河南省驻马店市2015-2016学年七年级上学期数学期末考试试卷及参考答案

合集下载

2015-2016学年度第一学期期末测试七年级数学附答案

2015-2016学年度第一学期期末测试七年级数学附答案

2015-2016学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是( ) A 、6 B 、6- C 、61 D 、61- 2、下面几个有理数中,最小的数是( )A 、1B 、2-C 、0D 、5.2- 3、计算3)3(-的结果是( )A 、6B 、9C 、27D 、-27 4、下列各组代数式中,不是同类项的是( )A 、y x 2-和y x 25 B 、32和2 C 、xy 2和 23xy D 、2ax 和2a x 5、下列等式中正确的是( )A 、a b b a -=--)(B 、b a b a +-=+-)(C 、12)1(2+=+a aD 、x x +=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是( )7、若b a =,则下列式子不正确的是( )A 、11+=+b aB 、55-=+b aC 、b a -=-D 、0=-b a 8、下列等式中,不是整式的是( ) A 、y x 21- B 、x 73 C 、11-x D 、09、若0<a ,下列式子正确的是( )A BCDA 、0<-aB 、02>aC 、22a a -=D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6=AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?22、(1)已知()2210x y +++=,求x ,y 的值;BAA(2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.2015-2016学年度第一学期期末测试N M OACBE AD七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm .三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(- ,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分 解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠,∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD, 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB ,若点B 在原点的右边,60=AB , ∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15,若点B 在原点的左边,30=AB , ∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学附答案

2015~2016学年度第一学期七年级期末考试数学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1.在-25, 0,25,2.5这四个数中,绝对值最大的数是 A. -25 B.0 C. 25D.2.5 2.下面运算正确的是 A.369a b ab += B.33330a b ba -= C.43862a a a -= D.22111236y y -= 3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.如果一个角的余角是50°,则这个角的补角的度数是A.130°B.140°C.40°D.150°5.如图是每个面都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“祝”字相对的面是A.新B.年C.快D.乐6.下图是由八个相同的小正方体组合而成的几何体,其左视图是7.已知多项式2222A x y z =+-,222=432B x y z -++,且0A B C ++=,则C 为A.2225x y z --B.22235x y z --C.22233x y z --D.22235x y z -+8.如图,点O 在直线AB 上,射线OC 、OD 在直线AB 的同侧,∠AOD =50°,∠BOC =40°,OM 、ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为A.135°B.140°C.152°D.145° 9.如图,直线l 1∥l 2,则∠α为 A.150° B.140° C.130° D.120° 10.若8,5a b ==,且a b +>0,则a b -的值为 A.3或13 B.13或-13 C.3或-3 D. -3或-1311.已知A 、B 、C 三点在同一直线上,M 、N 分别为线段AB 、BC 中点,且AB =60,BC =40,则MN 的长为A.10B.50C.20或50D.10或12.下面每个表格中的四个数都是按相同规律填写的: 根据此规律确定x 的值为A.135B.170C.209D.252第Ⅱ卷(非选择题共72分)乐快年新你祝D C B A NMD C B A l 2············第4个第3个第2个第1个35834∙∙∙···x 20b a 541054206329421二、填空题(本大题共4小题,每小题4分,共16分,请将最后答案填在题中横线上)13.312m a b 与212n a b -是同类项,则m n -=________; 14.规定符号*运算为a *b =21ab a b -++,那么-3*4=_____________;15.若代数式2245x x --的值为6,则2122x x --的值为_________; 16.为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为_____________________.三、解答题(本大题共6个小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)计算与化简:(1)2241325(2)4-+----⨯-()() (2)224(6)3(2)x xy x xy +---18.(本小题满分8分)先化简,再求值:2211312()()2323a a b a b ----,其中22,3a b =-=.19.(本小题满分9分)一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走了1.5千米到达商场C,又向西走了4.5千米到达超市D,最后回到货场.(1)用一个单位长度表示1千米,以东为正方向,货场为原点,画出数轴并在数轴上标明货场A,批发部B,商场C,超市D的位置;(2)超市D距货场A多远?(3)货车一共行驶了多少千米?20.(本小题满分8分)某中学初一(四)班3位教师决定带领本班a名学生在五一期间取北京旅游,A旅行社的收费标准为:教师全价,学生半价;而B旅行社的收费标准为:不分教师、学生,一律八折优惠.(1)分别用代数式表示参加这两家旅行社所需的费用;(2)如果这3位教师要带领该班30名学生参加旅游,你认为选择哪一家旅行社较为合算,为什么?21.(本小题满分10分)如图,已知AB∥CE,∠A=∠E,试说明∠CGD=∠FHB.22.(本小题满分11分)HGFEDCBA将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°).(1)1若∠DCE=45°,则∠ACB的度数为_________:2 若∠ACB=140°,则∠DCE的度数为______;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE所有可能的值(不必说明理由);若不存在,请说明理由.。

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.下列说法正确的是()A.过一点有且仅有一条直线与已知直线平行B.两点之间的所有连线中,线段最短C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点2.运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x的和为( )A.30 B.35 C.42 D.393.2-的相反数是()A.2-B.2 C.12D.12-4.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。

