6.4 用一次函数解决问题(2)

合集下载

八年级数学上第6章一次函数6.4用一次函数解决问题2用一次函数图像解决问题课苏科

八年级数学上第6章一次函数6.4用一次函数解决问题2用一次函数图像解决问题课苏科

8 【2020·长春】已知A、B两地之间有一条长240千米的 公路.甲车从A地出发匀速开往B地,甲车出发2时后, 乙车从B地出发匀速开往A地,两车同时到达各自的目 的地.两车行驶的路程之和y(千米)与甲车行驶的时间 x(时)之间的函数关系如图所示. (1)甲车的速度为____4_0___千米/时, a的值为___4_8_为 y=kt+b,
b2=k+10b0=,380,解得kb==114000., ∴y 与 t 的函数关系式是 y=140t+100. 同时打开甲、乙两个进水口的注水速度是:(380- 100)÷2=140(m3/h).
(2) 现 将 游 泳 池 的 水 全 部 排 空 , 对 池 内 消 毒 后 再 重 新 注 水.已知单独打开甲进水口注满游泳池所用时间是单独
解:如图,观察图像可知:x=7, y=2.75这一 对数据错误.
(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16
厘米时,秤钩所挂物重是多少?
解:设 y=kx+b,把 x=1,y=0.75,x=2,y=1 分别代入可得k2+ k+bb==0.17,5,解得kb= =00..255,, ∴y=0.25x+0.5. ∴当 x=16 时,y=4.5. 答:秤杆上秤砣到秤纽的水平距离为 16 厘米时,秤 钩所挂物重是 4.5 斤.
整合方法·提升练 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月11日星期五下午9时28分14秒21:28:1422.3.11
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那 些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午9时28分22.3.1121:28March 11, 2022

一次函数解决问题步骤总结

一次函数解决问题步骤总结

一次函数是一种线性函数,其一般形式为y=kx+b(其中k 和 b 为常数,x 为自变量,y 为因变量)。

解决一次函数问题的步骤如下:确定问题中的变量和常量:首先需要确定问题中涉及到哪些变量和常量。

1.建立函数关系式:根据已知条件,建立变量之间的函数关系式,
即一次函数的一般形式y=kx+b。

2.求解函数中的未知量:如果函数关系式中存在未知量,可以通过
已知条件求解未知量。

例如,如果已知函数的截距b,可以通过代入x=0 求解y 值。

3.分析函数的性质:根据函数关系式,可以分析函数的性质,如斜
率k、截距b、函数的单调性、奇偶性等。

4.解决问题:根据函数的性质和已知条件,解决问题。

例如,可以
通过函数的单调性判断函数的增减性,从而解决最值问题;可以通过函数的截距和斜率判断函数的图像与坐标轴的交点,从而解决几何问题。

5.检验答案:最后需要检验答案是否符合实际情况和已知条件。

需要注意的是,在解决一次函数问题时,需要注意函数的定义域和取值范围,以及函数的图像和性质。

同时,需要灵活运用数学方法和技巧,如代入法、消元法、配方法等,以便更好地解决问题。

用一次函数解决问题详解课件

用一次函数解决问题详解课件

局限性
一次函数只能描述线性关系,对于非线性问 题可能无法准确描述,且对于多变量问题可 能无法全面考虑。
如何提高解决一次函数问题的能力
掌握基本概念
理解一次函数的基本概念 和性质,包括斜率、截距 、单调性等。
强化计算能力
提高计算能力和技巧,能 够快速准确地求解一次函 数的表达式和值。
实际应用练习
通过实际问题的解决,加 深对一次函数的理解和应 用能力。
详细描述
在斜率与距离问题中,我们需要找到 斜率和距离之间的关系。通过设定一 次函数模型,我们可以表示斜率和距 离之间的关系,从而解决实际问题。
03
一次函数问题的解决步骤
建立一次函数模型
识别问题中的变量和参数
代入已知条件求解
首先需要从问题描述中识别出变量和 参数,并理解它们之间的关系。
将已知条件代入一次函数模型中,解 出 k 和 b 的值。
用一次函数解决问题详 解课件
contents
目录
• 一次函数简介 • 一次函数的应用场景 • 一次函数问题的解决步骤 • 一次函数问题的实例解析 • 总结与思考
01
一次函数简介
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x为自变量,y 为因变量。
k
斜率,表示函数图像的倾 斜程度。
单调递减。
奇偶性
02
一次函数无奇偶性。
值域
03
对于任意x,y都有唯一确定的值,因此一次函数的值域为全体
实数。
02
一次函数的应用场景
线性关系问题
总结词
线性关系问题是一次函数最直接的应用场景,通过建立一次 函数模型,可以解决实际问题中关于两个变量之间线性关系 的问题。

2022-2023学年苏科版八年级数学上册《6-4用一次函数解决问题》解答题专题提升训练(附答案)

2022-2023学年苏科版八年级数学上册《6-4用一次函数解决问题》解答题专题提升训练(附答案)

