分类加法计数原理与分步乘法计数原理
1.1分类加法计数原理与分步乘法计数原理课件人教新课标

√A.9 B.2
C.20
D.6
(2)从A村去B村的道路有3条,从B村去C 村的道路有2条,从A村经B村去C村,不同的 路线有 ( )条.
A.3 B.4
C.5
√D.6
3.解答题
(1)由数字l,2,3,4,5可以组成多少个允 许重复数字的三位数.
解:
由于此三位数的数字允许重复,分三步: 百、十、个位数各有5种取法, 所以可以组成
如果完成一件事有n种不同方案,在每一 类中都有若干种不同方法,那么如何计数呢?
2、分步乘法计数原理
用前6个大写英文字母和1~9九个阿拉伯 数字,以A1,A2,…,B1,B2,…的方式 给教室里的座位编号,总共能变出多少个不 同的号码?
解答
由题意画图如下:
字母 A
数字
1 2 3 4 5 6 7 8 9
A.48个
分析:
B.36个
C.24个
D.18个
先分类,再分步,据题意,当个位数是2时, 万位数是3,4,5,其他随便,共有 3×3×2×1=18种;当个位数是4时,万位数是2, 3,5,其他随便,共有3×3×2×1=18种
所以共有36种.
课堂练习
1.填空
(1)从甲地到乙地有2种走法,从乙地到丙地有4 种走法,从甲地不经过乙地到丙地有3种走法,则 从甲地到丙地的不同的走法共有 __1_1___种.
高考链接
1(202X年福建卷7)某班级要从4名男生、2名 女生中选派4人参加某次社区服务,如果要求至少 有1名女生,那么不同的选派方案种数___A__ .
A. 14 B. 24
C. 28
D. 48
先分类,再分 步!
2. (202X年四川文科第9题)用数字1,2,3, 4,5可以组成没有重复数字,并且比20000大的 五位偶数共有______.B
第一节 分类加法计数原理与分步乘法计数原理 课件(共40张PPT)

角度 涂色、种植问题 [例3] (1)如图,图案共分9个区域,有6 种不同颜色的涂料可供涂色,每个区域只能 涂1种颜色的涂料,其中2和9同色,3和6同 色,4和7同色,5和8同色,且相邻区域的颜色不相同, 则不同的涂色方法有( ) A.360种 B.720种 C.780种 D.840种
1.如图,小明从街道的E处出发,先到F处与小红 会合,再一起到位于G处的老年公寓参加志愿者活动, 则小明到老年公寓可以选择的最短路径条数为( )
A.24 B.18
C.12
D.9
解析:从E点到F点的最短路径有6条,从F点到G点 的最短路径有3条,所以从E点到G点的最短路径有6×3= 18(条),故选B.
4.从0,1,2,3,4,5这六个数字中,任取两个不 同数字相加,其和为偶数的不同取法的种数是______.
解析:从0,1,2,3,4,5六个数字中,任取两数 和为偶数可分为两类,①取出的两数都是偶数,共有3种 方法;②取出的两数都是奇数,共有3种方法,故由分类 加法计数原理得共有N=3+3=6(种).
