九年级数学第23章旋转 (2)
最新人教版-数学-九年级上册 第二十三章 旋转教学课件 23.2.2 中心对称图形
3.世界上因为有了圆的图案,万物才显得富有生机,以 下来自现实生活中的图形都有圆,它们看上去是那么美 丽与和谐,这正是因为圆具有轴对称性和中心对称性.
请问以下三个图形中是轴对称图形的有 ①②③,是 中心对称图形的有 ①③ .
一石激起千层浪 ①
汽车方向盘 ②
铜钱 ③
4.如图是3×4正方形网格,其中已有5个小方格涂上 阴影,若再选取标有①,②,③,④中的一个小方 格涂上阴影,使图中所有涂上阴影的小方格组成一 个中心对称图形,则该小方格是 ④ .(填序号)
O
B
C
中心对称图形的定义
把一个图形绕某一个点旋转180°,如果旋转后的图形 能够与原来的图形重合,那么这个图形叫做中心对称图形, 这个点就是它的对称中心.
注意 中心对称图形是指一个图形.
典例精析
例1 下列图形中哪些是中心对称图形?
√(1)
√(2)
√(3)
×(4)
方法总结:
判断一个图形是不是中心对称图形,关键是寻找
方法归纳:由于矩形是中心对称图形, 所以依题意可知△BOF与△DOE关于 点O成中心对称,由此图中阴影部分的 三个三角形就可以转化到直角△ADC 中,易得阴影部分的面积.
当堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( B )
A
B
C
D
2.下列图形中既是轴对称图形又是中心对称图形的是 (C ) A . 锐角 B. 等边三角形 C . 线段 D . 平行四边形
5.如图,在菱形ABCD中,AC、BD为对角线,AC=6, BD=8,则阴影部分的面积为 12 .
6.请你用无刻度的直尺画一条直线把他们分成面积相等 的两部分,你怎样画?
人教版九年级数学上册第23章 旋转 旋转作图
(题图)
本节课你收获了哪些? (如何作出旋转后的图形)
同学们,选择不同的旋转中心、旋转角,可以设计出不同的美 丽图案,多动动你们灵活的小手,设计独一 无二的图案吧!
教材习题: 完成课本62页练习和习题4题,63页7题. 作业本作业: 完成 对应练习. 实践性作业: 随意画一个基本图形,将它作一定的旋转变换,设 计一个美丽的图案.
自主探究
1.请同学们阅读课本60页例题 回答问题:
①旋转中心是哪个点? (点A) ②如何作出△ADE旋转后的图形? (在CB的延长线上取点E',使BE'=DE,连接AE',则△ABE'为旋转后的图形) ③还有其他方法可以作出△ADE旋转后的图形吗? (答案不唯一,如:在CB的延长线上取点E',使∠AE'B=∠AED,则△ABE'为旋转 后的图形)
请同学们在硬纸板上挖一个三角形洞,再令挖一个小洞O 作为旋
转中心,硬纸板下面放一张白纸,先在纸上描出挖掉的这个三角 形的图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖 掉的三角形(△A'B'C'),观察这两个三角形.
你能得到什么结论?
这些图形有什么特点? 它们是如何设计出来的呢?
如果把钟表的指针看成四边形AOBC,如图,它绕点O旋转得到 四边形DOEF.在这个过程中: (1)旋转中心是哪一点?(点O) (2)经过旋转,点A,B分别旋转到什么位置? (点A旋转到点D,点B旋转到点E) (3)图中有哪些相等的线段? (AO=DO,AC=DF,OB=OE,BC=EF) (4)∠AOD和∠BOE有什么数量关系? (∠AOD=∠BOE)
(答案不唯一,略)
小组讨论 1.如图,△AOB绕点O旋转后,点G是点B的对应点, 利用旋转的 性质,你能作出△AOB旋转后的三角形吗? (略)
人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图
6.如图,正方形 OABC 在平面直角坐标系中,点 A 的坐标为(2,0),
将正方形 OABC 绕点 O 顺时针旋转 45°,得到正方形 OA′B′C′,则
点 C′的坐标为( A.( 2 , 2 )
A) B.(- 2 , 2 )
C.( 2 ,- 2 ) D.(2 2 ,2 2 )
7.(2020·烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6), 连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合 (点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4_,__2_)___.
