数学初三上册知识点
九年级上册数学总结知识点
九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。
通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。
数学九年级上册每章知识点
数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
九年级上册数学知识点
九年级上册数学知识点一、有理数1. 整数2. 分数3. 小数二、代数表达式和简单方程1. 代数表达式的定义与运算2. 一元一次方程3. 方程的解4. 解一元一次方程的基本方法三、图形的性质和变换1. 空间几何图形- 三角形- 四边形- 多边形2. 平面镜像与旋转- 线对称与点对称- 图形的旋转四、概率和统计1. 概率的定义与计算- 随机事件- 事件发生的概率计算 2. 统计与表示- 数据的收集与整理- 平均数与中位数五、函数1. 函数的概念与表示2. 线性函数- 函数的增减性与最值 - 线性函数的图像与性质六、几何初步1. 直线、射线和线段2. 角及其性质3. 平行线和平行四边形七、相似与全等三角形1. 相似三角形- 相似三角形的判定与性质 - 相似三角形的应用2. 全等三角形- 全等三角形的判定与性质 - 全等三角形的应用八、立体几何初步1. 空间几何体的性质- 点、线、面的关系- 空间几何体的视图2. 投影与截面- 立体图形的投影- 立体图形的截面九、二次根式与实数1. 二次根式的性质与运算- 平方根与立方根- 二次根式的四则运算2. 实数的定义与运算- 有理数与无理数的概念- 实数的加减乘除运算十、解直角三角形1. 直角三角形的概念与性质2. 利用三角函数解直角三角形以上是九年级上册数学的主要知识点,通过对这些知识的系统学习,你将掌握数学中的基本概念、方法和技巧。
在实际应用中,这些知识将为你提供解决问题的工具和途径。
希望你能够认真学习,不断提高自己的数学能力。
九年级上册数学知识点归纳
九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。
九年级上册数学知识点全总结
九年级上册数学知识点全总结在九年级上册的数学学习中,我们接触到了许多重要的数学知识点,涉及了数与代数、几何与图形、函数与方程、统计与概率等多个方面。
下面,我们将对这些知识点进行全面总结。
一、数与代数1. 整数运算:整数加减乘除的规则及性质,同时学习了负数的概念和运算。
2. 分数与小数:分数与小数的相互转换,分数的四则运算以及分数的化简、约分等方法。
3. 实数运算:实数的运算律和性质,在此基础上学习了绝对值的概念和运算法则,了解了实数轴的相关知识。
4. 幂与指数:幂的定义和性质,指数与幂的关系及规律,学习了幂的乘除法则以及零次幂和一次幂的特殊性质。
5. 根式与整式:根式的定义和性质,整式的运算法则,熟悉了多项式的加减法规则。
二、几何与图形1. 角与直线:学习了角的类型和度量,认识了同位角、对顶角、余角等概念,同时也掌握了平行线与垂直线的性质。
2. 三角形:三角形的分类与性质,熟悉了角平分线、中位线、高线等重要线段与特殊点。
3. 平面镶嵌:学习了平面上的镶嵌图形,通过分析规律解决镶嵌问题,提高了观察和推理能力。
4. 圆与圆内接四边形:圆的相关概念与性质,学习了圆的弧长、扇形面积等计算方法,深入理解了圆与四边形的关系。
5. 空间几何体:学习了立体图形的名称与性质,掌握了棱、面和顶点的概念,了解了棱柱、棱锥、球等重要几何体。
三、函数与方程1. 平移、伸缩与反转:学习了函数图像的平移、伸缩与反转规律,掌握了二次函数、绝对值函数的特性。
2. 一次函数与二次函数:学习了一次函数和二次函数的表达式、图像与性质,了解了它们的特点与应用。
3. 一元一次方程:方程与等式的关系,解一元一次方程的基本方法,熟悉了方程解的概念和解集的表示方法。
4. 一元二次方程:学习了解一元二次方程的基本方法,熟悉了二次方程的根与判别式等概念,同时也了解了二次函数与二次方程的关系。
四、统计与概率1. 数据分析与统计:学习了数据的整理、统计和表示方法,掌握了众数、中位数和平均数等重要概念。
数学初三上册知识点归纳
数学初三上册知识点归纳一、一元二次方程1. 定义- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 一元二次方程的解法- 直接开平方法- 对于方程x^2=k(k≥0),解得x=±√(k)。
- 例如方程(x - 3)^2=16,则x - 3=±4,解得x = 7或x=-1。