考点1 分类加法计数原理
1.如图,某货场有两堆集装箱,一
堆2个,一堆3个,现需要全部装运,每
次只能取其中一堆最上面的一个集装箱,则在装运的过
程中不同取法的种数是( )
A.6
B.10
C.12
D.24
解析:将题图中左边的集装箱从上往下分别记为
1,2,3,右边的集装箱从上往下分别记为4,5.分两种
情况讨论:若先取1,则有12345,12453,12435,
答案:D
3.现安排一份5天的工作值班表,每天有一个人值
分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理首先,让我们介绍一下分类加法计数原理。
分类加法计数原理也被称为分情况计数原理,是指将问题分为几个不同的情况进行计数,然后将各个情况的计数结果相加,得到最终的可能性总数。
为了更好地理解分类加法计数原理,我们举一个例子。
假设我们有三个不同颜色的球,红色、蓝色和黄色,现在要从这三个球中选择两个球。
根据分类加法计数原理,我们可以将这个问题分为三种情况:选择两个红色球、选择一个红色球和一个蓝色球、选择一个红色球和一个黄色球。
然后分别计算出每种情况下的可能性总数,最后将这三种情况的可能性总数相加,即可得到最终的答案。
在这个例子中,我们可以计算出每种情况下的可能性总数。
选择两个红色球有C(3,2)=3种可能;选择一个红色球和一个蓝色球有C(3,1)*C(3,1)=9种可能;选择一个红色球和一个黄色球也有9种可能。
将这三种情况的可能性总数相加,即得到最终的答案,共21种可能的选择方式。
接下来,让我们来介绍一下分步乘法计数原理。
分步乘法计数原理是指将一个问题分为若干个步骤,然后计算每个步骤的可能性数目,最后将各个步骤的可能性数目相乘,得到最终的可能性总数。
同样以一个例子来说明分步乘法计数原理。
假设我们有一个4位数的密码锁,每一位的取值范围是0-9、根据分步乘法计数原理,我们将这个问题分为四个步骤:第一位数字的可能性数目、第二位数字的可能性数目、第三位数字的可能性数目以及第四位数字的可能性数目。
然后计算每个步骤的可能性数目,最后将它们相乘,得到最终的可能性总数。
综上所述,分类加法计数原理和分步乘法计数原理是解决排列组合问题中常用的两种方法。
分类加法计数原理适用于将问题分为不同情况进行计数,然后将各个情况的计数结果相加;分步乘法计数原理适用于将问题分为若干个步骤,然后计算每个步骤的可能性数目,最后将它们相乘。
通过掌握这两种计数原理,我们可以更好地解决各种排列组合问题。
课件12:§1.1 分类加法计数原理与分步乘法计数原理

2. 分步乘法计数原理 (1)分步乘法计数原理:完成一件事需要两个步骤,做第1 步有m种不同的方法,做第2步有n种不同的方法,那么完 成这件事的不同方法共有N=m·n种. (2)分步乘法计数原理的推广:完成一件事需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同的方 法……做第n步有mn种不同的方法,那么完成这件事的不 同方法共有N=m1·m2·…·mn种.
类型2 分步乘法计数原理 典例2 已知a∈{3,4,6},b∈{1,2,7,8},r∈{8, 9},则方程(x-a)2+(y-b)2=r2可表示不同的圆的个 数有____2_4___个. 【解析】圆方程由三个量a,b,r确定,a,b,r分别 有3种、4种、2种选法,由分步乘法计数原理,表示 不同的圆的个数为3×4×2=24(个).
(3)分为三类: 第一类是一幅选自国画,一幅选自油画,由分步乘法计数原 理知,不同的选法有5×2=10(种). 第二类是一幅选自国画,一幅选自水彩画,不同的选法有 5×7=35(种). 第三类是一幅选自油画,一幅选自水彩画,不同的选法有 2×7=14(种). 综上所述,不同的选法有10+35+14=59(种).
归纳升华 解两个计数原理的综合应用题时,最容易出现不知道 应用哪个原理解题的情况,其思维障碍在于没有区分 该问题是“分类”还是“分步”,突破方法在于认真 审题,明确“完成一件事”的含义.具体应用时灵活 性很大,要在做题过程中不断体会和思考,基本原则 是“化繁为简”.
变式训练 一个袋子里有10张不同的中国移动手机卡, 另一个袋子里有12张不同的中国联通手机卡. (1)某人要从两个袋子中任取一张自己使用的手机卡,共 有多少种不同的取法? (2)某人的手机是双卡双待机,想得到一张移动和一张联 通卡供自己使用,问一共有多少种不同的取法?
