九年级下第一次数学月考试题

合集下载

人教版数学九年级(下)第一次月考数学试卷(含答案)

人教版数学九年级(下)第一次月考数学试卷(含答案)

九年级(下)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.|﹣3|﹣1的值等于()A.4B.﹣4C.±4D.22.下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(﹣a2)2=a43.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6.下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7.如图,已知AB、AD是⊙O的弦,∠B=20°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=15°,则∠BAD的度数是()A.30°B.45°C.20°D.35°8.若实数x,y满足条件2x2﹣6x+y2=0,则x2+y2+2x的最大值是()A.14B.15C.16D.不能确定二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.计算:═.10.化简:=.11.分解因式:3x2﹣6x+3=.12.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是.13.若关于x的分式方程﹣=1解为非负数,则a的范围.14.已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为cm2.(结果保留π)15.直角坐标平面上将二次函数y=﹣2(x﹣1)2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为.16.在Rt△ABC中,AD是斜边BC边上的中线,G是△ABC重心,如果BC=6,那么线段AG的长为.17.在关于x,y的二元一次方程组中,若a(2x+3y)=2,则a=.18.如图,矩形ABCD中,AB=2,BC=4,P,Q分别是BC,AB上的两个动点,AE=1,△AEQ沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算(1)|﹣1|﹣﹣(1﹣)0+4sin30°(2)解不等式组:.20.(8分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的数作为a的值代入求值.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25.(10分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26.(10分)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27.(12分)平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣2,﹣2),(,)…,都是梦之点,显然梦之点有无数个.(1)若点P(3,b)是反比例函数y=(n为常数,n≠0)的图象上的梦之点,则这个反比例函数解析式为;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为;②已知点M(m,3),点Q是(1)中反比例函数y=图象上异于点P的梦之点,过点Q的直线q与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28.(12分)如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.九年级(下)第一次月考数学试卷参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.D;2.D;3.B;4.B;5.C;6.A;7.D;8.B;二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4;10.﹣1;11.3(x﹣1)2;12.0.2;13.a≤﹣4且a≠﹣8;14.3π;15.(0,﹣1);16.2;17.2或﹣1;18.4;三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)21.560;26.26;27.y=;(,)、(﹣,﹣);。

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题(含答案解析)