- 配方法- 步骤:- 把方程化为ax^2+bx + c = 0(a≠0)的形式。
- 移项,使方程左边为二次项和一次项,右边为常数项,即ax^2+bx=-c。
- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。
- 配方,在方程两边加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。
- 化为(x + m)^2=n的形式,然后用直接开平方法求解。
- 例如用配方法解方程x^2+6x - 7 = 0。
- 移项得x^2+6x = 7。
- 配方:x^2+6x+9 = 7 + 9,即(x + 3)^2=16。
- 解得x = 1或x=-7。
- 公式法- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 例如解方程2x^2-5x+3 = 0,其中a = 2,b=-5,c = 3,Δ=b^2-4ac=(-5)^2-4×2×3 = 25 - 24 = 1。
- 则x=(5±√(1))/(4)=(5±1)/(4),解得x = 1或x=(3)/(2)。
- 因式分解法- 当一元二次方程的一边为0,另一边能分解成两个一次因式的积时,可用因式分解法求解。
数学九年级上册全知识点
数学九年级上册全知识点一、整数的概念和运算1. 整数的概念2. 整数的绝对值3. 整数的相反数4. 整数的加法和减法二、有理数的概念和运算1. 有理数的概念2. 有理数的相反数和绝对值3. 有理数的加法和减法4. 有理数的乘法和除法5. 有理数的混合运算三、平方根和立方根1. 平方根的概念和性质2. 平方根的求解3. 立方根的概念和性质4. 立方根的求解四、二次根式1. 二次根式的概念和性质2. 二次根式的化简和分解3. 二次根式的加法和减法4. 二次根式的乘法和除法五、比例与比例的性质1. 比例的概念和表示方法2. 比例的性质和判断3. 比例的四种特殊情况4. 比例的运算六、百分数1. 百分数的概念和表示方法2. 百分数的转化3. 百分数的运算七、利率和利息1. 利率的概念和计算2. 简单利息的计算3. 复利的计算八、容积和表面积1. 球的容积和表面积2. 圆柱体的容积和表面积3. 直角三角形的斜边长和面积九、统计与概率1. 统计的概念和方法2. 频率和频率分布3. 概率的基本概念和计算方法十、平面几何图形1. 平行线和垂直线2. 直角三角形和勾股定理3. 三角形的性质和分类4. 四边形的性质和分类5. 圆的性质和圆内外关系十一、函数的概念和表示1. 函数的概念和特征2. 函数的表示方法3. 函数的图像和性质以上是数学九年级上册的全知识点,涵盖了整数、有理数、平方根、立方根、二次根式、比例、百分数、利率和利息、容积和表面积、统计与概率、平面几何图形以及函数等多个重要内容。
通过系统学习这些知识点,同学们可以更好地理解和应用数学知识,提高数学解题的能力和思维水平。
希望同学们能够认真学习并善于运用这些知识点,取得优异的成绩。
九年级上册数学各章节知识点总结(最新最全)
九年级上册数学各章节知识点总结(最新
最全)
1. 有理数与整式有理数与整式
- 有理数的概念及表示方法
- 有理数的大小比较
- 有理数的加法、减法、乘法、除法运算法则
- 整式的定义和基本运算
2. 方程与不等式方程与不等式
- 一元一次方程的概念、解法及应用
- 恒等方程和条件方程
- 一元一次不等式的概念及解法
- 一元一次方程与不等式的综合应用
3. 函数与图像函数与图像
- 函数的概念及表示
- 函数的增减性和奇偶性
- 函数的概率和函数的平移、翻折、对称变换
- 函数图像的特点和简单的函数图像绘制
4. 图形的性质图形的性质
- 平行线与相交线
- 三角形的定义及分类
- 三角形的性质与判定
- 常见四边形的性质及判定
5. 相似与全等相似与全等
- 相似的概念及相似三角形的判定
- 相似比的计算
- 全等的概念及全等三角形的判定
- 全等三角形的性质和应用
6. 三角函数三角函数
- 角的概念及角的度量
- 反义函数、同角三角函数特殊值
- 三角函数的图像
- 三角函数的性质及简单的计算与应用7. 圆圆
- 圆的定义和性质
- 圆上的弧和弦
- 切线与圆的位置关系
- 圆的周长和面积的计算
以上是九年级上册数学各章节知识点的总结,请根据具体情况进行查阅和复习。
九年级上册数学复习知识点
