七年级数学上册2.2.2《整式的加减(去括号)》课件(新
七年级上册数学精品课件:第二章第二节 整式的加减
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5
求
1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项
2024年秋新沪科版七年级上册数学教学课件 第2章 整式加减 2.2 整式加减 2.2.3 整式加减
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
对于某些特殊式子,可采用“整体代入”进行计算.
随堂演练
1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这 个多项式是( A )
A.-5x-1
B.5x+1
C.-13x-1
D.13x+1
2.计算: (1)-3a+(-2a2)-(-2a)-3a2;
【选自教材P80练习 第1题】
解:(1) -3a+(-2a2)-(-2a)-3a2 = -3a-2a2+2a-3a2 = (-2a2-3a2)+(-3a+2a) = -5a2-a
解:A-B=(-3x2+4x-1)-(2x2+4x) = -5x2-1.
因为-5x20, 所以-5x2-1<0. 所以 A-B<0,即 A<B.
课堂小结
①列代数式
整式加减的步骤 ②去括号
整
③合并同类项
式
加
①化简
减
整式的化简求值 ②值代入化简后的式子
③计算
布置作业
1.从教材习题中选取. 2.完成练习册本课时的习题.
【选自教材P81练习 第2题】
3.(1)求3x2-2x+1与3-2x2-x的和,结果按x的降幂排列; (2)求7-2x+x2与5+3x-2x2的差,结果按x的升幂排列.
解:(1)(3x2-2x+1)+(3-2x2-x) =3x2-2x+1+3-2x2-x =x2-3x+4
(2)(7-2x+x2)-(5+3x-2x2) =7-2x+x2-5-3x+2x2 =2-5x+3x2
人教版数学七年级上册.2整式的加减--去括号课件
96÷ [(12+4)×2 ]
1
2
96÷ [(12+4)×2 ]
=96÷ [16ⅹ2]
=96÷32 =3
请注意
一个算式里,既有小括号,又有中括号,
3
要先算小括号里面的,再算中括号里面的,
最后再算中括号外面的。
想一想,你发现了什么?
96÷12+4×2
1
2
3
96÷(12+4)×2
1
2
96÷ [(12+4)×2 ]
在以后的学习中,还会用到大括号“{
}”,
又称为花括号。大括号是法国数学家韦达在1593年第一
使用的。
化简:
-(+5) = -5 +(+5)= +5 -(-7) = +7
+(-7) = -7
想一想:
根据分配律,你能为下面的式子去括号吗?
表示-a和-c的
(1) +(-a+c)
(2) -(-a-c)
和,即-a+(-c)
解:原式=+1× (-a+c) 解:原式=(-1)×(-a-c)
=1× (-a)+1 × c =-a+c
=(-1) × (-a)+(-1)×(-c)
=a+c
视察这两组算式,看看去括号前后,括号里 各项的符号有什么变化?
+(-a+符c号)不变=-a+c
符号不变
-(-a符-号c)相反 =a+c
符号相反
分析
去括号法则:
如果括号前是“+”号,把括号和它前面的“+”号去 掉,括号里各项符号都不变;
七年级数学上册 2.2.2 去括号 新人教版
2(xy-5xy2)-(3xy2-xy) =2xy-10xy2-3xy2+xy =3xy-13xy2. 当x=-1,y=1时,
原式=3(-1)1-13(-1)12=-3+13=10.
2.2.2去括号
去括号法则
括号前是“+”号,去掉“+和( 原括号内各项不变号;
括号前是“-”号,去掉“-和( 原括号内各项都变号;
• 去括号, 看符号:
• 是“+”号,不变号;
• 是“-”号,全变号
去括号法则依据:乘法分配律
)”后, )”后,
读一读下面顺口溜,你是怎样理解的?
• 去括号, 看符号: • 是“+”号,不变号; • 是“-”号,全变号
如果括号外的因数是负数,去括号后原括号内各项的符 号与原来的符号相反.(符号相反)
特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配 律,可以将式子中的括号去掉,得
(x3)x3, (x3)x3.
这也符合以上发现的去 8) 3x 8
+0.5y2
× ⑶ 3xy-0.5(xy-y2)=3xy-0.5xy+y2 ;
√⑷ (a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3.
例1 化简下列各式
(1 )8 a 2 b (5 a b );
(2 )(5 a 3 b ) 3 (a 2 2 b ).