该几何体模型可能是()A.球B.三棱锥C.圆锥D.圆柱5.如图,有一个正方体纸巾盒,它的平面展开图不可能的是()A.B.C.D.6.12-的倒数是()A.B.C.12-D.127.如图,已知射线OA⊥射线OB, 射线OA表示北偏西25°的方向,则射线OB表示的方向为()A .北偏东65°B .北偏东55°C .北偏东75°D .东偏北75°8.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100B .140C .90D .1209.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段10.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-11.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3B .3C .-2D .212.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=213.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .14.下列四个图中的1∠也可以用AOB ∠,O ∠表示的是( )A .B .C .D .15.单项式24x y 3-的次数是( )A .43-B .1C .2D .3二、填空题16.若2|3|(2)0x y ++-=,则2x y +的值为___________.17.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.18.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线. 19.12-的相反数是_________. 20.已知2x =是关于x 的不等式310x m -+≥的解,则m 的取值范围为_______. 21.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .22.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______. 23.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.24.如图,已知,,AB DE BAC m CDE n ∠=︒∠=︒∕∕,则ACD ∠=___________°.25.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn=(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.三、解答题26.解下列方程:(1)2(2)6x --= .(2)121123x x -+=-. 27.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.28.如图,C 为线段AD 上一点,点B 为CD 的中点,且AD=8cm,BD=1cm (1)求AC 的长(2)若点E 在直线AD 上,且EA=2cm,求BE 的长29.计算 (1)157()362612+-⨯ (2)()421723-+÷-30.先化简,再求值:()()22224333a b ab aba b ---+.其中 1a =-、 2b =-.31.把 6个相同的小正方体摆成如图的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果每个小正方体棱长为1cm ,则该几何体的表面积是 2cm .(3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.32.先化简,再求值:3x 2+(2xy -3y 2)-2(x 2+xy -y 2),其中x =-1,y =2. 33.计算: (1)35|3|44⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭(2)23151(32)21428⎛⎫---⨯-+ ⎪⎝⎭ 四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各组数中,互为相反数的是()A . 2与B . (-1)2与1C . -1与(-1)2D . 2与│-2│2. (2分)下列说法中正确的是()A . -23x2y的系数是-2,次数是6B . 单项式-πam+2b7-m的系数是π,次数是9C . 多项式-5x7y+4x2+π的次数是8,项数是3D . 是二次四项式3. (2分) (2018七上·延边期末) 如图是由五个相同的小正方体组成的立体图形,从上面看到的图形是()A .B .C .D .4. (2分) (2016七上·重庆期中) 用四舍五人法按要求把2.05446取近似值,其中错误的是()A . 2.1(精确到0.1)B . 2.05(精确到百分位)C . 2.054(精确到0.001)D . 2.0544(精确到万分位)5. (2分) (2018七上·青山期中) 下列各组中两项属于同类项的是()A . x3与43B . 2a与2bC . 3x2y3与﹣2y2x3D . 3与﹣56. (2分)(2019·白云模拟) 2的相反数是()A . ﹣2B .C . ﹣D . 27. (2分)(2017·房山模拟) 北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路,预测初期客流量日均132300人次,将132300用科学记数法表示为()A . 1.323×105B . 1.323×104C . 1.3×105D . 1.323×1068. (2分)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE与∠DCF的位置与大小关系是()A . 是同位角且相等B . 不是同位角但相等C . 是同位角但不等D . 不是同位角也不等9. (2分)(2017·芜湖模拟) 如图,将⊙O沿弦AB折叠,圆弧AB恰好经过圆心O,P是上一点,则∠APB的度数为()A . 30°B . 45°C . 60°D . 75°10. (2分)下列说法:(1)有且只有一条直线垂直于已知直线;(2)两条直线相交时,如果对顶角的和是180°,那么这两条直线互相垂直;(3)过直线a外一点P作PD⊥a,垂足为D,则线段PD是点P到直线a的距离;(4)在同一平面内,经过一点有且只有一条直线垂直于已知直线.其中正确的说法有()A . (1)(2)(4)B . (3)(4)C . (2)(3)D . (1)(2)(3)二、填空题 (共5题;共6分)11. (1分) (2019七上·秦淮期中) 大于 - 2 而小于 4 的整数共有(________)个.12. (1分) (2016七上·嘉兴期末) 若a、b互为相反数,m、n互为倒数,则2015a+2014b+mnb的值为________.13. (1分) (2016七下·邹城期中) 如图是一把剪刀,其中∠1=40°,则∠2=________.14. (1分)(2016·文昌模拟) 今年市场上荔枝的价格比去年便宜了5%,去年的价格是每千克m元,则今年的价格是每千克________元.15. (2分)(2016·泰安) 如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1 ,点A2 , A3 ,…在直线l上,点B1 , B2 , B3 ,…在x轴的正半轴上,若△A1OB1 ,△A2B1B2 ,△A3B2B3 ,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________.三、解答题 (共8题;共77分)16. (15分) (2018七上·和平期末) 计算:17. (5分)如图,线段AB被点C、D分成2:3:4三部分,M为AC的中点,N为BD的中点,且MN=2.4,求AB的长.18. (5分)已知A=3m2-4m+5,B=3m-2+5m2 ,且A-2B-C=0,求多项式C.19. (5分) (2018八上·靖远期末) 如图,直线CD、EF被直线OA、OB所截,∠1+∠2=180°.求证:∠3=∠4.20. (10分) (2017七上·重庆期中) 某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+15,-2,-6,+7,-18,+12,-4,-5,+24,-3.(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每千米耗油量为0.08升,每升油7.5元,则这辆出租车这天下午耗油费用多少元?(3)若出租车起步价为8元,起步里程为3千米(包括3千米),超过部分每千米2.4元,问这天下午这辆出租车司机的营业额是多少元?21. (15分) (2018七上·江南期中) 托运行李的费用计算方法:托运行李总质量不超过30千克,每千克收费1元,超过部分每千克收费1.5元,某旅客托运行李m千克(m为正整数).(1)请你用代数式表示托运m千克行李的费用;(2)求当m=45时的托运费用.22. (11分) (2019七下·镇江月考) 三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理.(定理证明)已知:△ABC(如图①).求证:∠A+∠B+∠C=180°.(1)(定理推论)如图②,在△ABC中,有∠A+∠B+∠ACB=180°,点D是BC延长线上一点,由平角的定义可得∠ACD+∠ACB=180°,所以∠ACD=________.从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.(2)(初步运用)如图③,点D、E分别是△ABC的边AB、AC延长线上一点.Ⅰ.若∠A=80°,∠DBC=150°,则∠ACB=________;Ⅱ.若∠A=80°,则∠DBC+∠ECB=________.(3)(拓展延伸)如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.Ⅰ.若∠A=80°,∠P=150°,则∠DBP+∠EC P=________;Ⅱ.分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=50°,则∠A和∠P的数量关系为________;Ⅲ.分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.________23. (11分) (2016七上·驻马店期末) 如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有________个小于平角的角;(2)若∠AOC=50°,则∠COE的度数=________,∠BOE的度数=________;(3)猜想:OE是否平分∠BOC?请通过计算说明你猜想的结论.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共77分)16-1、17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.如图,AB ∥CD ,∠BAP =60°-α,∠APC =50°+2α,∠PCD =30°-α.则α为( )A .10°B .15°C .20°D .30°2.单项式24x y 3-的次数是( ) A .43-B .1C .2D .33.下列运算正确的是 A .325a b ab += B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-4.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m 2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m 2墙面,每名一级技工比二级技工一天多粉刷10m 2墙面,设每个房间需要粉刷的墙面面积为xm 2,则下列的方程正确的是( )A .3505(10)40810--+=x x B .3505(10)40810+--=x x C .850104035+-=x x +10 D .850104035-+=x x +10 5.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65° 6.已知23a +与5互为相反数,那么a 的值是( )A .1B .-3C .-4D .-17.下列说法:①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行. 其中正确的说法有( ) A .1个B .2个C .3个D .4个8.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是( )A .点AB .点BC .点CD .点D9.下列叙述中正确的是( ) A .相等的两个角是对顶角B .若∠1+∠2+∠3 =180º,则∠1,∠2,∠3互为补角C .和等于90 º的两个角互为余角D .一个角的补角一定大于这个角10.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( ) A .2018 B .2019C .2020D .2021 11.下列计算正确的是( )A .277a a a +=B .22232x y yx x y -=C .532y y -=D .325a b ab +=12.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A13.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直14.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( ) A .90.14910⨯, B .81.4910⨯C .714.910⨯D .614910⨯15.在解方程123123x x -+-=时,去分母正确的是( )A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=3二、填空题16.计算:82-+-=___________. 17.若单项式322m x y-与3-x y 的差仍是单项式,则m 的值为__________.18.正方体切去一块,可得到如图几何体,这个几何体有______条棱.19.写出一个关于三棱柱的正确结论________. 20.已知22m n -=-,则524m n -+的值是_______.21.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.22.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.23.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.24.计算:3-|-5|=____________.25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.已知180AOB COD +=∠∠.(1)如图 1,若90,68AOB AOD ∠=∠=,求BOC ∠的度数; (2)如图 2,指出AOD ∠的补角并说明理由.27.计算:(1)25)(277+-()-(-)-;(2)315(2)()3-⨯÷-.28.解方程 (1)528x +=- (2)4352x x -=+ (3)()4232x x -=-- (4)2151136x x +--= 29.(1)计算:2311113222⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)化简求值:()()()2214121422x x x x --++-,其中3x =-.30.解方程: (1)4365x x -=-; (2)221134x x +-=+. 31.某校办工厂生产一批新产品,现有两种销售方案。

七年级第一学期期末2015-2016学年度质量监测数学试题答案及评分标准

七年级第一学期期末2015-2016学年度质量监测数学试题答案及评分标准

七年级数学试题答案及评分标准 第1页(共3页)2015—2016学年度第一学期期末学业质量评估七年级数学试题答案及评分标准(时间90分钟,满分120分)一、选择题(本题共12小题,每小题选对得3分,满分36分.)二、填空题(本题共6小题,每小题3分,满分18分.)13. 11℃ 14.-1 15.3a 16.1 17.5 18.160三、解答题(本题共7小题,共66分.)19. (本题满分12分,每小题4分) (1)521-(2)-16 (3)2y 67;271420.(本题满分6分)解:去分母得:12﹣2(2x +1)=3(1+x ), 去括号得:12﹣4x ﹣2=3+3x , 移项合并得:﹣7x =﹣7,解得:x =1; …………………6分21. (本题满分8分)解:)531(313322+---+=-=a a a a A B C1531322-+--+=a a a a=6a-16 …………………5分 当a=2时C=12-16=-4 …………………8分 22.(本题满分9分)解:(1)参加调查的学生有20÷36036=200(人);故答案为:200;…………………3分(2)C的人数是:200﹣20﹣80﹣40=60(人),补图如下:…………………6分(3)根据题意得:1200×200608020++=960(人),答:全校上网不超过7小时的学生人数是960人.…………………9分23.(本题满分9分)解:(1)7-(-10)=17 ……………………4分(2) (-1+3-2+4+7-5-10 )+100×7=696 ………………9分24.(本题10分)解:(1)餐桌张数 1 2 3 4 …n可坐人数 6 8 10 12 2n+4……………………2分(2)根据题意有:2n+4=160,移项得:2n=160-4,2n=156,n=78,需78张餐桌拼成一张刚好坐160人的大餐桌.……………………5分(3)如果按本题给出的拼桌的方式,由2n+4=240,解得n=118,………………7分需118张餐桌拼成一张刚好坐240人的大餐桌.如果按下列拼桌的方式,则有4n+2=240,解得n=59.5≈60………………9分只需60张餐桌拼成一张能坐240人的大餐桌.……………………10分25.(本题满分12分)解:(1)设点A的速度为每秒t个单位长度,则点B的速度为每秒4t个单位长度.七年级数学试题答案及评分标准第2页(共3页)依题意有:3t+3×4t=15,解得t=1∴点A的速度为每秒1个单位长度, 点B的速度为每秒4个单位长度. …3分画图……………4分(2)设x秒时,原点恰好处在点A、点B的正中间.根据题意,得3+x=12-4x ………………7分解之得 x=1.8即运动1.8秒时,原点恰好处在A、B两点的正中间………………8分(3)设运动y秒时,点B追上点A根据题意,得4y-y=15,解之得y=5 ………………10分即点B追上点A共用去5秒,而这个时间恰好是点C从开始运动到停止运动所花的时间,因此点C行驶的路程为:20×5=100(单位长度) …………12分七年级数学试题答案及评分标准第3页(共3页)。

驻马店市七年级上期末数学试卷含答案解析

驻马店市七年级上期末数学试卷含答案解析

河南省驻马店市2015~2016学年度七年级上学期期末数学试卷
一、选择题:每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号填入题后括号内
1.﹣的倒数等于()
A.B.﹣C.D.﹣
2.下列各数中,最小的是()
A.﹣0.1 B.0 C.﹣2 D.|﹣3|
3.下列说法正确的是()
A.﹣的系数是﹣2 B.﹣πab2的系数是﹣1,次数是4
C.是多项式D.x3﹣xy﹣1的常数项是1
4.把如图所示的平面图形绕直线L旋转一周,得到的立体图形是()
A.圆柱 B.圆锥 C.球D.棱锥
5.福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()
A.0.242×1010美元B.0.242×1011美元
C.2.42×1010美元 D.2.42×1011美元
6.如图,点M、N是线段AB的三等分点,则下列说法错误的是()
A.AM=MN=NB=AB B.点M是线段AN的中点
C.点N是线段AB的中点 D.AN=BM
7.一个立体图形由4个相同的正方体组成,如果从左面看到的图形如图所示,那么这个立体图形不可能是()。

