分类加法和分布乘法教学设计
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
分类加法计数原理与分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计教学设计:分类加法计数原理与分步乘法计数原理一、教学目标:1.了解分类加法计数原理和分步乘法计数原理的概念和应用。
2.掌握分类加法计数原理和分步乘法计数原理的解题方法。
3.培养学生的分类、归纳和逻辑思维能力。
二、教学准备:1.教学用具:黑板、粉笔、教学课件、教学实例。
2.学生学具:纸笔。
三、教学过程:步骤一:导入新知识1.教师简要介绍分类加法计数原理和分步乘法计数原理的内容和应用。
2.引导学生思考:在日常生活中,是否经常遇到需要进行分类和计数的问题?举例说明。
步骤二:分类加法计数原理1.定义:将问题分解成若干个相互独立的部分,计算每个部分的数量然后求和。
2.通过教学实例,讲解分类加法计数原理的解题方法。
(1)例1:班有3个男生和4个女生,问这个班一共有几个人?(2)例2:有红、黄、绿三种颜色的苹果,已知红色有5个,黄色有3个,绿色有2个,问一共有几个苹果?(3)例3:一件衣服原价100元,店铺打8折,现在卖多少钱?3.设计学生练习题,引导学生自主解答。
步骤三:分步乘法计数原理1.定义:将问题分解成若干个相互独立的步骤,计算每个步骤的数量然后相乘。
2.通过教学实例,讲解分步乘法计数原理的解题方法。
(1)例1:从1到4,选出一个数字作为个位数,选出一个数字作为十位数,选出一个数字作为百位数,一共有多少种不同的三位数?(2)例2:现有4个不同的数字,从中选取2个数字,可以组成多少个不同的两位数?3.设计学生练习题,引导学生自主解答。
步骤四:小结与巩固1.简要总结分类加法计数原理和分步乘法计数原理的应用和解题方法。
2.设计综合练习题,要求学生灵活运用分类加法计数原理和分步乘法计数原理解答问题。
步骤五:拓展应用1.鼓励学生运用分类加法计数原理和分步乘法计数原理解决实际生活中的问题。
(1)例1:在次抽奖活动中,每个人有5张彩票,每张彩票都有4个数字,已知每个数字的范围是1到10,那么这次抽奖一共有多少个可能的中奖号码?(2)例2:一个班级有4个男生和3个女生,学校要选出一个代表队,其中队长必须是男生,队员可以是男生或女生,那么一共有多少种可能的代表队组合?2.扩大学生的思维视野,培养他们的综合运用能力。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。
2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。
2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。
3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。
四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。
2. 学具准备:学生用书、练习本、文具。
3. 教学素材:相关案例分析题、小组讨论题。
五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。
3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。
4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。
5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。
7. 课堂练习:给出一些练习题,让学生巩固所学内容。
8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。
9. 课堂小结:对本节课的内容进行小结,强调重点和难点。
六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。
2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。
b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
高中数学分类加法计数原理和分步乘法计数原理教案新人教A版选修
一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计数原理解决问题。
3. 培养学生的逻辑思维能力和数学素养。
二、教学内容1. 分类加法计数原理:(1)定义:如果一个事件可以分成若干个互不重叠的分类,这个事件发生的总次数就等于各分类事件发生次数的和。
(2)表达式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:(1)定义:如果一个事件可以分成若干个相互独立的步骤,这个事件发生的总次数就等于各步骤事件发生次数的乘积。
(2)表达式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理和分步乘法计数原理的概念及表达式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决问题。
四、教学方法1. 采用案例分析法,通过具体例子引导学生理解分类加法计数原理和分步乘法计数原理。
2. 利用互动讨论法,让学生在课堂上积极参与,提高逻辑思维能力。
3. 运用练习法,巩固所学知识,提高解决问题的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考如何计算事件发生的总次数。
2. 讲解:介绍分类加法计数原理和分步乘法计数原理的概念及表达式。
3. 案例分析:分析具体例子,让学生理解并掌握分类加法计数原理和分步乘法计数原理。
4. 互动讨论:分组讨论,让学生运用所学原理解决问题,并分享解题过程。
5. 练习:布置练习题,让学生巩固所学知识。
7. 课后作业:布置相关作业,让学生进一步巩固所学知识。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及对知识的掌握程度。
2. 练习题评价:检查学生完成的练习题,评估其对分类加法计数原理和分步乘法计数原理的理解和应用能力。
3. 课后作业评价:审阅学生的课后作业,评估其对课堂所学知识的巩固和应用情况。
分类加法计数原理与分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计一、教学目标通过本节课的学习,学生应能:1.掌握分类加法计数原理的基本概念与计算方法;2.理解分步乘法计数原理的基本概念与计算方法;3.能够灵活运用分类加法计数原理与分步乘法计数原理解决实际问题。
二、教学重难点1.分类加法计数原理与分步乘法计数原理的理解与运用;2.引导学生学会灵活运用计数原理解决实际问题。
三、教学准备多媒体教学设备、教学课件、题目练习资料。
四、教学过程1.情境导入(5分钟)教师通过引入生活中的实际问题,比如:小明有两张红色的贴纸和三张绿色的贴纸,他把这些贴纸都收集在一个盒子里,请问他一共有多少张贴纸?引导学生思考该问题。
2.引入分类加法计数原理(10分钟)老师引导学生将红色的贴纸和绿色的贴纸分别进行分类,并进行计数,然后通过分类加法计数原理,将两个分类中的数量相加,得到总数。
师生共同完成示例题目。
3.分类加法计数原理的运用(10分钟)教师给出一组题目,鼓励学生自己尝试用分类加法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
4.引入分步乘法计数原理(10分钟)教师通过引导学生思考生活中实际问题,如不重复的选择一件上衣和一条裤子,共有几种搭配方式。
引导学生发现选择上衣和选择裤子的方式是分步的,然后通过分步乘法计数原理,计算有多少种搭配方式。
5.分步乘法计数原理的运用(15分钟)教师给出一组题目,鼓励学生自己尝试用分步乘法计数原理解决。