九年级上册数学复习知识点一、代数与方程式1. 一元一次方程式1.1 解一元一次方程式的基本方法1.2 利用一元一次方程式解实际问题2. 二元一次方程式2.1 消元法解二元一次方程式2.2 代入法解二元一次方程式2.3 应用解二元一次方程式的方法解实际问题3. 不等式3.1 线性不等式的解及图示3.2 用不等式表示实际问题,并求解4. 平方根与平方差4.1 定义和性质4.2 求解平方根的方法4.3 解平方差的方法5. 平方根与二次方程5.1 二次方程的定义和性质 5.2 二次方程的解及图示5.3 利用二次方程解实际问题二、几何1. 平面图形1.1 三角形及其性质1.2 四边形及其性质1.3 多边形及其性质2. 圆与圆周角2.1 圆的定义和性质2.2 圆周角的定义和计算3. 相似与全等3.1 相似三角形的性质及判定3.2 全等三角形的性质及判定4. 三视图与投影4.1 顶视图、正视图和侧视图的概念 4.2 通过三视图还原物体的形状和尺寸5. 三角函数5.1 正弦、余弦和正切的概念及计算 5.2 利用三角函数解实际问题三、数据与统计1. 数据的整理和分析1.1 数据的收集和整理方法1.2 数据的图示和分析方式2. 概率与事件2.1 事件的概念和性质2.2 用树状图表示事件的组合和概率3. 线段与角度的测量3.1 利用直尺和量角器测量线段和角度 3.2 利用比例关系计算线段和角度的长度四、函数与图像1. 函数的概念与性质1.1 定义和符号化1.2 函数的性质及分类2. 一元一次函数2.1 函数关系及表达式的表示2.2 函数的图像和性质3. 一元二次函数3.1 函数关系及表达式的表示 3.2 函数的图像和性质4. 特殊函数的图像4.1 绝对值函数的图像和性质 4.2 反比例函数的图像和性质五、立体几何1. 空间图形的表示1.1 空间图形的名称和性质 1.2 空间图形的展开图2. 空间几何体的计算2.1 空间几何体的表面积计算2.2 空间几何体的体积计算3. 空间几何体的相交关系3.1 空间几何体的轴对称关系3.2 利用空间几何体的相交关系解实际问题六、整式与分式1. 整式的加减乘除1.1 整式的加减法运算1.2 整式的乘法运算1.3 整式的除法运算2. 分式的加减乘除2.1 分式的加减法运算2.2 分式的乘法运算2.3 分式的除法运算3. 整式与分式的应用3.1 利用整式解实际问题3.2 利用分式解实际问题以上是九年级上册数学的复习知识点,通过系统地了解和掌握这些知识点,可以有效提高数学学科的学习成绩,为下一阶段的学习打下坚实的基础。
初三数学上册知识点内容
初三数学上册知识点内容一、数与式1.整除与质数整除:若a和b是整数(b≠0),则存在唯一的整数q,使得$a=q\\cdot b$,则称a能够被b整除,记作b|a。
例如15|75。
质数:一个大于1的自然数,除了1和本身外,不能被其他自然数整除的数称为质数。
例如2、3、5、7、11等。
2.数的性质与运算数的符号:正数、负数、零绝对值:一个数的绝对值是这个数到原点距离的非负值。
数轴:用于表示数并对数进行排序的一个直线。
加减乘除:加法与减法、乘法与除法3.代数式与多项式代数式:由数及表示数的运算符号构成的式子,用字母表示数或量。
多项式:由有限个代数式用加减法连接起来得到的式子二、方程与不等式1.一次方程与不等式一次方程:形如ax+b=0的方程,其中a eq0,b为常数,x为未知数。
一次不等式:形如ax+b>0或ax+b<0的不等式,其中a eq0,b为常数,x为未知数。
2.二次方程与不等式二次方程:形如ax2+bx+c=0的方程,其中a eq0,b,c为常数,x为未知数。
二次不等式:形如ax2+bx+c>0或ax2+bx+c<0的不等式,其中a eq0,b,c为常数,x为未知数。
3.绝对值方程与不等式绝对值方程:形如|ax+b|=c的方程,其中a,b,c为已知数,x为未知数。
绝对值不等式:形如|ax+b|>c或|ax+b|<c的不等式,其中a,b,c为已知数,x为未知数。
三、平面几何1.平面图形及其性质点、线、面、角、圆、多边形、三角形等2.图形的计算面积:扇形、三角形、四边形、圆、梯形、同心圆等周长:等边三角形、等腰三角形、正方形、矩形等3.相似与全等相似:两个图形的对应角相等,对应边成比例,两图形相似。
全等:两个图形的对应的三边和三角分别相等,两个图形全等。
四、统计与概率1.统计学基本概念平均数:算术平均数、中位数、众数基本概率:试验结果中期望发生的结果所占的比率。
最全数学九年级上册重点知识点(精选6篇)
最全数学九年级上册重点知识点(精选6篇)在我们平凡无奇的学生时代,是不是听到知识点,就立刻清醒了?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