解:(1)原式= 8 a 2 b 5 a b 13ab
不正确
(2) : 3( x 8) 3x 24 不正确
(3) : 2(6 x) 12 2 x 正确
人教版七年级数学上册《整式》整式的加减PPT课件
B.系数是1,次数是6; D.系数是-1,次数是6;
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1
B.2
C.3
D.4
课堂小结
单项式
概念:数或字母的积组成的式子 (包括单独的数或字母) 系数:单项式中的数字因数 次数:所有字母的指数的和
第四章 整式的加减
4.1 整式
第2课时 多项式和整式
学习目标
1. 掌握多项式、多项式的项、次数以及常数项 的概念. 2. 会准确迅速的确定一个多项式的项数和次数. 3. 归纳出整式的概念会区别单项式和多项式.
学习重难点
学习重点:理解多项式、多项式的项与次 数概念以及整式的概念.
学习难点:正确的找出多项式的项和次数.
单项式与多项式统称为整式。
巩固练习
用多项式填空,并指出它们的项和次数。
(1)一个长方形相邻两边长分别为a,b,则这个长方形的
周长为 2a+2b . (2)m为一个有理数,m的立方与2的差为 m3-2 .
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环 保和安全起见,从第三年年初起不再投放,且每个月回b辆,第
课堂小结
巩固练习
练一练:判断下列代数式是否是单项式?
4b2
,
π,2+3m
,3xy
,
a 3
,
1 t
答:4b2
,
π,3xy
,
a 3
是单项式.
探究新知
学生活动二 【一起探究】
数学七年级上人教新课标2.2整式加减课件
一:基础知识
例1、求单项式5x2y,2x2y,2xy2,4x2y的和. 例3、求5x2y + 2x2y与 2xy2 + 4x2y的和. 例4、求5x2y - 2x2y 与- 2xy2 + 4x2y的和.
例2、求单项式5x2y,-2x2y, - 2xy2,4x2y的和
例5、求5x2y - 2x2y 与 - 2xy2 + 4x2y的差.
1:若两个单项式的和是: 2x2+xy+3y2,一个加式是x2-xy, 求另一个加式.
2:已知某多项式与3x2-6x+5 的差是 4x 2+7x - 6,求此多项 式. 分析:被减式=减式+差
(3x2 -6x+5)+(4x2+7x -6)
3 已知:A=3xm+ym,B=2ym -xm,C=5xm -7ym. 求:1)A -B -C 2)2A -3C 解: (1) A -B-C =(3xm+ym)-(2ym-xm)-(5xm-7ym)
— 例2、求单项式5x2y, 2x2y,— 2xy2 4x2y的和.
解: 5x2y + (-2x2y ) + ( - 2xy2 ) + 4x2y 添括号
= 5x2y - 2x2y - 2xy2 +4x2y
=( 5x2y - 2x2y +4x2y)- 2xy2 = 7x2y - 2xy2
去括号
结合同类项
= 3xm+ym-2ym+xm-5xm +7ym = (ym) = -xm+6ym
已知:A = 3xm+ym, B = 2ym xm, C = 5xm -7ym. 求: 2A -3C 解: 2A - 3C = 2(3xm+ym) - 3(5ym -7xm) = 6xm+2ym -15ym +21 = (6xm-15xm)+(2ym + 21ym ) = -9xm+23ym
人教版七年级数学上册《整式的加减》课件(共12张PPT)
3、多项式 x-5xy2 与-3x+xy2 的和是 -2x-4xy2 ,它们的差 是 4x-6xy2 ,多项式 -5a+4ab3 减去一个多项 后是 2a ,则 这个多项式是 -7a+4ab3 。
整式的加减
知识回顾
用字母表示数
整
整 单项式: 系数、次数 、常数项
的
同类项: 定义、“两相同、两无关”
练习(二)
加
合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
知识回顾
用字母表示数
整
整 单项式: 系数、次数 练习(一)
式
式 多项式: 项、次数、常数项
1 1
n n1
。
.....
2006 (2)计算:1 122 133 1420 12 00 6 02007 7 .
2、小丽做一道数学题:“已知两个多项式A,B,B 为4x2-5x-6,求A+B.”,小丽把A+B看成A-B计 算结果是-7x2+10x+12.根据以上信息,你能求 出A+B的结果吗?