同时教师巡视指导,及时纠正学生解题错误。
6.计数原理的综合运用(20分钟)教师给出综合性应用题,要求学生结合分类加法计数原理与分步乘法计数原理进行综合运用,解决实际问题。
7.总结与扩展(10分钟)教师梳理本节课的重点知识,对分类加法计数原理与分步乘法计数原理进行总结。
然后教师布置课后作业,拓展学生的思维。
五、教学延伸1.老师可以引导学生思考计数原理在日常生活中的应用,如超市货物的分类与计数、人物影视剧中演员的选择等。
分类加法计数原理和分步乘法计数原理教案
分类加法计数原理和分步乘法计数原理教案教案:分类加法计数原理和分步乘法计数原理教学目标:1.理解分类加法计数原理和分步乘法计数原理的概念和应用。
2.能够运用分类加法计数原理和分步乘法计数原理解决问题。
教学重点:1.掌握分类加法计数原理和分步乘法计数原理的具体应用。
2.提高学生的问题解决能力。
教学难点:能够正确理解分类加法计数原理和分步乘法计数原理的应用,并能运用到实际问题中。
教学准备:1.板书:分类加法计数原理和分步乘法计数原理的定义和示例。
2.教学课件:包含丰富的分类加法计数原理和分步乘法计数原理的例题。
教学过程:Step 1:导入新知识(10分钟)导入新知识:让学生思考以下问题:1.如果我有两种不同的衣服和三种不同的裤子,我可以有多少种不同的搭配方式?2.如果我有三个家具店,每个店铺里有四种不同的椅子和五种不同的桌子,我可以有多少种不同的搭配方式?引导学生思考和讨论问题,引出分类加法计数原理的概念。
Step 2:分类加法计数原理(20分钟)1.板书:分类加法计数原理的定义。
2.板书:示例题目,并与学生一起解答。
例题1:小明有五个红苹果和三个绿苹果,请问他有多少个苹果?解答过程:将问题分为红苹果和绿苹果两个部分,根据分类加法计数原理,总数为红苹果的个数加上绿苹果的个数,即5+3=8例题2:甲班有四个男生和五个女生,乙班有三个男生和六个女生,请问两个班级一共有多少学生?解答过程:将问题分为甲班和乙班两个部分,根据分类加法计数原理,总数为甲班学生的个数加上乙班学生的个数,即4+5+3+6=183.布置练习题:让学生自己尝试解决几个分类加法计数原理的练习题。
Step 3:分步乘法计数原理(20分钟)1.板书:分步乘法计数原理的定义。
分步乘法计数原理:当一个问题可以分为多个独立的步骤时,总数为每个步骤的选择数相乘。
2.板书:示例题目,并与学生一起解答。
例题1:小明有五种不同的上衣和三种不同的裤子,请问他有多少种不同的穿搭方式?解答过程:将问题分为选择上衣和选择裤子两个步骤,根据分步乘法计数原理,总数为上衣的种类数乘以裤子的种类数,即5×3=15例题2:家餐厅有四道不同的主菜和五种不同的甜点,请问用餐顾客有多少种不同的品尝方式?解答过程:将问题分为选择主菜和选择甜点两个步骤,根据分步乘法计数原理,总数为主菜的种类数乘以甜点的种类数,即4×5=20。
《分类加法与分步乘法(第1课时)》教学设计
1.1分类加法计数原理与分步乘法计数原理(第1课时)一、教学目标1.核心素养通过学习分类加法计数原理和分步乘法计数原理,初步区分“分类”和“分步”,为拥有良好的计数能力打下基础,从而提高了学生的数学运算能力和逻辑推理能力.2.学习目标(1)通过实例,总结出分步乘法计数原理;(2)通过实例,总结出分步乘法计数原理;(3)能根据具体问题特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题.3.学习重点归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题..4.学习难点正确的理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”.二、教学设计(一)课前设计1.预习任务任务1阅读教材P2-P6,思考:分类加法计数原理内容是什么?分步乘法计数原理是什么?他们的区别是什么?2.预习自测1.教室书架上,上层有4本不同的语文书,下层有7本不同的数学书,从书架上任取一本书,不同的取法种数为( )A.4B.7C.11D.28解:C2.教室书架上,上层有4本不同的语文书,下层有7本不同的数学书,从书架上取一本语文书和一本数学书,不同的取法种数为( )A.4B.7C.11D.28解:D(二)课堂设计问题探究问题探究一 分类加法计数原理 重点、难点知识★▲如上图,从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有几种方法.分类加法原理:完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法.那么完成这件事共有N=m+n 种不同的方法注:两类不同方案中的方法互不相同推广:完成一件事有n 类不同方案,在第一类方案中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法.那么完成这件事共有N =m 1 +m 2+…+m n 种不同方法.完成这件事情的N 类方法中,只需用一种方法就能完成这件事.问题探究二 分步乘法计数原理 重点、难点知识★▲如上图,从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?并罗列出所有的走法.分步乘法原理: 完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法.那么完成这件事共有n m N ⨯=种不同的方法注:无论第一步采用哪种方法,都不影响第2步方法的选取推广:完成一件事有n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 类办法中有n m 种不同的方法.那么完成这件事共有N = 种不同方法.完成这件事情的n 个步骤中,每个步骤都完成才能完成这件事.问题探究三 分类加法与分步乘法的应用 重点、难点知识★▲例1.若x,y∈N,且x+y≤6,试求有序自然数对(x,y)的个数.+【知识点:分类加法计数原理;数学思想:分类讨论】详解:按x的取值进行分类:x=1时,y=1,2,3,4,5,共构成5个有序自然数对;x=2时,y=1,2,3,4,共构成4个有序自然数对;x=3时,y=1,2,3,共构成3个有序自然数对;x=4时,y=1,2,共构成2个有序自然数对;x=5时,y=1,共构成1个有序自然数对.根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.点拨:解答本题可按x(或y)的取值分类解决. 利用分类加法计数原理时要注意:(1)要准确理解题意,确定分类的标准.(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.例2.现有5件不同样式的上衣和4条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,则不同的配法种数为种【知识点:分步乘法计数原理;】解析:要完成配套需分两步,第一步,选上衣,从5件上衣中任选一件,有5种不同选法;第二步,选长裤,从4条长裤中任选一条,有4种不同选法.故共有5×4=20种不同的配法.点拨:利用分步乘法计数原理时要注意:(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排;(2)分步要保证各步之间的连续性和相对独立性.例3.书架的第一层放有3本不同的艺术书,第二层放有2本不同的计算机书,第三层放有5本不同的体育书,从书架上任取2本不同学科的书,共有多少种不同的取法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】详解:根据取书的学科不同,可以分为三类:1.计算机与艺术:3×2=62. 计算机与体育: 2×5=103. 艺术与体育: 3×5=15共有6+10+15=31种不同的取法点拨:首先将问题分类,可分为四类,然后每一类再分步完成.即解答本题可“先分类,后分步3.课堂总结【知识梳理】分类加法计数原理; 分步乘法计数原理;【重难点突破】正确的理解完成一件事情的含义;合理分类与分步,先分类后分步.4.