2022-2023学年苏科版八年级数学上册《6.4用一次函数解决问题》解答题专题提升训练(附答案)1.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米),y2(米)与小明出发的时间x(分)的函数关系如图所示.(1)图中a=,b=;(2)小明上山的速度米/分;小明下山的速度米/分;爸爸上山的速度米/分.(3)小明的爸爸下山所用的时间.2.小李、小王两人从学校出发去图书馆,小李步行一段时间后,小王骑电动车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与小李出发时间t(分)之间的函数关系如图所示.(1)请直接写出小李、小王两人的前行速度;(2)请直接写出小李、小王两人前行的路程y1(米),y2(米)与小李出发时间t(分)之间的函数关系式;(3)求小王出发多长时间,两人的路程差为240米.3.小刚家、学校、图书馆依次在一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中,小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图所示.(1)求小刚从图书馆返回家的过程中,y与x之间的关系式;(2)小刚出发35分钟时,他离家有多远?4.如图,甲、乙两人分别从同一公路上的A、B两地同时出发骑车前往c地,两人行驶的路程y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A、B两地相距km,乙骑车的速度是km/h;(2)求甲在0≤x≤6的时间段内的函数关系式;(3)在0≤x≤6的时间段内,当x(h)为何值时甲、乙两人相距5千米.5.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是km/h;轿车提速后的速度是km/h;(2)轿车到达乙地后,货车距乙地千米;(3)线段CD对应的函数解析式为;(4)货车从甲地出发后小时与轿车相遇.6.某移动通讯公司开设了两类通讯业务,A类收费标准为不管通话时间多长,使用者都应缴50元月租费,然后每通话1分钟,付0.4元;B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式的费用分别为y A和y B元.(1)分别写出y A,y B与x之间的函数关系式;(2)某人估计一个月内通话时间为300分钟,应选哪种移动通讯方式合算些?请书写计算过程;(3)李师傅用的是A卡,他计算了一下,若是用B卡,他本月的话费将会比现在多100元,请算一下本月李师傅实际的话费是多少元?7.已知A、B两地相距120km,甲、乙两人沿同一条道路从A地到B地.l1、l2分别表示甲、乙两人离开A地的距离S(km)与时间t(h)之间的关系.请根据图象填空:(1)大约在甲出发h后,两人相遇,这时他们离B地km;(2)甲的速度是km/h;乙的速度是km/h;(3)l1对应的表达式为:,l2对应的表达式为:.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)甲车出发小时后,乙车才出发;(2)甲车的速度为km/h,乙车的速度为km/h;(3)甲、乙两车经过小时后第一次相遇;(4)当t为何值时,甲、乙两车相距20千米.(直接写出t的值)9.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)求出入园多少次时,两者花费一样?费用是多少?(3)洋洋爸准备了240元,请问选择哪种划算?10.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?11.某商品共200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨的平均售价及成本如下表:销售方式批发零售储藏后销售售价/(元/吨)300045005500成本/(元/吨)200030003500若经过一段时间,商品按计划全部售出获得的总利润为y(元),其中零售x(吨),且零售量是批发量的一半.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的商品数量最多为80吨,求该生产基地按计划全部售完商品获得的最大利润.12.为了传承中华优秀传统文化,增强文化自信,某中学举办了以“争做时代先锋少年”为主题的演讲比赛,并为获奖的同学颁发奖品.张老师去商店购买甲、乙两种笔记本作为奖品,已知该商店甲种笔记本的单价为5元/个,乙种笔记本的单价为3元/个,张老师准备购买甲、乙两种笔记本共100个.因张老师购买的数量多,实际付款时按原价的九折付款.设张老师购买x个甲种笔记本,购买这两种笔记本所需费用为y元.(1)求y与x之间的关系式;(2)若本次购买甲种笔记本的数量不少于乙种笔记本数量的3倍,为了使所花费用最低,应如何购买?最低费用是多少元?13.“中国海带之乡”霞浦县今年又迎来一个丰收年.某海带养殖专业村为保障养殖户收益,联系了村海带加工厂,收购养殖户每天收割的鲜海带.该加工厂主要以加工干海带和盐渍海带两种方式处理每天收购的30吨鲜海带,工厂现有12名工人,每位工人在同一天中只能选择一种加工方式.若生产干海带,每人每天可加工2吨鲜海带,每吨可获利250元;若加工盐渍海带,每人每天可加工0.6吨鲜海带,每吨可获利600元;每天加工不完的鲜海带直接续给鲍鱼养殖场作饲料.若安排所有的工人都加工干海带,则加工厂当天可获利6300元.(1)求加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利多少元;(2)根据市场销售情况,该加工厂决定生产干海带的人数不超过盐渍海带人数的2倍.问加工厂如何安排工人,可使每天生产的利润最大?最大利润是多少元?14.学校计划组织七年级学生到“万州三峡移民纪念馆”参加“追寻先辈足迹,传承三峡精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带队;若每位老师带队15名学生,就有一位老师少带6名学生.(1)参加此次活动的老师和学生各多少名?(2)现计划租用两种客车共8辆,一辆甲型客车可以载35人,租金400元,一辆乙型客车可以载30人,租金320元.计划此次活动的租金总费用不超过3000元,学校共有哪几种租车方案?最少租车费用是多少?15.一条笔直的公路上依次有A、B、C三地,甲车从A地驶往C地,乙车从A地驶往B地,两车同时出发并以各自的速度匀速行驶.乙车中途因汽车故障停下来修理,修好后立即以原速的两倍继续前进到达B地;如图是甲、乙两车与A地的距离y(千米)与出发时间x(小时)之间的大致图象.(1)求B、C两地之间的距离;(2)什么时候乙追上甲;(3)当两车相距40千米时,甲车行驶了多长时间.16.复课第一天,马小虎同学从家出发,骑车匀速前往学校上学,出发几分钟后,爸爸发现马小虎的健康卡落在家里,于是骑车沿相同的路线匀速去追马小虎.爸爸刚出发2分钟,马小虎也发现自己健康卡落在家里,立刻原路原速骑车返回,2分钟后马小虎遇到爸爸,爸爸把健康表给马小虎后立即原路原速返家中,马小虎继续原路原速赶往学校.马小虎与爸爸相距的路程y(米)与马小虎出发的时间x(分)之间的关系如图所示(爸爸给马小虎健康卡的时间忽略不计).(1)马小虎出发分钟后,爸爸追上他.(2)求马小虎骑车的速度.(3)若爸爸到家4分钟后,马小虎才到学校,求马小虎家到学校的路程.17.如图,直线与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是3时,求点P的坐标;(3)当点P在线段AB上且△BOP的面积为3时,在x轴上是否存在点Q,使得△OPQ 是以OP为腰的等腰三角形,若存在,请直接写出Q点的坐标,若不存在,请说明理由.18.如图1,在平面直角坐标系中,一次函数y=3x+6分别与x轴和y轴交于点C和点B,已知A(6,0),(1)写出点B,点C的坐标和△ABC的面积;(2)直线l经过A、B两点,求直线AB的解析式;(3)点D是在直线AB上的动点,是否存在动点D,使得?若存在,求出点D的坐标;若不存在,请说明理由;(4)如图2,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.19.如图所示,在平面直角坐标系中,直线y=x+1与y=﹣x+3分别交x轴于点B和点C,点D是直线y=﹣x+3与y轴的交点.(1)求点B、C、D的坐标;(2)设M(x,y)是直线y=x+1上一点,当△BCM的面积为10时,求点M的坐标;(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.20.问题提出:如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD ⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图3,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.参考答案1.解:(1)由图象可以得到,a=8,b=280,故答案为:8,280;(2)由图象可以得出爸爸上山的速度是:280÷8=35(米/分),小明上山的速度为:400÷8=50(米/分),小明下山的速度是:400÷(24﹣8)=25(米/分),故答案为:50,25,35;(3)∵小明从下山到与爸爸相遇用的时间是:(400﹣280)÷(35+25)=2分,∵小明与爸爸相遇后,和爸爸一起以原下山速度返回出发地,∴小明的爸爸下山所用的时间:24﹣8﹣2=14(分).故答案为:14.2.解:(1)由图象得出小李步行720米,需要9分钟,所以小李的运动速度为:720÷9=80(米/分),当第15分钟时,小王运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴小王的运动速度为:1200÷6=200(米/分);(2)根据题意得y1=80t,y2=200(t﹣9)=200t﹣1800;(3)当相遇前两人的路程差为240米时,得y1﹣y2=240,即80t﹣(200t﹣1800)=240,解得t=13,当相遇前两人的路程差为240米时,得y2﹣y1=240,即(200t﹣1800)﹣80t=240,解得t=17,∴小王出发13分钟或17分钟时,两人的路程差为240米.3.解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(2)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:他离家2000m.4.解:(1)由图象可得,A、B两地相距20km,乙骑车的速度是(30﹣20)÷2=10÷2=5(km/h),故答案为:20,5;(2)设甲在0≤x≤6时,y与x之间的函数关系式是y=kx,∵点(6,60)在该函数图象上,∴6k=60,解得k=10,即甲在0≤x≤6时,y与x之间的函数关系式是y=10x;(3)设乙在0≤x≤6时,y与x之间的函数关系式是y=ax+b,∵点(2,30),(6,50)在函数图象上,∴,解得,即乙在0≤x≤6时,y与x之间的函数关系式是y=5x+20;相遇之前两人相距5km,则(5x+20)﹣10x=5,解得x=3;相遇之后且甲到达C地之前相距5km,则10x﹣(5x+20)=5,解得x=5;答:当乙行驶3小时或5小时时甲、乙两人相距5千米.5.解:(1)货车的速度为300÷5=60(km/h);轿车提速后的速度为=110(km/h).