安徽省蚌埠市怀远实验教育集团2022-2023学年九年级下学期数学第一次月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形是中心对称图形的是()A .B .C .D .2.已知a b =25,则a b b +的值为().A .25B .35C .75D .233.函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,则k 可能为()A .﹣2B .﹣1C .0D .14.已知一个扇形的半径为6,弧长为2π,则这个扇形的圆心角为()A .60°B .30°C .90°D .120°5.如图,二次函数2(2)y a x k =++的图象与x 轴交于A ,(), 10B -两点,则下列说法正确的是()A .a<0B .点A 的坐标为()4,0-C .当0x <时,y 随x 的增大而减小D .图象的对称轴为直线2x =-6.如图,AB 是O 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O 于点E .若AC =,4DE =,则BC 的长是()A .1B C .2D .47.如图,四边形ABCD 内接于O ,连接BD .若 AC BC=,50BDC ∠=︒,则ADC ∠的度数是()A .125°B .130°C .135°D .140°8.如图,在Rt ABC 中,90C ∠=︒,BC =,点D 是AC 上一点,连接BD .若1tan2A ∠=,1tan 3ABD ∠=,则CD 的长为()A .B .3CD .29.如图,在矩形ABCD 中,6AB =,4=AD ,点E 、F 分别为BC 、CD 的中点,BF 、DE 相交于点G ,过点E 作EH CD ∥,交BF 于点H ,则线段GH 的长度是()A .56B .1C .54D .5310.如图,在矩形ABCD 中,已知AB =3,BC =4,点P 是BC 边上一动点(点P 不与B ,C 重合),连接AP ,作点B 关于直线AP 的对称点M ,则线段MC 的最小值为()A .2B .52C .3D二、填空题11.已知二次函数()211my m x -=+的图象开口向下,则m 的值是______.12.如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.13.如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ⊥x 轴于点C ,交OB 于点D .若D 为AC 的中点,△AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为_____.14.在平面直角坐标系xOy 中,已知点A (-1,1)在抛物线y =x 2+2bx +c 上(1)c =______(用含b 的式子表示);(2)若将该抛物线向右平移t 个单位(t ≥32),平移后的抛物线仍经过A (-1,1),则平移后抛物线的顶点纵坐标的最大值为_______.三、解答题15()113tan 3020222π-︒⎛⎫+-- ⎪⎝⎭.16.一个二次函数,当=1x -时,函数的最小值为2,它的图象经过点()16,,求这个二次函数的解析式.17.已知关于x 的一元二次方程20x x m +-=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)二次函数2y x x m =+-的部分图象如图所示,求一元二次方程20x x m +-=的解.18.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是(2,1)A -,(1,2)B -,(3,3)C -.(1)将ABC 绕点O 顺时针旋转90︒得到111A B C △,请画出111A B C △,并求出点C 经过的路径长;(2)以A 为位似中心,将ABC 放大2倍得到222A B C △,请直接写出2B 的坐标.19.如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近? 1.4≈ 1.7≈)20.如图,四边形ABCD 内接于圆O ,AB 是直径,点C 是 BD的中点,延长AD 交BC 的延长线于点E .(1)求证:CE CD =;(2)若3AB =,BC =,求AD 的长.21.如图,一次函数()0y kx b k =+≠的图象与x 轴、y 轴分别相交于C 、B 两点,与反比例函数()0,0my m x x=≠>的图象相交于点A ,1OB =,tan 2OBC ∠=,:1:2BC CA =.(1)求反比例函数的表达式;(2)点D 是线段AB 上任意一点,过点D 作y 轴平行线,交反比例函数的图象于点E ,连接BE .当BDE 面积最大时,求点D 的坐标.22.如图, ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值23.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m 2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y (元/m 2)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉种植费用为15元/m 2.(1)当x ≤100时,求y 与x 的函数关系式,并写出x 的取值范围;(2)当甲种花卉种植面积不少于30m 2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w (元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x 的取值范围.参考答案:1.B【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.【详解】解:选项A 、C 、D 都不能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项B 能找到这样的一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形.故选:B .【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2.C【分析】根据比例的性质计算即可;【详解】∵a b =25,∴52755++==a b b ;故答案选C .【点睛】本题主要考查了比例的性质应用,准确计算是解题的关键.3.A【分析】根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【详解】解:∵反比例函数y =1k x+的图象中,在每个象限内y 随x 增大而增大,∴k +1<0,解得k <﹣1.观察选项,只有选项A 符合题意.故选:A .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.4.A【分析】根据弧长公式即可求出扇形的圆心角度数.【详解】解:∵180n r l π=∴1801802606l n r πππ⋅===°故选:A【点睛】本题考查了弧长公式,利用弧长公式求该弧所对的圆心角,必须熟记公式,并能熟练运用.5.D【分析】根据二次函数的图象与性质即可依次判断.【详解】由图可得开口向上,故a >0,A 错误;∵解析式为2(2)y a x k =++,故对称轴为直线x =-2,D 正确∵(), 10B -∴A 点坐标为(-3,0),故B 错误;由图可知当<2x -时,y 随x 的增大而减小,故C 错误;故选D .【点睛】此题主要考查二次函数的图象与性质,解题的关键是熟知二次函数顶点式的特点.6.C【分析】由垂径定理可知,点D 是AC 的中点,则OD 是ABC 的中位线,所以12OD BC =,设OD x =,则2BC x =,则4OE x =-,82AB x =-,在Rt ABC △中,由勾股定理可得222AB AC BC =+,代入求出x 的值即可得出结论.【详解】解:AB 是O 的直径,∴90C ∠=︒,∵OD AC ⊥,∴点D 是AC 的中点,∴OD 是ABC 的中位线,∴∥OD BC ,且12OD BC =,设OD x =,则2BC x =,∵4DE =,∴4OE DE OD x =-=-,∴282AB OE x ==-,在Rt ABC △中,由勾股定理可得,222AB AC BC =+,∴()(()222822x x -=+,解得1x =.∴22BC x ==.故选:C .【点睛】本题主要考查中位线的性质与判定,垂径定理,勾股定理等知识,设出参数,根据勾股定理得出方程是解题关键.7.B【分析】连接OA ,OB ,OC ,根据圆周角定理得出∠BOC=100°,再根据 AC BC=得到∠AOC ,从而得到∠ABC ,最后利用圆内接四边形的性质得到结果.【详解】解:连接OA ,OB ,OC ,∵50BDC ∠=︒,∴∠BOC=2∠BDC=100°,∵ AC BC=,∴∠BOC=∠AOC=100°,∴∠ABC=12∠AOC=50°,∴∠ADC=180°-∠ABC=130°.故选B.【点睛】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.8.C【分析】先根据锐角三角函数值求出AC =再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得ADCD .【详解】解:在Rt ABC 中,90C ∠=︒,BC =,∴1tan 2BC A AC ∠==∴2AC BC ==由勾股定理得,5AB =过点D 作DE AB ⊥于点E ,如图,∵1tan 2A ∠=,1tan 3ABD ∠=,∴11,,23DE DE AE BE ==∴11,,23DE AE DE BE ==∴1123AE BE =∴32BE AE =∵5,AE BE +=∴352AE AE +=∴2,AE =∴1DE =,在R t A D E ∆中,222AD AE DE =+∴AD ==∵AD CD AC +==∴CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.9.A【分析】根据矩形的性质得出6490DC AB BC AD C ====∠=︒,,,求出132DF CF DC ===,122CE BE BC ===,求出FH BH =,根据勾股定理求出BF ,求出152FH BH ==,根据三角形的中位线求出EH ,根据相似三角形的判定得出EHG DFG ,根据相似三角形的性质得出EH GH DF FG =,再求出答案即可.【详解】解析: 四边形ABCD 是矩形,6AB =,4=AD ,6DC AB ∴==,4BC AD ==,90C ∠=︒,点E 、F 分别为BC 、CD 的中点,132DF CF DC ∴===,122CE BE BC ===,EH CD ∥ ,FH BH ∴=,BE CE = ,1322EH CF ∴==.由勾股定理得:5BF ==,1522BH FH BF ∴===,EH CD ∥ ,EHG DFG ∴ △△,EH GH DF FG∴=,32532GH GH ∴=-,解得:56GH =,故选:A .【点睛】本题考查了矩形的性质和相似三角形的性质和判定,能熟记矩形的性质是解此题的关键.10.A【分析】根据对称性得到动点M 的轨迹是在以A 圆心,3为半径的圆上,根据点圆模型,在矩形中利用勾股定理求出线段长即可.【详解】解:连接AM ,如图所示:∵点B 和M 关于AP 对称,∴AB =AM =3,∴M 在以A 圆心,3为半径的圆上,∴当A ,M ,C 三点共线时,CM 最短,∵在矩形ABCD 中,AC 5=,AM =AB =3,∴CM =5﹣3=2,故选:A .【点睛】本题考查动点最值问题,解题过程涉及到对称性质、圆的性质、矩形性质、勾股定理等知识点,解决问题的关键是准确根据题意得出动点轨迹.11.【分析】根据二次函数的定义可得212m -=及开口向下时10+<m 即可解答.【详解】解:根据题意得:21012m m +<⎧⎨-=⎩解得:m =故答案为【点睛】本题考查的是二次函数的定义及性质,易错点是只考虑其次数是2,没有考虑开口向下时的性质.12【分析】先根据圆的半径相等及圆周角定理得出∠ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊥AB∵60A ∠=︒∴∠BOC =2∠A =120°∵OB =OC∴∠OBC =30°又75B ∠=︒∴∠ABO =45°在Rt △OBD 中,OB =1∴BD ==2∵OD ⊥AB∴BD =AD =2∴AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键13.6【分析】应用k 的几何意义及中线的性质求解.【详解】解: D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.【点睛】本题考查了反比例函数中k 的几何意义,关键是利用AOB ∆的面积转化为三角形AOC 的面积.14.2b 716##0.4375【分析】(1)将点代入函数解析式求解即可;(2)根据(1)所求,将点A 和t 代入表达式得到b 、t 的关系,根据t 的取值范围,求出b 的范围,进而即可求解.【详解】解:(1)将点A (-1,1)代入y =x 2+2bx +c 得()()21121b c=-+⋅-+化简得,2c b =,故答案是:2b ;(2)由(1)222y x bx b=++平移后得,()()222y x t b x t b=-+-+将点A (-1,1)代入()()222y x t b x t b=-+-+得,()()211212t b t b=--+--+化简得,()022t t b =+-记得12220t b t =-=,(舍去)将22t b =-代入()()222y x t b x t b=-+-+得()()2222222y x b b x b b=+-++-+化简得,()24242y x b x b =+-+-∵22t b =-,t ≥32∴74b ≥∴平移后抛物线的项点纵坐标为:()()()224142421141b b b ⨯⨯---=--+⨯当74b =时,平移后抛物线的项点纵坐标有最大值为:716,故答案是:716.【点睛】本题主要考查了二次函数的应用,掌握二次函数的相关知识结合不等式并灵活应用是解题的关键.151-【分析】原式利用二次根式性质,特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可求出值.【详解】解:原式3123=⨯-121=-=.【点睛】本题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.()212y x =++【分析】设抛物线顶点式,然后将()16,代入解析式求解.【详解】解:根据题意设()212y a x =++,把()16,代入()212y a x =++得642a =+,解得1a =,∴这个二次函数的解析式为()212y x =++.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法求函数解析式.17.(1)14m >-;(2)11x =,22x =-【分析】(1)根据△>0时,一元二次方程有两个不相等的实数根求解m 的取值范围即可;(2)根据二次函数图象与x 轴的交点的横坐标就是当y =0时对应一元二次函数的解,故将x =1代入方程中求出m 值,再代入一元二次方程中解方程即可求解.【详解】解:(1)由题知140m ∆=+>,∴14m >-.(2)由图知20x x m +-=的一个根为1,∴2110m +-=,∴2m =,即一元二次方程为220x x +-=,解得11x =,22x =-,∴一元二次方程20x x m +-=的解为11x =,22x =-.【点睛】本题考查一元二次方程根的判别式、解一元一次不等式、解一元一次方程、解一元二次方程,会解一元二次方程,熟练掌握一元二次方程根的判别式与根的关系是解答的关键.18.(1)作图见解析;2;(2)(4,1).【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点A 1、B 1、C 1的位置,即可得到111A B C △,然后求出OC ,再利用弧长公式即可求出点C 经过的路径长;(2)直接利用位似图形的性质作出222A B C △,即可得出2B 的坐标.【详解】解:(1)111A B C △如图所示:由勾股定理得:OC ==则点C 经过的路径长为:901802π⋅⋅=;(2)222A B C △如图所示,则2B 的坐标为:(4,1).【点睛】此题主要考查了旋转变换、位似变换、勾股定理以及弧长公式的应用,正确得出对应点位置是解题关键.19.(1)283DE =米;(2)经过点B 到达点D 较近.【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得DE 的长;(2)由30ABC ∠=︒,即得2400AB AC ==米,BC 的长,再分别求得AB BD +、AE DE +的长,即可得答案.【详解】(1)解:过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,∴200DF AC ==米,∵点D 在点E 的北偏东45︒,即45DEF ︒∠=,∴DEF 是等腰直角三角形,∴283DE ==≈(米);(2)解:由(1)知DEF 是等腰直角三角形,283DE =米,∴200EF DF ==米,∵点B 在点A 的北偏东30︒,即30EAB ∠=︒,∴30ABC ∠=︒,∵200AC =米,∴2400AB AC ==米,BC ==,∵100BD =米,∴经过点B 到达点D 路程为400100500AB BD +=+=(米),100)CD BC BD =+=(米),∴100)AF CD ==+(米),∴100)200100)AE AF EF =-=+-=-(米),∴经过点E 到达点D 路程为100529AE DE +=+≈(米),∵529500>,∴经过点B 到达点D 较近.【点睛】本题考查解直角三角形-方向角问题,解题的关键是掌握含30︒、45︒角的直角三角形三边的关系.20.(1)见解析(2)1【分析】(1)连接AC ,根据圆周角推论得90ACB ACE ∠=∠=︒,根据点C 是 BD的中点得CAE CAB ∠=∠,CD CB =,用ASA 证明ACE ACB ≌,即可得;(2)根据题意和全等三角形的性质得3AE AB ==,根据四边形ABCD 内接于圆O 和角之间的关系得CDE ABE ∠=∠,即可得ΔΔEDC EBA ∽,根据相似三角形的性质得DE CD BE AB=,即可得【详解】(1)证明:如图所示,连接AC,AB 为直径,90ACB ACE ∴∠=∠=︒,又 点C 是 BD的中点CAE CAB ∴∠=∠,CD CB =,在ACE △和ACB △中,ACE ACB AB AC CAE CAB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ΔΔACE ACB ASA ∴≅,CE CB ∴=,CE CD ∴=;(2)解:ΔΔACE ACB ≅ ,3AB =,3AE AB ∴==,又 四边形ABCD 内接于圆O ,180ADC ABC ∴∠+∠=︒,又180ADC CDE ∠+∠=︒ ,CDE ABE ∴∠=∠,又E E ∠=∠ ,ΔΔEDC EBA ∴∽,∴DE CD BE AB=,=解得:2DE =,1AD AE DE ∴=-=.【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,圆周角定理,理解相关性质定理,正确添加辅助线是解题关键.21.(1)()120y x x=>(2)11,2D ⎛⎫- ⎪⎝⎭【分析】(1)根据正切函数的定义可得出OC 长,过点A 作AF x ⊥轴于点F ,则ACF BCO V V ∽,由相似比可得出CF 和AF 的长,进而可得出点A 的坐标,代入反比例函数可得出m 的值,进而可得结论;(2)由(1)可得直线AB 的解析式.设点D 的横坐标为t ,由此可表达点D ,E 的坐标,根据三角形的面积公式可表达BDE ∆的面积,根据二次函数的性质可得结论.【详解】(1)解:如图,过点A 作AF x ⊥轴于点F ,AF y ∴∥轴,ACF BCO ∴V V ∽,:::1:2BC AC OB AF OC CF ∴===.1OB = ,tan 2OBC ∠=,2OC ∴=,2AF ∴=,4CF =,6OF OC CF ∴=+=,(6,2)A ∴.点A 在反比例函数(0,0)m y m x x=≠>的图象上,2612m ∴=⨯=.∴反比例函数的表达式为:12(0)y x x =>.(2)由题意可知,(0,1)B -,∴直线AB 的解析式为:112y x =-.设点D 的横坐标为t ,则1(,1)2D t t -,12(,)E t t .12112ED t t ∴=-+.BDE ∴ 的面积为:1121(0)(1)22t t t --+211642t t =-++2125(1)44t =--+.104-< ,1t ∴=时,BDE 的面积的最大值为254,此时1(1,)2D -.【点睛】本题主要考查反比例函数与一次函数的交点,待定系数法求反比例函数解析式,三角形的面积,二次函数的性质,得出BDE 的面积与t 函数关系式是解题的关键.22.(1)证明见详解;(2)18.【分析】(1)连接OC ,根据FC 是⊙O 的切线,AE 是⊙O 的直径,可得ACF ECO Ð=Ð,利用OE OC =,得到OEC ECO Ð=Ð,根据圆周角定理可得OEC B Ð=Ð,则可证得ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,易得AFC CFB V :V ,则有28FC FB FA ==,则可得6AB BC ==,并可求得3FA BC CA FC ==g ,连接BE ,易证ACD AEB V :V ,则有AD AC AB AE =,可得18AD AE AB AC ==g g .【详解】解:(1)连接OC∵FC 是⊙O 的切线,AE 是⊙O 的直径,∴90OCF ACE Ð=Ð=o ,∴90ACF ACO ECO ACO Ð+Ð=Ð+Ð=o∴ACF ECOÐ=Ð又∵OE OC=∴OEC ECOÐ=Ð根据圆周角定理可得:OEC BÐ=Ð∴B ECO Ð=Ð,∴ACF B ∠=∠;(2)由(1)可知ACF B ∠=∠,∵AFC CFB∠=∠∴AFC CFBV :V ∴FC FA FB FC=∴2FC FB FA =,∵4FC =,2FA =,∴22482FC FB FA ===∴826AB FB AF =-=-=∴6AB BC ==又∵AFC CFB V :V 中,CA FA BC FC =∴2634FA BC CA FC ´===g ,如图示,连接BE∵ACD AEB ∠=∠,90ADC ABE Ð=Ð=o∴ACD AEBV :V ∴AD AC AB AE=∴6318AD AE AB AC ==´=g g .【点睛】本题考查了圆的性质,等腰三角形的判定与性质,圆周角定理,切线的性质,三角形相似的判定与性质等知识点,熟悉相关性质是解题的关键.23.(1)()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元;②3040x ≤≤或60360x ≤≤.【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【详解】(1)由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2),所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩,解得:1,404k b =-=,∴140(0)4y x x =-+40≤≤10∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<;(2)①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元)∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270,故甲种花卉种植90m 2,乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元.②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+,令21(50)602560004x --+≤,解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在3040x ≤≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元,所以甲种花卉种植面积x 的取值范围为:3040x ≤≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.。