为了帮助大家更高效的学习,熟读唐诗三百首,不会作诗也会吟,以下是美丽的编辑给大家整编的较全数学九年级上册重点知识点【精选6篇】,欢迎参考阅读,希望对大家有所启发。
单元圆篇一一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义1弦连接圆上任意两点的线段叫做弦。
如图中的AB2直径经过圆心的弦叫做直径。
如途中的CD直径等于半径的2倍。
3半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⊙”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧多用三个字母表示;小于半圆的弧叫做劣弧多用两个字母表示三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧。
2弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
3平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
九年级数学上册知识点笔记
九年级数学上册知识点笔记一、代数与函数1.1 代数式的定义与解释代数式是由数字、字母和运算符号等组成的符号组合。
它可以表示数或表示一类数,例如 2x 表示一个数和它的 2 倍。
1.2 代数式的分类代数式根据代数式中包含的未知量的个数分类,分为一元代数式和多项代数式。
一元代数式只包含一个未知量,如 3x;多项代数式包含多个未知量,如 3x + 2y。
1.3 代数式的运算代数式的运算分为四则运算和代数式的合并。
四则运算包括加法、减法、乘法和除法,合并代数式是将同类项结合,如 3x + 2x 可合并为 5x。
1.4 代数方程代数方程是将代数式中包含未知量的等式称作代数方程,如 2x + 3 = 9。
解方程就是求出方程中的未知量取值,使得等式成立。
1.5 函数的概念与图像函数是一个集合,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
函数可以用表格、图像和公式等方式表示。
函数的图像是函数在平面直角坐标系上显示出来的曲线。
1.6 函数的性质与运算函数有奇偶性、单调性、增减性等性质。
函数的运算包括函数的加、减、乘和除,可以通过函数的公式进行运算。
二、图形与几何2.1 四边形的性质四边形是由四条线段构成的图形,根据四边形的边和角的性质,可以判断四边形的种类。
例如,对角线相等的四边形是平行四边形。
2.2 三角形的性质三角形是由三条线段构成的图形,根据三角形的边和角的性质,可以判断三角形的种类。
例如,三边相等的三角形是等边三角形。
2.3 圆的性质与计算圆是平面上的一类特殊图形,有半径、直径、圆心等属性。
圆的周长是圆上任意两点之间的距离,圆的面积是圆与圆心之间的面积。
2.4 空间几何体的认识空间几何体是三维几何体,例如立方体、棱柱、棱锥等。
它们有不同的性质,可以通过计算体积和表面积来认识它们。
2.5 三视图与正交投影三视图是通过将一个立体图形分别投影到三个不同的平面上得到的展开图。
正交投影是一种可以保持原来图形形状和大小的投影方式。
初三数学上册知识点
初三数学上册知识点初三数学上册知识点(精选15篇)在我们平凡无奇的学生时代,是不是听到知识点,就立刻清醒了?知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。
为了帮助大家更高效的学习,下面是店铺为大家收集的初三数学上册知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
初三数学上册知识点1第21章二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;≥0。
2、重要公式:3、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4、二次根式的乘法法则:。
5、二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小。
6、商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
7、二次根式的除法法则:分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