8.如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到, 则点P的坐标为__________(_1_,__-__1_)___________.
易错点:对图形的旋转方式考虑不全面 9.如图,如果正方形CDEF经过旋转后能与正方形ABCD重合,那么 图形所在的平面上可作为旋转中心的点共有_3___个.
角形.
解:如图
4.如图,△ABC绕点O旋转,顶点A的对应点为A′,请画出旋转后的
图形.
解:如图
知识点2:在平面直角坐标系中的图形旋转
5.(孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时
针旋转90°得到点P′,则P′的坐标为(
)D
A.(3,2) B.(3,-1) C.(2,-3) D.(3,-2)
解:(1)如图所示,△A1B1C1 即为所求 (2)如图所示,△A2B2C2 即为所 求 (3)三角形的形状为等腰直角三角形 ,OB=OA1= 16+1 =
17 ,A1B= 25+9 = 34 ,即 OB2+OA12=A1B2,∴三角形的形 状为等腰直角三角形
最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习
第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。
2、旋转的性质(1)对应点到旋转中心的距离相等。
(旋转中心就是各对应点所连线段的垂直平分线的交点。
)(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等。
3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。
4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。
5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
九年级数学上册第23章季第二十三章《旋转》教材分析(人教版)
第二十三章《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.与平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一,同时旋转变换较之前两种变换理解难度稍大,需要的直观想象和抽象能力更强,所以在教学中应更注重这方面循序渐进的培养。
旋转是工具性的知识,旋转变换在平面几何中有着广泛的应用。
在学习基本图形的旋转的过程中,既是为发现旋转的基本性质做准备,也是为后期旋转的应用做铺垫,所以要调动学生的主观能动性,切忌以大量的练习代替对概念的探究与分析。
旋转本章的教学还可以作为初中全等变换教学的一个总结,可以通过引导学生归纳之前学习的平移、轴对称变换的基本性质来总结几何要素,从而明确研究旋转变换的研究对象。
还可以引申探究三种变换的内部关系以帮助学生对这三种变换有一个统领性的,更深刻的认识。
同时在旋转的学习中,也是为后续圆的学习进行铺垫。
值得注意的是,由于知识水平的限制,对于平移变化,在平面直角坐标系中我们可以进行全方位的研究;对于轴对称变换,课标和考试说明中只要求了横平竖直的对称轴,对关于任意直线的对称只是作为拓展内容;而对于旋转,除了中心对称为课标要求,30°,45°,60°,90°的旋转可转化为几何问题来解决,对于任意角度的旋转往往涉及高中知识太多,在初中解析几何中往往以圆为载体出现。
二、主要内容三、课程学习目标(一) 课标要求1.通过具体实例认识平面图形关于旋转中心的旋转,探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2.了解中心对称、中心对称图形的概念,探索它的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分.3.探索线段、平行四边形、正多边形、圆的中心对称性质.4.认识并欣赏自然界和现实生活中的中心对称图形.(二) 2019年中考说明要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.在平面直角坐标系中,知道已知顶点坐标的多边形,经过中心对称(对称中心)为原点后的对应顶点坐标之间的关系,略高要求:能画出简单平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.在平面直角坐标系中,能写出已知顶点坐标的多边形,经过中心对称(对称中心为原点后)的图形的顶点坐标.较高要求:运用旋转的有关内容解决有关问题.运用坐标与图形运动的有关内容解决有关问题.(三)教学要求1.基本要求①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角) 的性质;②通过具体实例认识旋转,能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.⑥了解关于原点对称的点的坐标之间的关系.2.略高要求①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.四、课时安排本章教学时间约需8课时,具体分配如下(仅供参考) :23.1 图形的旋转2课时23.2 中心对称2课时23.3 课题学习图案设计1课时(补充) 旋转的应用2课时数学活动、小结1课时五、教学重点难点重点: 1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标之间的关系.难点: 1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.六、具体教学建议1.注重与学生已学的图形变换(平移、轴对称)的联系,类比学习(可以类比定义的要素,探究性质等),所以在本章学习中不妨花费一些时间来复习。
九年级上册数学第23章《旋转》知识点梳理完整版
【学习目标】九年级数学上册第 23 章《旋转》知识点梳理1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转..点 O 叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点 A 经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A'B'C').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲 B. 乙 C. 丙 D. 丁【答案】B.