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月11日星期一2022/4/112022/4/112022/4/11 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/112022/4/112022/4/114/11/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/112022/4/11April 11, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
去括号-整式的加减第二课时七年级数学课件
01
02
03
括号前是正号
如果括号前是正号,则直 接去掉括号,括号内的各 项符号不变。
括号前是负号
如果括号前是负号,则去 掉括号后,括号内的各项 符号需要改变。
乘法分配律
在整式加减中,去括号需 要遵循乘法分配律,即 a(b+c) = ab+ac。
去括号在整式加减中的实例解析
单一括号
例如,计算(x+y)+(x-y), 通过去括号得到2x。
详细描述
在数学中,括号通常用于改变运算顺 序或强调某些项的重要性。去括号的 过程就是将这些被括号包围的项进行 简化,以方便计算或表达式的化简。
去括号的法则及其应用
总结词
去括号的法则主要涉及括号前后的加减乘除运算。具体来说 ,括号前是加号时,去括号后各项不变;括号前是减号时, 去括号后各项都变号。
详细描述
根据去括号的法则,如果括号前是加号,如 (a+b),去括号后 仍为 a+b。如果括号前是减号,如 -(a+b),去括号后变为 -ab。这个法则在整式的加减运算中非常重要,可以帮助我们简化 复杂的数学表达式。
去括号的注意事项
总结词
在进行去括号的过程中,需要注意以下几点,如括号内的每一项都要进行运算,括号的加减乘除运算要遵循先乘 除后加减的原则。
THANKS FOR WATCHING
感谢您的观看
详细描述
首先,去括号时必须对括号内的每一项都进行运算,不能只去除部分项。其次,在进行括号的加减乘除运算时, 要遵循先乘除后加减的原则,确保运算的正确性。最后,还要注意符号的变化,特别是当括号前是减号时,去括 号后各项都要变号。
02 整式的加减运算
整式的定义与表示
整式的加减ppt课件
添加标题
某商店原有5袋大 米,每袋大米为x 千克.
添加标题
上午卖出3袋,下 午又购进同样包装 的大米4袋.
添加标题
进货后这个商店有 大米多少千克?
添加标题
例3(2)某商店原有5袋大米, 每袋大米为x千克.
添加标题
上午卖出3袋,下午又购进同 样包装的大米4袋.
添加标题
进货后这个商店有大米多少千 克?
这个式子的结果 是多少?
你是怎样得到的?
类比探究,学习 新知
(1)运用有理数的运算律计算.
100×2+252×2= ;
100×(-2)+252×(-2)=
.
2.类比探究, 学习新知
(1)运用有理数的运算律计算
100×2+252×2 =(100+252)×2=352×2=704; 100×(-2)+252×(-2) =(100+252)×(-2)=352×(-2)=-704.
多项式3x3-2x-5的常数项是____,一次项是 ____, 三次项的系数是_____.二次项的系数是 _____.每项的系数分别是____,每项的次 数分别是____,多项式的次数是___
用多项式__表示奇 数,三个连续奇数 可表示成____ ____
一.用单项式n表示整数,三个连续整数可表示 成________
(4)按同一个字母的降幂(或升幂排列).
例1 合并下列各式的同类项:
(1)xy 2 315.学xy 2以致用,应用新 (2) 3 x 2y 2 x 2y 3 x 知y2 2 x y2
(3)4 a 2 3 b 2 2 a b 4 a 2 4 b 2
练习1 判断下列说法是否正确,正确的
七年数学上册第2章整式的加减22整式的加减第2课时去括号习题课件
【点拨】6m+2n-(3m-n)=6m+2n-3m+n, 6m+2n-3m-n=6m-3m+2n-n,6m+3m-2n-n =(6m+3m)-(2n+n),(6m+3m)-(2n-n)=9m-n, 故丁的运算正确.
【答案】D
12.根据实际问题的要求列出式子,再去括号化简,使 结果达到___最__简_____.
2.把a-(-2b+c)去括号,结果正确的是( B ) A.a-2b+c B.a+2b-c C.a-2b-c D.a+2b+c
3.在等式a-( 是( C )
A.b-c C.-b+c
)=a+b-c中,括号内应填的多项式
B.b+c D.-b-c
4.下列各式中,去括号不正确的是( D ) A.x+2(y-1)=x+2y-2 B.x+2(y+1)=x+2y+2 C.x-2(y+1)=x-2y-2 D.x-2(y-1)=x-2y-2
D.x-3
*10.有理数a在数轴上的对应点的位置如图所示,则|a-4| +|a-11|化简后为( A )
A.7
B.-7
C.2a-15
D.无法确定
【点拨】由题意得5<a<10,则a-4>0,a-11<0. 故|a-4|+|a-11|=(a-4)-(a-11)=a-4-a+11=7.