随堂检测1. 一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有()A. 37种B.1848种C.3种D. 6种【知识点:分类加法原理;数学思想:分类讨论】答案:A2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出语文、数学、英语各一本,则不同的取法共有()A.37种B.1848种C.3种D.6种【知识点:分步乘法原理】答案:B3.某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是()A.5B.7C.10D.12【知识点:分步乘法原理】答案:D4.用1、2、3、4四个数字可以排成不含重复数字的四位数有()A.265个B.232个C.128个D.24个【知识点:分步乘法原理】答案:D5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有()A. 265个B.232个C.128个D.24个【知识点:分步乘法原理,间接法】答案:B(三)课后作业基础型自主突破1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成.从中选出1人来完成这项工作,不同选法的种数是()A.8B.15C.16D.30【知识点:分类加法原理;数学思想:分类讨论】答案:A2.如图所示,一条电路从A处到B处接通时,可构成的通路有()A.8条B.6条C.5条D.3条【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:B 解析:依题意,可构成的通路有2×3=6(条).3.已知集合A是{1,2,3}的真子集,且A中至少有一个奇数,则这样的集合A有()A.2个B.3个C.4个D.5个【知识点:分类加法原理;数学思想:分类讨论】答案:D 解析:满足题意的集合A分两类:第一类有一个奇数有{1},{3},{1,2},{3,2}共4个;第二类有两个奇数有{1,3},所以共有4+1=5(个).4.4名同学分别报名参加学校的足球队,篮球队,乒乓球队,每人限报其中一个运动队,不同的报法种数为()A.16B.6C.81D.64【知识点:分步乘法原理】答案:C 解析:4名同学报名参加体育队这个事件,分为四个步骤,第一个同学有3个选择,第二个同学有3个选择,第三个同学有3个选择,第四个同学有3个选择,总共有3×3×3×3=81种.5.3个班分别从5个风景点中选择一处游览,不同选法的种数为()A.15B.25C.243D.125【知识点:分步乘法原理】答案:D6. 在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【知识点:分类加法原理;数学思想:分类讨论】解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成八类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个.所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.能力型师生共研1.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.52种C.25种D.42种【知识点:分步乘法原理】答案:D2. 三边长均为整数,且最大边为11的三角形的个数为()A.25B.36C.26D.37【知识点:分类加法原理,三角形边角关系;数学思想:分类讨论】答案:B3. 某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:(1)56415N=++=种;(2)564120N=⨯⨯=种;(3)56644574N=⨯+⨯+⨯=种4.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:分两类:(1)幸运之星在甲箱中抽,再在两箱中各定一名幸运伙伴,有30×29×20=17400种结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11400种结果因此共有17400+11400=28800种不同结果探究型多维突破1.甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有多少种不同的取法?【知识点:分步乘法原理】⨯⨯⨯=种.甲先拿有三种选择,甲拿到的贺卡主人答案:解:列表排出所有的分配方案,共有33119继续拿有3个选择,剩下两人均只有1种选择.2.从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:和为11的数共有5组:1与10,2与9,3与8,4与7,5与6,子集中的元素不能取自同一组中的两数,即子集中的元素取自5个组中的一个数而每个数的取法有2种,所以子集的个数为2×2×2×2×2=25=32自助餐1.从甲地到乙地一天有汽车8班、火车3班、轮船2班,某人从甲地到乙地,他共有不同的方法种数为()A.13B.16C.24D.48答案:A2.一个袋子里放有6个球,另一个袋子里放有8个球,每个球各不相同,从两袋子里各取一个球,不同取法的种数为()A.182B.14C.48D.91答案:C3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有()A.30个B.42个C.36个D.35个答案:C4.设集合A中有5个元素,集合B中有2个元素,建立A→B的映射,共可建立()A.10个B.20个C.25个D.32个【知识点:映射的定义,分步乘法原理】答案:D 解析:根据映射的定义知,集合A中的每一个元素在集合B中都有唯一的元素与之对应.A中每个元素的像均有两种选择,由分步乘法计数原理知,共可建立25个映射.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种【知识点:分步乘法原理】答案:C 解析:分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).6.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有()A.8种B.12种C.16种D.20种【知识点:分步乘法原理】答案:B 解析:分两步,第1步:先选不相邻的两个面,共有3种选法(都是相对面).第2步,再从余下的四个面中任选一个面,有4种选法,这样前后选出的三个面符合题目要求,所以共有3×4=12(种).7.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息.【知识点:分步乘法原理】答案:256 解析:8个位置,每个穿孔或者不穿孔,有两个方法,总共有82个不同的信息.8.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员参加团体比赛,则入选的3名队员中至少有一名老队员的选法有种.(用数字作答)【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:9解析:分为两类完成,两名老队员、一名新队员时,有3种选法;两名新队员、一名老队员时,有2×3=6种选法,即共有9种不同选法.9.圆周上有2n个等分点(1n ),以其中三个点为顶点的直角三角形的个数为.【知识点:分步乘法原理】答案为:2n(n-1)解析: 由题意知,只有三角形的一条边过圆心,才能组成直角三角形,∵圆周上有2n个等分点∴共有n条直径,每条直径可以和除去本身的两个定点外的点组成直角三角形,∴可做2n-2个直角三角形,根据分步计数原理知共有n(2n-2)=2n(n-1)个.10.有不同的红球8个,不同的白球7个.(1)从中任意取出一个球,有多少种不同的取法?(2)从中任意取出两个不同颜色的球,有多少种不同的取法?【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】解:(1)由分类加法计数原理得,从中任取一个球共有8+7=15种取法.