8、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式。
9、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
10、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
第22章一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
九年级数学上册第一章知识点
九年级数学上册第一章知识点第一章数与式1. 整数的概念与性质- 整数的定义:整数的范围是正整数、零和负整数的集合。
- 整数的大小比较:同号相比较,绝对值大的整数大;异号相比较,正整数大于负整数。
- 整数的加减法运算:同号相加减,保留原来的符号并按照正整数的运算法则计算;异号相加减,转化为同号相减再取其相反数。
- 整数的乘法运算:同号相乘结果为正,异号相乘结果为负。
- 整数的除法运算:除法运算是乘法运算的逆运算,同号相除结果为正,异号相除结果为负。
2. 有理数的概念与性质- 有理数的定义:有理数是可以表示为两个整数的比的数,包括整数和分数。
- 有理数的分类:正有理数、负有理数、零是有理数的三种特殊情况。
- 有理数的大小比较:同号相比较,绝对值大的有理数大;异号相比较,正有理数大于负有理数。
- 有理数的加减法运算:同号相加减,保留原来的符号并按照正有理数的运算法则计算;异号相加减,转化为同号相减再取其相反数。
- 有理数的乘法运算:同号相乘结果为正,异号相乘结果为负。
- 有理数的除法运算:除法运算是乘法运算的逆运算,同号相除结果为正,异号相除结果为负。
3. 实数的概念与性质- 实数的定义:实数包括有理数和无理数。
- 无理数的定义:无理数是不能表示为两个整数的比的数,包括无限不循环小数和无限循环小数。
- 实数数轴:实数可用数轴表示,其中每一个点对应一个唯一的实数。
- 实数的大小比较:实数可用数轴上的大小比较方法进行。
- 实数的加减法运算:实数的加减法运算满足交换律和结合律。
- 实数的乘法运算:实数的乘法运算满足交换律和结合律。
- 实数的除法运算:除法运算是乘法运算的逆运算。
4. 数的开方与乘方- 数的开方:开方是求一个数的正平方根,结果是使得这个数乘以自己等于被开方数的非负实数。
- 平方根的性质:非负实数的平方根是有两个,一个是正数,一个是负数。
- 数的乘方:乘方是重复乘以一个数,有平方、立方等特殊情况。
九年级上册知识点大全数学
九年级上册知识点大全数学一、有理数1. 整数的概念和性质2. 正负数的比较和大小3. 有理数的加减法运算4. 有理数的乘法运算5. 有理数的除法运算6. 有理数的混合运算7. 有理数的运算定律二、代数式与方程式1. 代数式的定义和性质2. 代数式的加减法运算3. 代数式的乘法运算4. 一元一次方程的概念和解法5. 一元一次方程的应用6. 一元一次方程组的概念和解法7. 一元一次方程组的应用三、几何图形1. 点、线、面的概念2. 平行线和垂直线的性质3. 三角形的分类和性质4. 四边形的分类和性质5. 五线图形的分类和性质6. 直角三角形和勾股定理7. 圆的概念和性质四、图形的相似与等腰三角形1. 图形的相似性判定2. 相似三角形的性质和判定3. 图形的放缩与相似比例4. 等腰三角形的概念和性质5. 等腰三角形的判定和性质应用五、数列与函数1. 数列的概念和性质2. 数列的通项公式和前n项和公式3. 等差数列与等差数列的求和公式4. 等比数列与等比数列的求和公式5. 函数的概念和性质6. 一次函数和一次函数图像7. 一次函数的斜率和截距六、数据统计与概率1. 统计调查和数据收集2. 数据的整理、分析和展示3. 平均数和中位数的计算4. 概率的基本概念和计算5. 事件的概率与互斥事件6. 概率分布和频率分布7. 抽样和抽样调查在九年级上册数学学习中,这些知识点的掌握对于解决数学问题和应用数学知识具有重要意义。
通过对整数、代数式和方程式、几何图形、相似与等腰三角形、数列与函数、数据统计与概率等知识的学习,可以锻炼学生的逻辑思维能力、问题解决能力和数学运算技巧。
同时,在学习的过程中,要注意理论与实践的结合,通过大量的练习和实际问题的应用,培养学生的数学思维和实际解决问题的能力。
此外,在学习数学的过程中,要注重培养学生的数学思维方法和逻辑推理能力,提高解决问题的能力和创新意识。
九年级上册数学知识点的掌握将为学生在中学和高中的数学学习打下坚实的基础,为今后对数学的深入研究和应用打下良好的基础。
2024年初三数学上册知识点总结