*11.老师在做网络直播课时设计了一个接力游戏,用合作的 方式完成化简整式,规则是:每名同学只能利用前面一 名同学的式子,进一步计算,再将结果传给下一名同学, 最后解决问题.过程如图所示.
解:原式=12x-2x+23y2-32x+13y2=-3x+y2. 当 x=-2,y=23时,原式=-3×(-2)+232=6+49=598.
(2)5(3a2b-ab2)-(ab2+3a2b),其中 a=12,b=13. 解:原式=15a2b-5ab2-ab2-3a2b=12a2b-6ab2. 当 a=12,b=13时, 原式=12×122×13-6×12×132=12×14×13-6×12×19=1-13=23.
人教版数学七年级上册:去括号课件
人教版数学七年级 上册2.2.3:去括号课件
(4)
2
x2
1 2
3
x
4
x
x2
1 2
(5)3x2 7 x 4x 3 2x2
(6)3b 2c [4a c 3b] c
人教版数学七年级 上册2.2.3:去括号课件
人教版数学七年级 上册2.2.3:去括号课件
五、课堂小结
1.数学思想方法——类比 2.去括号法则:
人教版数学七年级 上册2.2.3:去括号课件
人教版数学七年级 上册2.2.3:去括号课件
例4 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水, 两船在静水中的速度都是50 km/h,水流速度是a km/h.
(1)2 h后两船相距多远? (2)2 h后甲船比乙船多航行多少km?
解:(1) 2(50+a)+2(50-a) =100+2a+100-2a =200(km)
顺口溜: 去括号,看符号: 是“+”号,不变号; 是“-”号,全变号; 原来的符号和括号都扔掉.
练习: (1)去括号: a+(b-c)= —a—+b—-c— a+(- b+c)= —a-—b+—c— (2)判断正误
a-(b+c)=a-b+c a-(b-c)=a-b-c 2b+(-3a+1)=2b-3a-1 3a-(3b-c)=3a-3b+c
如果括号外的因数是正数,去括号后原括号 内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号 内各项的符号与原来的符号相反. 3.注意:去括号规律要准确理解,去括号应考虑 括号内的每一项的符号,做到要变都变;要不变 都不变;另外,括号内原来有几项,去掉括号后 仍有几项.
2024七年级数学上册第2章整式及其加减2.2整式加减3整式加减第2课时整式加减课件新版沪科版
(C)
A. x2-5 x +3
B. - x2+ x -1
C. - x2+5 x -3
D. x2-5 x -3
【点拨】
设这个多项式为 A ,由题意得 A +( x2-2 x +1)=3 x
-2,求解即可.
Байду номын сангаас返回
1 2 3 4 5 6 7 8 9 10 11
10. (1)当 x =1时,多项式 px3+ qx +1的值为2 025,求当 x =-1时,多项式 px3+ qx +1的值; 【解】因为当 x =1时,多项式 px3+ qx +1的值为 2 025,所以 p ×13+ q ×1+1=2 025,则 p + q = 2 024.所以当 x =-1时, px3+ qx +1= p ×(-1)3+ q ×(-1)+1=- p - q +1=-( p + q )+1=-2 024+1 =-2 023.
则 M 与 N 的关系是( B )
A. M = N
B. M > N
C. M < N
D. 无法确定
【点拨】 可采用作差法进行比较:因为 M - N =4>0,所以
M>N.
返回
1 2 3 4 5 6 7 8 9 10 11
易错点 两个多项式相减时,因忽视括号的作用而出错
9. 一个多项式与 x2-2 x +1的和是3 x -2,则这个多项式为
次项,则 m 等于( D )
A. 2
B. -2
C. 4
D. -4
【点拨】 先将两个多项式的差进行化简,找到 x 的二次项的系
数,再令系数等于0,即可求出答案.
返回
1 2 3 4 5 6 7 8 9 10 11
8. [新考法 作差法]若 M =3 x2-5 x +2, N =3 x2-5 x -2,
七年级数学上册2.2第2课时去括号法则教学课件(新版)新人教版
10b+a-(10a+b)=10b+a-10a-b=9b-9a
现在你能说明为什么一个能被 9,另一个能被 11整除了吗? 再看下面的问题,你能化简这两个式子吗?你的依据是什 么? 100u+120(u-0.5) 100u-120(u-0.5) 学生交流讨论,然后尝试完成.