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案

人教版九年级下册数学第一次月考试卷及答案九年级第二学期数学第一次月考试卷时间:120分钟。

总分:120分。

姓名:一、选择题(本大题共8小题,每小题3分,共24分)1.绝对值是6的有理数是()A。

±6.B。

6.C。

-6.D。

162.计算a^2a^4的结果是()A。

a^5.B。

a^6.C。

2a^6.D。

a^83.半径为6的圆的内接正六边形的边长是()A。

2.B。

4.C。

6.D。

84.如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为()A。

2π。

B。

3π。

C。

2/3π。

D。

1+2/3π5.某校共有学生600名,学生上学的方式有乘车、骑车、步行三种.如图是该校学生乘车、骑车、步行上学人数的扇形统计图。

乘车的人数是()A。

180.B。

270.C。

150.D。

2006.函数y=(x-2)/x的自变量X的取值范围是()A。

x>2.B。

x<2.C。

x≥2.D。

x≤27.如右图,是一个下底小而上口大的圆台形,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,内对应的水高度为h,则h与t的函数图象只可能是()A。

一次函数。

B。

二次函数。

C。

三次函数。

D。

反比例函数8.如图所示的正方体的展开图是()二、填空题(本大题共7小题,每小题3分,共21分.)9.若分式(2x)/(x+2)的值为零,则x=_____。

10.已知反比例函数y=k/x的图象经过点(3,-4),则这个函数的解析式为y=______。

11.已知两圆内切,圆心距d=2,一个圆的半径r=3,那么另一个圆的半径为______。

(用科学记数法表示20 的结果是______(保留两位有效数字))12.二次函数y=x^2的图象向右平移1个单位,再向下平移1个单位,所得图象的与X轴的交点坐标是:(______。