故答案为:60,110;(2)从图象上看轿车比货车早0.5h到达乙地,∴轿车到达乙地后,货车距乙地有0.5×60=30(千米),故答案为:30;(3)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5),故答案为:y=110x﹣195;(4)设OA段函数解析式为y=mx,代入A(50,300),得5m=300,解得m=60,∴OA段函数解析式为y=60x;联立方程组,得,解得,故货车从甲地出发后3.9小时与轿车相遇.故答案为:3.9.6.解:(1)由题意可得,y A=0.4x+50,y B=0.6x;(2)当x=300时,y A=0.4×300+50=170,y B=0.6×300=180,∵170<180,∴某人估计一个月内通话时间为300分钟,应选A种移动通讯方式合算些;(3)设本月李师傅实际的话费是a元,,解得a=350,答:本月李师傅实际的话费是350元.7.解:(1)由图象可知,大约在甲出发3﹣2=1(h)后,两人相遇,这时他们离B地120﹣30=90(km);故答案为:1,90;(2)甲的速度是30÷(3﹣2)=30(km/h),乙的速度是30÷3=10(km/h),故答案为:30,10;(3)设l1对应的表达式为s=kt+b,将(3,30),(6,120)代入得:,解得,∴l1对应的表达式为:s=30t﹣60,设l2对应的表达式为s=k't,将(3,30)代入得:30=3k',解得k'=10,∴l2对应的表达式为s=10t,故答案为:s=30t﹣60,s=10t.8.解:(1)由图象可直接得出:甲车出发1小时后,乙车才出发;故答案为:1;(2)由图象可知,甲车的速度为240÷5=48(km/h),乙车的速度为240÷(4﹣1)=80(km/h);故答案为:48;80;(3)甲所在的直线为y=48x,乙所在的直线为:y=80x﹣80,令48x=80x﹣80,解得x=2.5,故答案为:2.5;(4)当乙车开始行驶前,令48x=20,解得x=,符合题意,当甲、乙两车相遇前,48x﹣(80x﹣80)=20,解得x=,符合题意,当甲、乙两车相遇后,80x﹣80﹣48x=20,解得x=,符合题意,当乙到达目的地后,48x+20=240,解得x=,符合题意.∴当t的值为或或或,甲、乙两车相距20千米.9.解:(1)设y甲=k1x,根据题意得4k1=80,解得k1=20,∴y甲=20x;设y乙=k2x+80,根据题意得:12k2+80=200,解得k2=10,∴y乙=10x+80;(2)解方程组解得:,∴出入园8次时,两者花费一样,费用是160元;(3)当y=240时,y甲=20x=240,∴x=12;当y=240时,y乙=10x+80=240,解得x=16;∵12<16,∴选择乙种更合算.10.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),∴甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),∴4v=360,∴D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得:,解得,∴线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)∵60×=40,∴C(0,40),设线段CF的解析式为y=kx+40,根据题意得:7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,由,解得1≤x≤,由,解得≤x≤7,∴两车在行驶过程中可以通话的总时长为:(﹣1)+(7﹣)=(小时).11.解:(1)设零售x吨,则批发2x吨,储藏后销售(200﹣x﹣2x)吨,根据题意得:y=2x(3000﹣2000)+x(4500﹣3000)+(200﹣3x)(5500﹣3500)=﹣2500x+400000;即y=﹣2500x+400000;(2)∵冷库储藏售出的商品数量最多为80吨,∴200﹣3x≤80,∴x≥40,,∵y=﹣2500x+400000中,﹣2500<0,∴y的值随x的值增大而减小,∴当x=40时,y最大值=﹣2500×40+400000=300000(元);答:该生产基地按计划全部售完商品获得的最大利润为300000元.12.解:(1)设张老师购买x个甲种笔记本,则购买(100﹣x)个乙种笔记本,由题意可得:y=5×0.9x+3×0.9(100﹣x)=1.8x+270.即y与x之间的关系式为y=1.8x+270;(2)由(1)知:y=1.8x+270,∴y随x的增大而增大,∵甲种笔记本的数量不少于乙种笔记本数量的3倍,∴x≥3(100﹣x),解得x≥75.∴当x=75时,y取得最小值,此时y=405,100﹣x=25,答:购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元.13.解:(1)设加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利x元,根据题意得:12×2×250+(30﹣12×2)x=6300,解得x=50,答:加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元;(2)设生产盐渍海带的m人,每天生产的利润是w元,则生产干海带的(12﹣m)人,∵生产干海带的人数不超过盐渍海带人数的2倍,∴12﹣m≤2m,解得m≥4,根据题意得:w=0.6m×600+2(12﹣m)×250+50[30﹣0.6m﹣2(12﹣m)]=﹣70m+6300,∵﹣70<0,∴当m=4时,w取最大值,最大值为﹣70×4+6300=6020(元),此时12﹣m=8,答:生产盐渍海带的4人,生产干海带的8人,可使每天生产的利润最大,最大利润是6020元.14.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得.答:参加活动的老师有16人,学生有234人;(2)设租甲种车型n辆,依题意得,解这个不等式组得:2≤n≤5.5,∵n为正整数,∴n=2,3,4,5,即学校共有一下四种租车方案:方案①:2辆甲车,6辆乙车;方案②:3辆甲车,5辆乙车;方案③:4辆甲车,5辆乙车;方案④:5辆甲车,3辆乙车;设租车费用为W元,则W=400n+320(8﹣n)=80n+2560,∵80>0,∴W随n的增大而增大,∴当n=2时费用最低,最少费用为W=160+2560=2720(元).答:学校共有四种租车方案,最少费用为2720元.15.解:(1)乙前面的速度为:100÷2=50(千米/小时),乙后来的速度为:50×2=100(千米/小时),BC=360﹣100﹣100×(4.8﹣2.8)=60(千米),答:B、C两地之间的距离为60千米;(2)甲的速度为:360÷6=60(千米/小时),设乙t小时追上甲,根据题意得60t=100+100(t﹣2.8),解得t=4.5,答:出发后4.5小时乙追上甲;(3)当0<x≤2时,两车距离小于40,①当2<x≤2.8时,设甲距离A地的距离y(千米)与出发时间x(小时)之间的关系式为y=k1x,代入(6,360)可得k1=60,∴y=60x,60x﹣100=40,解得x=;②当2.8<x≤4.8时,由(1)可得,A、B两地之间的距离为:360﹣60=300(km),设乙与A地距离与出发时间x之间的函数关系式为y=k2x+b,代入(2.8,100)和(4.8,300),得,解得,∴y=100x﹣180,解方程100x﹣180﹣60x=40得x=5.2(不合题意,舍去),解方程60x﹣(100x﹣180)=40得x=3.5;③当x>4.8时,解方程60x=360﹣20得x=.答:当两车相距40千米时,甲车行驶了小时或3.5小时或小时.16.解:(1)由题意可知,当y=0时,x=10,所以马小虎出发10分钟后,爸爸追上他.故答案为:10;(2)由题意得,2400÷6=400(米/分钟),即马小虎骑车的速度为400米/分钟;(3)∵由题意可知,相遇4分钟后,爸爸到家,∴相遇后马小虎又骑行了8分钟才到学校,2400+2×400﹣2×400+8×400=5600(米),答:马小虎家到学校的路程为5600米.17.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=3,∴PC=2,∴点P的横坐标为2或﹣2,∴P(2,)或(﹣2,);(3)存在,理由如下:∵P点在线段AB上,∴P(2,),设Q(x,0),∴OP=,OQ=|x|,PQ=,当OP=OQ时,|x|=,解得x=或x=﹣,∴Q(,0)或(﹣,0);当OP=PQ时,=,解得x=0(舍)或x=4,∴Q(4,0);综上所述:Q点坐标为(,0)或(﹣,0)或(4,0).18.解:(1)对于y=3x+6,令x=0,则y=6,故点B(0,6),令y=3x+6=0,解得:x=﹣2,故点C(﹣2,0);则△ABC的面积=×AC×OB=×(6+2)×6=24;(2)设直线AB的表达式为y=kx+b(k≠0),则,解得:,故直线AB的表达式为y=x+6;(3)存在,理由:∵,∴|y D|=|y B|=3,即|x+6|=3,解得:x=3或9,故点D的坐标为(3,3)或(9,﹣3);(4)K点的位置不发生变化,理由:设点P的坐标为(t,0),过点Q作QH⊥x轴于点H,∵∠BPO+∠QPH=90°,∠PBO+∠BPO=90°,∴∠QPH=∠PBO,在Rt△BOP和Rt△PHQ中,,∴△BOP≌△PHQ(AAS),∴PH=BO=6,QH=OP=t,则点Q的坐标为(t+6,t),设直线AQ的表达式为y=mx+n,则,解得,故点K的坐标为(0,﹣6).19.解:(1)y=x+1中当y=0时,x=﹣1,∴B(﹣1,0),y=﹣x+3中y=0时,则x=4,x=0时,则y=3,∴C(4,0),D(0,3);(2)∵B(﹣1,0),C(4,0),∴BC=5,∵M(x,y),∴S△BCM=×5×|x+1|,∵△BCM的面积为10,∴×5×|x+1|=10,解得x=3或x=﹣5,∴M(3,4)或(﹣5,﹣4);(3)线段CD上存在点P,使△CBP为等腰三角形,理由如下:设P(t,﹣t+3)(0≤t≤4),∴BP=,CP=,当BC=BP时,=5,解得t=4(舍)或t=﹣(舍),∴此时不存在P点满足题意;当BC=CP时,=5,解得t=0或t=8(舍),∴P(0,3);当BP=CP时,=,解得t=,∴P(,);综上所述:P点坐标为(0,3)或(,).20.问题提出:证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△BEC≌CDA(SAS);问题探究:解:过C点作CD⊥x轴交于点D,∵∠BAC=90°,CD⊥x轴,BO⊥x轴,AC=AB,由问题提出可得△CAD≌△ABO(SAS),∴CD=OA,AD=BO,∵y=x+1与x轴交于点A(﹣4,0),与y轴交于点B(0,1),∴AO=4,OB=1,∴C(﹣5,4);问题解决:解:设线段AB绕点A顺时针旋转后的线段为AC,绕A点逆时针旋转后的线段为AD,过点C作CN⊥x轴交于点N,过D点作DM⊥x轴交于点M,∵∠CAB=∠DAB=45°,∴∠CAD=90°,由问题提出可得△ACN≌△DAM(SAS),设C点坐标为(m,n),∴DM=AN,CN=AM,∵OA=1,∴A(﹣1,0),∴D(﹣n﹣1,m+1),∵射线AB与直线y=﹣2x平行,∴直线AB的解析式为y=﹣2x﹣2,连接CD交AB于点E,∵△ACD是等腰直角三角形,∴∠ADC=45°,∵∠BAD=45°,∴∠AED=90°,∴E是CD的中点,∴E(,),∴E点在直线AB上,∴=﹣2•﹣2,整理得n=3m+3,∴直线AC的解析式为y=3x+3,设y=m+1,x=﹣n﹣1,∴﹣x﹣1=3(y﹣1)+3,整理得y=﹣x﹣,∴直线AD的解析式为y=﹣x﹣.。

