分类加法计数原理和分步乘法计数原理(教案)
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
1.1分类加法计数原理和分步乘法计数原理教案

1.1分类加法计数原理和分步乘法计数原理教案《1.1分类加法计数原理和分步乘法计数原理教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容课题:分类计数原理与分步计数原理教材:苏教版选修2-3第1章第1节第1课时授课教师:江苏省海门中学江美新1、教学目标:[知识与技能目标]掌握分类计数原理和分步计数原理,并能用它们分析和解决一些简单的应用问题;通过对分类计数原理与分步计数原理的理解和运用,提高分析问题和解决问题的能力,培养逻辑思维能力。
[过程与方法目标]经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过比较分类计数原理与分步计数原理的异同,培养学生比较、类比、归纳等数学思想方法和灵活应用的能力。
[情感态度与价值观目标]通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。
通过两个原理的学习,培养学生周密思考、细心分析的学习习惯。
在自主探究的过程中,培养学生勇于探索的精神和善于合作的意识,从而实现自我的价值。
2、教学重点、难点:教学重点:对两个原理的理解和应用教学难点:正确运用分类计数原理与分步计数原理教学关键:弄清分步、分类两个重要概念3、教学方法与手段:教学方法:开放式探究、启发式引导、互动式讨论、反馈式评价学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
4、教学过程:教学的基本流程设计:数学教学是数学活动的教学。
因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、运用新知,解决问题;5、变式演练,深入探究;6、归纳总结,巩固提高。
整个教学过程是“以问题为载体,以学生活动为主线”进行的。
(一)创设情境,提出问题:在课堂教学的开始,我以问题形式配合课件的动态演示,指出人们在社会生活的各个方面常需要进行计数,远古人由“结而计之”发展到“数而计之”,而对于一些复杂的计数问题,怎么解决呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
教学设计2:分类加法计数原理与分步乘法计数原理

10.6.1 分类加法计数原理与分步乘法计数原理考纲传真 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.1.(人教A 版教材习题改编)在所有的两位数中,个位数字大于十位数字的两位数共有( )A .50个B .45个C .36个D .35个【解析】 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 C2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A .10B .11C .12D .15【解析】 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类计数原理知满足条件的信息个数为1+C34+C24=11.【答案】B3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210 C.336 D.120【解析】分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.【答案】A4.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种【解析】第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).【答案】C5.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.【解析】法一分两类,①一男一女,共有4×2=8种;②两女,只有1种,共有8+1=9种.法二间接法C26-C24=15-6=9种.【答案】9分类加法计数原理某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种【思路点拨】由于是两类不同的书本,故用分类加法计数原理.【尝试解答】赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).【答案】B,1.本题常见错误:①忽视相同画册,相同集邮册条件,错用排列计算.②找不准分类标准.求解的关键在于抓住赠送画册的本数进行分类.2.分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.图10-1-1如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.【解析】把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).【答案】40分步乘法计数原理(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【思路点拨】先排第一列三个位置,再排第二列第一行上的元素,则其余位置上元素就可以确定.【尝试解答】先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.【答案】A,1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.【解】(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况.因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.两个计数原理的综合应用图10-1-2如图10-1-2所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种【思路点拨】解答本题应注意两点:(1)每一个点都有可以和它同色的两个点.(2)涂色的顺序不同影响解题的难度,可先涂A、D、E,再分类涂B、F、C.【尝试解答】先涂A、D、E,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法,另一类是B与E 和D不同色,共有1×(1×1+1×2)=3种涂法,故涂色方法共有24×(8+3)=264种.【答案】B,1.给B、C、F涂色时,在每一类下又有两种情况,应切实掌握好分类的标准,分清哪些可以同色,哪些不同色.2.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.(2013· 杭州模拟)如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.图10-1-3【解析】按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类计数原理,不同的涂色种数为24+72=96.【答案】96两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,构成完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.两点提醒1.分类时,标准要明确,应做到不重不漏.2.分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取.从近两年高考试题看,两个计数原理是高考考查的热点,一般与排列、组合等知识结合,考查分类讨论的数学思想.主要涉及数字问题、几何问题、涂色问题,有时也出现与其它知识相结合的新定义题型.创新探究之十二与计数原理有关的新定义题(2012·江苏高考)设集合P n={1,2,…,n},n∈N*,记f(n)为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).【解】 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12), 所以f (n )=⎩⎨⎧2n 2,n 为偶数,2n +12,n 为奇数.创新点拨:(1)以集合的概念和运算为背景,求解计数问题.(2)一题两问,体现由特殊到一般的数学思想,考查归纳、抽象概括能力.防范措施:(1)通过阅读、分析,弄清新定义,弄清利用新定义所解决的问题,如本题中f (n )表示集合A 的个数,且集合A 满足三个条件.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种【解析】 分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C 12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).【答案】A2.(2013·济南质检)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.【解析】第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.【答案】12。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。
3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。
2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。
2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。
3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。
四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。
2. 学具准备:学生用书、练习本、文具。
3. 教学素材:相关案例分析题、小组讨论题。
五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。
2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。
3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。
4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。
5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。
7. 课堂练习:给出一些练习题,让学生巩固所学内容。
8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。
9. 课堂小结:对本节课的内容进行小结,强调重点和难点。
六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。
2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。
b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
分类加法计数原理、分步乘法计数原理精品教案