2024年初三数学上册知识点总结一、整数1. 整数的概念和表示方法2. 整数的比较和大小关系3. 整数的加法、减法、乘法和除法4. 整数的乘方和绝对值5. 整数的分解质因数和最大公约数、最小公倍数二、分数1. 分数的概念和表示方法2. 分数的大小比较3. 分数的加法、减法、乘法和除法4. 分数的化简、约分和扩分5. 分数的混合运算和带分数6. 分数的乘方和倒数三、小数1. 小数的定义和性质2. 小数的表示方法和读法3. 小数的大小比较4. 小数的加法、减法、乘法和除法5. 小数的循环小数和无理数四、代数1. 代数的概念和基本符号2. 代数式的概念和性质3. 代数式的加法、减法、乘法和除法4. 代数式的化简和因式分解5. 代数式的乘方和开方五、平方根1. 平方根的概念和性质2. 平方根的运算法则3. 平方根的运算和化简4. 平方根的应用六、平方与平方根的关系1. 平方与平方根的概念和互逆性质2. 平方与平方根的四则运算3. 平方与平方根的应用七、比例与相似1. 比例与比例的基本性质2. 比例的四则运算和比例的应用3. 物体的放大与缩小4. 相似图形的定义和性质5. 相似图形的判定和相似比的计算6. 相似图形的应用八、等式与方程1. 等式的概念和性质2. 等式的加减、乘除法和等式的应用3. 一元一次方程的概念和解法4. 一元一次方程的应用5. 一元一次方程组的概念和解法6. 一元一次方程组的应用九、图形的认识1. 点、线、线段、射线、角的基本概念和记法2. 平面图形的种类和特点3. 四边形的定义和性质4. 三角形的定义和分类5. 圆的概念和基本性质6. 圆的面积和周长的计算7. 图形的变换:平移、旋转、翻折和对称十、数据的处理1. 统计图表的制作和分析2. 平均数的计算和应用3. 概率的认识和计算以上是____年初三数学上册的知识点总结,希望对你有帮助。
如果有其他问题,请继续提问。
初三数学上册知识点
初三数学上册知识点第一章实数一、重要概念1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。
4.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确表达绝对值意义;C.建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数-自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││显现,其关键一步是去掉││符号。
二、实数的运算1. 运算法则(加、减、乘、除、乘方、开方)2. 运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律)3. 运算顺序:A.高级运算到低级运算;B.(同级运算)从左到右(如5 C.(有括号时)由小到中到大。
三、应用举例(略)附:典型例题1. 已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab0,(a0,b0),判定a、b的符号。
第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算同时除式中含有字母的有理式叫做分式。
九年级数学上册重要知识点总结
九年级数学上册重要知识点总结九年级数学上册重要知识点总结圆的面积s=π×r×r其中,π是周围率,约等于3.14r是圆的半径。
圆的周长计算公式为:C=2πR.C代表圆的周长,r代表圆的半径。
圆的面积公式为:S=πR2(R的平方).S代表圆的面积,r为圆的半径。
椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
初三数学重点知识点(二)1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
初三数学重点知识点(三)1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学初三上册知识点(主要还是{同步}和配套为最佳学习方案)二次根式1、如果一个数的平方等于a,那么这个数叫做a的平方根。
即,如果一个数x²=a,那么这个数x是a的平方根。
2、2、正数a的正的平方根和零的平方根统称为算术平方根,用√ā(a≥0)来表示。
3、二次根式的定义和概念:4、1、定义:一般形如√ā(a≥0)的代数式叫做二次根式。
当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)被开方数必须大于等于0。