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

八上 一次函数与方程组、不等式 知识点+例题+练习 (非常好 分类全面)

例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。

例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。

利用一次函数图像解决实际问题

利用一次函数图像解决实际问题

利用一次函数图像解决实际问题从近几年黑龙江省的中考试卷可以看出,中考命题增大了对一次函数图像的应用考查的力度和强度,题型由选择题、填空题攀升到分值比重较大的解答题,直至难度较大的实际应用题.特别是利用一次函数图像解决实际问题这类题目,正逐步成为中考命题的热点.因此,列举几道近年来黑龙江省各地区的中考题进行考点解析、考题精讲、中考预测等几方面的诠释,供广大考生在复习时参考.一、考点解析1. 考点应用(1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式;(2)会利用待定系数法确定一次函数的表达式;(3)能画出一次函数的图像,根据一次函数的图像和表达式y=kx+b(k≠0),探索并理解k>0和k<0时,图像的变化情况;(4)体会一次函数与二元一次方程(组)的关系;(5)能用一次函数(图像)解决简单的实际问题.2. 考点指明(1)利用一次函数图像的应用题考查的考点集中在以下几方面:①对数形结合的认识和理解情况;②将实际问题转化为一次函数的能力,即数学建模能力;③对分类讨论、极端值、对应关系、有序性的数学思想方法的掌握;④对一次函数与方程(组)、不等式(组)关系的理解与转化能力.(2)利用一次函数图像解决实际问题这类的题目,通常表现为图像信息题,是中考的热点考题.解答这类问题的重点是要抓住以下几点:①读懂图像,结合分析找出有用信息;②利用信息抽象出数学模型(如一次函数);③带着实际问题的限制条件解数学模型.(3)利用一次函数图像解决实际问题时,深刻理解一次函数的图像要注重以下几点:①分清一次函数中的分段函数,要特别注意相应的自变量变化区间,在解析式和图像上都要反映出自变量的相应取值范围.由几条线段(或射线)组成的折线将函数图像分段,其中每条线段(或射线)代表每一段函数图像,代表某一个阶段的情况.②弄清两个坐标轴代表的实际意义,分析分段函数的图像要结合实际问题背景.二、考题精讲例1:(2014年黑龙江省齐齐哈尔市)已知,A、B两市相距260千米.甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计).乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市.如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图像,结合图像回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间.【考点应用】一次函数图像的应用.【详解详析】(1)由甲车行驶2小时到M地可知M地距A市80千米,由此求得甲车原来的速度为40千米/时,进而求得甲车提速后的速度;根据乙车从出发到返回的时间以及速度,求得点C的坐标;(2)设乙车返回时y与x的函数关系式y=kx+b,代入点C和(4,0)求得答案即可;(3)求出甲车提速后到达B市时间减去乙车已返回A市的时间即可.【解答过程】【总结点评】此题考查一次函数的实际运用,结合图像,理解题意,正确列出函数解析式解决问题.例2:(2015年黑龙江省齐齐哈尔市)甲、乙两车分别从相距480千米的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图像解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点应用】一次函数图像的应用.【详解详析】(1)首先求得乙车的速度,然后求出乙车到达A地用的时间是多少;最后求出甲车的速度,求出t的值是多少即可;(2)根据题意分三种情况求出甲车距它出发地的路程y 与它出发的时间x的函数关系式,写出自变量的取值范围;(3)根据题意分三种情况求出乙车出发多长时间两车相距120千米即可.【解答过程】4小时、6小时后两车相距120千米.【总结点评】(1)此题主要考查了一次函数的应用问题,要熟练掌握,解答此题的关键是要明确:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)此题还考查了行程问题,要熟练掌握速度、时间和路程的关系.。

八上数学《同步练习》§6.4用一次函数解决问题(2)

八上数学《同步练习》§6.4用一次函数解决问题(2)