分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
公开课分类加法计数原理与分步乘法计数原理课件

• 分类加法计数原理 • 分步乘法计数原理 • 分类加法计数原理与分步乘法计
数原理的比较 • 公开课总结与展望
目录
01
分类加法计数原理
定义与理解
定义
分类加法计数原理是指将一个问题分成若干个互斥的子问题,每个子问题有一 个明确的解决策略,然后将这些子问题的解合并起来得到原问题的解。
分类加法计数原理的实例
实例1
在组合数学中,将一个复杂组合问题 分解为若干个简单的组合问题,然后 分别计算这些简单问题的解,最后将 这些解相加得到原问题的解。
实例2
在统计学中,将一个复杂统计问题分 解为若干个简单的统计问题,然后分 别计算这些简单问题的解,最后将这 些解相加得到原问题的解。
02
分步乘法计数原理
解析
根据分步乘法计数原理,学生可以选择不同的交通方式有$m_1$种方法,选择不 同的住宿方式有$m_2$种方法,因此总共有$m_1 times m_2$种不同的春游方 案。
03
分类加法计数原理与分步乘
法计数原理的比较
两者之间的联系
分类加法计数原理和分步乘法计数原 理都是基本的计数原理,用于解决组 合数学中的计数问题。
定义与理解
定义
分步乘法计数原理是指完成一件事情,需要分成$n$个步骤,做第$1$步有$m_1$种不同的方法,做第$2$步有 $m_2$种不同的方法,……,做第$n$步有$m_n$种不同的方法,则完成这件事情有$m_1 times m_2 times ldots times m_n$种不同的方法。
理解
理解
分类加法计数原理的核心思想是将复杂问题分解为简单问题,然后分别解决这 些简单问题,最后将结果合并。
6.1分类加法计数原理和分步乘法计数原理-【新教材】人教A版高中数学选择性必修第三册课件

少要用多少个字节表示?
分析:
第1位 第2位 第3位
第8位 ......
第1位 第2位 第3位
第8位 ......
2种 2种
2种
2种
2种 2种
2种
2种
256*256=65536
两 例7:计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行
分析:
“选出2幅画,分别挂
1、“要完成的一件事”:在左、右两边墙上”
2、如何完成:“分步”
追问1:你还能给出不同 的解法吗?
第1步:从3幅画中选2幅,有3种选法; (甲,乙)、(甲,丙)、(乙,丙) 第2步:将选出的两幅画挂好,有2种挂法;
N=3✖2=6种.
例5:给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z, 后两个字符要求用数字1~9,最多可以给多少个程序模块命名?
个 计 路(程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许
数 原
多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
理 另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 实
减少测试次数吗?
际
开始
数 多子模块组成.下图是一个具有许多执行路径的程序模块。问:这个程序模块有多少条执行路径?
原 理
另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以
的 减少测试次数吗?
实 际
开始
分类加法计数原理和分步乘法计数原理 课件

问题 5 若还有 C 大学,其中强项专业为:新闻学、金融学、 人力资源学,那么,这名同学可能的专业选择共有多少种? 答 这名同学可以选择 A、B、C 三所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方 法,在 C 大学中有 3 种专业选择方法.又由于三所大学没有 共同的强项专业,因此根据分类加法计数原理,这名同学可 能的专业选择种数为 5+4+3=12. 小结 如果完成一件事有 n 类不同方案,在第 1 类方案中 有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方 法,……,在第 n 类方案中有 mn 种不同的方法,那么完成 这件事共有 m1+m2+m3+…+mn 种不同的方法.
小结 解两个计数原理的综合应用题时,最容易出现不知道应 用哪个原理解题的情况,其思维障碍在于没有区分该问题是 “分类”还是“分步”,突破方法在于认真审题,明确“完成 一件事”的含义.具体应用时灵活性很大,要在做题过程中不 断体会和思考,基本原则是“化繁理:完成一件事有两类不同方案,在第 1
类方案中有 m 种不同的方法,在第 2 类方案中有 n 种不 同的方法,那么完成这件事共有 N= m+n 种不同的方法. 2.分步乘法计数原理:完成一件事需要两个步骤,做第 1 步 有 m 种不同的方法,做第 2 步有 n 种不同的方法,那么 完成这件事共有 N= m×n 种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到 A、B 两
所大学各有一些自己感兴趣的强项专业,具体情况如下:
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区别三
各类办法是互斥的、 并列的、独立的
各步之间是相关联的 10
例题讲解:
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两所 大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 生物学 化学 医学 物理学 工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢? B大学 数学 会计学 信息技术学 法学
说明
N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
5
情境2:
狐狸有一共有多少种不同的方法,可以从草地 逃回到自己的房子(安全地)。
6
狐狸总共有多少种方法逃到安全地? 情境2: 如果狐狸还要多一步到达安全地呢?
3
草地
种
方 法
小岛
2 种 方 法
房子
4 种 方 法
安 全 地
N=3×2=6
N=3×2×4=24
7
情境2:
3
草地
种 方 法
小岛
2 种
方
房子
4 种
方 法
安 全 地
法
问题剖析 我们要做的一件事情是什么 完成这个事情需要分几步
分别挂在左右两边墙上的指定位置,问共有多
少种不同的挂法?