5、2、概念:式子√ā(a≥0)叫二次根式。
√ā(a≥0)是一个非负数。
其中,a叫做被开方数。
√a的性质和几何意义1)a≥0 ; √a≥0 [ 双重非负性]2)2)(√a)^2=a (a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)3) c=√a^2+b^2表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论。
4)4) √a^2 = |a|化最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√6、√7、√a(a≥0)、√x+y 等;含有可化为平方数或平方式的因数或因式的有√4、√9、√16、√25、√a^2、√(x+y)^2、√x^2+2xy+y^2等最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开的尽的因式;(3)被开方数不含分母。
二次根式的乘法和除法1.积的算数平方根的性质√ab=√a·√b(a≥0,b≥0)2. 乘法法则√a·√b=√ab (a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.除法法则√a÷√b=√a÷b(a≥0,b>0)且a不等于b二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
4.有理化根式。
如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根二次根式的加法和减法1、同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
2、合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
例如:2√5+√5=3√54、有括号时,要先去括号。
二次根式的混合运算1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
分母有理化分母有理化有两种方法I.分母是单项式如:√a/√b=√a×√b/√b×√b=√ab/b如图II.分母是多项式可以利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b如图一元二次方程定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有三个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.里面要有等号,且分母里不含未知数。
(一元二次方程的解法)2、该部分是中考的热点。
3、方程的两根与方程中各数有如下关系:X1+X2= -b/a,X1·X2=c/a(也称韦达定理)4、方程两根为x1,x2时,方程为:x2-(x1+x2)X+x1x2=0 (根据韦达定理逆推而得)5、在系数a>0的情况下,b2-4ac>0时有2个不相等的实数根,b2-4ac=0时有两个相等的实数根,b2-4ac<0时无实数根。
(在复数范围内有两个复数根)一般式ax2+bx+c=0(a、b、c是实数,a≠0)例如:x2+2x+1=0配方式两根式(交点式)a(x-x1)(x-x2)=0一般解法1.分解因式法(可解部分一元二次方程)因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如 1.解方程:x2+2x+1=0解:利用完全平方公式因式解得:(x+1)2=0解得:x1= x2=-1 2.解方程x(x+1)-3(x+1)=0解:利用提公因式法解得:(x-3)(x+1)=0即x-3=0 或x+1=0∴ x1=3,x2=-1 3.解方程x2-4=0解:(x+2)(x-2)=0x+2=0或x-2=0∴ x1=-2,x2= 2十字相乘法公式:x2+(p+q)x+pq=(x+p)(x+q)例: 1. ab+2b+a-b- 2 =ab+a+2b-b-2=a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)2.公式法(可解全部一元二次方程)求根公式首先要通过Δ=b2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b2-4ac<0时x无实数根(初中) 2.当Δ=b2-4ac=0时x有两个相同的实数根即x1=x2 3.