活动3:运用法则 教材展示教材例4. 教师提示:先观察判断是哪种类型的去括号,括号内的 每一项原来是什么符号?去括号时,要同时去掉括号前的 符号.
2.2
整式的加减(4课时)
去括号法则
第2课时
能运用运算律探究去括号法则,并且利用去括号法则将 整式化简.
重点
去括号法则,准确应用法则将整式化简. 难点 括号前面是“-”号去括号时,括号内各项变 号容易产生错误.
学生讨论交流,然后尝试完成. 10b+a+(10a+b)=10b+a+10a+b==11a+11b
易犯错误:①括号前是“-”时,去括号以后,只是第
一项改变了符号,而其他各项未变号. ②括号前面的系数不为1或者-1时,容易漏乘除第一项
以外的项.
师生共同完成,学生口述,教师板书.
教师展示例5.
问题:船在水中航行时它的速度都与哪些量有关, 它们之
间的关系如何? 学生思考、小组交流.然后学生完成,同学间交流.
活动4:练习与小结
练习:教材第67页练习. 小:
1.谈谈你对去括号法则的认识.
2.去括号的依据是什么? 活动5:作业布置 习题2.2第2,5,8题.
北师大版七年级上册.2整式的加减(课件)
1.去括号:4(a+b)-3(2a-3b) =(_______)-(________)=________.
练习&巩固
2.下列去括号正确的是( ) A.4a-(3b+c)=4a+3b-c B.4a-(3b+c)=4a-3b+c C.4a-(3b+c)=4a+3b+c D.4a-(3b+c)=4a-3b-c
探索&交流
去括号法则: 1.如果括号外的因数是正数,去括号后原括号内各项的符号与本 来的符号相同; 2.如果括号外的因数是负数,去括号后原括号内各项的符号与本 来的符号相反.
120(t-0.5)=120t-60
③
-120(t-0.5)=-120t+60 ④
探索&交流
a+(-b+c)=a-b+c 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各 项的符号都不改变.
练习&巩固
3.化简 (-4x+8)-3(4-5x)的结果为( )
A.-16x-10
B.11x-4
C.56x-40
D.14x-10
练习&巩固
练习&巩固
4.当x=6,y=-1时,多项式-(x+2y)+y的值是________.
小结&反思
去括号应注意的事项: (1)括号前面有数字因数时,应利用乘法分配律,先将该数与括号内 的各项分别相乘,再去掉括号,以避免产生符号错误. (2)在去掉括号时,括号内的各项或者都要改变符号,或者都不改变 符号,而不能只改变某些项的符号.
例题欣赏 ☞
例3.先化简,再求值. -(4k3-k2+5)+(5k2-k3-4),其中k=-;
例题&解析
总结:整式的化简主要只有两步:一步是去括号;另一步是合并 同类项.
2.2.2 去括号法则 省优获奖教学课件 人教版七年级数学上册
1.1
正数和负数(2课时)
正数和负数的概念
第1课时
了解正数和负数的产生;知道什么是正数和负数;理解
正负数表示的量的意义;知道0既不是正数,也不是负 数.
重点
正、负数的意义. 难点 1.负数的意义. 2.具有相反意义的量.
两个数的差能被9整除,和能被11整除,这是为什么呢? 提示:如果设这个两位数的个位数字是a,十位数字是
b,如何表示这个两位数?
学生讨论以后师生共同得出以下结果: 原数10b+a,新数10a+b
差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,
a,10a,b看做几个数,类似小学中的计算,你能化简这 两个式子吗?
教师展示例5.
问题:船在水中航行时它的速度都与哪些量有关, 它们之
间的关系如何? 学生思考、小组交流.然后学生完成,同学间交流.
活动4:练习与小结
练习:教材第67页练习. 小结:
1.谈谈你对去括号法则的认识.
2.去括号的依据是什么? 活动5:作业布置 习题2.2第2,5,8题.
通过回顾小学学过的去括号方法,运用类比方法,得到了
学生讨论交流,然后尝试完成. 10b+a+(10a+b)=10b+a+10a+b==11a+11b
10b+a-(10a+b)=10b+a-10a-b=9b-9a
现在你能说明为什么一个能被 9,另一个能被 11整除了吗? 再看下面的问题,你能化简这两个式子吗?你的依据是什 么? 100u+120(u-0.5) 100u-120(u-0.5) 学生交流讨论,然后尝试完成.