【解析】因为圆被平分为 8 部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图 1 的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理 O 点也在BB′的垂直平分线上∴两条垂直平分线的交点 O 就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2015•裕华区模拟)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接 OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当 a 为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出 OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD 不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使 OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使 OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知 D 是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A 逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形 ABCD 中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点 D,C,E 三点共线.∴BD+DC=CE+DC=DE.又∵∠DAE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形 ABCD 中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将△BCD绕点D 逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明: ∵AD=CD,∠ADC=60°,∴△BCD 绕点 D 逆时针旋转 60°,得到△EAD, ∴∠BDE=∠CDA=60°,△BCD≌△EAD. ∴BC=AE, BD=DE ,∠DAE=∠DCB, ∴△BDE 为等边三角形. ∴BE=BD.∵在四边形 ABCD 中,∠ABC=30°,∠ADC=60°, ∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°. ∴∠BAE=90°. ∵在 Rt△BAE 中, ,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有 30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形 ABCD 和正方形 AEFG 有一个公共点 A ,点 G 、E 分别在线段 AD 、AB 上(1) 如图连结 DF 、BF ,试问:当正方形 AEFG 绕点 A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例.(2) 若将正方形 AEFG 绕点 A 顺时针方向旋转,连结 DG ,在旋转过程中,能否找到一条线段的长度与线段 DG的长度相等,并画图加以说明. 【答案与解析】(1) 如图, DF 、BF 的长度不是始终相等,当点 F 旋转到 AB 边上时,DF>AD>BF.(2)线段BE=DG如图: ∵正方形 ABCD 和正方形 AEFG∴AD=AB,AG=AE, ∠1+∠2=∠2+∠3 ∴∠DAG=∠BAE ∴△ADG≌△ABE ∴ DG=BE【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】(2015•沈阳)如图,正方形 ABCD 绕点 B 逆时针旋转 30°后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长DA 交 GF 于点 K .若正方形 ABCD 边长为,求 AK 的长?【答案与解析】 解:连接 BH ,如图所示:∵四边形 ABCD 和四边形 BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在 Rt△ABH 和 Rt△EBH 中,,∴Rt△ABH≌△Rt△EBH(HL ), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴AH= ×=1,∴EH=1, ∴FH=﹣1,在 Rt△FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3; 故答案为: 2 3 .6. 如图,已知△ABC 为等腰直角三角形,∠BAC=900,E 、F 是 BC 边上点且∠EAF=45°.求证: .3【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵ △ABC为等腰直角三角形且∠BAC=90°∴ AB=AC,将△CAF 绕点 A 顺时针旋转90°,如图,得到∴∴ ,,,,∴ ,连结,则在,中,∴ ①,又∵ ,∵ .又∵∴ 在与,中,.∴ ②,∴ 由①②得:. 【总结升华】旋转性质:旋转前,后的图形全等.。
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿
人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿一. 教材分析人教版九年级数学上册第二十三章旋转《23.2中心对称》第2课时说课稿,主要讲述了中心对称图形的性质和判定。
本节课的内容是在学生已经掌握了中心对称的概念和基本性质的基础上进行进一步的拓展和应用。
教材通过具体的例题和练习题,使学生能够深入理解中心对称图形的性质,并能够运用这些性质解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于中心对称的概念和基本性质已经有了一定的了解。
但是,学生在应用中心对称性质解决实际问题时,往往会存在一些困惑和困难。
因此,在教学过程中,我需要引导学生通过观察、思考和操作,深入理解中心对称图形的性质,并能够灵活运用这些性质解决实际问题。
三. 说教学目标1.知识与技能:使学生熟练掌握中心对称图形的性质,能够运用性质判定一个图形是否为中心对称图形。
2.过程与方法:通过观察、思考和操作,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的性质和判定。
2.教学难点:如何灵活运用中心对称性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和实物模型进行教学。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生回顾中心对称的概念和基本性质。
2.讲解与示范:讲解中心对称图形的性质,并通过示例演示如何运用性质判定一个图形是否为中心对称图形。
3.学生练习:学生独立完成教材中的练习题,巩固对中心对称性质的理解和运用。
4.小组讨论:学生分组讨论,分享各自的解题方法和思路,互相学习和交流。
5.总结与拓展:总结中心对称图形的性质和判定方法,并给出一些拓展问题,引导学生进一步深入思考。
七. 说板书设计板书设计如下:中心对称图形的性质:1.对称中心:每个点关于对称中心对称。
初中数学人教九年级上册第二十三章旋转-旋转的概念与性质
A C
O
F
D
E
2 旋转的性质
A
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案( △ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
C O
F
E
新课讲解
B D
问题1 在图形的旋转过程中,线段OA
这个定点O称为旋转中心.