八上数学《同步练习》§6.4用一次函数解决问题(2)隨堂练习1.按照有关规定:个人月收入不超过3500元,免缴个人所得税。

个人月收入超过3500元不超过5000元部分需缴纳3%的个人所得税。

试写出月收入在3500元到5000元之间的人应缴纳的所得税税金y (元)与月收入x (元)之间的函数表达式:__________________。

2.为鼓励居民节约用水,某市采取如下费标准:①若每月每户用水不超过4立方米,则按 每立方米2元计算;②若每月每户用水超过4立方米,则超过部分按每立方米4.5元计算。

(1)某户居民每月用水量为x 立方米(x >4),水费为y 元,写出y 与x 之间的函数表达 式;(2)甲、乙两户居民某月所交水费分别为7元和26元,这两户居民该月的用水量分别是多少?3.如图,某公路上有A 、B 、C 三站,一辆汽车在上午8时从离A 站5km 的P 地出发向C 站 匀速行驶,15min 后离A 站20km 。

(1)设出发xh 后,汽车离A 站ykm ,写出y 与x 之间的函数表达式。

(2)当汽车行驶到离A 站215km 的B 站时,接到通知要在中午12点前往离B 站35km 的 C 站,汽车若按原速能否按时到达?若能,是在几时几分到达?若不能,车速最少 应提高到多少?4.某居民小区按照分期付款的形式福利售房,政府给予一定的贴息,小明家购得一套现价 为360000元的房子,购房时首期(第一年)付款90000元,从第二起,以后每年应付房 款15000元与上一年剩余欠款一年利息的和,剩余欠款年利率为0.4%。

(1)设第x (x ≥2)年小明家应付房款y 元,求y 与x 的函数表达式;(2)将第三年、第十年应付房款填入下表中:年份第一年 第二年 第三年 … 第十年 交房款/元90000 16080 337 …第3题课后复习5.如图,在某次跑步练习中,甲、乙两人同时起跑,从同一起点跑向同一终点,其路程s(m) 与时间t(s)之间的函数关系的图像分别为折线OABC 和线段OD 。

6.4 用一次函数解决问题同步练习 2022-2023学年苏科版数学八年级上册

6.4 用一次函数解决问题同步练习 2022-2023学年苏科版数学八年级上册

2022-2023学年八年级上册数学同步练习6.4用一次函数解决问题一、选择题1.如图所示,一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为()A B C D2.已知等腰三角形的周长为10cm,将底边长y(cm)表示成腰长x(cm)的函数关系式是y =10-2x,则其自变量x的取值范围是()3.甲骑自行车.乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间的函数关系的图象如图,从图象可知,当时间x等于()时,甲与乙相遇.A.10分钟B.25分钟C.20分钟D.30分钟4.如图是本地区一种产品30天的销售图象,图1是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图2是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×每件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元5.“高高兴兴上学来,开开心心回家去”,小明某天放学后,17时从学校出发,回家途中离家的路程S(百米)与所走的时间t(min)之间的函数关系如图所示,那么这天小明到家的时间为()A.17时15分B.17时14分C.17时12分D.17时11分二、填空题6.某种茶杯每只2元,买这种茶杯x只,共花去y元,则y(元)与x(只)之间的函数关系式是_________.7.某校有125名教职工,在今年教师节庆祝活动中,工会拨款3000元,如果为每位教职工买一件价值x元的纪念品,尚余y元,则y(元)与x(元)之间的函数关系式是___________。

8.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,行驶的平均速度为80千米/时,x 小时后鲁老师距省城y 千米,则y 与x 之间的函数关系式为______.9.为了增强公民的节水意识,某市制定了如下用水收费标准,每户每月的用水不超过10t 时,水价为每吨1.2元;超过10t 时,超过的部分按每吨1.8元收费,该市某户居民五月份用水xt (x >10),应交水费y 元,则y 关于x 的函数关系式为_______。

八年级数学上册6.4用一次函数解决问题

八年级数学上册6.4用一次函数解决问题
指出自变量x的取值范围; y=10x(x≥0)
(2)写出乙离开出发地的路程y与x之间的函数关系式,并 指出自变量x的取值范围;
y=25x-75(x≥3)
(3)在同一直角坐标系中,画出(1)(2)中函数的图像,并结
合实际问题,解释图像中交点的意义.
y/千米
50
40
30 甲y=10x
20
10
乙y=25x-75
解:① B 市运往 C 市机器x台,则有题意可知: W = 300x + 500 (6-x) + 400(10-x) +800〔12(10-x)〕
= 200 x + 8600 ( 0 ≤ x ≤ 6 ) ∴总运费W(元)关于x的函数关系式为: W = 200 x + 8600 ( 0 ≤ x ≤ 6 )
分析:假设该单位参加旅游人数为x,按甲旅行社的优 惠条件,应付费用80x 元;按乙旅行社的优惠条件, 应付费用(60x+1000)元.问题变为比较80x 与 60x+1000 的大小了.
解法一:设该单位参加旅游人数为x.
那么选甲旅行社,应付费用80x 元;
选乙旅行社,应付(60x+1000)元
记 y1= 80x,y2= 60x+1000.在同一直角坐标系内作出 两个函数的图象, y1与y2的图象交于点(50,4000).
y=
(0≤x≤8)
(1.5+1.2)(x-8)+1.3×8=2.7x-11.2 (x>8)
(2)当x=10时,y=2.7×10-11.2=15.8. 答:应缴水费为15.8元
(3)因为1.3×8=10.4<26.6,所以该用户用水量超过8立方米. 所以2.7x-11.2=26.6,解得x=14 答:该户这月用水量为14吨