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )A .49B .59C .77D .1393.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 6.计算(3)(5)-++的结果是( ) A .-8 B .8 C .2 D .-2 7.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y8.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =9.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒C .115︒D .95︒12.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm13.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32bB .a =2bC .a =52b D .a =3b14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 17.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 20.因式分解:32x xy -= ▲ .21.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.22.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____. 23.若2a +1与212a +互为相反数,则a =_____. 24.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.25.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米. 26.方程x +5=12(x +3)的解是________. 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.28.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 29.观察“田”字中各数之间的关系:则c 的值为____________________. 30.若523m xy +与2n x y 的和仍为单项式,则n m =__________.三、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.32.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.33.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数34.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.35.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.38.如图,在数轴上点A 表示数a,点B 表示数b,AB 表示A 点和B 点之间的距离,且a,b 满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:9,故排除A;327-=3-,选项B正确;C. 3-=3,故排除C;--=3,故排除D.D. (3)故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.5.D解析:D【解析】【分析】⊥,利用垂直定义以及对顶角相等进行分析计算得出选由题意分两种情况过点O作OE AB项.【详解】⊥,如图:解:过点O作OE AB由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.6.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.7.B解析:B 【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可. 详解:原式=2x ﹣3y ﹣12x +6y =﹣10x +3y . 故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.A解析:A 【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A .考点:解一元一次方程.9.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.10.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.11.B解析:B 【解析】 【分析】由题意直接根据互补两角之和为180°求解即可. 【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°. 故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.13.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.14.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.15.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m=1,n =3,∴m﹣n =1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183.故答案为:y=﹣20183.【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.18.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大20.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).21.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.22.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.23.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.24.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.25.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.26.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.27.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键28.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.29.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)

七年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′A D ′=16°,则∠EAF 的度数为( ).A .40°B .45°C .56°D .37°2.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点3.2018年10月26日,南通市城市轨道交通2号线一期工程开工仪式在园林路站举行.南通市城市轨道交通2号线一期工程线路总长约为21000m ,将21000用科学记数法表示为( ) A .2.1×104 B .2.1×105 C .0.21×104 D .0.21×105 4.若x 3=是方程3x a 0-=的解,则a 的值是( )A .9B .6C .9-D .6-5.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .36.倒数是-2的数是( ) A .-2B .12-C .12D .27.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是() A .1B .3C .7D .98.﹣3的相反数是( ) A .13-B .13C .3-D .39.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m10.-5的倒数是 A .15B .5C .-15D .-511.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小12.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变13.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A15.未来三年,国家将投入8 500亿元用于缓解群众“看病难,看病贵”问题.将8 500亿元用科学记数法表示为( ) A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元16.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.17.点A 在数轴上表示的数是2,3AB -=,则点B 表示的数为__________.18.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.19.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.20.如图,直线AB ,CD 相交于点O ,∠EOC=70°,OA 平分∠EOC,则∠BOD=________.21.某下水管道工程由甲、乙两个工程队单独铺设分别需要 10 天、15 天完成,如果两队从两端同时施工2天,然后由乙队单独施工,还需多少天完工?设还需 x 天完成,列方程为__________.22.请写出一个系数是-2,次数是3的单项式:________________.23.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.24.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.25.若∠α=70°,则它的补角是 .26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+. 27.计算:(1)253(3)-÷-; (2)1138842⎛⎫-⨯+- ⎪⎝⎭; (3)2357m n n m ---;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦. 28.把边长为1的10个相同正方体摆成如图的形式. (1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积(包括向下的面);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多..可以再添加 个小正方体. 29.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭30.先化简,再求值.22225(3)4(31)a b ab ab a b ---+-,其中2(2)10a b ++-=.31.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程: ①59415x x -=+;②91554y y +-= (1)①中的x 表示 ; ②中的y 表示 .(2)请选择其中一种方法,写出完整的解答过程. 32.解下列方程:(1)76163x x +=-;(2)253164y y---=. 33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<<()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”);()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 35.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 36.如图,相距10千米的A B 、两地间有一条笔直的马路,C 地位于A B 、两地之间且距A 地4千米,小明同学骑自行车从A 地出发沿马路以每小时5千米的速度向B 地匀速运动,当到达B 地后立即以原来的速度返回,到达A 地停止运动,设运动时间为(时),小明的位置为点P .(1)当0.5=t 时,求点P C 、间的距离(2)当小明距离C 地1千米时,直接写出所有满足条件的t 值 (3)在整个运动过程中,求点P 与点A 的距离(用含的代数式表示)37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.39.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.40.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.41.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 42.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).43.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等.【详解】解:由折叠可知∠DAF=∠D′AF,∠B′AE=∠B′AD′,由题意可知:∠DAF+∠D′AF+∠BAE+∠B′AE-∠B′AD′=∠BAD,∵∠B′A D′=16°∴可得:2×(∠B′FA +∠B′A D′)+2×(∠D′AE +∠B′A D′)-16°=90°则∠B′FA+∠D′AE +∠B′A D′=∠EAF=37°故选D.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.2.D解析:D【解析】【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可.【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A、B、C三点在一条直线上时,当AC=BC时,点 C 是线段 AB 的中点;故错误;故选:D.【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.A解析:A【解析】 【分析】根据科学记数法的定义判断即可. 【详解】根据科学记数法表示方法:21000=2.1×104. 