0)。

13.如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是______。

九年级下册数学 第一次月考数学试卷含答案解析

九年级下册数学 第一次月考数学试卷含答案解析

九年级(下)第一次月考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣22.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和108.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=.12.分解因式:4a2﹣16b2=.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是(填序号).三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.16.解不等式:1﹣>.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.18.如图,马路边安装的路灯由支柱上端的钢管ABCD支撑,AB=25cm,CG⊥AF,FD⊥AF,点G、点F分别是垂足,BG=40cm,GF=7cm,∠ABC=120°,∠BCD=160°,请计算钢管ABCD的长度.(钢管的直径忽略不计,结果精确到1cm.参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2015-2016学年安徽省池州市九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分1.下列各数中,最小的数为()A.2 B.﹣3 C.0 D.﹣2【考点】有理数大小比较.【分析】根据有理数比较大小的法则进行比较即可.【解答】解:∵|﹣3|=3,|﹣2|=2,3>2,∴﹣3<﹣2,∴﹣3<﹣2<0<2,∴最小的数是﹣3.故选B.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.2.下列运算正确的是()A.a6÷a2=a3B.5a2﹣3a2=2a C.(﹣a)2a3=a5D.5a+2b=7ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.【解答】解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.【点评】本题主要考查同底数幂的乘除法法则,合并同类项的定义,关键在于根据相关的法则进行逐项分析解答.3.雾霾天气影响着我国北方中东部地区,给人们的健康带来严重的危害.为了让人们对雾霾有所了解.摄影师张超通过显微镜,将空气中细小的霾颗粒放大1000倍,发现这些霾颗粒平均直径为10微米〜20微米,其中20微米(1米=1000000微米)用科学记数法可表示为()A.2×105米B.0.2×10﹣4米C.2×10﹣5米D.2×10﹣4米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:20微米=20÷1 000 000米=0.00002米=2×10﹣5米,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:由分式有意义,得x﹣1≠0.解得x≠1,故选:B.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.5.如图,下列说法错误的是()A.若∠3=∠2,则b∥c B.若∠3+∠5=180°,则a∥cC.若∠1=∠2,则a∥c D.若a∥b,b∥c,则a∥c【考点】平行线的判定与性质.【分析】直接利用平行线的判定方法分别进行判断得出答案.【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.6.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,=250;当t=时,乙到达B城,y甲综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.7.李明家一周内每天的用电量是(单位:kwh):10,8,9,10,12,7,6,这组数据的中位数和众数分别是()A.7和10 B.10和12 C.9和10 D.10和10【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:6、7、8、9、10、10、12,最中间的数是9,则这组数据的中位数是9;10出现了2次,出现的次数最多,则众数是10;故选C.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数8.在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】由于a≠0,那么a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限,利用这些结论即可求解.【解答】解:∵a≠0,∴a>0或a<0.当a>0时,直线经过第一、二、三象限,双曲线经过第二、四象限,当a<0时,直线经过第一、二、四象限,双曲线经过第一、三象限.A、图中直线经过直线经过第一、二、四象限,双曲线经过第二、四象限,故A选项错误;B、图中直线经过第第一、二、三象限,双曲线经过第二、四象限,故B选项正确;C、图中直线经过第二、三、四象限,故C选项错误;D、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故D选项错误.故选:B.【点评】此题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.直线y=kx+b、双曲线y=,当k>0时经过第一、三象限,当k<0时经过第二、四象限.9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选:B.【点评】本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.10.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A.B.﹣1 C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选:A.【点评】本题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.二、填空题(本大题共4小题,每小题5分,满分20分)11.我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]=2015.【考点】估算无理数的大小.【分析】先求出的范围,再求出2020﹣的范围,即可得出答案.【解答】解:∵4<<5,∴﹣4>﹣5,∴2016>2020﹣>2015,∴[2020﹣]=2015,故答案为:2015.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出2016>2020﹣>2015,难度不是很大.12.分解因式:4a2﹣16b2=4(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式,再运用公式法,可分解因式.【解答】解:原式=4(a2﹣4b2)=4(a+2b)(a﹣2b),故答案为:4(a+2b)(a﹣2b).【点评】本题考查了因式分解,先提取公因式,再运用公式,分解到不能再分解为止.13.据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为:7250(1+8.5%)(1﹣x%)2=7200.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设2014、2015两年平均每年降价的百分率是x,那么2014年的房价为7250(1+8.5%)(1﹣x%),2015年的房价为7250(1+8.5%)(1﹣x%)2,然后根据2015年的7200元/m2即可列出方程解决问题.【解答】解:设设两年平均每年降价的百分率为x%,根据题意得:7250(1+8.5%)(1﹣x%)2=7200;故答案为:7250(1+8.5%)(1﹣x%)2=7200.【点评】本题是一道一元二次方程的运用题,是一道降低率问题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.14.如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=1,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:①△A1AD1≌△CC1B;②s=(0<x<2);③当x=1时,四边形ABC1D1是正方形;④当x=2时,△BDD1为等边三角形;其中正确的是①②④(填序号).【考点】几何变换综合题.【分析】①根据矩形的性质,得∠DAC=∠ACB,再由平移的性质,可得出∠A1=∠ACB,A1D1=CB,从而证出结论;②易得△AC1F∽△ACD,根据面积比等于相似比平方可得出s与x的函数关系式③根据菱形的性质,四条边都相等,可推得当C1在AC中点时四边形ABC1D1是菱形.④当x=2时,点C1与点A重合,可求得BD=DD1=BD1=2,从而可判断△BDD1为等边三角形.【解答】解:①∵四边形ABCD为矩形,∴BC=AD,BC∥AD∴∠DAC=∠ACB∵把△ACD沿CA方向平移得到△A1C1D1,∴∠A1=∠DAC,A1D1=AD,记分1=CC1,在△A1AD1与△CC1B中,,∴△A1AD1≌△CC1B(SAS),故①正确;②易得△AC1F∽△ACD,∴解得:S△AC1F=(x﹣2)2(0<x<2);故②正确;③∵∠ACB=30°,∴∠CAB=60°,∵AB=1,∴AC=2,∵x=1,∴AC1=1,∴△AC1B是等边三角形,∴AB=D1C1,又AB∥BC1,∴四边形ABC1D1是菱形,故③错误;④如图所示:则可得BD=DD1=BD1=2,∴△BDD1为等边三角形,故④正确.综上可得正确的是①②④.故答案为:①②④【点评】本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的判定及解直角三角形的知识,解答本题需要我们熟练掌握全等三角形的判定及含30°角的直角三角形的性质,有一定难度.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:(﹣1)÷,其中a=﹣3.【考点】分式的化简求值.【分析】先算减法通分,再算除法,由此顺序化简,再进一步代入求得数值即可.【解答】解:原式===.当a=﹣3时,原式=.【点评】此题考查分式的化简求值,掌握运算顺序,化简的方法把分式化到最简,然后代值计算.16.解不等式:1﹣>.【考点】解一元一次不等式.【分析】根据解不等式的基本步骤,依次去分母、去括号、移项、合并同类项、系数化为1可得解集.【解答】解:去分母,得:6﹣(x﹣3)>2x,去括号,得:6﹣x+3>2x,移项,得:﹣x﹣2x>﹣6﹣3,合并同类项,得:﹣3x>﹣9,系数化为1,得:x<9.【点评】本题主要考查解不等式的能力,熟知解不等式的基本步骤是基础,去分母和系数化为1时注意不等号的方向是解不等式易错点.四、(本大题共2小题,每小题8分,满分16分)17.如图,△ABC的顶点A是线段PQ的中点,PQ∥BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1,BC=3,求线段PQ的长.【考点】平行线分线段成比例.【分析】根据PQ∥BC可得,进而得出,再解答即可.【解答】解:∵PQ∥BC,∴,,∴MN∥BC,∴==,∴,∴,∵AP=AQ , ∴PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答.18.如图,马路边安装的路灯由支柱上端的钢管ABCD 支撑,AB=25cm ,CG ⊥AF ,FD ⊥AF ,点G 、点F 分别是垂足,BG=40cm ,GF=7cm ,∠ABC=120°,∠BCD=160°,请计算钢管ABCD 的长度.(钢管的直径忽略不计,结果精确到1cm .参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【考点】解直角三角形的应用.【分析】根据直角三角形的解法分别求出BC ,CD 的长,即可求出钢管ABCD 的长度.【解答】解:在△BCG 中,∠GBC=30°,BC=2BG=80cm ,CD=≈41.2,钢管ABCD 的长度=AB+BC+CD=25+80+41.2=146.2≈146cm .答:钢管ABCD 的长度为146cm .【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.五、(本大题共2小题,每小题10分,满分20分)19.某景点的门票价格规定如下表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设八年级(一)班有x人、(二)班有y人,根据两个班的购票费之和为1126元和824元建立方程组求出其解即可;(2)根据单独购票的费用大于团体购票的费用确定选择团体购票,可以节省的费用为1126﹣824元.【解答】解:(1)设八年级(一)班有x人、(二)班有y人,由题意,得,解得:.答:八年级(一)班有48人、(二)班有55人;(2)∵1126>824,∴选择团体购票.团体购票节省的费用为:1126﹣824=302元.∴团体购票节省的费用302元.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时建立方程组求出各班的人数是关键.20.如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【考点】相似三角形的判定与性质;翻折变换(折叠问题).【分析】(1)根据折叠的性质得出∠C=∠AED=90°,利用∠DEB=∠C,∠B=∠B证明三角形相似即可;(2)由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE,进而得出AD即可.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.【点评】本题考查了相似三角形的判定和性质,关键是根据1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、勾股定理求解.六、(本题满分12分)21.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为60人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是ACD(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?【考点】扇形统计图;条形统计图.【专题】数形结合.【分析】(1)根据完成课外作业时间低于60分钟的学生数占被调查人数的10%.可求出抽查的学生人数;(2)根据总人数,现有人数为补上那12人,画图即可;(3)根据中位数、众数、频率的意义对各选项依次进行判断即可解答;(4)先求出60人里学生每天完成课外作业时间在120分钟以下的人的比例,再按比例估算全校的人数.【解答】解:(1)6÷10%=60(人).(2)补全的频数分布直方图如图所示:(3)A.由图(1)知,学生完成作业所用时间的中位数在第三组内,正确;B.由图(1)知,学生完成作业所用时间的众数不在第三组内,错误;C.图(2)中,90~120数据组所在扇形的圆心角为108°.正确;D.图(1)中,落在第五组内数据的频率为0.15,正确.故答案为:60;ACD.(4)==60%,即样本中,完成作业时间不超过120分钟的学生占60%.∴560×60%=336.答:九年级学生中,课业负担适中的学生约为336人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.七、(本题满分12分)22.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【专题】销售问题.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.八、(本题满分14分)23.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【考点】二次函数综合题.【专题】代数综合题;压轴题.【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.。

九年级数学第一次月考试卷

九年级数学第一次月考试卷

九年级数学第一次月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2+2x - 3的顶点坐标是()A. ( - 1,-4)B. (1,-4)C. ( - 1,4)D. (1,4)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。

4. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 抛物线y=(x - 1)^2+2的对称轴是()A. 直线x=-1B. 直线x = 1C. 直线x=-2D. 直线x = 26. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+17. 若关于x的一元二次方程x^2-kx - 6 = 0的一个根为x = 3,则实数k的值为()A. 1B. -1C. 2D. -28. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()(此处可插入一个二次函数图象,顶点在第二象限,开口向下,与x轴有两个交点)A. a < 0,b < 0,c > 0,b^2-4ac > 0B. a < 0,b < 0,c < 0,b^2-4ac > 0C. a < 0,b > 0,c > 0,b^2-4ac < 0D. a < 0,b > 0,c > 0,b^2-4ac > 09. 已知二次函数y = kx^2-7x - 7的图象和x轴有交点,则k的取值范围是()A. k>-(7)/(4)B. k≥slant-(7)/(4)且k≠0C. k≥slant-(7)/(4)D. k > -(7)/(4)且k≠010. 某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A. 200(1 + a%)^2=148B. 200(1 - a%)^2=148C. 200(1 - 2a%) = 148D. 200(1 - a^2%)=148二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为___。