利用一次函数解实际问题

利用一次函数解实际问题

利用一次函数解实际问题在解实际问题时,一次函数是一种常用的数学工具。

一次函数的一般形式可以表示为y = ax + b,其中a和b是常数,x是变量。

通过解析一次函数的图像、斜率和截距,我们可以应用它来解决各种实际问题。

本篇文章将探讨一次函数在解实际问题中的应用。

1. 速度和距离的关系在物理学中,速度和距离之间存在着重要的关系。

假设一个物体以恒定速度v移动,我们可以使用一次函数来描述它的距离随时间的变化情况。

设物体在t秒时的距离为d,则有d = vt,其中v是速度。

这个方程恰好是一次函数的形式,其中斜率a等于速度v,截距b等于0。

通过解析这个一次函数,我们可以计算出物体在不同时间点的位置。

例如,假设一辆汽车以每小时60英里的速度匀速行驶。

我们可以利用一次函数来表示汽车行驶的距离和时间之间的关系。

设时间为x小时,则距离可以表示为d = 60x。

通过这个一次函数,我们可以计算出汽车在不同时间点的行驶距离,从而解决与汽车行驶距离相关的问题。

2. 成本和销售额的关系在经济学中,成本和销售额之间存在着紧密的联系。

假设某个公司生产一种商品,成本和销售额之间可以使用一次函数来描述。

设成本为C,销售额为R,可以表示为R = aC + b,其中a是单位成本,b是固定成本。

通过解析这个一次函数,我们可以计算出不同成本下的预期销售额。

这对于企业决策和盈亏分析非常重要。

例如,假设单位成本为10美元,固定成本为100美元。

我们可以使用一次函数R = 10C + 100表示销售额和成本之间的关系。

通过解析这个一次函数,我们可以计算出不同成本水平下的销售额,从而帮助企业做出合理的经营决策。

3. 温度和时间的关系在气象学中,温度和时间之间存在着一定的关系。

假设某地的温度每小时下降3摄氏度,我们可以使用一次函数来表示温度和时间之间的关系。

设时间为x小时,温度为T,可以表示为T = -3x + b,其中b是初始温度。

通过解析这个一次函数,我们可以计算出不同时间点的预期温度。

苏科版数学八年级上册6.4《用一次函数解决问题》解答题专项练习

苏科版数学八年级上册6.4《用一次函数解决问题》解答题专项练习

《用一次函数解决问题》解答题专题练习1.星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.2.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分;(4)求A 、C 两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.3.甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1h 后,y 甲、y 乙与x 之间的函数图象如图所示.(1)甲的速度是 km/h ;(2)当1≤x≤5时,求y关于x的函数解析式;乙(3)当乙与A地相距240km时,甲与A地相距km.4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?6.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.7.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:表二:(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.8.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y (km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?9.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?10.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.11.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.12.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?13.某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?14.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?15.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?17.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.18.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)19.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.20.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?24.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x 的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a ≤200)作为优惠,其它费用不变,如何调运,使总费用最少?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.下表是世界人口增长趋势数据表:(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.27.某公司有A型产品40件,B型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且全部售出,两种产品的利润如表所示:(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求x的取值范围.(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品每件的利润仍高于甲店B型产品每件的利润,其它利润不变,问该公司如何设计分配方案,可使得总利润最大?28.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B 地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.29.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.30.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?参考答案与解析1.(2016•滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km ;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km .设爸爸骑行时间为x (h ).(1)请分别写出爸爸的骑行路程y 1(km )、李玉刚同学和妈妈的乘车路程y 2(km )与x (h )之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y 1=20x (0≤x ≤2)y 2=40(x ﹣1)(1≤x ≤2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.2.(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70 米,甲机器人前2分钟的速度为95 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60 米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),则直线GH的方程为y=﹣x+,当y=28时,解得x=4.6,答:两机器人出发1.2分或2.8分或4.6分相距28米.【点评】本题考查的是一次函数的综合运用,掌握待定系数法求一次函数解析式、正确列出一元一次方程、灵活运用数形结合思想是解题的关键.3.(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60 km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220 km.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;关于x的函数解析式即可;(2)利用待定系数法确定出y乙(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y=kx+b,乙把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,=90x﹣90;则y乙(3)∵乙与A地相距240km,且乙的速度为360÷(5﹣1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km,故答案为:(1)60;(3)220【点评】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.4.(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.5.(2016•达州)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?【分析】(1)根据餐桌和餐椅数量相等列出方程求解即可;(2)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(3)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)由题意得=,解得a=150,经检验,a=150是原分式方程的解;(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500﹣150﹣4×40)+x•(270﹣150)+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W 关于x 的函数单调递增,∴当x=30时,W 取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(3)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m 套.依题意得:(500﹣160﹣4×50)m+(30﹣m )×(270﹣160)+(170﹣4m )×(70﹣50)=7950﹣2250,即6700﹣50m=5700,解得:m=20.答:本次成套的销售量为20套.【点评】本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)由数量相等得出关于a 的分式方程;(2)根据数量关系找出W 关于x 的函数解析式;(3)根据数量关系找出关于m 的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.6.(2016•绍兴)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q (m 3)和开始排水后的时间t (h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.。

利用一次函数解决实际问题

利用一次函数解决实际问题

利用一次函数解决实际问题2023年了,随着科学技术的不断发展,我们的生活变得越来越便捷。

在这个充满竞争的世界里,数学技能成为越来越重要的一项能力。

而对于一个需要经常解决实际问题的人来说,一次函数就是一个非常重要的数学工具。

一次函数是一种常见的数学函数,通常可以写成形如 y = ax + b 的形式。

其中,a 和 b 都是常数,而 x 是变量。

在实际问题中,我们可以使用一次函数来描述各种关系,从而解决一些实际问题。

举一个简单的例子,假设你是一名投资者,你想研究某家公司的股票价格变化情况。

通过观察历史数据,你发现公司的股票价格与该公司的收益有很强的相关性。

于是你可以使用一次函数来描述这种关系,从而预测未来的股票价格。

在这种情况下,我们可以将公司的收益作为 x 轴,股票价格作为y 轴。

然后我们可以通过拟合数据点来确定这个函数的系数。

具体地,我们可以找到一个最合适的 a 和 b,使得函数 y = ax + b 最好地描述了这种关系。

除了投资领域之外,在其他领域中也可以使用一次函数来解决实际问题。

比如,在营销领域中,我们可以使用一次函数来描述销售额与广告投入之间的关系。

在工程领域中,我们可以使用一次函数来描述材料的强度与温度之间的关系。

总之,一次函数是一个非常重要的数学工具,可以帮助我们解决各种实际问题。

当我们遇到实际问题时,如果我们能够正确地使用一次函数来描述各种关系,那么我们就能够更好地预测未来,以及更好地解决各种实际问题。

在未来的世界中,数学技能将会变得更加重要,而对于一次函数的掌握将会成为我们成功的必要条件之一。

6.4 用一次函数解决问题(2)

6.4   用一次函数解决问题(2)

主备人:张伟平核校人:刘晓亮备课时间:年月日第 6 课(章)第 4 节(单元)第 2 课时授课时间:年月日课题 6.4 用一次函数解决问题(2)课型新授课教学目标1.能根据实际问题中变量之间的关系,确定一次函数的关系式;2.能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题.3.在应用一次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.教学重难点重点能结合一次函数表达式及其图像解决简单的实际问题难点能结合一次函数表达式及其图像解决简单的实际问题,体会分类教具与课件板书设计教学环节教学过程教师活动学生活动课程导入同学们,上节课我们学习了如何用一次函数解决实际问题,知道了怎么设未知数,以及怎么列函数表达式。