3× 2
13
变式1:要把3个球放入2两个不同的口袋,有几种不 同的放法? 变式2: 要从甲、乙、丙3名工人中选出2名分别上 日班和晚班,有多少种不同的选法?
变式3: 要把1,2,3,4四个数放入下面三个格子里, 数字不可重复,有多少种不同的放法?
19
4、如图,从甲地到乙地有2条路,从乙地到丁地有3条路; 从甲地到丙地有4条路可以走,从丙地到丁地有2条路。从甲地 到丁地共有多少种不同地走法?
甲 丙
乙 丁
20
探究性思考:
书架的第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放2本不同的体育书。从 书架上任取两本不同学科的书,有多少种不同的取法?
17
变式8:五名学生报名参加四项体育比赛,每人限报一项, 报名方法的种数为多少?
N=4×4×4×4×4
注意:分步乘法计数关键要算好每一步的方法 数
18
课堂练习:
1、一个商店销售某种型号的电视机,其中本地的产品 有4种,外地的产品有7种,要买1台这种型号的电视机,有多 少种不同的选法? 2、某商场有6个门,如果某人从其中的任意一个门进入商 场,并且要求从其他的门出去,共有多少种不同的进出商场的 方式? 3、如图,要给下面四个区域分别涂上5种不同颜色中的某一 种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不 同的涂色方案有多少种?
提示:先分类,再分步。
21
作业布置:
必做题:P6 选做题:来自练习1,2,3五名学生报名参加四项体育比赛,他们争夺这四
项比赛的冠军,获得冠军的可能性有多少种?
22
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
11
变式:
若还有C大学,其中强项专业为:新闻学、金融 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
金融学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
12
例2
要从甲、乙、丙3幅不同的画中选出2幅,
14
变式4:体育彩票中的排列5中奖号码有5位数码,每位数 若是0--9这十个数字中任一个,则产生中奖号码所有可能的 种数是多少?
10
× 10
×10 × 10 × 10
=105
变式5:0---9这十个数一共可以组成多少5位数字?
9
× 10
×10 × 10 × 10
=9 × 104
15
变式6:0---9这十个数一共可以组成多少个数字不重复 的5位数字?
草地到安全地 3步 不能 3种 2种 4种 3×2×4=24种 8
每步中的任一方法能否独立完成这件 事情 每步方法中分别有几种不同的方法
完成这件事情共有多少种不同的方法
二、分步计数原理 完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
9
×9
×8
×7 × 6
=27216
注意:分步乘法计数关键要算好每一步的方法 数
16
变式7:如图,要给下面A、B、C、D四个区域分别涂上5种 不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域 必须涂不同的颜色,不同的涂色方案有多少种?
A B C D
N = 5 × 4 ×3×4 = 240
注意:分步乘法计数关键要算好每一步的方法 数
完成这个事情的方法有几类方案 每类方案中的任一种方法能否独立完 成这件事情 每类方案中分别有几种不同的方法 完成这件事情共有多少种不同的方法
草地到安全地 3类
能
2种 3种 4种
2+3+4=9种
4
一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有 m1种不同的方法,在第2类方法中有m2种不同的 方法,……,在第n类方法中有mn种不同的方法, 则完成这件事共有
说明
N= m1×m2×… ×mn种不同的方法
1)各个步骤相互依存,只有各个步骤都完成了,这件事 才算完成,将各个步骤的方法数相乘得到完成这件事的 方法总数,又称乘法原理 2)首先要根据具体问题的特点确定一个分步的标准, 然后对每步方法计数.
9
分类计数与分步计数原理的区别和联系: 加法原理 乘法原理
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
联系
区别一
区别二
每一步得到的只是中间结果, 任何一步都不能能独立完成 每类办法都能独立完成 这件事情,缺少任何一步也 这件事情。 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
分类加法计数原理 与
分步乘法计数原理
1
创设情境:
情境1:
狐狸一共有多少种不同的方法,可以从草地逃到小岛。
2
狐狸总共有多少种方法逃到安全地? 情境1: 如果狐狸还有4辆自行车可以选择呢?
2种 3种 4种
草地
安全地
N=2+3=5
N=2+3+4=9
3
2种
情境1:
草地
3种 4种
安全地
问题剖析
狐狸要做的一件事情是什么
23