江苏省连云港市灌云县2023-2024学年九年级下学期第一次月考数学试题

江苏省连云港市灌云县2023-2024学年九年级下学期第一次月考数学试题

江苏省连云港市灌云县2023-2024学年九年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.3-的绝对值是( )A .13B .13-C .3D .3-2.在数学活动课中,同学们利用几何画板绘制出了下列曲线,其中是中心对称图形的是( )A .等角螺旋线B .心形线C .四叶玫瑰线D .蝴蝶曲线 3.中国第三艘航空母舰命名为“中国人民解放军海军福建舰”,福建舰是中国完全自主设计建造的首艘弹射型航空母舰,采用平直通长飞行甲板,配置电磁弹射和阻拦装置,满载排水量约80000吨.数据80000用科学记数法表示为( )A .40.810⨯B .38010⨯C .4810⨯D .5810⨯ 4.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( )A .40,42B .42,43C .42,42D .42,415x 的取值范围是( ). A .2x ≥-且1x ≠ B .1x ≠ C .1x > D .2x ≥- 6.已知点P 是线段AB 的黄金分割点,AP >PB .若AB =2,则AP 的长为( )A B .3C 1 D 3 7.中国美食讲究色香味美,优雅的摆盘造型能让美食锦上添花.图1中的摆盘,其形状是扇形的一部分,图2是其几何示意图(阴影部分为摆盘),通过测量得到10cm AC BD ==,,C D 两点之间的距离是3cm ,60AOB ∠=︒,则摆盘的面积是( )A .2169cm 6πB .280cm 3πC .250cm 3πD .249cm 6π 8.如图,正方形ABCD 的面积为3,点E 在边CD 上, 且CE = 1,∠ABE 的平分线交AD 于点F ,点M ,N 分别是BE ,BF 的中点,则MN 的长为( )A BC .2D二、填空题9.25的平方根是.10.写出一个3到4之间的无理数.11.如图,直线AB ,CD 相交,50AOC ∠=︒,则AOD ∠=︒.12.已知m 是一元二次方程2310x x -+=一个根,则220223m m -+的值为. 13.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB =3cm ,则此光盘的半径是cm .14.如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点(网格线的交点)上,M e 经过点A ,B ,C ,D ,则tan BDC ∠的值为.15.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:“今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?”则该题中合伙人数为.16.在△ABC 中,90A ∠=︒,6AB =,8AC =,点P 是△ABC 所在平面内一点,则222PA PB PC ++取得最小值时P A 长为.三、解答题17()201π20242-⎛⎫+- ⎪⎝⎭. 18.解不等式:412x x +-≤.19.先化简,再求值:1111x x x ---+.其中x 20.双减政策实施后,学校为了解九年级学生每天晚上完成书面作业所需时间的情况,在九年级随机抽取若干名学生就某一天情况进行调查,绘制了如下两幅不完整的统计图表(A .小于等于30分钟;B .大于30分钟小于等于60分钟:C .大于60分钟小于等于90分钟;D .大于90分钟).请根据图中信息(1)本次调查的人数是______.(2)补全条形统计图;(3)扇形统计图B 部分所对应的圆心角的度数是______;(4)若该校九年级共有860名学生,则估计九年级在这一天晚上作业时间大于90分钟的人数是多少?21.小明在学完物理“电学”知识后,进行“灯泡亮了”的实验,设计了如图所示的电路图,电路图上有5个开关12345,,,,S S S S S 和一个小灯泡,当开关1S 闭合时,再同时闭合开关23,S S 或45,S S 都可以使小灯泡发亮.(1)当开关12,S S 已经闭合时,再任意闭合开关345,,S S S 中的一个,小灯泡能亮起来的概率是____;(2)当开关1S 已经闭合时,再任意闭合开关2345,,,S S S S 中的两个,请用列表或画树状图的方法求小灯泡能亮起来的概率.22.如图,在平行四边形ABCD 中,点M 是对角线BD 上一点,连接AM 并延长至点E ,使ME AM =,连接DE ,CM .(1)求证:BD CE ∥;(2)当2AE AB =,CM DE ∥时,试说明四边形CEDM 为矩形.23.学校组织七年级和八年级学生去公园进行研学活动.如图所示,公园有东、西两个入口,入口A 在入口B 的正西方向,七年级学生从入口A 处出发,沿北偏东53︒方向前往游乐场D 处;八年级从入口B 处出发,沿正北方向行走150米到达C 处,再沿北偏西67.4︒方向前往游乐场D 处与七年级汇合,若两个年级所走的路程相同,求公园入口A 与游乐场D 之间的距离(结果保留整数,参考数据:5125343sin 22.6,cos 22.6,tan 22.6,sin 37,cos37,tan 37131312554︒≈︒≈︒≈︒≈︒≈︒≈).24.为满足市场需求,某服装超市在六月初购进一款短袖T 恤衫,每件进价是80元;超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T 恤衫售价每提高1元,每周要少卖出10件.若设售价为(90)x x ≥元,每周所获利润为Q (元),请解答下列问题:(1)每周短袖:T 恤衫销量为y (件),则y =________(含x 的代数式表示),并写出Q 与x 的函数关系式;(2)当售价x 定为________元时,该服装超市所获利润最大,最大利润为________元;(3)该服装超市每周想从这款T 恤衫销售中获利8250元,又想尽量给客户实惠,该如何给这款T 恤衫定价?25.如图,正比例函数12y x =与反比例函数2k y x=的图象交于A ,B 两点,点A 的横坐标为2.(1)求反比例函数的表达式及点B 的坐标;(2)点P 是x 轴上一点,连接P A ,PB ,若20PAB S =V ,求点P 的坐标;(3)请根据图象直接写出不等式2k x x≥的解集. 26.如图,已知抛物线28y ax bx =+-与x 轴交于点(2,0)A -,(8,0)B 两点,与y 轴交于点C ,点P 是直线BC 下方抛物线上一动点,过点P 作直线PE y ∥轴,交直线BC 于点D ,交x 轴于点F ,以PD 为斜边,在PD 的右侧作等腰直角PDF △.(1)求抛物线的表达式,并直接写出直线BC 的表达式;(2)设点P 的横坐标为m (03m <<),在点P 运动的过程中,当等腰直角PDF △的面积为9时,请求出m 的值;(3)连接AC ,该抛物线上是否存在一点M ,使ACO BCM ABC ∠∠=∠+,若存在,请直接写出所有符合条件的点M 的坐标,若不存在,请说明理由.27.如图,在正方形ABCD 中,点F 是边DC 上一个动点,连接BF ,在其上取一点E ,使得AE=AD ,AE 与BD 交于点G .解答下面问题:(1)如图(1),探究DEF ∠大小是否为定值,如果是,则求出;如果不是,则说出理由;(2)如图(2),若正方形的边长为2,当∠=∠BDE DAE 时,求DF 长;(3)如图(3),连接EC ,若EC BF ⊥,求证:DF FC =.。

江苏省南京市树人学校2022-2023学年 九年级下学期第一次月考数学卷 (含答案)

江苏省南京市树人学校2022-2023学年 九年级下学期第一次月考数学卷 (含答案)