(2)由分步乘法计数原理得,从中任取两个不同颜色的球共有8×7=56种取法.11.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.【知识点:分类加法原理,分步乘法原理数学思想:分类讨论】答案:解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步计数原理知共有方法36=729种.(2)每项限报一人,且每人至多限报一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步计数原理得共有报名方法6×5×4=120种.(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理得共有不同的报名方法63=216种.12. 关于正整数2160,求:(1)它有多少个不同的正因数?(2)它的所有正因数的和是多少?【知识点:分步乘法原理】αβγ,解:(1)∵N=2160=24×33×5,∴2160的正因数为P=235其中α=0,1,2,3,4,β=0,1,2,3,γ=0,1∴2160的正因数共有5×4×2=40个(2)式子(20+21+22+23+24)×(30+31+32+33)×(50+51)的展开式就是40个正因数∴正因数之和为31×40×6=7440。
分类加法计数原理和分步乘法计数原理教学设计
分类加法计数原理与分步乘法计数原理教学设计一、教学内容分类加法计数原理与分步乘法计数原理(人教A版普通高中数学选修2-31.1 P2-P6,第1课时)二、教材分析本节内容总结、辨析两个基本计数原理以及它的简单应用。
选自人教A版普通高中数学选修2-3第一章第一节,从知识上看,两个基数原理本身是有用的,可以直接用于解决计数问题;其次,它为后面学习排列、组合、二项式定理、随机变量的概率问题奠定基础;从方法上看,它是处理计数问题最基本、重要的方法;数学思想上,它巩固了学生“分类”与“分步”的思想,有助于学生更有条理的思考问题,有助于学生的终身发展。
总的来说,两个基本计数原理是学生进一步学习排列组合、二项式定理的基础和关键,也是进一步学习研究统计、概率以及高等数学有关分支准备知识,更是发展学生抽象能力和逻辑思维能力的好素材。
三、学情分析学生在必修3学习古典概型时,已经接触过一些简单计数问题了,解决计数问题时常使用表格、树状图、枚举的方法。
但是还存在两类问题,一是古典概型问题往往涉及数值较小,用简单的计数方法就能解决,当涉及数值较大时,枚举、树状图就无从下手了;二是生活或学习中,学生已经会使用“分类”、“分步”的方法解决问题了,但是对“分类”与“分步”的界定还不明确,特别对一些复杂问题,常常是凭感觉选择“分类”或“分步”。
高中理科学生基本能自我反省和调节思维活动的进程,还能掌握由一般到特殊的演绎过程和有特殊到一般的归纳过程。
思维发展水平由经验型水平到理论性水平转化。
四、教学目标1.知识与技能(1)掌握两个基本计数原理;(2)能初步运用分类加法计数原理和分步乘法计数原理分析和解决一些简单的计数问题。
2. 过程与方法(1)通过实例分析,经历自主建构分类加法计数原理和分步乘法计数原理,能够区分两个计数问题;(2)掌握将实际问题推广为一般原理的方法,增强学生抽象和逻辑思维能力。
3. 情感态度与价值观(1)体会到数学来源于生活,并服务于生活;(2)体验探索发现的过程中的交流、讨论,感受数学学习的乐趣。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案第一章:引言1.1 教学目标让学生理解分类加法计数原理和分步乘法计数原理的概念。
让学生掌握分类加法计数原理和分步乘法计数原理的运用方法。
1.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
1.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
1.4 教学步骤引入分类加法计数原理和分步乘法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理和分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第二章:分类加法计数原理2.1 教学目标让学生掌握分类加法计数原理的概念和运用方法。
2.2 教学内容分类加法计数原理:将问题划分为若干个互不重叠的分类,分别计算每个分类的数量,将结果相加得到总数。
2.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
2.4 教学步骤复习分类加法计数原理的概念。
通过示例讲解分类加法计数原理的运用方法。
学生练习题:让学生运用分类加法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第三章:分步乘法计数原理3.1 教学目标让学生掌握分步乘法计数原理的概念和运用方法。
3.2 教学内容分步乘法计数原理:将问题分解为若干个相互依赖的步骤,每个步骤的数量相乘得到最终结果。
3.3 教学方法采用讲解示例、练习题和小组讨论的方式进行教学。
3.4 教学步骤复习分步乘法计数原理的概念。
通过示例讲解分步乘法计数原理的运用方法。
学生练习题:让学生运用分步乘法计数原理解决问题。
小组讨论:让学生分享解题心得,互相学习和交流。
第四章:应用举例4.1 教学目标让学生能够运用分类加法计数原理和分步乘法计数原理解决实际问题。
分类加法计数原理与分步乘法计数原理的一等奖说课稿3篇
1、分类加法计数原理与分步乘法计数原理的一等奖说课稿我说课的题目是《分类加法计数原理与分步乘法计数原理》,接下来我将从教材分析、教学目标、教学对象、教法学法和教学过程设计分析这几个方面进行说课。
一、教材分析:1、教材地位:本节课是高中数学选修2-3(北师大版)第一章计数原理中§1分类加法计数原理与分步乘法计数原理,本小节共需2课时,这节课是第一课时。
先说本章及本节的教材地位。
计数问题是数学中的重要研究对象之一,也是人们了解客观世界的一种最基本的方法。
分类加法计数原理、分步乘法计数原理这两个计数原理是人们在大量实践的基础上归纳出来的基本规律。
它们不仅是推导本章排列与组合中排列数、组合数计算公式的依据,也是求解排列、组合问题的基本思想,且教材将排列、组合及二项式定理的研究都作为两个计数原理的典型应用而设置的。
可见,其基本思想方法贯穿本章内容的始终,因而,它们是学好本章内容的关键。
另一方面,这两个计数原理也是学生今后学习概率及今后进一步学习高等数学有关分支的预备知识。
因此,理解和掌握两个计数原理应该是最基本而重要的。
2 教学目标知识与技能:①通过实例,总结两个基本计数原理;正确理解“完成一件事情”的含义;②初步学会区分“分类”和“分步”;③会利用两个原理分析和解决一些简单的应用问题。
过程与方法:①通过典型的、学生熟悉的实例(座位编号问题),得出解答后,利用“探究”引导学生分析问题的本质,然后再抽象概括出基本原理;②通过简单应用使学生初步熟悉原理;③最后通过“探究”引导学生将原理推广到更加一般的情形;④初步学会区分“分类”和“分步”。
情感目标:①体会数学来源生活,并为生活服务,以此激发学生学习本章的兴趣;②使学生通过概括两个基本原理及推广,进一步加深特殊与一般的关系;③通过“分类”和“分步”让学生初步学会将复杂问题进行分解,将综合问题化解为单一问题的组合,再对单一问题各个击破,达到化难为易,化繁为简。
《分类加法计数原理与分步乘法计数原理》教学设计