O
旋转中心
旋转角 120
P′
转动的角称为旋转角.
如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转 的对应点.
转动的方向分为顺时针与逆时针 .
新课讲解
确定一次图形的旋转时
,
旋转中心
必须明确
旋转角
旋转方向
温馨提示:(1)旋转的范围是“平面内”,其中“旋转中心, 旋转方向,旋转角度”称之为旋转的三要素;(2)旋转变换 同样属于全等变换.
解答:由旋转的性质,得AD=AE,∠DAE=∠BAC=60°,
∴△ADE为等边三角形.
∵AD=5,
∴△ADE的周长为15.
定义 旋转 性质
三要素:旋转中心,旋
转方向和旋转角度
课堂总结
(1)旋转前后的图形全等; (2)对应点到旋转中心的距离相等; (3)对应点与旋转中心所连线段的夹 角等于旋转角
应用
随堂即练
例2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度
得Rt △ADE,点B的对应点D恰好落在BC边上.若AC=3 ,
∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C. 2
人教版数学九年级上册23.1《图形的旋转(2)》教学设计
人教版数学九年级上册23.1《图形的旋转(2)》教学设计一. 教材分析《图形的旋转(2)》是人教版数学九年级上册第23章的一部分,本节内容是在学生已经掌握了图形的旋转的基本概念和性质的基础上进行进一步的学习。
通过本节课的学习,学生将进一步理解图形旋转的性质,并能运用旋转性质解决一些实际问题。
教材通过丰富的实例,引导学生探索图形旋转的性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于图形的旋转已经有了初步的认识。
但是,对于旋转的性质和应用可能还不够深入。
因此,在教学过程中,教师需要根据学生的实际情况,逐步引导学生深入理解旋转的性质,并能够运用旋转性质解决实际问题。
三. 教学目标1.理解图形旋转的性质,掌握旋转的度数、方向和距离等基本概念。
2.能够运用旋转性质解决一些实际问题,提高学生的应用能力。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.旋转的度数、方向和距离的确定。
2.运用旋转性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等方式,自主探索图形旋转的性质。
2.利用多媒体辅助教学,展示图形的旋转过程,帮助学生直观理解旋转的性质。
3.结合实际例子,让学生亲自动手操作,体会旋转的性质,提高学生的实践能力。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些实际例子,如钟表、风扇等,引导学生观察这些物体是如何运动的,引出图形的旋转。
然后提出问题:“图形的旋转有哪些性质呢?”从而引出本节课的主题。
2.呈现(10分钟)展示教材中的几个实例,让学生观察并回答以下问题:a.图形旋转了多少度?b.旋转的方向是什么?c.旋转后的图形与原图形之间的距离是多少?3.操练(10分钟)让学生分组进行讨论,每组选择一个图形进行旋转,并观察旋转后的图形与原图形之间的关系。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第2课时教学设计一. 教材分析旋转是几何学中的一个重要概念,也是初中数学的重要内容。
本节课主要通过图形的旋转,使学生理解旋转的性质,学会如何对图形进行旋转,并能够运用旋转解决一些实际问题。
教材通过丰富的实例,引导学生探索旋转的规律,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换有一定的了解。
但是,对于图形的旋转,可能还停留在直观的认识上,缺乏对旋转性质的深入理解。
因此,在教学过程中,需要通过大量的实例和实践活动,让学生感受旋转的魅力,逐步引导学生掌握旋转的性质和运用。
三. 教学目标1.理解旋转的定义,掌握旋转的性质。
2.学会对图形进行旋转,并能运用旋转解决一些实际问题。
3.培养学生的空间想象能力和抽象思维能力。
4.提高学生的合作交流能力和问题解决能力。
四. 教学重难点1.旋转的性质的理解和运用。
2.对图形进行旋转的方法和技巧。
五. 教学方法1.采用问题驱动法,引导学生主动探索旋转的性质。
2.利用多媒体辅助教学,直观展示图形的旋转过程。
3.采用合作交流的方式,让学生在实践中掌握旋转的方法。
4.通过解决实际问题,培养学生运用旋转解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.旋转的相关教具和模型。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门、旋转木马等,引导学生对旋转现象产生兴趣,进而提出本节课的学习主题——图形的旋转。
2.呈现(10分钟)利用多媒体展示图形的旋转过程,让学生直观感受旋转的魅力。
同时,引导学生观察和思考旋转前后图形的变化,初步感知旋转的性质。
3.操练(10分钟)让学生分组进行实践活动,每组选择一个图形,进行旋转操作,并观察旋转前后的变化。
然后,各组汇报实验结果,共同总结旋转的性质。
4.巩固(10分钟)出示一些练习题,让学生运用旋转的性质进行解答。
新人教版初中数学九年级上册第23章《图形的旋转》教案
探究
二、自主
探究
1.旋转中心不变,改变旋转角
画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.