故选A. 【点睛】本题考查科学记数法的表示方法,熟记科学记数法的定义是解题关键.4.A解析:A 【解析】 【分析】把x =3代入方程3x ﹣a =0得到关于a 的一元一次方程,解之即可. 【详解】把x =3代入方程3x ﹣a =0得:9﹣a =0,解得:a =9. 故选A . 【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.D解析:D 【解析】 【分析】由任意三个相邻数之和都是4,可知a 1、a 4、a 7、…a 3n+1相等,a 2、a 5、a 8、…a 3n+2相等,a 3、a 6、a 9、…a 3n 相等可以得出a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,求出x 问题得以解决. 【详解】解:由任意三个相邻数之和都是37可知: a 1+a 2+a 3=4 a 2+a 3+a 4=4 a 3+a 4+a 5=4 …可以推出:a 1=a 4=a 7=…=a 3n+1, a 2=a 5=a 8=…=a 3n+2, a 3=a 6=a 9=…=a 3n , ∴a 3n +a 3n+1+a 3n+2=4∵a 100=a 3×33+1= a 1,a 900=a 3×300= a 3,21009004,1,2a a x a x =-=-= ∴a 2+ a 100+ a 900= a 2+ a 1+ a 3=4 即-4+x-1+2x=4 解得:x=3 故选:D.本题考查规律型中的数字的变化,解题的关键是找出数的变化规律“a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n(n为自然数)”.本题属于基础题,难度不大,解题关键是根据数列中数的变化找出变化规律.6.B解析:B【解析】【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解.【详解】解:12()12-⨯-=∴倒数是-2的数是1 2 -故选:B【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.7.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.D解析:D【分析】【详解】解:设小长方形的宽为a ,长为b ,则有b =n -3a ,阴影部分的周长:2(m -b )+2(m -3a )+2n =2m -2b +2m -6a +2n =4m -2(n -3a )-6a +2n =4m -2n +6a -6a +2n =4m .故选D .10.C解析:C【解析】【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:5的倒数是15-.故选C . 11.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.12.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.13.D解析:D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解:A 、两点之间线段最短,正确;B 、过直线外一点有且只有一条直线与这条直线平行,正确;C 、过直线外一点有且只有一条直线与这条直线垂直,正确;D 、若AC BC =,则点C 是线段AB 的中点,错误;故选:D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.14.A解析:A【解析】【分析】利用“逆移”的定义,找到循环规律,进行比较即可.【详解】解:∵在点1A 开始经过1234A A A A →→→为第一次“逆移”在点4A 开始经过4123A A A A →→→为第二次“逆移”在点3A 开始经过3412A A A A →→→为第三次“逆移”在点2A 开始经过2341A A A A →→→为第四次“逆移”∴每四次“逆移”为一次循环∵20204=505÷∴第2020次“逆移”为:2341A A A A →→→∴经过2020次“逆移”,最终到达的位置是1A故选:A【点睛】本题考查了规律的寻找,正确找出循环规律是解题的关键.15.B解析:B【解析】【分析】科学记数法的一般形式为:a ×10n ,在本题中a 应为8.5,10的指数为4-1=3.【详解】解:8 500亿元= 8.5×103亿元故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题16.2x+8=3x-12【解析】试题解析:设共有x位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.解析:2x+8=3x-12【解析】试题解析:设共有x位小朋友,根据两种分法的糖果数量相同可得:2x+8=3x-12.故答案为:2x+8=3x-12.17.或【解析】【分析】首先根据题意,在数轴上表示出点A,根据AB=3,就可得到B表示的数.【详解】解:由题意得,AB=3,即A,B之间的距离是3个单位长度,在数轴上到A的距离是3个单位长度解析:1或5【解析】【分析】首先根据题意,在数轴上表示出点A,根据AB=3,就可得到B表示的数.【详解】解:由题意得,AB=3,即A,B之间的距离是3个单位长度,在数轴上到A的距离是3个单位长度的点有两个,分别表示的数是-5或1;故答案为:-5或1.【点睛】本题考查数轴,“数”和“形”结合起来,可把很多复杂的问题转化为简单的问题,解题关键是在学习中要注意培养数形结合的数学思想.18.3或5【解析】【分析】正确画出图形,有两种情形,根据图形进行求解即可.【详解】当点M在点O右边时,如图,∵O是AB中点,AB=8,∴OB=AB=4,∵OM=1,∴BM=OB﹣OM解析:3或5【解析】【分析】正确画出图形,有两种情形,根据图形进行求解即可.【详解】当点M在点O右边时,如图,∵O是AB中点,AB=8,∴OB=12AB=4,∵OM=1,∴BM=OB﹣OM=3,当点M在点O左边时,如图,∵O是AB中点,AB=8,∴OB=12AB=4,∵OM=1,∴BM=OB+OM=5,故答案为3或5.【点睛】本题考查了线段中点的定义、线段的和差,正确画图是解题的关键.注意点M可以在点O 的左、右两种情形.19.两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.解析:两点之间线段最短【解析】田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短,故答案为两点之间线段最短.20.35°【解析】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角解析:35°【解析】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.21.+=1【解析】【分析】由乙队单独施工,设还需x天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程即可.【详解】由乙队单独施工,设还需x天解析:210+215x=1【解析】【分析】由乙队单独施工,设还需x天完成,题中的等量关系是:甲工程队2天完成的工作量+乙工程队(x+2)天完成的工作量=1,依此列出方程即可.【详解】由乙队单独施工,设还需x天完成,根据题意得210+215x+=1,故答案为:210+215x+=1【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解析:-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.23.3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序解析:3【解析】【分析】将x=48代入运算程序中计算得到输出结果,以此类推总结出规律即可得到第2020次输出的结果.【详解】将x=48代入运算程序中,得到输出结果为24,将x=24代入运算程序中,得到输出结果为12,将x=12代入运算程序中,得到输出结果为6,将x=6代入运算程序中,得到输出结果为3,将x=3代入运算程序中,得到输出结果为6.∵(2020-2)÷2=1009,∴第2020次输出结果为3.故答案为:3.【点睛】本题考查了代数式求值,弄清题中的运算程序是解答本题的关键.24.15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解. 【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∴=(∠B解析:15【解析】【分析】因为∠BAC=60°, ∠DAE=45°,根据角的和差关系及三角板角的度数求解.【详解】解:∵∠DAB=∠BAC-∠DAC, ∠EAC=∠DAE-∠DAC∠-∠∴DAB EAC=(∠BAC-∠DAC)-(∠DAE-∠DAC)=∠BAC-∠DAC- ∠DAE+∠DAC=∠BAC-∠DAE∵∠BAC=60°, ∠DAE=45°∠-∠=60°-45°=15°.∴DAB EAC【点睛】本题考查角的和差关系,根据和差关系将角进行合理的等量代换是解答此题的关键.25.110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.解析:110°.【解析】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.三、解答题26.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.27.(1)8;(2)9;(3)58m n --;(4)22x xy +【解析】【分析】(1)有理数的混合运算,先做乘方,然后做乘除,最后做加减;(2)利用乘法分配律使得运算简便;(3)整式加减,合并同类项进行计算;(4)整式的加减混合运算,先去括号,然后合并同类项.【详解】解:(1)253(3)-÷- =59(3)-÷-=53+=8;(2)1138842⎛⎫-⨯+- ⎪⎝⎭ =113888842-⨯-⨯+⨯=1212--+=9;(3)2357m n n m ---=58m n --;(4)()2242x xy xy x xy ⎡⎤--+--⎣⎦ =224()2x xy xy x xy +---=2242x xy xy x xy +-+-=22x xy +.【点睛】本题考查有理数的混合运算,整式的加减混合运算,掌握计算顺序及法则,准确计算是本题的解题关键.28.(1)见解析;(2)38;(3)4.【解析】【分析】(1)根据三视图的画法画出三视图即可;(2)分别求出前后左右上下一共有几个面,再计算它们的和即可;(3)保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,再计算放置小正方体的和即可.【详解】(1) 该几何体的主视图、左视图、俯视图如图所示:(2)该几何体表面积为6+6+6+6+7+7=38;(3) 要保持这个几何体的左视图和俯视图不变,可以在第二层第二排(从左向右数)的小正方体上放置1个小正方体,第三排小正方体上放2个小正方体,在第三层第三排的小正方体上放1个小正方体,所以可放置小正方体的个数为1+2+1=4.【点睛】本题考查组合体的三视图,解题的关键是计算出当左视图和俯视图不变时,可以在每一层上放置的小正方体数.29.(1)12;(2)79. 【解析】【分析】(1)按照整数的运算法则运算即可.(2)按照分数的运算法则运算即可.【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=. (2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.30.3a 2b-ab 2+4;18.【解析】【分析】先解出a 与b 的值,再化简代数式代入求解即可.【详解】 根据2(2)10a b ++-=,可得:a=-2,b=1. 22225(3)4(31)a b ab ab a b ---+-=15a 2b-5ab 2+4ab 2-12a 2b+4=3a 2b-ab 2+4将a=-2,b=1代入得:原式=3×(-2)2×1-(-2)×12+4=12+2+4=18.【点睛】本题考查代数式的化简求值,关键在于先通过非负性求出a,b 的值.31.(1)x 表示小组人数,y 表示计划做“中国结”数;(2)小组共有24人,计划做111个“中国结”.【解析】【分析】(1)根据①所列方程分析出x 表示小组人数;根据②所列方程分析出y 表示“中国结”的总个数;(2)根据解应用题的步骤,设,列,解,答步骤写出完整的解答过程.【详解】解:(1)x 表示小组人数,y 表示计划做“中国结”数(2)方法①设小组共有x 人根据题意得:59415x x -=+解得:24x =∴59111x -=个答:小组共有24人,计划做111个“中国结”;方法②计划做y 个“中国结”, 根据题意得:91554y y +-= 解得:y=111∴111+9=245人 答:小组共有24人,计划做111个“中国结”.【点睛】本题考查一元一次方程的应用,由实际问题抽象出一元一次方程,根据解应用题的步骤解答问题是关键.32.(1)x =1;(2)y =13.【解析】【分析】根据一元一次方程的解题步骤解出即可.【详解】(1)解:10x =10x =1.(2)解:122(25)3(3)y y --=--y =-13y =13.【点睛】本题考查一元一次方程的解法,关键掌握解题方法,特别是去分母.33.(1)908t ;-(2)152744t t ==,(3)①5或10,②3∠NOD +4∠BOM =270°. 【解析】【分析】(1)把旋转前∠NOD 的大小减去旋转的度数就是旋转后的∠NOD 的大小.(2)相对MO 与CO 的位置有两种情况,所以要分类讨论,然后根据∠NOD =4∠COM 建立关于t 的方程即可.(3)①其实是一个追赶问题,分MO 没有追上CO 与MO 超过CO 两种情况,然后分别列方程即可.②分别用t 的代数式表示∠NOD 和∠BOM ,然后消去t 即可得出它们的关系.【详解】(1)∠NOD 一开始为90°,然后每秒减少8°,因此∠NOD =90﹣8t .故答案为90﹣8t .(2)当MO 在∠BOC 内部时,即t 458<时,根据题意得: 90﹣8t =4(45﹣8t )解得:t 154=; 当MO 在∠BOC 外部时,即t 458>时,根据题意得: 90﹣8t =4(8t ﹣45)解得:t 274=. 综上所述:t 154=或t 274=. (3)①当MO 在∠BOC 内部时,即t 458<时,根据题意得: 8t ﹣2t =30解得:t =5;当MO 在∠BOC 外部时,即t 458>时,根据题意得: 8t ﹣2t =60解得:t =10.故答案为5或10. ②∵∠NOD =90﹣8t ,∠BOM =6t ,∴3∠NOD +4∠BOM =3(90﹣8t )+4×6t =270°. 即3∠NOD +4∠BOM =270°.【点睛】本题一元一次方程和图形变换相结合的题目,考查了一元一次方程的应用,渗透了分类的思想方法.四、压轴题34.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +.。