一、 本节课教学内容的本质、地位、作用分析 分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律, 它们不 仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本 章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运 算的推广。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别” , 然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤” ,先 对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为了分解问题、简化问题。可见, 理解和掌握两个计数原理,是学好本章内容的关键。 二、 教学目标分析 1、 知识目标: 使学生熟练掌握两个原理的内容、区别,能够灵活的应用两个原理解决常见的计数问题。 2、 能力目标: 在教学过程中,凸显两个原理发现的原始过程,使学生深刻理解由特殊到一般的归纳推理思维,在应 用原理解决问题时,体会一般到特殊的演绎推理思维,从而培养学生的抽象概括能力、逻辑思维能力以及 解决实际问题时主动应用数学知识的能力。 3、 德育渗透目标: 通过探索与发现的过程,使学生亲历数学研究的成功和快乐,感悟数学朴实无华的内在美,学会提出 问题、分析问题、解决问题、推广结论进而完善结论的数学应用意识,激发学生勇于探索、敢于创新的精 神,优化学生的思维品质。 三、教学过程 【引入】展示世界杯图片:2010 南非世界杯是今年全球的一大体育盛事。32 支球队齐聚南非,观众席上, 人山人海,彩旗飘飘;绿茵场上,群雄逐鹿,球技高超,真是一场难得的视觉盛宴啊!通过小组赛、十六 强赛,八强赛、四强赛、季军赛、决赛,最终决出冠亚季军,大家知道总共进行了多少场比赛吗? 生齐答:64 场。 正确!这个场数我们能否通过一一列举出所有的场次,逐个数出呢? 学生 1:我觉得应该可以,但是方法数较大,操作起来繁琐。 没错。其实,在生活中,我们还会遇到很多类似的方法数的计算问题,这种问题我们称之为计 数问题。 ( 板书 ) 一、计数问题:计算完成一件事的方法数的问题。 我们将通过本章的研究学习解决不通过逐个数来确定这种方法数的技巧方法。 【新课】今天我们先来研究解决计数问题的两种最基本、最重要的方法: 字幕: 1.1 分类加法计数原理与分步乘法计数原理
分类加法计数原理和分步乘法计数原理教学设计
分类加法计数原理和分步乘法计数原理教学设计教学设计:分类加法计数原理和分步乘法计数原理一、教学目标1.了解分类加法计数原理和分步乘法计数原理的概念和应用;2.能够运用分类加法计数原理和分步乘法计数原理解决实际问题;3.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.分类加法计数原理的基本概念和应用;2.分步乘法计数原理的基本概念和应用;三、教学过程第一节:分类加法计数原理1.导入(5分钟)-引入生活中的例子,例如:一把铲子可以分为“红色”和“蓝色”两类,一双筷子可以分为“金属”和“木质”两类等。
-引出问题:如果有一个包里有3只红色的铲子和2只蓝色的铲子,这个包里一共有几只铲子?如何快速求解?2.概念解释(10分钟)-解释分类加法计数原理的概念:当一个集合可以分为若干互不相交的类别时,集合的元素个数等于各个类别元素的个数的和。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分类加法计数原理的基本公式写出来,即:总数=类别1数目+类别2数目+类别3数目+...+类别n数目-以问题解决的方式,将公式的应用过程演示给学生。
4.练习应用(15分钟)-给学生发放习题册,让学生结合自己的实际情况完成其中的练习题。
-教师巡回指导,解答学生提出的问题。
第二节:分步乘法计数原理1.复习(5分钟)-复习分类加法计数原理的概念和应用,让学生回答一些与分类加法计数原理相关的问题。
-引出问题:如果有3件相同的红色上衣和2件相同的蓝色上衣,这些上衣一共有几种穿法?如何快速求解?2.概念解释(10分钟)-解释分步乘法计数原理的概念:当一个事件需要分为若干个步骤进行时,每一步的选择数目乘积等于总方案数。
-通过教师提供的实例,进一步让学生理解概念。
3.核心内容讲解(20分钟)-通过黑板或幻灯片等方式,将分步乘法计数原理的基本公式写出来,即:总方案数=第一步选择数目×第二步选择数目×第三步选择数目×...×第n步选择数目-以问题解决的方式,将公式的应用过程演示给学生。
分类加法计数原理与分步乘法计数原理教案
分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 引导学生通过观察、分析、归纳和推理,形成数学概念。
二、教学内容1. 分类加法计数原理:通过实例让学生理解分类加法计数原理,即在计数时,将事物按照某种特征进行分类,将各类别的事物数量相加。
2. 分步乘法计数原理:通过实例让学生理解分步乘法计数原理,即在计数时,将一个复杂的问题分解成几个简单的步骤,将每一步的数量相乘。
三、教学重点与难点1. 教学重点:让学生掌握分类加法计数原理和分步乘法计数原理的概念及应用。
2. 教学难点:引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察、分析、归纳和推理,形成数学概念。
2. 利用实例讲解,让学生在实际问题中体验和理解分类加法计数原理和分步乘法计数原理。
3. 设计练习题,让学生巩固所学知识,提高解决问题的能力。
五、教学准备1. 教学课件:制作课件,展示实例及练习题。
2. 教学素材:准备相关实例,如水果、动物等分类计数问题,以及需要分步解决的问题,如制作午餐、完成作业等。
3. 练习题:设计分类加法计数原理和分步乘法计数原理的练习题。
六、教学过程1. 导入新课:通过一个简单的实例,如计数教室里的学生,引出分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:展示实例,让学生观察并分析,引导学生归纳出分类加法计数原理。
3. 讲解分步乘法计数原理:展示实例,让学生观察并分析,引导学生归纳出分步乘法计数原理。
5. 总结:对本节课的内容进行总结,强调分类加法计数原理和分步乘法计数原理的应用。
七、课堂练习a) 班级里有男生20人,女生15人,一共有多少人?b) 水果店里有苹果、香蕉和橙子,苹果有10个,香蕉有5个,橙子有8个,一共有多少个水果?a) 小明做作业,一共需要完成3个任务,每个任务需要1小时,一共需要多少小时?b) 小华准备午餐,需要炒菜、煮饭和洗碗,炒菜需要10分钟,煮饭需要30分钟,洗碗需要15分钟,一共需要多少分钟?八、课后作业a) 学校里有小学生、初中生和高中生,小学生有180人,初中生有200人,高中生有150人,一共有多少人?b) 动物园里有鸟类、哺乳动物和爬行动物,鸟类有100只,哺乳动物有200只,爬行动物有50只,一共有多少只动物?a) 小红要做家务,需要打扫卫生、洗衣服和整理房间,打扫卫生需要30分钟,洗衣服需要1小时,整理房间需要45分钟,一共需要多少分钟?b) 小刚准备参加篮球比赛,一共需要进行3场比赛,每场比赛需要40分钟,一共需要多少分钟?九、教学反思1. 反思本节课的教学内容,是否清晰易懂,学生是否掌握分类加法计数原理和分步乘法计数原理。
《1.1分类加法计数原理和分步乘法计数原理》教学案