数就是让学生去感受和体验这一点.
2.2.2整式的加减-去括号法则课件人教版数学七年级上册
2.去括号,合并同类项:
(1)-3(2s-5)+6s; 解:原式=-6s+15+6s=15. (2)6a2-4ab-4(2a2+12ab); 解:原式=6a2-4ab-8a2-2ab=-2a2-6ab.
(3)3x-[5x-(12x-4)]; 解:原式=3x-(5x-12x+4)=3x-5x+12x-4=-32x-4.
• 20+3(x+2)
= 20+3x+3×2
• 100-3(a+b) = 100-3a-3b
• 讨论一下:下面两个等式中,左右两 边的框中的多项式的各项的符号有什 么关系?这种关系是由谁决定的?
• +3(x+2) = +3x+6 • -3(a+b) = -3a-3b
• 去括号法则: • 情况一:括号外的因数是正数:去括号后,
第二章 整式的加减
2.2去括号法则
3(0 9 1 ) 10 15
(30 9 30 1 )
10
15
(27 2)
25
学习目标
1.能运用运算律探究去括号法则.(重点) 2.会利用去括号法则将整式化简.(难点)
问题引入
• 问题1:老王和老吴家有两块土地和一个 20平米的院子,土地如下图的长方形, 两家要联合起来种大棚蔬菜,你能帮他 们计算一下,这三块土地的面积和吗?
=3b-2c+4a-c-3b+c =-2c+4a
THANKS
FOR WATCHING
原括号内各项的符号与原来的符号相同; • 情况二:括号外的因数是负数:去括号后,
原括号内各项的符号与原来的符号相反;
• 把去括号法则提炼成一句话: • 括号前“+”则内不变, • 括号前“-”则内全变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号
1. 下列去括号中正确的是( ).
A. x+(3y+2)=x+3y-2
B.a2-(3a2-2a+1)=a2-3a2-2a+1
C.y2+(-2y-1)=y2-2y-1
D.m3-(2m2-4m-1)=m3-2m2+4m-1
2. 下列去括号中错误的是( ).
A. 3x2-(2x-y)=3x2-2x+y
B.x2-34(x+2)=x2-34x-2
C.5a+(-2a2-b)=5a-2a2-b
D.-(a-3b)-(a2+b2)=-a+3b-a2-b2
3. a+b+2(b+a)-4(a+b) 合并同类项等于( ).
A.a+b
B.-a-b
C.b-a
D.a-b
4. 下面去括号结果正确的是( ).
A.3x2-(-2x+5)=3x2+2x+5
B. -(a2+7)-2(10a-a3)=-a2-7-20a+a3
C. m3-[3m2-(2m-1)]=m3-3m2+2m-1
5. 先化简,再求值.
(1) 12(x2-y2)-4(2x2-3y2), 其中x=-3,y=2;
(2) a-2[3a+b-2(a+b)], 其中a=-10,b=1000.
6. 客车上原有(2a-b)人,中途一半乘客下车,又有若干人上车,结果车上共有乘客(8a-5b)人,问上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?源于教材, 宽于教材, 举一反三显身手。
7. (1)化简[x-(y-z)]-[(x-y)-z] 得().
A.2y
B.2z
C.-2y
D.-2z
(2) 下列各式中, 去括号正确的是( ).
A. x2-(2y-x+z)=x2-2y2-x+z
B. 3a-[6a-(4a-1)]=3a-6a-4a+1
C. 2a+(-6x+4y-2)=2a-6x+4y-2
D. -(2x2-y)+(z-1)=-2x2-y-z-1
8. (1) 已知三角形的三边长分别是(2x+1)cm,(x2+2)cm,(x2+2x+1)cm, 则这个三角形的周长是;
⑵已知9X 1+0=9,9 X 2+仁19,9 X 3+2=29,9 X 4+3=39,…,根据前面式子构成的规律,第6个式子为,第n个式子是;
(3) 比x2-4x-3 少2x2-x+7 的多项式是.
9. 先化简, 再求值:
(1) 4(y+1)+4(1-x)-4(x+y), 其中x=17,y=143;
(2) 4a2b-[3ab2-2(3a2b-1)], 其中a=-0.1,b=1.
10. 三角形的周长为48,第一边长为4a+3b,第二边的2倍比第一边少2a-b,求第三边长.
11. 已知x-2y=-2,贝卩3-x+2y的值是().
A.0
B.1
C.3
D.5。