2.旋转角不变,改变旋转中心
画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30 °的旋转图形.
3、图案设计:(1)、如下图是菊花一叶和中心与圆圈,现以O 为旋转中心画出分别旋转45°、90°、135°的菊花图案.
(2)、 如图,如果上面的菊花一叶,绕下面的点O′为旋转中心, 请同学画出图案,它还是原来的菊花吗?
选择不同的旋转中心、不同的旋转角来进行研究.
学生独立作图,两名同学上台展示。
画完之后相互批改、评价。
从画图中,师生共同归纳出:旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.
(3)旋转前、后的图形全等.
根据图形思考老师所给的问题,然后分组讨论,教师参与讨论交流,最后一组推荐一人上台回答结论
1.OA=OA′,OB=OB′,OC=OC′
2.∠AOA′=∠BOB′=∠COC′
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作,师生共同归纳出旋转的性质。
(5)由平面图形转动而产生的奇妙图案。
2、提出问题:
这些情境中的转动现象,有什么共同特征?
用课件展示图片并显示现实生活中部分物体的旋转现象
学生观察图片
学生思考,归纳它们的共同特征。
让学生再举一些类似的例子
通过这些画面的展示让学生切身感受到我们身边除了平移、轴对称变换等图形变换之外,生产、生活中广泛存在着转动现象,从而产生对这种变换进一步探究的强烈欲望,为本节课探究问题作好铺垫。
(上)图形的旋转(2)(最新)人教版九年级数学全一册课件(17张)-公开课
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
小结:旋转变换是将已知图形绕某一点旋转,构造出新的图 形,可以等量转移图形的相关量,从而将一些分散的条件集 中.
略
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
(2)如图是边长为 1 的小正方形组成的方格纸,△ABC 的三个 顶点都在格点上(每个小方格的顶点叫做格点),请画出△ABC 绕点 O 顺时针旋转 90°后的△A1B1C1.
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
略
【名师示范课】上册第23章 第2课时 图形的旋转(2)-2020秋人教版九年级数 学全一 册课件( 共17张 PPT)- 公开课 课件( 推荐)
精典范例
对点训练
1.如图,将 Rt△ABC 绕点 O 顺时针旋转 60°后得到 Rt△A′B′C′,则∠COC′的度数为 60°.
知识点二:旋转作图的方法 (1)确定旋转中心、旋转方向、旋转 角; (2)作出关键点经旋转后的对应点; (3)按照原图形的顺序连接这些对应点.
2.(1)以点O为旋转中心,将△ABC顺时针方向旋转180°,得到 △A1B1C1,在图中画出△A1B1C1;
人教版初中数学九年级上册第二十三章:旋转(全章教案)
第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。
九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版
(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图
8.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为 A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面 直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到BA′时所扫过的扇形的面积.
2.旋转作图的步骤: (1)首先确定___旋__转__中__心________、旋转方向和____旋__转__角_______; (2)其次确定图形的关键点; (3)将这些关键点沿指定的方向旋转指定的角度; (4)连接____对__应___点_______,形成相应的图形.