数学注意事项:1.本试卷共 6 页.全卷满分 120 分.考试时间为 120 分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5 毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6 小题,每小题2 分,共12 分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.没有稳定的国防,就没有人民的安宁.2023 年,中国国防预算约为15537 亿元,将15537 亿用科学计数法表示为()A.1.5537×10122.下列计算结果是a5 的是(A.a2+a3B.15.537×1011)C.1.5537×1013D.0.15537×1013B.a10÷a2C.(a2)3D.a2•a33.若有理数a,b,c 在数轴上的位置如图所示,则化简|a+c|+|b﹣a|﹣|b﹣c|的结果是()A.﹣2b4.以O 为中心点的量角器与直角三角板ABC 按如图方式摆放,量角器的0 刻度线与斜边AB 重合.点D 为斜边AB 上一点,作射线CD 交弧AB 于点E,如果点E 所对应的读数为 52°,那么∠BCD 的大小为(B.﹣2a﹣2c C.﹣2b+2c D.2a﹣2b)A.52°5.在△ABC 中,∠ACB=90°,AC=4,BC=8,以点A 为顶点作三角形(阴影部分),使这个三角形与△ABC 相似,且相似比为 1:2,根据下列选项图中标注的条件,不符合要求的作图是(B.60°C.64°D.69°)A.B.C.D.6.如图,△APB 中,AB =2 2,∠APB =90°,在 AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形 PCDE 面√积的最大值是()322 22A .1B .2C .D .二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)7.一个数的相反数是-0.7 ,则这个数的倒数是▲.x +1x − 28.若代数式有意义,则 x 的取值范围是▲.2 2 2▲9.因式分解:16a −a b =.8 + 1810 .- 16 =▲.22▲11.设 x 、x 是一元二次方程 x −2x −m =0 的两个根,且 x x =1,则 m =.12 1 212.一个圆锥的侧面展开图是半圆,则圆锥母线长与底面半径的比值为▲.13.如图,在正五边形 ABCDE 中,连接 AC 、BD 交于点 O ,则∠AOD 的度数为▲.푘푥14.已知点 A (4,2)为函数 y = 图象上一点,点 P 为该函数图象上不与 A 点重合的另一个点,且满足 OA =OP ,则所有可能的点 P 的坐标为▲.15.DF 为菱形 ABCD 边 AB 上的高,将△AFD 沿 DF 翻折得到△EFD ,DE 与直线 BC 相交于点 G .若∠EGC =70°,则∠A =▲.16.已知二次函数 y =x 2−2(k +1)x +k 2 2k 3 与 x 轴有两个交点,当 k 取最小整数时的二次函数的图象在 x 轴下方− −的部分沿 x 轴翻折到 x 轴上方,图象的其余部分不变,得到一个新图象,则新图象与直线 y =x +m 有三个不同公共点时 m 的值是▲.三、解答题(本大题共 11 小题,共 88 分,解答时应写出文字说明、证明过程或演算步骤)푎2−41217.(2×5分=10分 )(1)计算:2 3 cos30°+(− )1−1−327; ( )化简:(2−)÷.푎2−4푎+4푎2−2푎2−푎132푥<6 −푥18.(6分)解不等式组:{2,并写出该不等式组所有的整数解.푥−2 푥−33≥419.(6 分)甲,乙两地相距 360km ,两人分别从甲地乘早 7 时出发的普通客车和早 8 时 15 分出发的豪华客车去乙地,两车恰好同时到达.已知豪华客车与普通客车的平均速度的比是 4:3,两车的平均速度分别是多少?20.(7 分)某学校开展了该校八年级部分学生的综合素质测评活动,随机选取了该校八年级的 50 名学生进行测评,统计数据如下表:测评成绩80859095100(单位:分)人数51010205(1)这 50 名学生的测评成绩的平均数是▲分,众数是▲分,中位数是 ▲ 分,方差是 ▲ 分 2 ;(2)若该校八年级共有学生 300 名,测评成绩在 90 分以上(包含 90 分)为优秀,试估计该校八年级优秀学生共有多少名?21.(6分)把算珠放在计数器的 3 根插棒上可以构成一个数,例如:如图摆放的算珠表示数 210.(1)若将一颗算珠任意摆放在这 3 根插棒上,则构成的数是三位数的概率是▲;(2)若一个数正读与反读都一样,我们就把这个数叫做回文数.现将两颗算珠任意摆放在这 3 根插棒上,先放一颗算珠,再放另一颗,请用列表或画树状图的方法,求构成的数是三位数且是回文数的概率.퐴퐷퐶퐷퐶퐷퐵퐷22.(6分)如图,△ABC 中,CD 是边AB 上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB 的大小.23.(7 分)如图,在一座建筑物CM 上,挂着“美丽南京”的宣传条幅AC,在建筑物的A 处测得地面上B 处的俯角为 30°,测得D 处的俯角为 45°,其中点A、B、C、D、E 在同一平面内,B、C、D 在同一条直线上,求宣传条幅AC 长.▲,给出下列条件:①BD=50 米;②D 到AB 的距离为 25 米;③AM=20 米;请在 3 个条件中选择一个能解决上述问题的条件填到上面的横线上(填序号),并解决该问题(结果保留根号).24.(8分)如图,在 Rt△ABC 中,∠C=90°,点D 为边AC 上一点.(1)尺规作图:在边AB 上找一点E,使得∠DEA=2∠BDE.(2)在(1)的条件下以点E 为圆心,EB 为半径的圆分别与AB,BC 交于M,N 点,且∠DEM=∠DEN.求证:AC 与⊙E 相切.25.(10 分)某单位准备利用现成的一堵“L”字形的墙面(粗线ABC 表示墙面,已知AB⊥BC,AB=3 米,BC=1米)和总长为14 米的篱笆围建一个“日”字形的小型农场DBEF(细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图 1),也可能在线段BA 的延长线上(如图 2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,①设DF 的长为x 米,请用含x 的代数式表示EF 的长并写出x 的取值范围;②若所围成的小型农场DBEF 的面积为 12 平方米,求DF 的长;(2)当点D 在线段BA 延长线上,DF 为多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?26.(10 分)将一张矩形纸片OABC 放置在平面直角坐标系中,点A 的坐标为(3,0),点C 的坐标为(0,4).D 是BC 边上的一个动点(点D 不与点B,C 重合),将△ODC 沿OD 翻折得到△ODC′,设CD=x.(1)如图 1,若∠COD=18°,则∠BDC′=▲°;(2)如图 2,连接AC′,当x=2 时,求△OAC′的面积;(3)连接BC′,当△BDC′为直角三角形时,求x 的值.27.(12分)【阅读理解】三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“高光点”.如图 1,△ABC 中,点D 是AB 边上一点,连接CD,若CD2=AD•BD,则称点D 是△ABC 中AB 边上的“高光点”.【探究应用】(1)如图 2,△ABC 的顶点是 4×4 网格图的格点,请仅用直尺画出(或在图中直接描出)AB 边上的“高光点”;....√2234(2)如图 3,△ABC 中,AB=14,cos A=,tan B=,若点D 是AB 边上的“高光点”,求线段AD 的长;(3)如图 4,△ABC 是⊙O 的内接三角形,点H 在AB 上,连接CH 并延长交⊙O 于点D,若点H 是△ACD 中CD 边上的“高光点”.①求证:AH=BH;퐷퐻32퐶퐻②若BC⊥CH,⊙O 的半径为r,且r=AD,求的值.图1图2图3图4参考答案与试题解析一.选择题(共6 小题)1.没有稳定的国防,就没有人民的安宁。