马店市XX中学-七年级上期末数学试卷含答案解析.doc

马店市XX中学-七年级上期末数学试卷含答案解析.doc

2015-2016学年河南省驻马店市七年级(上)期末数学试卷一.选择题1.如果a与﹣7互为倒数,那么a是()A.0 B.﹣ C.7 D.12.太阳是太阳系的中心天体,是离我们最近的一颗恒星.太阳与地球的平均距离为14960万公里,用科学记数法表示14960万,应记为()A.14.960×108B.1.496×108C.1.496×1010D.0.1496×1093.如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个4.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.245.实数a,b在数轴上对应点的位置如图所示,则必有()A.a+b>0 B.a﹣b<0 C.ab>0 D.<06.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30° B.40° C.50° D.60°7.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°8.四个互不相等整数的积为9,则和为()A.9 B.6 C.0 D.﹣3二.填空题9.若(a+1)2与|b﹣2|互为相反数,则a2+b2= .10.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是.11.定义新运算:对任意实数a、b,都有a⊗b=a2﹣b.例如3⊗2=32﹣2=7,那么2⊗1= .12.请你将“5,4,﹣2,﹣6”这四个数添加“+、﹣、×、÷”和括号进行运算,使其计算结果为24,这个算式可以是.(写出一个即可)13.如图是一个正方体的展开图,将它折叠成正方体后,“建”字的对面是.14.如图,直线AB与CD相交于点O,OE⊥AB,如果∠AOD=65°,那么∠EOC= .15.线段AB=8cm,C是AB的中点,D点在CB上,DB=1.5cm,则线段CD= cm.三.解答题16.计算(1)(﹣﹣)×(﹣60)(2)49×(﹣5)(3)3a2b﹣4ab2﹣4+5a2b+2ab2+7(4)[4×(﹣)+(﹣0.4)÷(﹣)]×1.17.下图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.18.如图,点C在线段AB上,线段AC=8cm,BC=4cm,点M、N分别是AC、BC的中点,求:(1)线段MN的长度.(2)根据(1)的计算过程和结果,设AC+BC=a,其它条件不变,你能猜测出MN的长度吗?请证明你的猜测.19.从2开始,将连续的偶数相加,和的情况有如下规律:2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,2+4+6+8+10+12=42=6×7,…按此规律,(1)从2开始连续2011个偶数相加,其和是多少?(2)从2开始连续n个偶数相加,和是多少?(3)1000+1002+1004+1006+…+2012的和是多少?20.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?21.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)求∠MON的大小,并说明理由;(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM:∠BON=7:11,如图3所示,求x的值.2015-2016学年河南省驻马店市七年级(上)期末数学试卷参考答案与试题解析一.选择题1.如果a与﹣7互为倒数,那么a是()A.0 B.﹣ C.7 D.1【考点】倒数.【分析】根据倒数的定义回答即可.【解答】解:∵a与﹣7互为倒数,∴a=﹣.故选:B.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.太阳是太阳系的中心天体,是离我们最近的一颗恒星.太阳与地球的平均距离为14960万公里,用科学记数法表示14960万,应记为()A.14.960×108B.1.496×108C.1.496×1010D.0.1496×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14960万=1 4960 0000=1.496×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.4.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为()A.6 B.8 C.12 D.24【考点】由三视图判断几何体.【专题】压轴题.【分析】找到主视图中原几何体的长与高让它们相乘即可.【解答】解:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选:B.【点评】解决本题的关键是根据所给的左视图和俯视图得到主视图的各边长.5.实数a,b在数轴上对应点的位置如图所示,则必有()A.a+b>0 B.a﹣b<0 C.ab>0 D.<0【考点】实数大小比较.【专题】图表型.【分析】先由数轴上a,b两点的位置确定a,b的取值范围,再逐一验证即可求解.【解答】解:由数轴上a,b两点的位置可知0<a<1,b<﹣1,A、根据异号的两个数相加,取绝对值较大的数的符号,知a+b<0,故A选项错误;B、在数轴上右边的数总比左边的数大,所以a﹣b>0,故B选项错误;C、因为a,b异号,所以ab<0,故C选项错误;D、因为a,b异号,所以<0,故D选项正确.故选:D.【点评】本题主要考查了实数的大小的比较,应先根据数轴的特点判断两个数的取值范围,再根据数的运算法则进行判断正误,属较简单题目.6.如图,∠AOC和∠DOB都是直角,如果∠AOB=150°,那么∠DOC=()A.30° B.40° C.50° D.60°【考点】角的计算.【专题】计算题.【分析】根据图象∠AOB等于两个直角的和减去∠COD计算.【解答】解:∠DOC=90°+90°﹣∠AOB=180°﹣150°=30°.故选A.【点评】本题注意,∠COD是两个直角重叠的部分.7.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20° B.25° C.30° D.70°【考点】角的计算;角平分线的定义.【专题】计算题;压轴题.【分析】先根据平角的定义求出∠COB的度数,再由OD平分∠BOC即可求出∠2的度数.【解答】解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选D.【点评】本题考查的是平角的定义及角平分线的定义,熟知以上知识是解答此题的关键.8.四个互不相等整数的积为9,则和为()A.9 B.6 C.0 D.﹣3【考点】有理数的乘法;有理数的加法.【分析】根据题意可得出这四个数的值,继而可以确定这四个数的和.【解答】解:由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和﹣3,∴四个数为:1,﹣1,3,﹣3,和为0.故选C.【点评】本题考查有理数的乘法运算,关键在于根据题意判断四个数的值,注意读清题意,题干已把这四个数限定在很小的范围.二.填空题9.若(a+1)2与|b﹣2|互为相反数,则a2+b2= 5 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,计算即可.【解答】解:由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2,则a2+b2=5,故答案为:5.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.10.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是41 .【考点】规律型:数字的变化类.【专题】压轴题;规律型.【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×(底数﹣1)+1,问题得以解决.【解答】解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,43=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故答案为:41.【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口.11.定义新运算:对任意实数a、b,都有a⊗b=a2﹣b.例如3⊗2=32﹣2=7,那么2⊗1= 3 .【考点】有理数的混合运算.【专题】新定义.【分析】根据公式a⊗b=a2﹣b求2⊗1的值,也相当于a=2,b=1时,代入a2﹣b求值.【解答】解:根据公式a⊗b=a2﹣b得:2⊗1=22﹣1=4﹣1=3.故答案为:3.【点评】此题主要考查了有理数的混合运算,关键是看懂a⊗b=a2﹣b的运算方法.12.请你将“5,4,﹣2,﹣6”这四个数添加“+、﹣、×、÷”和括号进行运算,使其计算结果为24,这个算式可以是4×5﹣[(﹣6)﹣(﹣2)]或﹣2﹣4﹣5×(﹣6).(写出一个即可)【考点】有理数的混合运算.【专题】开放型.【分析】此题是一个计算组合题,由已知“5,4,﹣2,﹣6”这四个数,(1)5和﹣6怎样相乘等于30,4和﹣2相加怎样等于﹣6,然后相加得24.(2)4×5=20,﹣6与﹣2怎么计算等于4,然后相加得24.【解答】解:4×5﹣{(﹣6)﹣(﹣2)}=20﹣(﹣4)=20+4=24.﹣2﹣4﹣5×(﹣6)=﹣6+30=24.故答案为:4×5﹣{(﹣6)﹣(﹣2)}或﹣2﹣4﹣5×(﹣6).【点评】此题是一个开放型题目,主要考查学生运用运算符号按要求组合算式,关键是根据已知数字确定运用什么运算符号.13.如图是一个正方体的展开图,将它折叠成正方体后,“建”字的对面是社.【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解答即可.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以“建”字的对面是“社”.故答案为:社.【点评】此题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.如图,直线AB与CD相交于点O,OE⊥AB,如果∠AO D=65°,那么∠EOC= 25°.【考点】垂线.【专题】计算题.【分析】由已知条件和观察图形可知∠EOC与∠COB互余,∠COB与∠AOD是对顶角,利用这些关系可解此题.【解答】解:∵∠AOD=∠COB(对顶角相等),∠AOD=65°,∴∠COB=65°;又∵OE⊥AB,∴∠EOC=90°﹣∠COB=25°.故答案是:25°.【点评】本题主要考查了垂线定义的应用.本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.15.线段AB=8cm,C是AB的中点,D点在CB上,DB=1.5cm,则线段CD= 2.5 cm.【考点】比较线段的长短.【专题】计算题.【分析】利用中点性质转化线段之间的倍分关系是解题的关键,已知BC=AB,解CD=BC﹣BD即得.【解答】解:根据线段的中点概念,得:BC=AB=4,所以CD=BC﹣BD=4﹣1.5=2.5.故答案为2.5.【点评】理解线段的中点的概念,还要结合图形进行线段的和差计算.三.解答题16.计算(1)(﹣﹣)×(﹣60)(2)49×(﹣5)(3)3a2b﹣4ab2﹣4+5a2b+2ab2+7(4)[4×(﹣)+(﹣0.4)÷(﹣)]×1.【考点】有理数的混合运算;合并同类项.【分析】(1)运用乘法分配律展开后根据乘法运算法则计算可得;(2)由原式变形为(50﹣)×(﹣5),再进一步运用乘法分配律计算可得;(3)合并同类项可得;(4)先计算括号内的乘法和除法,再运用分配律去括号、计算乘法即可得.【解答】解:(1)原式=﹣40+5+4=﹣31;(2)原式=(50﹣)×(﹣5)=﹣250+=﹣249;(3)原式=8a2b﹣2ab2+3;(4)原式=(﹣×+×)×=(﹣+)×=﹣×+×=﹣2+3=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.下图是由几个小立方体搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.【考点】作图-三视图.【专题】作图题.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为4,2,3,左视图有3列,每列小正方形数目分别为2,4,3.据此可画出图形.【解答】解:主视图和左视图依次如下图.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.18.如图,点C在线段AB上,线段AC=8cm,BC=4cm,点M、N分别是AC、BC的中点,求:(1)线段MN的长度.(2)根据(1)的计算过程和结果,设AC+BC=a,其它条件不变,你能猜测出MN的长度吗?请证明你的猜测.【考点】比较线段的长短;直线、射线、线段.【分析】(1)根据点M、N分别是AC、BC的中点,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可,(2)根据点M、N分别是AC、BC的中点,可知CM=AC,CN=BC,再利用MN=CM+CN即可求出MN 的长度.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=2cm,∴MN=CM+CN=4+2=6cm,(2)猜测MN=a,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC+BC)=a.【点评】本题主要考查比较线段的长短的知识点,理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系.19.从2开始,将连续的偶数相加,和的情况有如下规律:2=1×2,2+4=6=2×3,2+4+6=12=3×4,2+4+6+8=20=4×5,2+4+6+8+10=30=5×6,2+4+6+8+10+12=42=6×7,…按此规律,(1)从2开始连续2011个偶数相加,其和是多少?(2)从2开始连续n个偶数相加,和是多少?(3)1000+1002+1004+1006+…+2012的和是多少?【考点】规律型:数字的变化类.【专题】规律型.【分析】(1)根据题目信息,所给连续偶数的和等于偶数的个数乘以首尾两个偶数的和的一半,求出第2011个偶数,然后进行计算即可得解;(2)根据(1)的计算规律写出即可;(3)根据(2)的表达式用从2到2012的和减去从2到998的和,进行计算即可得解.【解答】解:(1)2=1×2,2+4=6=2×3=2×,2+4+6=12=3×4=3×,2+4+6+8=20=4×5=4×,2+4+6+8+10=30=5×6=5×,2+4+6+8+10+12=42=6×7=6×,…,∵从2开始的连续的第2011个偶数为2×2011=4022,∴从2开始连续2011个偶数相加=2011×=4 046 132;(2)2+4+6+8+…+2n==n(n+1);(3)∵1000÷2=500,2012÷2=1006,∴1000+1002+1004+1006+…+2012=1006×(1006+1)﹣499×(499+1)=1 013 042﹣249 500=763 542.【点评】本题是对数字变化规律的考查,根据所给信息,观察出第一个因数是偶数的个数,第二个因数是首尾两个偶数的和的一半是解题的关键.20.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?【考点】有理数的加减混合运算;正数和负数.【专题】计算题.【分析】(1)以55元为标准记录的8个数字相加,再加上55,即可求出每件衣服的平均价钱,再乘以8,与400元比较,若大于400,则盈利;若小于400,则亏损;(2)若盈利,就用卖衣服的总价钱﹣400就是盈利的钱,若亏损,就用400﹣买衣服的总价钱,就是亏损的钱.【解答】解:根据题意得(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,55×8+(﹣3)=437元,∵437>400,∴卖完后是盈利;(2)437﹣400=37元,故盈利37元.【点评】本题考查的是有理数的加减混合运算,注意相反意义的量的理解.21.如图1,射线OC、OD在∠AOB的内部,且∠AOB=150°,∠COD=30°,射线OM、ON分别平分∠AOD、∠BOC,(1)求∠MON的大小,并说明理由;(2)如图2,若∠AOC=15°,将∠COD绕点O以每秒x°的速度逆时针旋转10秒钟,此时∠AOM:∠BON=7:11,如图3所示,求x的值.【考点】角的计算.【分析】(1)如图(1)所示,按题意,∠MON=∠MOD+∠NOC﹣∠COD=(∠AOD+∠BOC)﹣∠COD=(∠AOB+∠COD)﹣∠COD=60°.即∠MON=60°.(2)由题意得,开始时,∠BOD=105°,∠COD绕点O以每秒x°的速度逆时针旋转10秒钟后,∠BOD=105°﹣10x°;∠AOC=15°+10x°;所以∠BOC=135°﹣10x°,∠AOD=45°+10x°,按题意列出比例关系,即可得出x的值.【解答】解:(1)由题意可知∠AOB=150°,∠COD=30°,OM、ON分别平分∠AOD、∠BOC,∠MON=∠MOD+∠NOC﹣∠COD=(∠AOD+∠BOC)﹣∠COD=(∠AOB+∠COD)﹣∠COD=60°,即可得出∠MON=60°.(2)由题意,∠BOD=105°﹣10x°;∠AOC=15°+10x°;所以∠BOC=135°﹣10x°,∠AOD=45°+10x°,又因为∠AOM:∠BON=7:11,且OM、ON分别平分∠AOD、∠BOC,所以∠AOD:∠BOC=7:11,即(45°+10x°):(135°﹣10x°)=7:11;解之得x=2.5.【点评】本题主要考查学生在学习过程中对角度关系及运算的灵活运用和掌握.此类题目的练习有利于学生更好的对角的理解.。