今天,我们继续学习用一次函数解决实际问题。

一、例题甲、乙两家公司的月出租汽车收取的月租费分别是1y(元)和2y(元),它们都是用车里程x(千米)的函数,图像如图所示,(1)每月用车里程多少时,甲、乙两公司的租车费相等?(2)每月用车里程多少时,甲公司的租车费比乙公司少?(3)每月用车里程多少时,乙公司的租车费比甲公司少?观察图像,可知x=2000时,两个图像相交于一点,即此时两个函数的自变量相同,函数值也相同,所以,每月用车里程为2000km时,两家公司的租车费相同.当x<2000时,1y<2y,所以每月用车里程小于2000km,甲公司的租车费较少.当x>2000时,1y>2y,所以,每月用车里程大于2000km时,乙公司的租车费较少.交流某蔬菜基地要把一批新鲜蔬菜运往外地,有两种运输方式可供选择,主要参考数据如下:运输方式速度/(千米/时)途中综合费用/ (元/时)装卸费用/ 元汽车60 270 200火车100 240 410引导学生先求函数表达式,再求交点,画图像,看图说话.引导学生发现:两条直线上升的速度存在差异,它们有一个交点,设计问题引导学生“读图”.通过这一活动,让学生熟练掌握在解决实际问题中的决策性问题的方法.根据实际情况选择方案,进而理解一次函数与方程及不等式的联系.(1)请分别写出汽车、火车运输总费用1y (元)、2y (元)与运输路程x (千米)之间的函数表达式.(2)你认为用哪种运输方式好? 独立思考:怎样从表格中提取信息? 分别写出汽车、火车运输总费用1y (元)、2y (元)与运输路程x (千米)之间的函数表达式,1y =200+4.5x , 2y =410+2.4x .根据函数表达式求出函数图像的交点坐标.合作讨论、分析探究、寻求结果,在教师指导下顺利完成活动. 问题3根据图中的函数图像,说出x 、y 变化过程的实际意义.分析:x 、y 的变化过程可以分为三个部分. (1)当x 从0增大到8时,y 从0增大到2; (2)当x 从8增大到14时,y 的值不变;(3)当x 从14增大到24时,y 的值从2减少到0.解:设 x 表示时间(分钟)、y 表示路程(千米),则图的实际意义可以是:小明以250米/分钟的速度匀速骑自行车8分钟到达某地;在该地休息了6分钟;然后以200米/分钟的速度匀速骑自行车10分钟返回出发地.二、同步练习1.学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)乙复印社的每月承包费是 元.(2)当每月复印 页时,两复印社实际收费相同. (3)如果每月复印页数在1200页左右, 那么应选择 复印社.讨论:(1)x 为何值,1y =2y .(2)x 为何值,1y >2y .(3)x 为何值,1y <2y .通过学生的交流活动,使学生明确解决问题的基本思路和方法,是分别计算两种运输方式所需要的费用,然后再对相同的运输里程比较费用的大小.这就需要分别写出汽车、火车运输总费用1y (元)、2y (元)与运输路程x (千米)之间的函数表达式,然后对同一自变量的两个函数值的大小进行比较.仿照上面过程,试根据图像说出x 、y 变化过程的另一种实际意义.2.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则以下说法错误的是( )A .若通话时间少于120分,则A 方案比B 方案便宜20元B .若通话时间超过200分,则B 方案比A 方案便宜12元C .若通讯费用为60元,则B 方案比A 方案的通话时间多D .若两种方案通讯费用相差10元,则通话时间是145分或185分 3.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (cm)与燃烧时间x (h)的关系如图所示.请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是_____,从点燃到燃尽所用的时间分别是_____; ⑵甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式, 甲y = ,乙y = 。

苏科版八年级数学上册用一次函数解决问题课件

苏科版八年级数学上册用一次函数解决问题课件

(1)用车里程多少时,甲、乙两公司的租 车费相等? 答:当用车里程为2000千米时,两家公司租 车费相等。
y/元
y1 y2
A
2000
1000
O 1000 2000
x/km
(2)用车里程多少时,甲公司的租车费比 乙公司少?
答:用车里程小于2000千米时,甲公司的 租车费比乙公司少。
y/元
y1 y2
用一次函数解决问题(2)
用一次函数解决问题(2)
江苏省江阴高级中学初中部 顾 萍
s(千米)
D
图象为 何在第 一象限?
C
AM B
O
t(小时)
哪个可看作
是乌龟所走路程 S1关于时间t的 函数图象?哪个
s(千米)
S1 D
C
AM
S2
B
可看作是兔子所 走路程S2关于时 间t的函数图象?
O
t(小时)
两图象交点 M所表示的 实际意义是
l1 销售收入 l2 销售成本
O
1 23 4 5 6
x/吨
(1)当销售量为6吨时,销售收入= 6000 元,
销售成本= 5000 元, 利润= 1000 元。
(2)当销售量为 4吨 时,销售收入等于销售成
本。销售收入等于销售成本都是 4000 元。
y/元
6000 5000 4000 3000 2000 1000
择汽车或火车;当运输路程小于100km时,运
输方式可选择汽车;当运输路程超过100km时,
运输方式可选择火车;。
解决实际问题的基本思想方法:
实际问题
抽象
数学问题

实 化
数学结论
求解
数 学 化

用一次函数解决数学问题教案

用一次函数解决数学问题教案

用一次函数解决数学问题教案教学目标1、能够理解什么是一次函数,具有一定的代数运算能力。

2、能够使用一次函数解决数学问题。

二、教学重难点1、一次函数的概念和性质。

2、如何用一次函数解决数学问题。

三、课前准备1、黑板,白板或者投影仪。

2、教师可以准备一些实例题目或者让学生自己查找一些一次函数的应用实例。

四、教学步骤1、导入教师可以介绍一下一次函数的概念和性质,比如函数的定义、自变量和因变量的关系等等,还可以结合一些实际的例子来说明一次函数的应用。

2、讲授教师可以先介绍一下一次函数的基本形式y=kx+b,x和y分别表示自变量和因变量,k是斜率,b是截距。

接着教师可以让学生自己尝试画出y=kx和y=kx+b这两种情况的图像,来感受一下斜率和截距的意义。

在讲解一次函数的实际应用过程中,教师可以举例说明一些常见的问题,如:(1)根据题意列出一次方程。

(2)确定斜率和截距。

(3)求解未知量的值。

通过以上步骤,学生可以很清晰地了解一次函数的解题方法及其应用范围。

3、运用教师可以根据学生的实际情况,让他们自己尝试去应用一次函数,提供一些具体的题目供他们参考,让学生亲身体验一次函数的解题过程及其实用性。

4、巩固在巩固环节,教师可以让学生分组完成一些综合性问题的探究活动,在学生自主学习的基础上,通过小组讨论、文献查找等多种方式,深入挖掘一次函数的数学应用和意义。

五、教学提示1、在教学和解题过程中,教师需要注重培养学生的数学思维和实际运用能力,让他们在学习中体现出合作创造的精神。

2、在教学过程中,尽量采用生动形象的教学方式,向学生讲述一些有趣的题目和猜想,让学生乐于学习、渴望知识。

3、教师需要具备扎实的基础知识和丰富的教学经验,能够灵活运用不同的教学策略,在解答学生的问题时深入浅出,让学生感受到老师的尊重和关爱。

八上数学6.4 用一次函数解决问题(1)

八上数学6.4 用一次函数解决问题(1)

情境创设
方法一(算术解法): (5596-4500) ÷10=109.6(年).
方法二(方程方法): 经过x年消失,则
4500+10x=5596, 解得 x=109.6.
方法三(函数的方法):
雪线海拔 y(m)是时间x (年)的一次函数,
其函数表达式为: y=4500+10x,
当雪线退至山顶5596m时,得
解:他第 n 年的月工资 y与n的函数表达式是: y=300(n-1)+2000=300n+1700
点拨矫正
解:第 n 年的月工资 y与n的函数表达式是: y=300n+1700
(2) 他第5 年的年收入能否超过40 000元?
解:第 5 年的月工资为: 300×5+1700 =3200(元)
所以年收入为:3200×12=38400(元) 38400<40000,
方案一:从纸箱厂定制购买,每个纸箱价格为5元; 方案二:由蔬菜加工厂租赁机器自己加工制作这种
纸箱,工厂需要一次性投入机器安装等费用 18000元,每加工一个纸箱还需成本费2.6元 (1)若需要这种规格的纸箱x个,请分别写出从纸箱厂 购买纸箱的费用y1元和蔬菜加工厂自己加工制作 纸箱的费用y2元关于纸箱x个的函数关系式;
6.4 用一次函数解决问题(1)
情境创设
玉龙雪山,位于云南省丽江城北 15km,由12座山峰组成,主峰海拔 5596m,海拔4500m处一条黑白分明的 雪线蜿蜒山头,雪线以上是银光闪烁 的冰雪世界,雪线以下是草木葱葱的 原始森林.
由于气候变暖等原因,玉龙雪山的雪线平 均每年约上升10m,假如按此速度推算,经过 几年,玉龙雪山的雪线将由现在的4500m退至 山顶而消失?
……
⑩ (300×10+1700) ×12×0.4