湖南省长沙市北雅中学2022-2023学年九年级下学期第一次月考数学试题=

湖南省长沙市北雅中学2022-2023学年九年级下学期第一次月考数学试题=

湖南省长沙市北雅中学2022-2023学年九年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣的相反数是( )25A .﹣B .C .﹣D .252552522.如图的几何体,从左面看的平面图是( )A .B .C .D .3.我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数21500000用科学记数法表示为( )A .B .C .D .72.1510⨯90.21510⨯82.1510⨯721.510⨯4.下列说法正确的是( )A .“三角形内角和为”是不可能事件180︒B .抛一枚质地均匀的硬币,正面朝上的概率为12C .“明天的降水概率是”,是指明天有的时间在下雨90%90%D .了解一批灯泡的使用寿命,应采用全面调查5.下列各式计算正确的是( )A .B .3412a a a ⋅=()222x y x y +=+C .D .33x x -=743x x x ÷=6.若点,则点P 关于原点的对称点的坐标是( )()8,3P -A .B .C .D .()8,3()8,3--()8,3-()8,3-7.已知直线,将一块含角的直角三角板,其中,按如图所m n ∥30︒ABC 30ABC ∠=︒示方式放置,其中A 、B 两点分别落在直线m 、n 上,若,则的度数是128∠=︒2∠( )A .B .28︒30︒C .D .58︒60︒8.如图,点,,是上的点,若,则的度数为( )A B C O 49ACB ∠=︒AOB ∠A .B .C .D .49︒41︒98︒82︒9.为了践行“绿水青山就是金山银山”的理念,某地计划将亩荒山进行绿化,实际450绿化时,工作效率是原计划的倍,进而比原计划提前天完成绿化任务,设原来平均1.53每天绿化荒山亩,可列方程为( )x A .B .45045031.5x x-=45045031.5x x+=C .D .1514504503x x -= 1.514504503x x +=10.已知一次函数,其中,,那么一次函数的图象不经过第y kx b =+0k b +<0kb >( )象限.A .一B .二C .三D .四二、填空题11.因式分解:______.39a a -=12在实数范围内有意义,则实数的取值范围是______.x 13.若正n 边形的每一个外角都等于,则________.90︒n =14.若关于x 的一元二次方程x 2+2x +a =0有实数根,则a 的取值范围是______.15.已知圆锥的母线长为5,底面圆半径为2,则此圆锥的侧面积为__.16.图中各正方形中的四个数之间都有相同的规律,则根据这种规律,第四个正方形中的n 与最后一个正方形中的m 之和,________.n m +=三、解答题17.计算:()11202312cos302π-⎛⎫+---︒⎪⎝⎭18.先化简,再求值:,其中.()()()()234422x x x x x -++-+-12x =-19.【探究三角形中边与角之间的不等关系】学习了等腰三角形,我们知道在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等,那么,不相等的边所对的角之间的大小关系怎样呢?大边所对的角也大吗?下面是丫丫同学的证明过程.如图1,在中,已知.求证.ABC AB AC >C B ∠>∠证明:如图2,将折叠,使边落在上,点C 落在上的点处,折痕ABC AC AB AB C 'AD 交于点D .则.BC AC D C '∠=∠∵ ① ( ② )AC D '∠=BDC '+∠∴AC D B'∠>∠∴(等量代换)C B ∠>∠类似地,应用这种方法可以证明“在一个三角形中,大角对大边,小角对小边”的问题.下面是小鹿同学的证明过程.如图3,在中,已知.求证.ABC C B ∠>∠AB AC >证明:如图4,将折叠,使点B 落在点C 上,折痕交于点D ,交于点ABC DE AB BC E .则.CD BD =∵( ③ )CD AD AC +>∴(等量代换)BD AD AC +>即AB AC>请大家将上述证明空白部分补充完整.20.某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:A 、绘画;B 、唱歌;C 、书法;D 、数独.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)抽查的学生人数是________人;(2)将条形统计图补充完整;(3)在扇形统计图中,选课程A 的人数所对的圆心角的度数为________°;(4)如果该校共有1600名学生,请你估计该校报课程B 的学生约有多少人?21.如图,菱形的对角线和交于点O ,分别过点C 、D 作,ABCD AC BD CE BD ∥,和交于点E .DE AC ∥CE DE(1)判断四边形的形状并说明理由;ODEC (2)连接,交于点F ,当,时,求的长.AE CD 60ADB ∠=︒2AD =AE 22.为了响应习主席提出的“足球进校园”的号召,某中学开设了“足球大课间活动”,该中学购买A 种品牌的足球30个,B 种品牌的足球20个,共花费3100元,已知B 种品牌足球的单价比A 种品牌足球的单价高30元.(1)求A 、B 两种品牌足球的单价各多少元?(2)根据需要,学校决定再次购进A 、B 两种品牌的足球50个,正逢体育用品商店“优惠促销”活动,A 种品牌的足球单价优惠4元,B 种品牌的足球单价打8折.如果此次学校购买A 、B 两种品牌足球的总费用不超过2750元,且购买B 种品牌的足球不少于24个,则有几种购买方案?为了节约资金,学校应选择哪种方案?23.如图,一次函数的图象与反比例函数的图象交于点,.1y x =-ky x=(),1A n ()1,B m -(1)求函数的表达式;ky x=(2)根据图象写出使一次函数值大于反比例函数值时x 的取值范围;(3)点C 是反比例函数的图象上第一象限内的一个动点,当的面积等于ky x=ABC 的面积时,求C 点的坐标.ABO 24.【定义】对于函数图象上的任意一点,我们把称为该点的“雅和”,把函(),P x y x y +数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点的“雅和”为________;(直接写出答案)()9,10P ②一次函数的“礼值”为________;(直接写出答案)()3213y x x =+-≤≤(2)二次函数交轴于点,交轴于点,点与点的()()2035y x bx c bc x =-+≠≤≤x A y B A B “雅和”相等,若此二次函数的“礼值”为,求,的值;1b -b c (3)如图所示,二次函数的图象顶点在“雅和”为的一次函数的图象上,四2y x px q =-+0边形是矩形,点的坐标为,点为坐标原点,点在轴上,当二次函OABC B ()5,3-O C x 数的图象与矩形的边有四个交点时,求的取值范围.2y x px q =-+p 25.如图,的直径弦于点E ,,,点P 是延长线上异O AB ⊥CD 10AB =8CD =CD于点D 的一个动点,连接交于点Q ,连接交于点F ,连接.AP O CQ AB AC DQ,(1)判断下列结论是否正确,对的画“√”,错的画“×”;①;②;③;ACQ CPA ∠=∠12QD CD =PAC CAQ △∽△(2)若,求的长;4PD =CQ (3)若,.PD x =QAC QDCS y S =△△①求y 与x 之间的函数关系式;②求的最大值.AQ DQ ⋅参考答案:1.B【详解】分析:直接利用相反数的定义分析得出答案.详解:-的相反数是:.2525故选B .点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.2.D【分析】根据从左面看得到的图形(是左视图),可得答案.【详解】解:从左面看第一层是两个小正方形,第二层右边是一个小正方形,左边没有,故选D .【点睛】本题考查了三视图,熟记三视图的定义是解题关键.3.A【分析】科学记数法的表示形式为的形式,其中,n 为整数.确定n 的10n a ⨯110a ≤<值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正整数;当原数的绝对值时,n 是负整数.10≥1<【详解】解:将21500000用科学记数法表示为:.72.1510⨯故选:A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中10n a ⨯,n 为整数,表示时关键要正确确定a 的值以及n 的值.110a ≤<4.B【分析】直接利用概率的意义以及全面调查和抽样调查、随机事件等知识分别分析得出答案.【详解】解:A 、“三角形内角和为”是必然事件,故此选项错误;180︒B 、抛一枚质地均匀的硬币,正面朝上的概率为,故此选项正确;12C 、“明天的降水概率是”,是指明天有的可能性下雨,故此选项错误;90%90%D 、了解一批灯泡的使用寿命,应采用抽样调查,故此选项错误.故选:B .【点睛】此题主要考查了概率的意义以及全面调查和抽样调查、随机事件等知识,正确掌握相关定义是解题关键.5.D【分析】利用同底数幂的乘法、除法的法则,合并同类项的法则,完全平方公式对各项进行运算即可判断.【详解】解:A 、,本选项不符合题意;34712a a a a ⋅=≠B 、,本选项不符合题意;()222222x y x xy y x y +=++≠+C 、,本选项不符合题意;323x x x -=≠D 、,本选项符合题意;743x x x ÷=故选:D .【点睛】本题主要考查同底数幂的乘法、除法,合并同类项,完全平方公式,解答的关键是对相应的运算法则的掌握.6.C【分析】根据关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,进行求解即可.【详解】解:点P 关于原点的对称点的坐标是;()8,3P -故选C .【点睛】本题考查求关于原点对称的点的坐标.熟练掌握关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,是解题的关键.7.C【分析】利用平行线的性质,得到,即可得解.21ABC ∠=∠+∠【详解】解:∵,,,m n ∥30ABC ∠=︒128∠=︒∴;2158ABC ∠=∠+∠=︒故选C .【点睛】本题考查平行线的性质.熟练掌握两直线平行,内错角相等,是解题的关键.8.C【分析】根据圆周角定理即可求解.【详解】解:∵,, AB AB =49ACB ∠=︒∴,298AOB ACB ∠=∠=︒故选:C .【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.9.A【分析】设原来平均每天绿化荒山亩,则实际绿化时,平均每天绿化荒山亩,根据题x 1.5x 意列出分式方程即可求解.【详解】解:设原来平均每天绿化荒山亩,则实际绿化时,平均每天绿化荒山亩,根x 1.5x 据题意得,,45045031.5x x -=故选:A .【点睛】本题考查了列分式方程,找到等量关系列出方程是解题的关键.10.A【分析】根据k 、b 的符号来求确定一次函数的图象所经过的象限.y kx b =+【详解】解:∵,0kb >∴同号,k b 、∵,0k b +<∴都小于0,k b 、即一次函数中,,y kx b =+00k b <<,∴一次函数图象经过二、三、四象限,∴不经过第一象限.故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线所在的位置与k 、b 的符号有直接的关系.时,直线必经过一、三象y kx b =+0k >限.时,直线必经过二、四象限.时,直线与y 轴正半轴相交.时,直线过0k <0b >0b =原点;时,直线与y 轴负半轴相交.0b <11.()()33a a a +-【分析】先提公因式,再用平方差公式分解.【详解】解:()3299(3)(3)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.12.2x ≥【分析】根据二次根式有意义的条件即可解得.【详解】解:在实数范围内有意义,∴,20x -≥∴.2x ≥故答案为:.2x ≥【点睛】此题考查了二次根式的意义,解题的关键是列出不等式求解.13.4【分析】根据任何多边形的外角和都是,利用360除以外角的度数就可以求出多边形360︒的边数.