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2017七上·太原期中) 式子可表示为()A .B .C .D .2. (2分) (2017七上·山西月考) 如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A、B、C表示的数依次是()A . ﹣5,﹣π,B . ﹣π,5,C . ﹣5,,πD . 5,π,﹣3. (2分) (2016七上·逊克期中) 下列各式计算正确的是()A . ﹣32=﹣6B . (﹣3)2=﹣9C . ﹣32=﹣9D . ﹣(﹣3)2=94. (2分) (2019七上·江都月考) 在数轴上与原点的距离等于 2 的点表示的数是()A . 2B . ﹣2C . ﹣1 或 3D . ﹣2 或 25. (2分)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队进行了14场比赛,其中负5场,共得19分,那么这个队胜了()A . 3场B . 4场C . 5场D . 6场6. (2分) (2020七下·西安期末) 如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A . 3B . 4C . 5D . 6二、填空题 (共6题;共8分)7. (1分) (2017七上·抚顺期中) 阅览室某一书架上原有图书20本,规定每天归还图书为正,借出图书为负,经过两天借阅情况如下:(﹣3,+1),(﹣1,+2),则该书架上现有图书________本.8. (1分) (2017七上·召陵期末) 计算:15°37′+42°51′=________9. (1分) (2018七上·萍乡期末) 如图所示,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,线段OC的长度为________.10. (2分) (2016七上·金乡期末) 在时刻8:30时,时钟上时针和分针的夹角为________度.11. (2分) (2019七下·南县期末) 如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为________.12. (1分) (2019七上·怀安月考) 在数轴上到表示-2的点相距8个单位长度的点表示的数为________.三、解答题 (共10题;共79分)13. (10分) (2019七下·邓州期中) 解方程:(1) 7-2(3-x)=3(2x -1)(2)14. (10分) (2019七上·杭锦后旗期中) 计算(1)(2)(3)(4)15. (10分) (2019七上·黑龙江期末) 计算题(1);(2);(3)(4).16. (2分) (2018七上·常熟期中) 先化简,再求值:,其中17. (10分) (2018七上·抚州期末) 小明骑车从家出发,先向东骑行1km到达A村,继续向东骑行4km到达B村,然后向西骑行8km到达C村,最后回到家.(1)以家为原点,以向东方向为正方向,用1 cm表示1 km,画出数轴,并在数轴上表示出A、B、C三个村的位置;(2) C村离A村有多远?(3)小明一共骑行了多少千米?18. (5分) (2020七上·延庆期末) 据北京市交通委介绍,兴延高速公路将服务于2019年延庆世园会及2022年冬奥会.兴延高速南起西北六环双横立交,北至延庆京藏高速营城子立交收费站以北,昌平境内约31千米,延庆境内约11千米,全程的总造价约为159亿元;由于延庆段道路多穿过山区,造价比昌平段每千米的平均造价多3亿元,求延庆段和昌平段的高速公路每千米的平均造价各是多少亿元?19. (15分) (2020八下·汕头期中) “低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程米与时间分钟的关系如图,请结合图象,解答下列问题:(1) a=________, ________, ________;(2)若小军的速度是120米分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?20. (5分)已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM的长.21. (2分) (2017七上·天门期末) 如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.22. (10分) (2020七上·云梦期末) 如图,是一所住宅的建筑平面图(图中长度单位:m).(1)用式子表示这所住宅的建筑面积;(2)若a=4,b=6,求出这所住宅的建筑面积.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共6题;共8分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、解答题 (共10题;共79分)答案:13-1、答案:13-2、考点:解析:答案:14-1、答案:14-2、答案:14-3、答案:14-4、考点:解析:答案:15-1、答案:15-2、答案:15-3、答案:15-4、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:。

2015—2016学年度第一学期期末检测试卷七年级数学试题及答案

2015—2016学年度第一学期期末检测试卷七年级数学试题及答案

2015—2016学年度第一学期期末检测试卷七年级数学2016.1.28一、选择题。

(每题3分,共30分)( )1.-5的绝对值是: A.5 B.51 C.-5 D.0.5 ( )2.当χ=-2时,代数式-χ+1的值是:A.-1B.-3C.1D.3( )3.下列说法中,正确的是:A.直线AB 与直线BA 是同一条直线B.射线OA 与射线AO 是同一条射线C.延长线段AB 到点C ,使AC=BCD. 画直线AB=5cm( )4.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为:A.149×106千米2B. 1.49×108千米2C. 14.9×107千米2D. 0.149×109千米2( )5.图1是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是:(图一) A B C D( )6.下列各组两项中,是同类项的是:A. χy 与-χyB. 51abc 与51ac C.-2χy 与-3ab D. 3χ2y 与3χy 2( )7.如图,数轴上的A 、B 两点分别表示有理数a 、b ,下列式子中不.正确的是A.|b|>|a|B.a -b <0C.-a +b >0D.a +b <0( )8.试从以下事件中选出必然事件:A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球A.这张彩票中大奖B.掷骰子掷得4点C.明天北京下雨D.在装有2个白球、1个红球的袋子中取出2个球,其中至少有一个白球( )9.在下列的代数式的写法中,表示正确的一个是:A.“负χ的平方”记作-χ2B. “y 与311的积”记作311y C.“χ的3倍”记作χ3 D.“a 除以2b 的商”记作b a 2( )10. 如图,3×3方格中的任一行、任一列以及对角线上的数字之和相等,那么m 等于: A.9 B.10 C.13 D.无法确定二、填空题。

15-16七上参考答案1

15-16七上参考答案1

2015—2016学年度第一学期期末考核评价七年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分): 1A 、 2C 、 3D 、 4B 、 5C 、 6B 、 7D 、 8D 、 9A 、 10B 二、填空题(本题共6小题,每小题4分,共24分)::11、46.7510⨯; 12、150 ; 13、-7 14、12; 15、30°; 16、550.三、解答题(一)(本题共3小题,每小题6分,共18分):17、解:原式222636a a a a =--+ ……2分22(23)(66)a a a a =-+-+………………4分=2a - ………………6分18、原式=1113134312⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭…………2分111(31)34312=--- ………………3分111131212=-- ………………4分111(13)1212=-+………………5分5=- ………………6分19、解(1) 12 ………………2分 (2)4 ………………4分 (3)16 ………………6分四、解答题(二)(本题共3小题,每小题7分,共21分): 20、解:去分母,得 122(21)3(1)12x x x +-=-- …2分 去括号,得 12423312x x x +-=-- ……4分 移项、合并同类项,得 1313x =- …………6分 系数化为1,得 1x =- ………………7分21、解:原式22222446x x x x =--+-+- ……………2分22(22)(4)(246)x x x x =-+--++-………4分5x =- ………………5分 155=-⨯………………6分=-1 ………………7分五、解答题(三)(本题共3小题,每小题9分,共27分):23、 解:∵长方形的周长为4a+2b ,其一边长为a ﹣b ,∴另一边长为(4a+2b )÷2﹣(a ﹣b ),………4分即(4a+2b )÷2﹣(a ﹣b )=2a+b ﹣a+b ………………6分 =a+2b . ………………8分故长方形另一边长为a+2b . (9)分24、 解:设欧洲的意向创始成员国有x 个,亚洲的意向创始成员国有(2x-2)个,根据题意,得方程: ………………2分22557x x -++= ………………4分解得:x=18 ………………7分 2x-2=34 ………………8分 答:亚洲和欧洲的意向创始成员国分别有34个和18个。