练习2:如图,△ABC在网格中,画出△ABC绕点C顺时针旋转90°后 的图形△A1B1C.
(3)∵∠AOB=110°,∠DOC=60°,∴∠AOD=360°-∠AOB- ∠BOC-∠DOC=360°-110°-α-60°=190°-α.∵∠ADO= ∠ADC-∠ODC=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)= 50°.①若使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α =125°;②若使OA=OD,需∠OAD=∠ADO,∴α-60°=50°, ∴α=110°;③若使OD=AD,需∠OAD=∠AOD,∴190°-α=50°, ∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是 等腰三角形
解:(1)图略 (2)点 A′(6,0),C′(0,-6),D′(0,0) (3)∵点 A 的 坐标为(-6,12),点 B 的坐标为(-6,0),∴AB=12,∴线段 BA 旋
转到 BA′时所扫过的扇形的面积=14 π×122=36π
九年级数学第二十三章旋转全章教案 新人教版
九年级数学第二十三章旋转全章教案单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P65 练习1、2、3.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA 全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O 作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连结CD(2)以CB为一边作∠BCE,使得∠BCE=∠ACD(3)在射线CE上截取CB′=CB则B′即为所求的B的对应点.(4)连结DB′则△DB′C就是△ABC绕C点旋转后的图形.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连结EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.•△ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE=14 ∴AE=2211()4 =174 ∵对应点到旋转中心的距离相等且F 是E 的对应点∴AF=174(4)∵∠EAF=90°(与旋转角相等)且AF=AE ∴△EAF 是等腰直角三角形.三、巩固练习 教材P64 练习1、2.四、应用拓展例3.如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L 、M•在AK 的同旁,连接BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD 、四边形AKLM 是正方形∴AB=AD ,AK=AM ,且∠BAD=∠KAM 为旋转角且为90°∴△ADM 是以A 为旋转中心,∠BAD 为旋转角由△ABK 旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.23.1 图形的旋转(3)第三课时教学内容选择不同的旋转中心或不同的旋转角,设计出不同的美丽的图案.教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.重难点、关键1.重点:用旋转的有关知识画图.2.难点与关键:根据需要设计美丽图案.教具、学具准备小黑板教学过程一、复习引入1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.解:(1)连结OA(2)以O点为圆心,OA长为半径旋转45°,得A.(3)依此类推画出旋转角分别为90°、135°、180°、225°、270°、315°的A、A、A、A、A、A.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.解:(1)连结OA,过O点沿OA逆时针作∠AOA′=90°,在射线OA′上截取OA′=OA;(2)用同样的方法分别求出B、C、D、E、F、G、H的对应点B′、C′、D′、E′、F′、G′、H′;(3)作出对应线段A′B′、B′C′、C′D′、D′E′、E′F′、F′A′、A•′G′、G′D′、D′H′、H′A′;(4)所作出的图案就是所求的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.23.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教具、学具准备小黑板、三角尺教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,•对称中心就是旋转中心.(3)旋转后的对应点,便是中心的对称点.解:作法:(1)延长AD,并且使得DA′=AD(2)同样可得:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图23-44所示.答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A 、B 、C 、D 关于中心D 的对称点是A ′、B ′、C ′、D ′,这里的D ′与D 重合.例2.如图,已知AD 是△ABC 的中线,画出以点D 为对称中心,与△ABD•成中心对称的三角形.分析:因为D 是对称中心且AD 是△ABC 的中线,所以C 、B 为一对的对应点,因此,只要再画出A 关于D 的对应点即可.解:(1)延长AD ,且使AD=DA ′,因为C 点关于D 的中心对称点是B (C ′),B•点关于中心D 的对称点为C (B ′) (2)连结A ′B ′、A ′C ′.则△A ′B ′C ′为所求作的三角形,如图所示.C(B ')B(C ')AA 'D三、巩固练习 教材P74 练习2.23.2 中心对称(2)第二课时教学内容1.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(每组推荐一人上台陈述,老师点评)(老师)在黑板上画一个三角形ABC,分两种情况作两个图形(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′和△A′B′C′,如图1和用2所示.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到.解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连结DE、EF、FD.则△DEF即为所求的三角形.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°23.2 中心对称(3)第三课时教学内容1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AO(2)延长AO使OC=AO,延长BO使OD=BO,连结CD则△COD为所求的,如图所示.B ACDOB ACDO二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.B ACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD 必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD 是平行四边形.。
人教版九年级数学上册第23章 旋转 旋转及其性质
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C D 人教版九年级数学(上)第二十三章《旋转》测试卷
一、 选择题:(每小题3分,共21分.)