八上数学课件 用一次函数解决问题(课件)

八上数学课件 用一次函数解决问题(课件)
①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图 象后再判断是一次函数还是其他函数,再利用待定系数法求解相关的 问题. ②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相 关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景, 从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式 .
苏教版
6.4 用一次函数解决问题
八年级上数学第六章
本节课学习目标
学习目标
1.能根据实际问题中变量之间的关系,确定 一次函数关系式。 2.能将简单的实际问题转化为数学问题,从 而解决实际问题 3.通过具体问题的分析,发展解决问题的能 力,增强应用意识.
问题1:玉龙雪山雪线的海拔是________m,雪线每年上
例题1答案
一次函数的应用
例题2
一次函数的应用
例题3
一次函数的应用
例题3答案
一次函数的应用
练习1
一次函数的应用
练习2
一次函数的应用
练习2答案
一次函数的应用
练习3
一次函数的应用
练习3答案
总结
1.根据实际问题中变量之间的关系, 确定一次函数的关系式. 2.实际问题中自变量取值范围与函数 图像之间的关系。
升约为____m,所以雪线海拔y(m)是时间x(年)的
________函数,函数的表达式为
;ቤተ መጻሕፍቲ ባይዱ
问题2:5年后,雪线的海拔是
m;
问题3:大约 年后,雪线退至山顶而消失.
根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的 数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量 的取值范围来确定.
课堂小结
1.你能够根据实际问题列一次函数关 系式了吗? 2.你对一次函数的应用理解了多少呢?

用一次函数解决问题

用一次函数解决问题
(2)当这辆车的里程表显示行驶了175km时,它在高 速公路上行驶了多长时间?
典型探究
例1.某工厂生产某种产品,已知该工厂正常运转的固定成 本为每天12000元,生产该产品的原料成本为每件900元。 (1)写出每天的生产成本(包括固定成本和原料成本) 与产量之间的函数表达式 ;
(2)如果每件产品的出厂价为1200元,那么每天生产 多少件产品,该工厂才有赢利?
分析实际问题中变量与变量之间的关系,如果这种关系可以用一次函数表达式表示,那么就可用一次函数的相关知识解决问题。
练习 (2)当这辆车的里程表显示行驶了175km时,它在高速公路上行驶了多长时间?
如图,两摞相同规格的饭碗整齐地叠放在桌面上,根据图中所给数据信息,解决下列问题:
(1)求y与x的函数关系式;
分析实际问题中变量与变量之间的关系,如果这 种关系可以用一次函数表达式表示,那么就可用一次 函数的相关知识解决问题。
小试牛刀
1.一辆汽车在普通公路上行驶了35km后,驶入高速公路, 然后以105km/h的速度匀速前进. (1)写出这辆车的行驶路程s(km)与它在高速公路上的 行驶时间t(h)的函数关系式;
6.4 用一次函数解决问题(1)
情境创设
名闻遐尔的玉龙雪山,位于云南省丽江城北,由12 座山峰组成,主峰海拔5596m,远跳玉龙雪山,雪线以 上是银光闪烁的冰雪世界,雪线以下是草木葱葱的原始 森林。
由于气候变暖等原因,2002-2007年间,玉龙雪山的 雪线平均每年上升约10m。假设雪线按此速度不断变化, 几年后玉龙雪山的雪线将由现在的海拔4500m退至山顶 而消失?
(2)旅客最多可免费携带行李的质量是多少? ⑴ 求油箱中的余油量Q与行驶时间t的函数关系式.
(1)求y与x的函数关系式;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

装卸费用/(元)
汽车
火车
60
100
270
240
200
410
(1)请分别写出汽车、火车运输 总费用y1(元)、y2(元)与运输路程 x(千米)之间的函数表达式. (2)你认为用哪种运输方式好? 分析:先确定函数表达式;再 求交点;画图像,看图说话.
y/元
y1
650 600 400 200
y2
O
20
100
分析: x、y的变化过程可以分为三个 部分.
2
y
(1)当x从0增大到8时, y从0增大到2;
(2)当x从8增大到14时, y的值不变;
O
8
14

24
(3)当x从14增大到24时, y的值从2减 x 少到0.
仿照上面过程,试根据图像说出x、y变化过程 的另一种实际意义.
6.4 用一次函数解决问题(2)
1000 2000
O
x/km
(1)x=2000时,y1=y2. (2)x<2000时,y1<y2. (3)x>2000时,y1>y2.
6.4 用一次函数解决问题(2)
【思考】某蔬菜基地要把一批新鲜蔬菜运往外地, 有两种运输方式可供选择,主要参考数据如下:
运输方式
速度/(千米/时) 途中综合费用/ (元/时)
解:设 x表示时间(分钟)、y表示路程(千米),则图的实际 意义可以是:小明以250米/分钟的速度匀速骑自行车8分钟到 达某地;在该地休息了6分钟;然后以200米/分钟的速度匀速 骑自行车10分钟返回出发地.
6.4 用一次函数解决问题(2)
问题3 根据图中的函数图像,说出x、y变化过程 的实际意义.
6.4 用一次函数解决问题(2)
问题2 甲、乙两家公司的月出租汽车收取的月租 费分别是y1(元)和y2(元),它们都是用车里程 x (千米)的函数,图像如图所示.
y/元 y1 y2
2000
1000
(1)每月用车里程多 少时,甲、乙两公司的租 车费相等? (2)每月用车里程多 少时,甲公司的租车费比乙 公司少? (3)每月用车里程多少 时,乙公司的租车费比甲公 司少?
1200 800
O
800
x/km
6.4 用一次函数解决问题(2)
【练习】 A、B两家旅行社分别推出家庭旅游优惠活 动,两家旅行社的票价均为90元/人,但优惠办法不 同.A旅行社的优惠办法是:全家有一人购全票, 其余的人半价优惠;B旅行社的优惠办法是:每人 均按三分之二的票价优惠.你将选择哪家旅行社?
x/千米
6.4 用一次函数解决问题(2)
问题3 根据图中的函数图像,说出x、y变化过程 的实际意义.
分析: x、y的变化过程可以分为三个 部分.
2
y
(1)当x从0增大到8时, y从0增大到2;
(2)当x从8增大到14时, y的值不变;
O
8
14
24
(3)当x从14增大到24时, y的值从2减 x 少到0.
【练习】某公司要租用一辆汽车,甲汽车出租公 司按每100 km150元收取租车费;乙汽车出租公司 按每100 km50元收取租车费,另加每月管理费800 元.试判断租用哪家公司的汽车费用较少. 分析:先确定函数表达式;再 求交点;画图像,看图说话.
y2
y/元 y1
y1=1.5x, y2=800+0.5x, 交点(800,1200).
O
1000 2000
x/km
6.4 用一次函数解决问题(2)
讨论:每月用车里程为x 千米,甲公司的月租费是 y1元,乙公司的月租费是y2元.函数图像如图:
y/元 y1 y2
2000 1000
分析:看图像, 找交点. (1) x为何值,y1=y2. (2)x在何范围,y1<y2. (3)x在何范围,y1>y2.
y/元 y2 y1
180
分析:先确定函数表达式;再 求交点;画图像,看图说话. y1=45x+45, y2=60x, 交点(3,180).
45
O
3
x/人
6.4 用一次函数解决问题(2)
【小结】 通过这节课的学习,你学习到什么新知识? 获得了什么经验?还有什么疑问?
实际问题
转化
解决
数学模型 (一次函数)
相关文档
最新文档