河南省驻马店地区七年级上学期期末数学试卷

河南省驻马店地区七年级上学期期末数学试卷

河南省驻马店地区七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2015七上·楚雄期中) 在,12,﹣20,0,﹣(﹣5)中,负数的个数有()A . 2个B . 3个C . 4个D . 5个2. (2分)下列几何体中,属于棱柱的有()A . 6个B . 5个C . 4个D . 3个3. (2分)如图,几何体上半部分为正方体,下半部分为圆柱,其左视图为()A .B .C .D .4. (2分)下面平面图形中能围成三棱柱的是()A .B .C .D .5. (2分) (2016七上·灌阳期中) 据2010年第六次全国人口普查公布的数据显示,全桂林市总人口为498.84万人,那么用科学记数法表示为()人.A . 4.98846B . 4.9884×106C . 4.9884×107D . 4.9884×1086. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定7. (2分) (2016七上·东营期中) 已知∠α的补角为125°12′,则它的余角为()A . 35°12′B . 35°48′C . 55°12′D . 55°48′8. (2分)线段a的长是线段b的长的2倍,若a+b=12,则b的相反数是()A . 4B . 8C . -4D . -89. (2分)(2016·平武模拟) 下列运算中,正确的是()A . 2xa+xa=3x2a2B . (a2)3=a6C . 3a•2a=6aD . 3﹣2=﹣610. (2分)(2017·德州) 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A . ﹣ =4B . ﹣ =4C . ﹣ =4D . ﹣ =411. (2分)下列说法正确的是()A . -2不是单项式B . -a表示负数C . 的系数是3D . 不是多项式12. (2分)点C在∠AOB内部,现有四个等式∠COA=∠BOC,∠BOC= ∠AOB,∠AOB=2∠COA,∠AOB=2∠AOC,其中能表示OC是角平分线的等式的个数为()A . 1B . 2C . 3D . 4二、填空题 (共4题;共4分)13. (1分) (2017八下·曲阜期末) 的倒数是________.14. (1分) 340________430 (填“>”“<”或“=”)15. (1分)(2017·锡山模拟) 某商场将一款品牌时装按标价打九折出售,可获利80%,若按标价打七折出售,可获利________%.16. (1分) (2016七上·昌邑期末) 若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为________.三、解答题 (共7题;共71分)17. (10分) (2017七上·高阳期末) 计算(1)(﹣4 )﹣(﹣5 )﹣2 ﹣7(2)﹣42÷(﹣2)3﹣×(﹣)2.18. (10分) (2019七上·宝安期末) 化简求值(1)化简:2(3x2﹣2x+1)﹣(5﹣2x2﹣7x)(2)先化简,再求代数式的值:(a2﹣2ab+b2﹣1)﹣(2a2+2b2﹣3ab),其中a=﹣1,b=19. (10分)解方程.(1) 5x﹣4=﹣7x+8(2) 1﹣ =20. (5分) (2016七上·常州期末) 如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°,求∠EOF的度数.21. (15分)(2017·河北) 编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22. (10分) (2016七上·龙湖期末) 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?23. (11分) (2016七下·萧山开学考) 如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为________.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共71分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷

河南省驻马店地区七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算中,正确的是()A . a2a3=a5B . (a2)3=a5C . a6a2=a3D . a6-a2=a42. (2分) (2017·乐山) 随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A . 1.2×109B . 12×107C . 0.12×109D . 1.2×1083. (2分)若 =25, =3,则a+b=()A . -8B . ±8C . ±2D . ±8或±24. (2分)组成多项式的单项式是下列几组中的()A .B .C .D .5. (2分)(2019·昆明模拟) 如图是由五个相同的小正方体搭成的一个几何体,它的左视图是()A .B .C .D .6. (2分)(2018·邯郸模拟) 如图,若∠1=50°,则∠2的度数为()A . 30°B . 40°C . 50°D . 90°7. (2分)如图,下列能判定AB∥CD条件有()个、( 1 )∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A . 4B . 3C . 2D . 18. (2分) (2016七上·嵊州期末) 方程2x=6的解是()A . 4B .C . 3D . ﹣39. (2分)如图所示,直线AB和CD相交于点O,OE、OF是过点O的射线,其中构成对顶角的是()A . ∠AOF和∠DOEB . ∠EOF和∠BOEC . ∠COF和∠BODD . ∠BOC和∠AOD10. (2分) (2018七上·揭西月考) 将正整数按如图所示的位置顺序排列,根据图中的排列规律,2018应在()A . A位B . B位C . C位D . D位二、填空题 (共10题;共16分)11. (1分) (2019七上·安陆月考) 将有理数0,,2.7,﹣4,0.14用“<”号连接起来应为________.12. (6分) (2019七上·厦门月考) 计算下列各题:________; ________;________; ________;________; ________.13. (2分)如图所示,已知四边形ABCD中,∠A=95°,∠D=100°,外角∠ABE=70°,则∠ABC=________,∠C=________.14. (1分) (2017七上·甘井子期末) 若5xm+1y5与3x2y5是同类项,则m=________.15. (1分) (2018七上·长春月考) 若,,则当与异号时, ________.16. (1分) (2019七下·眉山期末) 若x<y,x2+y2=3,xy=1,则x-y=________.17. (1分) (2019七上·句容期末) 如果关于x的方程和方程的解相同,那么a的值为________.18. (1分) (2019七上·天台月考) 数轴上和表示-1的点的距离等于4的点表示的有理数是________19. (1分)某商场将一件商品在进价的基础上加价80%标价,再八折出售,售价为144元,则这件商品的进价为________元.20. (1分) (2020七上·永春期末) 一个角的补角比它的余角的三倍少10度,这个角是________度.三、解答题 (共7题;共65分)21. (20分) (2019七上·秀英期中) 计算:(1)(2)(3)(4)()×(-60)(简便方法)22. (5分) (2017七下·淅川期末) ﹣ =1.2.23. (5分)已知实数m是关于x方程的一根,则代数式值为多少?24. (10分)将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.25. (10分) (2018七上·沙河期末) 已知线段AB和CD,(1)请用尺规按要求作图;延长线段AB到E,使BE=2CD;(2)在(1)所作的图中,N为AE中点,若AB=6,CD=4,求BN.26. (10分) (2018七上·唐山期中) 如图,点O在直线AB上,OD平分∠AOC,OE平分∠BOC.(1)求∠DOE;(2)若∠BOC-110°,求∠AOE.27. (5分) (2016七上·吴江期末) 某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间)豪华(元/间)160400三人间双人140300间一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共16分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共65分) 21-1、答案:略21-2、答案:略21-3、答案:略21-4、答案:略22-1、答案:略23-1、答案:略24-1、24-2、25-1、25-2、答案:略26-1、答案:略26-2、答案:略27-1、答案:略。

河南省驻马店地区七年级上学期期末数学试卷

河南省驻马店地区七年级上学期期末数学试卷
C . 30x-8=31x-26
D . 30x+8=31x-26
10. (2分) 如图是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”( )
A . 64
B . 60
C . 56
参考答案
一、 选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、 细心填一填 (共8题;共9分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、 解答题 (共8题;共82分)
19-1、
19-2、
20-1、
河南省驻马店地区七年级上学期期末数学试卷
姓名:________班级:________ 成绩:________
一、 选择题 (共10题;共20分)
1. (2分) 下列各数中,最大的数是( )
A . -2
B . 0
C .
D . -3
2. (2分) 下列各式中,正确的是( )
A . t2•t3=t5
B . t4+t2=t6
(1) 求抛物线M1的表达式和点D的坐标
(2) 点P是抛物线M1对称轴上一动点,当△CPA为等腰三角形时,求所有符合条件的点P的坐标;
(3) 如图,现将抛物线M1进行平移,保持顶点在直线CD上,若平移后的抛物线与射线BD只有一个公共点.设平移后抛物线的顶点横坐标为m,求m的值或取值范围.。

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 2.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+63.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34 4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣75.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1126.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm7.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+5 8.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣19.点()5,3M 在第( )象限. A .第一象限B .第二象限C .第三象限D .第四象限10.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x人到甲处,则所列方程是()A.2(30+x)=24﹣x B.2(30﹣x)=24+xC.30﹣x=2(24+x)D.30+x=2(24﹣x)11.图中是几何体的主视图与左视图, 其中正确的是( )A.B.C.D.12.A、B两地相距450千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t小时,两车相距50千米,则t的值为()A.2或2.5 B.2或10 C.2.5 D.213.如图的几何体,从上向下看,看到的是()A.B.C.D.14.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱15.把1,3,5,7,9, 排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是()A.1685 B.1795 C.2265 D.2125二、填空题16.把53°30′用度表示为_____.17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.19.﹣213的倒数为_____,﹣213的相反数是_____. 20.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.21.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________22.如图,若12l l //,1x ∠=︒,则2∠=______.23.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.24.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.25.当x= 时,多项式3(2-x )和2(3+x )的值相等. 26.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 27.方程x +5=12(x +3)的解是________. 28.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 29.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 34.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.35.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案