《1.1分类加法计数原理和分步乘法计数原理(1)》教学案学习目标1、理解分类加法计数原理与分步乘法计数原理;2、会利用两个原理分析和解决一些简单的应用问题;教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解教学过程:【知识建构】1、提出问题问题1:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?问题2:如图,由A 村去B 村的道路有3条,由B 村去C 村的道路有2条.从A 村经B 村去C 村,共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?2、分类加法计数原理:完成一件事有______不同方案,在第1类方案中有方法,在第2类方案中有的方法.3、分步乘法计数原理:完成一件事两个步骤,做第1步有做第2步有m 种不同的n 种不同的方法,那么完成这件事共有N =_____________种不同m 种不同的方法,n 种不同的方法.那么完成这件事共有N =______________种不同的方法.【形成能力】例1.在填写高考志愿表时,一名高中毕业生了解到,A ,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?例2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?解:第1步,从______名男生中选出1人,有________种不同选择;第2步,从______名女生中选出1人,有 _______种不同选择.根据分__________原理,共有___________________________例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?解:(1)从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有________种方法;第2类方法是从第2层取1本文艺书,有_____种方法;第3类方法是从第3层取1本体育书,有______种方法.根据_________________,不同取法的种数是N=_________________(2)从书架的第1,2,3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本文艺书,有3种方法;第3步从第3层取1本体育书,有2种方法.根据_______________,不同取法的种数是N=_________________小结:分类加法计数原理的推广:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=______________________种不同的方法.分步乘法计数原理的推广:完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法.那么完成这件事共有N=_______________________种不同的方法.例4.要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例5.给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9.问最多可以给多少个程序命名?【课堂小结】用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析——需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.。
6.1 分类加法计数原理与分步乘法计数原理(教学设计)高二数学(人教A版2019选择性必修第三册)
6.1.1分类加法计数原理与分步乘法计数原理(第1课时)教学设计一、课时教学内容分类加法计数原理与分步乘法计数原理.二、课时教学目标1.通过实例能归纳总结出分类加法计数原理与分步乘法计数原理;2.正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.3.能利用两个原理解决一些简单的实际问题.三、教学重点、难点1.重点:归纳得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题.2.难点:正确地理解“完成一件事”的含义;根据实际问题的特征,正确地区分“分类”或“分步”.四、教学过程设计环节一创设情境,引入课题汽车号牌的序号一般是从26个英文字母、10个阿拉伯数字中选出若干个,并按适当顺序排列而成.随着人们生活水平的提高,家庭汽车拥有量迅速增长,汽车号牌序号需要扩容.那么,交通管理部门应如何确定序号的组成方法,才能满足民众的需求呢?这就需要“数(shǔ)出”某种汽车号牌序号的组成方案下所有可能的序号数,这就是计数.日常生活、生产中类似的问题大量存在.例如,幼儿会通过一个一个地数的方法,计算自己拥有玩具的数量;学校要举行班际篮球比赛,在确定赛制后,体育组的老师需要知道共需要举行多少场比赛;用红、黄、绿三面旗帜组成航海信号,颜色的不同排列表示不同的信号,需要知道共可以组成多少种不同的信号……如果问题中数量很少,一个一个地数也不失为一种计数的好方法.但如果问题中数量很多,我们还一个一个地去数吗?在小学我们学了加法和乘法,这是将若干个“小”的数结合成“较大”的数最基本的方法.这两种方法经过推广就成了本章将要学习的分类加法计数原理和分步乘法计数原理.这两个原理是解决计数问题的最基本、最重要的方法,利用两个计算原理还可以得到两类特殊计数问题的计数公式一排列数公式和组合数公式,应用公式就可以方便地解决一些计数问题.作为计数原理与计数公式的一个应用,本章我们还将学习在数学上有广泛应用的二项式定理.计数问题是我们从小就经常遇到的,通过列举一个一个地数是计数的基本方法.但当问题中的数量很大时,列举的方法效率不高.能否设计巧妙的“数法”,以提高效率呢?下面先分析一个简单的问题,并尝试从中得出巧妙的计数计数方法.问题1:用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?+=(因为英文字母共有26个,阿拉伯数字共有10个,所以总共可以编出261036种不同的号码.)问题2:从甲地到乙地,可以乘火车也可以乘汽车.一天中,火车4班,汽车8班.乘这些交通工具从甲地到乙地,有多少种不同方法?(从甲地到乙地,乘火车有4班,乘汽车有8班,所以不同方法的种数为4 + 8 = 12)探究:你能说一说这个问题的特征吗?首先,这里要完成的事情是“给一个座位编号”;其次是“或”字的出现:一个座位编号用一个英文字母或一个阿拉伯数字表示.因为英文字母与阿拉伯数字互不相同,所以用英文字母编出的号码与用阿拉伯数字编出的号码也互不相同.这两类号码数相加就得到号码的总数.上述计数过程的基本环节是:(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;(2)分别计算各类号码的个数;(3)各类号码的个数相加,得出所有号码的个数.教师提出问题,学生思考、回答.【设计意图】通过设置问题情境,引出分类计数问题,激发学生的学习兴趣.环节二观察分析,感知概念问题3:你能概括一下上述问题的共同特征吗?【师生活动】学生回答,教师注意引导学生概括到“分类”和“加法”上.可以由学生叙述分类加法计数原理,教师适当补充.归纳概括分类加法计数原理:一般地,有如下分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有=+N m n种不同的方法.教师对原理进行解释,特别注意强调明确要完成的“一件事”的重要性.问题1中要完成的一件事是指“给一个座位编号”,问题2中要完成的一件事是指“从甲地到乙地”.特别注意:完成一件事都需要分类完成;每一类中的每一种方法都能完成这件事,两类不同的方案中的方法互不相同.设计意图:概括分类计数问题的特征,得出分类加法计数原理.【师生活动】学生举例,教师适当评价,特别注意让学生思考回答要完成的“一件事”是什么.【设计意图】使学生辨析和理解分类加法计数原理.例1 在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表6.1-1.表6.1-1探究:如果完成一件事有三类不同方案,在第1类方案中有m种不同的方法,在1第2类方案中有m种不同的方法,在第3类方案中有3m种不同的方法,那么完成2这件事共有多少种不同的方法?(完成这件事共有N = 1m+2m+3m种不同的方法)如果完成一件事情有n类不同方案,在每一类中都有若干种不同的方法,那么应当如何计数呢?(如果完成一件事情有n类不同方案,在第1类方案中有1m种不同的方法,在第2类方案中有机2m种不同的方法……在第n类方案中有机“种不同的方法,那么完成这件事共有N = 1m+2m+3m+...+m种不同的方法)n让学生自主探究,得出答案.【设计意图】推广分类加法计数原理,加深对分类加法计数原理的理解与认识.巩固概念,学会用分类加法计数原理解答简单问题.思考:用前6个大写英文字母和1~9这9个阿拉伯数字,以A,2A,…,9A,1B,2B,…1的方式给教室里的一个座位编号,总共能编出多少种不同的号码?