1.下列各图中,是中心对称图形的是( )
2.如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称图形的是( )
A .①③
B . ①④
C .②③
D .②④
A .①③
B . ①④
C .②③
D .②④
3.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..
与其自身重合的是( ) A.72
B.108
C.144
D.216
(第3题) (第4题)
4. 如图,已知□ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的
坐标为( )
A .(-3,2) B.(-2,-3) C.(3,-2) D.(2,-3) 5. 在下图右侧的四个三角形中,不能由△ABC 经过旋转得到的是( )
6.4张扑克牌如图(1)所示放在桌子上,小新把其中一张旋转180°后得到如图(2)所示,那么他所旋转的牌从左起是( )
A .第一张、第二张
B .第二张、第三张
C .第三张、第四张
D .第四张、第一张
(1) (2) 7.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,AB∥x 轴,BC∥
y 轴,
反比例函数2y x =与2
y x
=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面 积之和是( ) A .2 B .4 C .6 D .8.
二、 填空题:(每小题3分,共24分.)
8.如图是中国共产主义青年团团旗上的图案(图案本身没有字母)则至少旋转__________度后能与原来图形重合.
9.如图,一块等腰直角三角板
ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C ''的位置,使
A C
B ',,三点共线,那么旋转角度的大小为
.
10.下午2点30分时,•时钟的分针与时针所成角的度数为___________. 11.等边三角形至少旋转__________度才能与自身重合。
12.如图(6),△ABC 以点A 为旋转中心,按逆时针方向旋转600
,得△AB 'C ',则△ABB '是_________三角形. 13.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形、正方形、圆、五角星、等边三角形,
其中既是轴
A
B
C
A B C D
x
7题
第8题
C
A '
'
第9题图
对称图形又是中心对称图形的有__________ 14.如图,小新从A 点出发前进10m ,向右转15
,再前进10m ,又向右转15
,…,这样一直走下去,他
第一次回到出发点
A 时,一共走了 m .
15.如图,边长为2的正方形ABCD 绕点A 逆时针旋转30︒得到正方形AB C D ''',图中阴影部分的面积为
__________
C '
B '(6)
C
B
A
三、解答题:(共75分.)
16.(8分) 如图,正方形网格中,△ABC 为格点三角形(顶点都是格点),将△ABC 绕点A 按逆时针方向旋转
90°得到11AB C △.(1)在正方形网格中,作出11AB C △;(不要求写作法) (2)用阴影表示出旋转过程中线段BC 所扫过的图形.
第16题 第17题图
17.(8分.)如图,画出已知图形关于点O 的对称图形.
18.(8分.)如图网格中有一个四边形和两个三角形.
(1)请你画出三个图形关于点O 的中心对称图形;
(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数; 这个整体图形至少旋转多少度与自身重合.
19. (8分)如图,将正方形ABCD 中的△ABD 绕对称中心O
N .请猜想BM 与FN 有怎样的数量关系?并证明你的结论.
20. (9分)如图,△ABC 是等腰三角形,∠ACB=90°,延长BC 到D ,连接AD ,过点B 作BE ⊥AD 于E ,交AC 于F ,在这个图形中,哪两个三角形可以看成是其中一个三角形沿着某一点旋转而得到的?试说明理由.
第14
题图
A
15°
15°
21. (10分)在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连接OC,AD.
(1)求证:OC=AD
;
(2)求OC的长;
(3)求过A、D两点的直线的解析式.
22.(12分)如图,点O是等边三角形ABC内一点,∠AOB=110°,∠BOC=a,将三角形BOC 绕点C顺时针旋转60°,得三角形ADC,连接OD (1)说明三角形COD是等边三角形(2)当a=150°时,判断三角形AOD的形状,理由(3)当a等于多少度是,三角形AOD是等腰三角形?
23.(12
于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如
果能,说明理由并求出此时AC绕点O顺时针旋转的度数.。