驻马店市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元 2.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+6 3.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .344.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )A .2B .8C .6D .05.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 26.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个7.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y 8.﹣3的相反数是( )A .13- B .13 C .3- D .39.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.14.2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为__________.15.已知方程22x a ax +=+的解为3x =,则a 的值为__________.16.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.17.当a=_____时,分式13a a --的值为0. 18.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.19.“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是_____.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.学校某兴趣活动小组现有男生30人,女生8人,还要录取女生多少人,才能使女生人数占该活动小组总人数的三分之一?设还要录取女生x 人,依题意列方程得_____.22.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ,它的第n 个单项式是______.23.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.微信运动和腾讯公益推出了一个爱心公益活动:一天中走路步数达到10000步及以上可通过微信运动和腾讯基金会向公益活动捐款,如果步数在10000步及以上,每步可捐....0.0002元;若步数在10000步以下,则不能参与捐款.(1)老赵某天的步数为13000步,则他当日可捐多少钱?(2)已知甲、乙、丙三人某天通过步数共捐了8.4元,且甲的步数=乙的步数=丙步数的3倍,则丙走了多少步?26.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).27.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;28.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值.29.我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各.深圳市教育局督导组为了调查学生对“节约教育”内容的了解学校全面持续开展“光盘行动”程度(程度分为:“A:了解很多”、“B:了解较多”、“C:了解较少”、“D:不了解”),对本.我们将这次调查的结果绘制了以下两幅不完整统计图:市某所中学的学生进行了抽样调查根据以上信息,解答下列问题:()1补全条形统计图;()2本次抽样调查了______名学生;在扇形统计图中,求出“D”的部分所对应的圆心角度数.()3若该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.30.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.(1)求AC的长;(2)若点E在直线AD上,且EA=1,求BE的长.四、压轴题31.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.32.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.33.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n 的式子列式,并计算第n 个图的钢管总数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元.故选D .【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】利用完全平方式的结构特征即可求出m 的值.【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式,∴2m =±6,解得:m =±3,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.3.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.4.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.5.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.6.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.D解析:D【解析】试题分析:设盈利的这件成本为x元,则135-x=25%x,解得:x=108元;亏本的这件成本为y元,则y-135=25%y,解得:y=180元,则135×2-(108+180)=-18元,即赔了18元.考点:一元一次方程的应用.11.B解析:B【解析】【分析】由CB=4cm,DB=7cm求得CD=3cm,再根据D是AC的中点即可求得AC的长【详解】∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3(cm),∵D是AC的中点,∴AC=2CD=2×3=6(cm).故选:B.【点睛】此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.解析:684×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将 2684 亿用科学记数法表示为:2.684×1011.故答案为:2.684×1011【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x、y的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=±2,当x=﹣3,y=2时,x+y=﹣1,当x=﹣3,y=﹣2时,x+y=﹣5,所以,x+y的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x、y的值.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.19.从不同的方向观察同一物体时,看到的图形不一样.【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图, “横看成岭侧成峰”从数解析:从不同的方向观察同一物体时,看到的图形不一样.【解析】【分析】根据三视图的观察角度,可得答案.【详解】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.【点睛】本题考查用数学知识解释生活现象,熟练掌握三视图的定义是解题的关键.20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.8+x =(30+8+x ).【解析】【分析】设还要录取女生人,则女生总人数为人,数学活动小组总人数为人,根据女生人数占数学活动小组总人数的列方程.【详解】解:设还要录取女生人,根据题意得:解析:8+x =13(30+8+x ). 【解析】【分析】设还要录取女生x 人,则女生总人数为8x +人,数学活动小组总人数为308x ++人,根据女生人数占数学活动小组总人数的13列方程. 【详解】解:设还要录取女生x 人,根据题意得:18(308)3x x +=++. 故答案为:18(308)3x x +=++. 【点睛】此题考查了由实际问题抽象出一元一次方程,关键是准确表示还要录取后女生的人数及总人数.22.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.23.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子; 图2有5×2-1=9个黑棋子; 图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.24.-7【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题25.(1)2.6元;(2)7000步.【解析】【分析】(1)用步数×每步捐的钱数0.0002元即可;(2)设丙走了x步,则甲走了3x步,乙走了3x步,分两种情况讨论即可.【详解】(1)13000×0.0002=2.6元,∴他当日可捐了2.6元钱;(2)设丙走了x步,则甲走了3x步,乙走了3x步,由题意得若丙参与了捐款,则有0.0002(3x+3x+x)=8.4,解之得:x=6000,不合题意,舍去;若丙没参与捐款,则有0.0002(3x+3x)=8.4,解之得:x=7000,符合题意,∴丙走了7000步.本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.本题也考查了分类讨论的数学思想. 26.(1)A款瓷砖单价为80元,B款单价为60元.(2)买了11块A款瓷砖,2块B款;或8块A款瓷砖,6块B款.(3)B款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.27.(1)经过30秒时间P、Q两点相遇;(2)点Q是速度为613cm/秒或1013cm/秒.【解析】【分析】(1)设经过t秒时间P、Q两点相遇,列出方程即可解决问题;(2)分两种情形求解即可.【详解】(1)设经过t秒时间P、Q两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P、Q两点相遇.(2)∵AB=60cm,PA=3PB,∴PA=45cm,OP=65cm.∴点P、Q的运动时间为65秒,∵AB=60cm,13AB=20cm,∴QB=20cm或40cm,∴点Q是速度为10+2065=613cm/秒或10+4065=1013cm/秒.【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.28.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.【详解】解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元);第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元),差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键.29.() 120人;(2)100 ,18;()3400名.【解析】【分析】(1)根据A 的人数和A 所占的百分比即可得到抽样调查的学生总人数,根据各了解程度的人数之和等于总人数即可求出C 对应的人数即可补全条形图;(2)利用360乘以D 程度的人数所占的比例即可求得答案;(3)用2000乘以C 的百分比即可求得答案【详解】解:(1)由题意可知:被调查的学生总人数为3030%100()÷=人,则C 对应的人数为100(30455)20()-++=人,补全图形如下:()2由()1知本次抽样调查了100名学生,则扇形统计图中,“D”的部分所对应的圆心角度数为536018100⨯=, ()3估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有202000400()100⨯=名本题主要考查了条形统计图和扇形统计图的综合运用,明确不同统计图的数据所代表的意义是解题关键,条形统计图清楚地表示每个项目的数据,扇形统计图清楚的反映部分占总体的百分比大小.30.(1)5;(2)BE的长为8或6【解析】【分析】(1)由中点的定义可得CD=2BD,由BD=2可求CD的长度,最后根据线段的和差即可解答;(2)由于点E在直线AD上位置不确定,需分E在线段DA上和线段AD的延长线两种情况解答.【详解】解:(1)∵点B为CD的中点,BD=2,∴CD=2BD=4,∵AD=9,∴AC=AD﹣CD=9﹣4=5;(2)若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=,9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.【点睛】本题考查的是线段的中点、线段的和差计算等知识点,根据题意画出图形并进行分类讨论是解答本题的关键.四、压轴题31.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.32.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12O F•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A . 144 B . 153 C . 198 D . 216
二、 填空题 11. 计算:(﹣2)3﹣|﹣5|=________. 12. 计算一个式子,计算器上显示的结果是1.596594,将这个数结果精确到0.01是________. 13. 若∠α=59°21′36″,这∠α的补角为________. 14. 对单项式“0.6a”可以解释为:一件商品原价为a元,若按原价的6折出售,这件商品现在的售价是0.6a元,请你对“0.
18. 19. 20. 21.
22.
23.
24.
25. 26. 27.

(1) 把﹣16,9,16,﹣5,﹣9,5分别填入图中的六个小正方形中;
(2) 若某相对两个面上的数字分别为

﹣5,求x的值.
24. 如图,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1) 请你数一数,图中有个小于平角的角; (2) 若∠AOC=50°,则∠COE的度数=,∠BOE的度数=; (3) 猜想:OE是否平分∠BOC?请通过计算说明你猜想的结论. 25. 七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分. (1) 小红同学参加了竞赛,成绩是90分,请问小红在竞赛中答对了多少道题? (2) 小明也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小明有没有可能拿到100分?试用方程
已知2016年10月份该市居民老李家用电200度,交电费120元;2016年9月份老李家交电费157元. (1) 表中a的值为; (2) 求老李家2016年9月份的用电量; (3) 若2016年8月份老李家用电的平均电价为0.7元/度,求老李家2016年8月份的用电量.
参考答案
1.
2.
3.
4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
三、 解答题
21. 计算题: (1) ﹣22﹣(﹣2)2+24÷(﹣2)× ﹣32
(2)
.
22. 化简求值. 3x2y﹣[2xy2﹣6(xy﹣ x2y)+4xy]﹣2xy,其中3(x+2)2+|y﹣1|=0.
23. 如图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数
的知识来说明理由.
26. 把一副三角板的直角顶点O重叠在一起.
(1) 问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是; (2) 拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少? (3) 问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数. 27. 某市自2015年1月1日起对居民生活用电实行阶梯电价,具体收费标准如下表:
茶叶,如果商家以每包 元的价格卖出这种茶叶,卖完后,这家商店( )
A . 盈利了 B . 亏损了 C . 不赢不亏 D . 盈亏不能确定 10. 如图是某月的日历,在此日历上用一个正方形圈出9个数(如6、7、8、13、14、15、20、21、22).若圈出的9 个数中,最大数与最小数的和为32,则这9个数的和为( )
6a”再赋予一个含义:________ 15. 在点O北偏西60°的某处有一点A,在点O南偏西20°的某处有一点B,则∠AOB的度数是________
16. 如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB,则∠FEB的度数是__ ______.
17. 某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做 了x天,乙工作的天数为 ________由此可列出方程 ________(写过程)
18. 在如图所示的运算流程中,若输出的数y=5,则输入的数x=________.
19. 点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于________
20. 下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第20个图形中有___ _____个实心圆.
河南省驻马店市2015-2016学年七年级上学期数学期末考试试卷
一、 单选题
1. ﹣ 的倒数等于( )
A. B.﹣ C. D.﹣
2. 下列各数中,最小的是( ) A . ﹣0.1 B . 0 C . ﹣2 D . |﹣3| 3. 下列说法正确的是( ) A . ﹣ 的系数是﹣2 B . ﹣πab2的系数是﹣1,次数是4 C .
A . AM=MN=NB= AB B . 点M是线段AN的中点 C . 点N是线段AB的中点 D . AN=BM 7. 一个立体图形由4个相同的正方体组成,如果从左面看到的图形如图所示,那么这个立体图形不可能是( )
A.
B.
C.
D.
8. 若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于( ) A . ﹣8 B . 0 C . 2 D . 8 9. 某商店在甲批发市场以每包m元的价格进了40包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的60包
是多项式 D . x3﹣xy﹣1的常数项是1
4. 把如图所示的平面图形绕直线L旋转一周,得到的立体图形是( )
Байду номын сангаас
A . 圆柱 B . 圆锥 C . 球 D . 棱锥 5. 福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜 首,这一数据用科学记数法可表示为( ) A . 0.242×1010美元 B . 0.242×1011美元 C . 2.42×1010美元 D . 2.42×1011美元 6. 如图,点M、N是线段AB的三等分点,则下列说法错误的是( )
相关文档
最新文档