当Δ=b2-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b2-4ac)}/2a来求得方程的根3.配方法(可解全部一元二次方程)如:解方程:x2+2x-3=0解:把常数项移项得:x2+2x=3等式两边同时加1(构成完全平方式)得:x2+2x+1=4因式分解得:(x+1)2=4解得:x1=-3,x2=1用配方法解一元二次方程小口诀二次系数化为一常数要往右边移一次系数一半方两边加上最相当4.开方法(可解部分一元二次方程)如:x2-24=1解:x2=25x=±5∴x1=5 x2=-55.均值代换法(可解部分一元二次方程)ax2+bx+c=0同时除以a,得到x2+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1·x2=c/a求得m。
再求得x1, x2。
如:x2-70x+825=0均值为35,设x1=35+m,x2=35-m (m≥0)x1·x2=825所以m=20所以x1=55,x2=15。
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)一般式:ax2+bx+c=0的两个根x1和x2关系:x1+x2= -b/a x1·x2=c/a1.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法)2.看是否可以直接开方解3.使用公式法求解4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。
如果要参加竞赛,可按如下顺序: 1.因式分解 2.韦达定理3.判别式4.公式法5.配方法6.开平方7.求根公式8.表示法1、开方法直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。
(1)解:(3x+1)2=73x+1=±√7x= ...∴x1=...,x2= ...(2)解:9x2-24x+16=11(3x-4)2=113x-4=±√11x= ...∴x1=...,x2= ...2.配方法:]例一:用配方法解方程3x∧2-4x-2=0解:将常数项移到方程右边3x∧2-4x=2将二次项系数化为1:x∧2-4/3x=2/3方程两边都加上一次项系数一半的平方:x∧2-4/3x+( -2/3)2= 2/3+(-2/3 )2配方:(x-2/3)∧2=10/9直接开平方得:x-2/3=±√(10)/3∴x1=√(30)/9+2/3 , x2=-√(30)/3+2/3.∴原方程的解为x1=√(30)/9+2/3 , x2=-√ (30)/3+2/3.3.公式法把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。
公式:x=[-b±√(b2-4ac)]/2a当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a(两个复数根)(初中理解为无实数根)例3.用公式法解方程2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2, b=-8,c=5b2-4ac=(-8)2-4×2×5=64-40=24>0∴x= (4±√6)/2∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.4.因式分解法把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8(2) 2x2+3x=0(3) 6x2+5x-50=0 (选学)(4)x2-4x+4=0 (选学)(1)解:(x+3)(x-6)=-8 化简整理得x2-3x-10=0 (方程左边为二次三项式,右边为零)(x-5)(x+2)=0 (方程左边分解因式)∴x-5=0或x+2=0 (转化成两个一元一次方程)∴x1=5 x2=-2是方程的解。
x(2x+3)=0 (用提公因式法将方程左边分解因式)∴x=0或2x+3=0 (转化成两个一元一次方程)∴x1=0,x2=-3/2是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程通常有两个解。
(3)解:6x2+5x-50=0(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x?=5/2, x?=-10/3 是原方程的解。
(4)解:x2-4x+4 =0(x-2)(x-2 )=0∴x1=x2=2是原方程的解。