1.1分类加法计数原理、分步乘法计数原理【教学目标】【知识与技能】理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的问题;【能力目标】培养学生归纳概括能力;【情感态度与价值观】养成 “自主学习”与“合作学习”等良好的学习习惯【教学重点】分类计数原理与分步计数原理的应用【教学难点】分类计数原理与分步计数原理的准确理解第一课时问题接入:问题1.1:从温州到杭州,可以乘汽车,也可以乘火车,一天之中,火车有2班,汽车有3班,那么一天中,乘坐这些交通工具从温州到杭州共有几种不同的走法?问题1.2:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?一、新知探究:你能说说以上两个问题的特征吗?1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有N=m+n种不同的方法.问题1.3:在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学那么,这名同学可能的专业选择共有多少种?变式训练:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?二、探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?2.分类加法计数原理完成一件事,有n 类不同方案,在第1类方案中有m1 种不同方法,在第2类方案中有m2 种不同的方法,‥‥‥在第n类方案中有mn 种不同的方法,那么完成这件事共有N种不同的方法: N=m1+m2+‥‥‥+mn 。
问题2.1:从温州到绍兴,没有直达的火车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类加法计数原理和分步乘法计数原理讲义教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪第一课时引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N += 种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学生物学 数学化学 会计学医学 信息技术学物理学 法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解:从总体上看,如,蚂蚁从顶点A 爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类, m1 = 1×2 = 2 条第二类, m2 = 1×2 = 2 条第三类, m3 = 1×2 = 2 条所以, 根据加法原理, 从顶点A 到顶点C1最近路线共有 N = 2 + 2 + 2 = 6 条练习1.填空:( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯= 种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解: 按地图A、B、C、D四个区域依次分四步完成,第一步, m1 = 3 种,第二步, m2 = 2 种,第三步, m3 = 1 种,第四步, m4 = 1 种,所以根据乘法原理, 得到不同的涂色方案种数共有N = 3 × 2 ×1×1 = 6变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生3 名,高二年级的学生5 名,高三年级的学生4 名.( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去C 村,不同( 2 )从3 个年级的学生中各选1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?解:从3 幅画中选出2 幅分别挂在左、右两边墙上,可以分两个步骤完成:第 1 步,从3 幅画中选1 幅挂在左边墙上,有3 种选法;第 2 步,从剩下的2 幅画中选1 幅挂在右边墙上,有2 种选法.根据分步乘法计数原理,不同挂法的种数是N=3×2=6 .6 种挂法可以表示如下:分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事,分步乘法计数原理针对的是“分步”问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?分析:按照新规定,牌照可以分为 2类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分6个步骤.解:将汽车牌照分为 2 类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分6个步骤确定一个牌照的字母和数字:第1步,从26个字母中选1个,放在首位,有26种选法;第2步,从剩下的25个字母中选 1个,放在第2位,有25种选法;第3步,从剩下的24个字母中选 1个,放在第3位,有24种选法;第4步,从10个数字中选1个,放在第 4 位,有10种选法;第5步,从剩下的 9个数字中选1个,放在第5位,有9种选法;第6步,从剩下的 8个字母中选1个,放在第6位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照共有26 ×25×24×10×9×8=11 232 000(个) .同理,字母组合在右的牌照也有11232 000 个.所以,共能给11232 000 + 11232 000 = 22464 000(个) .辆汽车上牌照.用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细分析 ― 需要分类还是需要分步.分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到“步骤完整” ― 完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.练习1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项? 2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。