【师生活动】教师引导学生分析、比较,得出:完成问题1的方法可以分类,用26个英文字母中的任意一个或10 个阿拉伯数字中的任意一个,都可以给出一个座位号码. 但在这个问题中,号码必须由一个英文字母和一个作为下标的阿拉伯数字组成,即得到一个号码要经过先确定一个英文字母,后确定一个阿拉伯数字这样两个步骤.需要分步才能完成.【设计意图】比较分类计数问题与分步计数问题,渗透分步乘法计数原理.这里要完成的事情仍然是“给一个座位编号”,但与前一问题的要求不同.在前一问题中,用26个英文字母中的任意一个或10个阿拉伯数字中的任意一个,都可以给出一个座位号码.但在这个问题中,号码必须由一个英文字母和一个作为下标的阿拉伯数字组成,即得到一个号码要经过先确定一个英文字母,后确定一个阿拉伯数字这样两个步骤.用图6.1-1所示的方法可以列出所有可能的号码.图6.1-1是解决计数问题常用的“树状图”.你能用树状图列出所有可能的号码也可以这样思考:由于前6个英文字母中的任意一个都能与9个数字中的任意一个组成一个号码,而且它们互不相同,因此共有6954⨯=种不同的号码.【师生活动】学生列出号码,教师注意在“有规律''"有序”列举上进行引导,可引出“树状图”法.教师和学生一起列出第一个树状图,让学生列出其他的树状图. 问题4:从列号码的过程中你发现了什么规律?【师生活动】教师引导学生概括出“任意一个英文字母都能与9个数字中的任意一个组成一个号码”.可以这样思考:由于前6个英文字母中的任意一个都能与9个数字中的任意一个组成一个号码,而且它们互不相同,因此不同号码的种数为6×9 = 54.补充问题:从甲地到乙地,需要经过丙地,从甲地到丙地有4条路,从丙地到乙地有8条路.从甲地到乙地,有多少条不同的路线?(从甲地到乙地,不同路线的条数为4×8 = 32)环节四辨析理解深化概念探究:你能说一说这个问题的特征吗?上述问题要完成的一件事情仍然是“给一个座位编号”,其中最重要的特征是“和”字的出现:一个座位编号由一个英文字母和一个阿拉伯数字构成.因此得到一个座位号要经过先确定一个英文字母,后确定一个阿拉伯数字这两个步骤,每一个英文字母与不同的数字组成的号码是互不相同的.【师生活动】学生回答,教师注意引导学生概括到“分步”和“乘法”上.可以由学生叙述分步乘法计数原理,教师适当补充.一般地,有如下分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有=⨯N m n种不同的方法.【设计意图】概括分步计数问题的特征,得出分步乘法计数原理.问题5:你能举出生活中的一些分步计数问题吗?【师生活动】学生举例,教师适当评价.特别注意让学生思考回答“一件事”是什么.【设计意图】使学生辨析和理解分步乘法计数原理.例2某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有m种不同的方法,做第21步有m种不同的方法,做第3步有3m种不同的方法,那么完成这件事共有多少种2不同的方法?(完成这件事共有N = m1×m2×m3种不同的方法)如果完成一件事情需要n个步骤,做每一步都有若于种不同的方法,那么应当如何计数呢?【设计意图】推广分步乘法计数原理,加深对此原理的理解与认识.环节五概念应用,巩固内化例3书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.(1)从书架上任取1本书,有多少种不同取法?(2)从书架的第1层、第2层、第3层各取1本书,有多少种不同取法?教师引导学生分析:对于第(1)小题,要完成的一件事是什么?完成这件事需要分类还是分步?(要完成的一件事是“从书架上取1本书”,需要分类完成)对于第(2)小题,要完成的一件事是什么?完成这件事需要分类还是分步?(要完成的一件事是“从书架的第1层、第2层、第3 层各取1本书”,需要分步完成)要求学生自己完成解答过程.完整解答过程如下:步,从第1层取1本计算机书,有4种方法;第2步,从第2层取1本文艺书,有3种方法;第3步,从第3层取1本体育书,有2种方法.根据分步乘法计数原理,不同取法的种数为N=⨯⨯=.43224【师生活动】你能从自己的生活经历中举出两个计数原理的例子吗?学生举例.教师针对学生举出的例子,要求学生回答要完成的“一件事”是什么,为什么可以用相应的原理来计数等.【设计意图】通过举例检查学生对概念的理解情况.环节六归纳总结,反思提升请同学们回顾本节课的学习内容,并回答下列问题:1.本节课学习的概念有哪些?2.你能从自己的生活经历中举出两个计数原理的例子吗?学生举例.教师针对学生举出的例子,要求学生回答要完成的“一件事”是什么,为什么可以用相应的原理来计数等.【设计意图】通过举例检查学生对概念的理解情况.环节七目标检测,作业布置完成教材:教材第5〜6页练习第1,3题.练习(第5页)1.填空题(1)一项工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是;【答案】9【解析】由题意,选择第1种方法来完成工作,共有5种选法;选择第2种方法完成工作,共有4种选法;所以符合题意得选法共有549+=种.故答案为:9.(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经B村去C村,不同路线的条数是.【解析】因为从A村去B村的道路有3条,从B村去C村的道路有2条,所以从A村经B村去C村,共有326⨯=条不同路线.故答案为:6.2.在例1中,如果数学也是A大学的强项专业,那么A大学共有6个专业可以选择,B大学共有4个专业可以选择,应用分类加法计数原理,得到这名同学可能的专业选择种数为6410+=.这种算法有什么问题?2.【解析】这种算法不正确.因为要确定的是这名同学的专业选择,并不需要考虑学校的差异,所以应当是6419+-=(种)可能的专业选择.3.书架上层放有6本不同的数学书,下层放有5本不同的语文书(1)从书架上任取1本书,有多少种不同的取法?(2)从书架上任取数学书和语文书各1本,有多少种不同的取法?3.【解析】(1)从书架上任取1本书,有两类方法:第1类方法是从上层取1本数学书,有6种取法;第2类方法是从下层取1本语文书,有5种取法.根据分类加法计数原理,不同取法的种数是6511N=+=.(2)从书架的上、下层各取1本书,可以分成两个步骤完成:第1步,从上层取1本数学书,有6种取法;第2步,从下层取1本语文书,有5种取法.根据分步乘法计数原理,不同取法的种数是6530N=⨯=.4.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名.(1)从三个年级的学生中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从三个年级的学生中各选1人参加接待外宾的活动.有多少种不同的选法? 4.【答案】(1)12;(2)60.【解析】从高一年级的学生中选取1名,有3种选法;从高二年级的学生中选取1名,有5种选法;从高三年级的学生中选取1名,有4种选法;(1)从三个年级的学生中任选1人参加活动,共有35412++=种不同选法;(2)从三个年级的学生中各选1人参加活动,共有35460⨯⨯=种不同选法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习 通过竞赛, 提高学生的 学习积极 性,同时也 了解学生知 识运用情况
学生分组竞赛答题, 熟悉原 理的运用 教师点评、 学生互评学生的 答题情况
三、自我总结,提炼升华 小结: 学生自我小结本课知识、 小 1.分类加法计数原理和分步乘法计数原理 结得失 是排列组合问题的最基本的原理, 是推导排 教师完善,点评 列数、组合数公式的理论依据,也是求解排列、 组合问题的基本思想. 2.理解分类加法计数原理与分步乘法计数 原理,并加区别。 自主探究: 电视台在“快乐大本营”节目中,拿出两个 信箱,其中存放着先后两次竞猜中成绩优秀的 观众来信,甲信封中有 15 封,乙信封有 10 封, 现由主持人抽奖确定幸运观众,若先确定一名 幸运之星,再从两信封箱中各确定一名幸运伙 伴,有多少种不同的选法?
