b =________. 答案 -3 2解析 据题意,1,2是方程x 2+ax +b =0的两个根,由根与系数的关系可得⎩⎪⎨⎪⎧-a =1+2,b =1×2,∴⎩⎪⎨⎪⎧a =-3,b =2.7.设x ,y ,z 是非零实数,若a =x |x |+y |y |+z |z |+xyz |xyz |,则以a 的值为元素的集合中元素的个数是________. 答案 3解析 当x ,y ,z 都是正数时,a =4;当x ,y ,z 都是负数时,a =-4;当x ,y ,z 中有1个是正数另2个是负数或有2个是正数另1个是负数时,a =0.所以以a 的值为元素的集合中有3个元素. 8.已知集合A 是由偶数组成的,集合B 是由奇数组成的,若a ∈A ,b ∈B ,则a +b ________A ;ab ________A .(填“∈”或“∉”) 答案 ∉ ∈解析 偶数+奇数=奇数;偶数·奇数=偶数.9.已知集合A 是由形如m +3n (其中m ,n ∈Z )的数组成的,判断12-3是不是集合A 中的元素?解析 是.因为12-3=2+3,此时m =2,n =1,满足集合A 中数的构成形式,所以12-3是集合A 中的元素.10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1).求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集.证明 (1)若a ∈A ,则11-a ∈A .又因为2∈A ,所以11-2=-1∈A .因为-1∈A ,所以11-(-1)=12∈A .因为12∈A ,所以11-12=2∈A .根据集合中元素的互异性可知,A 中另外两个元素为-1,12,结论得证.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无实数解.所以a ≠11-a ,所以集合A 不可能是单元素集.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019新高一集合的概念巩固练习
1.已知集合M ={0,1},则下列关系式中,正确的是( ) A .{0}M ∈
B .{0}M ∉
C .0M ∈
D .0M ⊆
2.若集合{|0,}A x x a x N =<<∈有且只有一个元素,则实数的取值范围为( ) A .()1,2 B .[]1,2 C .[1,2) D .(1,2]
3.已知集合A={x ∈N|0≤x ≤4},则下列说法正确的是( ) A .0∉A B .1⊆A C
.
D .3∈A
4.已知集合A={1,2,4}
,集合,则集合B 中元素的个数为( )
A .4
B .5
C .6
D .7
5.已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( ) A .2
B .3
C .0或3
D .0,2,3均可
6.集合A={}
2|320x ax x -+>只有一个元素,则a 的值为( ) A.
98 B.78 C.97 D.87
7.已知x ,y 均不为0,则的值组成的集合的元素个数为( )
A .1
B .2
C .3
D .4
8.下列命题正确的是( )
A .空集是任何集合的子集
B .集合{y|y=x 2
﹣1}与集合{(x ,y )|y=x 2
﹣1}是同一个集合 C .自然数集N 中最小的数是1 D .很小的实数可以构成集合 9.已知集合
{}{}
1,,2A y y x x R B x x ==-∈=≥,则下列结论正确的是
A. 3A -∈
B. 3B ∉
C. A B B ⋂=
D. A B B ⋃=
10.设P ,Q 为两个非空实数集合,定义集合{|,}P Q a b a P b Q +=+∈∈,若{0,2,5},{1,2,6}P Q ==,
则P+Q 中元素的个数为
( )
A .9
B .8
C .7
D .6
11.若集合a c b a S }(,,{=、b 、R c ∈)中三个元素为边可构成一个三角形,那么该三角形
一定不可能是 ( ) A .锐角三角形 B .等腰三角形 C .钝角三角形 D .直角三角形
12.含有三个实数的集合可以表示为}1,,{x
y
x ,也可以表示为},,0{y x x +,则35y x -的值为( )
A . 1
B .-1
C .0
D .-1或1
13.已知关于x 的不等式
21
<++a
x x 的解集为P . 若P ∉1,则实数a 的取值范围为( ) (A )(][)+∞∞-,,10 . (B )[]01,-. (C )()()+∞-∞-,,01 . (D )(]01,-. 14.设数集M 同时满足条件①M 中不含元素1,0,1-,②若a M ∈,则11a
M a
+∈-. 则下列结论正确的是
(A )集合M 中至多有2个元素;(B )集合M 中至多有3个元素; (C )集合M 中有且仅有4个元素;(D )集合M 中有无穷多个元素. 15.方程组⎩⎨
⎧-=-=+1
1
y x y x 的解集是 ( )
A {}0,1x y ==
B {}1,0
C {})1,0(
D {}(,)|01x y x y ==或 16.已知集合A ={0,1,2},全集U ={x -y 丨x ∈A ,y ∈A },则C U A = 。
17.若集合2
{|10}x ax x ++=有且只有一个元素,则实数a 的取值集合是___________;
18.已知集合2
{8,}A a a a =+-,若6A ∈,则实数a 的值为 19.集合4
{|,}2A x x N Z x
=∈∈-且
用列举法可表示为A =_____________. 20.设R ,∈b a ,集合{
},,,0,,1⎭
⎬⎫
⎩⎨⎧=+b a b a b a 则a b 的值是
21.已知集合
1|0ax A x x a -⎧⎫=<⎨⎬
-⎩⎭,若2∈A ,3不属于A ,则实数a 的取值范围是_______.。