突出重点, 帮助学生对 所学知识系 统化、条理 化
学生思考讨论, 教师加引引 导分析: 分类还是分步? 既有分类还有分步? 先分类还是先分步?
本题是两原 理的综合运 用,为下节 课作铺垫
四、课外作业:一课一练 巩固所学知 识,发现和 弥补教学中 的遗漏和不 足,培养学 生良好的学 习习惯。
由实际问 题,引导学 生得到分类 计数原理与 分步计数原 理,培养学 生的观察、 归纳能力。 学会从特殊 到一般的归 纳方法
(二)分步乘法计数原理 问题 3:从甲地到乙地,要从甲地先乘火车到丙 地,再于次日从丙地乘汽车到乙地,火车有 3 班,汽车有 2 班,那么两天中,从甲地到乙地 共有多少种不同的走法?
设计思路
教材分析
计数问题是数学中的重要研究对象之一,分类加法计数原理、 分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称 为基本计数原理,它们为解决很多实际问题提供了思想和工具。了 解和掌握两个计数原理,是学好本章的关键。教学中,应引导学生 根据计数原理分析、处理问题,而不应机械地套用公式。同时,在 这部分教学中,应避免繁琐的、技巧性过高的计数问题。为了帮助 学生理解,教学中应当注意使用“树形图” ,并会用它来解决问题。
《分类加法计数原理与分步乘法计数原理》教学设计
科
目
数
学
执教者
桑金红
课题名称
分类加法计数原理与分步乘法计数原理 本节课遵循课改的指导思想,本着以学生发展为本的理念,从 生活实例出发,培养学生自主、合作与探究的精神,并提高学生发 现问题和解决问题的能力,让学生学会从特殊归纳总结到一般,形 成结论,最后进行知识运用,教学环节主要分“引发探究,形成概 念;深化概念,训练巩固;自我总结,提炼升华”几个部分。
学生讨论交流 教师适当地改变题设引导 学生会从特殊推到一般的 情形, 从而发现归纳出分步 一般归纳:完成一件事情,需要分成 n 个步骤, 原理的内容。 做第 1 步有 m1 种不同的方法, 做第 2 步有 m 2 种 不同的方法„„做第 n 步有 m n 种不同的方法. 那么完成这件事共有 N m1 m2 mn 种 不同的方法。
教师提出比较两个原理的 异同点 学生分析讨论出结论, 教师 加以点评、完善
通过两个原 理的比较, 让更好的掌 握原理的使 用.
学生利用自己探索发现的 新知识解决实际问题 教师引导学生合理运用新 知,注意区分“分类”还是 “分步”
为了使学生 达到对知识 的理解,通 过对例题的 分析,从而 达到巩固提 高的效果。
教学重点和难点
主要教学方法
启发式教学、半开放教学、教与练结合 (1)学生已具备一定的计数能力,因此归纳出计数原理不难,可充 分发挥学生的自主性。 (2)引导学生发现感悟两原理的区别联系及运用的注意点。 投影仪,多媒体
学法指导
教学准备
教学内容
一:引发探究,形成概念: 引例: ①从我们班上推选出两名同学担任 班长,有多少种不同的选法? ②把我们的同学排成一排,共有多少种不同的 排法?
在问题 1 中加入题设 “轮船 1 类办法中有 m1 种不同的方法,在第 2 类办法 4 班” “第三层 中有 m 2 种不同的方法„„在第 n 类办法中有 问题 2 中加入题设 mn 种 不 同 的 方 法 . 那 么 完 成 这 件 事 共 有 中有不同数学书 2 本,第四 层有不同的语文数 5 本” 结 N m1 m2 mn 种不同的方法. 果又如何呢? 观察归纳出加法原理。 一般归纳: 完成一件事情,有 n 类办法,在第
教学目标
知识与技能: (1)正确理解两个计数原理; (2)掌握两个计数原理; (3)会用两个原理分析和解决一些简单的计数实际应用问题。 过程与方法:经历由实际问题,经过抽象概括而得出两个计数原理, 再回归实际问题的解决这一过程,学生体验到发现数学、运用数学 的过程。 情感与价值观:通过数学与探究活动,体会理论来源于实践并应用 于实践的辩证唯物主义观点. 重点:归纳地得出分类加法计数原理和分步乘法计数原理,能应用 它们解决简单的实际问题。 难点:正确理解“完成一件事情”的含义;根据实际问题的特征, 正确地区分“分类”或“分步” , 用两个计数原理解决一些实际问 题。
师生互动
教师引出课题: 分类加法计 数原理与分步乘法计数原 理.
设计意图
明确任务, 激发兴趣。
(一)分类加法计数原理 问题 1:从甲地到乙地,可以乘火车,也可以乘 汽车.如果一天中火车有 3 班,汽车有 2 班.那 么一天中,乘坐这些交通工具从甲地到乙地共 有多少种不同的走法?
学生独立思考 教师引导探究不同走法和 选法, 并发现它们的共同特 征。得出结论:完成一件事 有两种不同的方案,在第 1 类方案中有 m 种不同的方 问题 2:书架的第一层有 4 本不同的计算机书, 案, 在第二类中有 n 种不同 第二层有 3 本不同的文艺书,从书架上任取一 的方案, 那么完成这件事共 本,有多少种不同的选法? 有 N=m+n 种方法。
二、深化概念,训练巩固: 两个原理的比较: 1.共同点:都是计数原理,即统计完成某件事 不同方法种数的原理,因此都要先弄清是怎样 一件事,如何才算完成这件事. 2.不同点:分类计数原理中的 n 类办法相互独 立,且每类里的每种方法都可独立完成该事件; 分类要做到不重不漏; 分步计数原理中的 n 个 步骤缺一不可,每一步都不能独立完成该件事, 只有这 n 个步骤都完成之后,这件事才算完成. 例题 1.一件工作可以用两种方法完成。 有 5 人会用第 一种方法完成,有 4 人会用第二种方法完成。 选出一个人来完成这件工作,共有多少种选 法? 2.某学校食堂备有 5 种素菜、 3 种荤菜、 2 种汤, 先要配成一荤一素一汤的套餐,问可以配制出 多少种不同的品种?