【详解】解:∵多边形的外角和为,每个外角都等于,360︒90︒∴n 的值是,360904÷=故答案为:4.【点睛】本题考查多边形的外角和为,正确理解多边形外角和定理是关键.360︒14.a ≤1【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac ≥0.据此可得△=b 2-4ac =4-4a ≥0,求解即可.【详解】解:因为关于x 的一元二次方程有实根,所以△=b 2-4ac =4-4a ≥0,解之得a ≤1.故答案为a ≤1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.10π【分析】根据圆锥的侧面积公式:,进行计算即可.S rl π=【详解】解:依题意知母线长,底面半径,5=2r =则由圆锥的侧面积公式得.5210S rl πππ==⨯⨯=故答案为:.10π【点睛】本题考查圆锥的侧面积.熟练掌握圆锥的侧面积公式,是解题的关键.16.222【分析】根据前三个正方形的规律可知,左上、左下、右上为相邻的三个偶数,右下等于左下、右上两数的积与左上的差.【详解】解:根据前三个正方形的规律可知,左上、左下、右上为相邻的三个偶数,所以;10n =最后一个正方形中,左下、右上两数分别为14、16,所以;141612212m =⨯-=所以222n m +=故答案为:.222【点睛】本题主要考查数字间的变化规律,解题的关键是要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.17.2【分析】先根据负整数指数幂,零指数幂,绝对值的性质,特殊角锐角函数值化简,再计算,即可求解.【详解】解:()11202312cos302π-⎛⎫+---︒ ⎪⎝⎭2112=+--211=+.2=【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值的性质,特殊角的三角函数值,二次根式的加减,熟练掌握相关运算法则是解题的关键.18.,.27x --6-【分析】先计算乘法,再合并同类项,然后把代入,即可求解.12x =-【详解】解:()()()()234422x x x x x -++-+-222691642x x x x x =-++-+-,27x =--当时,原式.12x =-12762⎛⎫=-⨯--=- ⎪⎝⎭【点睛】本题主要考查了整式的化简求值,完全平方公式,与平方差公式,熟练掌握完全平方公式,与平方差公式是解题的关键.19.丫丫同学的证明:,三角形的外角性质;小鹿同学的证明:三角形的三边关系B ∠【分析】丫丫同学的证明:根据三角形外角的性质即可得到结论;小鹿同学的证明:根据三角形的三边关系即可得到结论.【详解】解:丫丫同学的证明:证明:如图2,将折叠,使边落在上,点C 落在上的点处,折痕交于点D .则ABC AC AB AB C 'AD BC .AC D C '∠=∠∵(三角形的外角性质),AC D '∠=B ∠BDC '+∠∴AC D B'∠>∠∴(等量代换)C B ∠>∠故答案为:,三角形的外角性质;B ∠小鹿同学的证明:证明:如图4,将折叠,使点B 落在点C 上,折痕交于点D ,交于点E .则.ABC DE AB BC CD BD =∵(三角形的三边关系),CD AD AC +>∴(等量代换),BD AD AC +>即.AB AC >故答案为:三角形的三边关系.【点睛】本题主要考查了三角形的外角性质:三角形的一个外角等于与它不相邻的两个内角和;三角形的三边关系:任意两边之和大于第三边.20.(1)40(2)见解析(3)108(4)560【分析】(1)从两个统计图可得,“A 组”的有12人,占调查人数的30%,可求出调查人数;(2)求出“C 组”人数,即可补全条形统计图:(3)样本中,“A 组”占,因此圆心角占的,可求出度数;30%360︒30%(4)样本估计总体,样本中“B 组”占,估计总体1600人的是“B 组”的人数.14401440【详解】(1)解∶,1230%=40÷答∶ 抽查的学生人数是40人;(2)解:“C 组”的人数为(人),401214410---=补图如下:;(3)解:选课程A 的人数所对的圆心角的度数为;36030%108︒⨯=︒(4)解:,14160056040⨯=答:估计该校报课程B 的学生约有560人.【点睛】本题考查了扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.21.(1)四边形是矩形,理由见解析ODEC(2)AE =【分析】(1)先证四边形是平行四边形,然后根据菱形的对角线互相垂直,得到ODEC ,根据矩形的定义即可判定四边形是矩形.90DOC ∠=︒ODEC (2)根据含30度角直角三角形的性质、勾股定理来求的长度即可.AE 【详解】(1)解:四边形是矩形,理由如下,ODEC ∵,,CE BD ∥DE AC ∥∴四边形是平行四边形,ODEC 又∵菱形,ABCD∴,AC BD ⊥∴,90DOC ∠=︒∴四边形是矩形;ODEC (2)解:∵中,,Rt AOD 60ADB ∠=︒∴,30OAD ∠=︒∴,112OD AD ==∴AO =∴AC =∵四边形是矩形,ODEC ∴,,1EC OD ==90ACE ∠=︒∴AE ==【点睛】本题考查了平行四边形的判定、菱形的性质、矩形的判定与性质、勾股定理等,熟练掌握和灵活运用相关的性质定理与判定定理是解题的关键.22.(1)A 种品牌足球的单价是50元,B 种品牌足球的单价是80元;(2)共有2种购买方案,为了节约资金,学校应选择购买26个A 种品牌的足球,24个B 种品牌的足球.【分析】(1)设A 种品牌足球的单价是x 元,B 种品牌足球的单价是y 元,根据“购买A 种品牌的足球30个,B 种品牌的足球20个,共需3100元,B 种品牌足球的单价比A 种品牌足球的单价高30元”,可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 个B 种品牌的足球,则购买个A 种品牌的足球,根据“此次学校购买()50m -A 、B 两种品牌足球的总费用不超过2750元,且购买B 种品牌的足球不少于24个”,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数,可得出共有2种购买方案,再分别求出各方案所需总费用,比较后即可得出结论.【详解】(1)解:设A 种品牌足球的单价是x 元,B 种品牌足球的单价是y 元,根据题意得:,3020310030x y y x +=⎧⎨-=⎩解得:.5080x y =⎧⎨=⎩答:A 种品牌足球的单价是50元,B 种品牌足球的单价是80元;(2)解:设购买m 个B 种品牌的足球,则购买个A 种品牌的足球,()50m -根据题意得:,()()50450800.8275024m m m ⎧--+⨯≤⎨≥⎩解得:,2425m ≤≤又∵m 为正整数,∴m 可以为24,25,∴共有2种购买方案,方案1:购买26个A 种品牌的足球,24个B 种品牌的足球,总费用为(元);(504)26800.8242732-⨯+⨯⨯=方案2:购买25个A 种品牌的足球,25个B 种品牌的足球,总费用为(元).(504)25800.8252750-⨯+⨯⨯=∵,27322750<∴为了节约资金,学校应选择购买方案1,即购买26个A 种品牌的足球,24个B 种品牌的足球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(1)2y x=(2)或10x -<<2x >(3)或()11【分析】(1)点,在一次函数上,求出的值,待定系数法求出的(),1A n ()1,B m -,m n k y x =表达式即可;(2)找到直线在双曲线上方时,的取值范围即可;x (3)的面积等于的面积,得到点到直线的距离等于点到直线的距ABC ABO C AB O AB离,根据平行线间的距离处处相等,将直线向上或向下平移1个单位,得到直线,AB 12,l l 直线与双曲线在第一象限的交点即为点,进行求解即可.12,l l C 【详解】(1)解:∵一次函数的图象与反比例函数的图象交于点,1y x =-k y x=(),1A n ,()1,B m -∴,112,11m n =--=-=-∴,2n =∴,,()1,2B --()2,1A ∴,122k =⨯=∴;2y x=(2)解:由图象可知:当或时,直线在双曲线上方,10x -<<2x >∴一次函数值大于反比例函数值时的取值范围为:或;x 10x -<<2x >(3)解:∵的面积等于的面积,ABC ABO ∴点到直线的距离等于点到直线的距离,C AB O AB ∴将直线向上或向下平移1个单位,得到直线,直线与双曲线在第一象限的交点AB 12,l l 12,l l 即为点,如图:C ∵,1y x =-∴,,1:l y x =2:2l y x =-联立,解得:或(不合题意,舍去);2y x y x =⎧⎪⎨=⎪⎩x y ⎧⎪⎨⎪⎩x y ⎧=⎪⎨=⎪⎩∴;C 联立,解得:或;22y x y x =-⎧⎪⎨=⎪⎩11x y ⎧=⎪⎨=⎪⎩11x y ⎧=⎪⎨=-⎪⎩∴;()11C 综上:点的坐标为:或.C ()11+【点睛】本题考查反比例函数与一次函数的综合应用.正确的求出函数解析式,利用数形结合的思想进行求解,是解题的关键.24.(1)①;②192-(2)9,8b c ==(3)68p <<【分析】(1)①根据新定义计算即可求解;②先计算,设“雅和”为,根据一次函数的性质求得在的最小值即可求解.x y +w w 13x -≤≤(2)根据题意得出,,且,将点代入解析式得,①,()0,B c (),0A c 0bc ≠(),0A c 1c b =-根据此二次函数的“礼值”为,求得最小值,建立方程即可求解;1b -(3)二次函数的图象顶点在“雅和”为的一次函数的图象上,即2y x px q =-+2,24p p q ⎛⎫- ⎪⎝⎭0上,得出,结合函数图象,得出二次函数的图象与矩形的边y x =-242p p q =-2y x px q =-+有四个交点时,抛物线的顶点在直线的下方,其二次函数图象当时,,对称AB 3x =3y <-轴右侧当时,,解不等式组即可求解.5x =3y >-【详解】(1)解:①点的“雅和”为,()9,10P 91019+=故答案为:.19②∵一次函数的上的点为:,设“雅和”为,()3213y x x =+-≤≤(),32x x +w 则,3242w x x x =++=+∵,,随的增大而增大13x -≤≤40>y x ∴当时,取得最小值,最小值为,=1x -w 422-+=-根据定义可得,一次函数的“礼值”为,()3213y x x =+-≤≤2-故答案为:.2-(2)解:二次函数交轴于点,交轴于点,点与点()()2035y x bx c bc x =-+≠≤≤x A y B A B的“雅和”相等,∴,,且()0,B c (),0A c 0bc ≠将点代入解析式得,,即①(),0A c 20c bc c -+=1c b =-设此函数的“雅和”为,则,t ()21t x b x c =+-+又∵此二次函数的“礼值”为,1b -∴的最小值为,即,即t 1b -()24114c b b --=-()()()241141b b b ---=--解得:9b =则;918c =-=(3)解:∵二次函数顶点为即,2y x px q =-+24,24p q p ⎛⎫--- ⎪⎝⎭2,24p p q ⎛⎫- ⎪⎝⎭∵二次函数的图象顶点在“雅和”为的一次函数的图象上,即上,2y x px q =-+0y x =-∴,即2024p p q +-=242p p q =-∵四边形是矩形,点的坐标为,点为坐标原点,OABC B ()5,3-O ∴时,5x =2211255255254242p p p y p q p p =-+=-+-=-+时,3x =227939394242p p p y p q p p =-+=-+-=-+∵二次函数的图象与矩形的边有四个交点,2y x px q =-+则抛物线的顶点在直线的下方,其二次函数图象当时,,对称轴右侧当AB 3x =3y <-5x =时,,如图所示3y >-∴22234793421125342p q p p p p ⎧-<-⎪⎪⎪-+<-⎨⎪⎪-+>-⎪⎩①②②由①得:,又,234p q -<-242p p q =-∴, 32p -<-解得:,6p >②,279342p p -+<-解得:,68p <<③,211253042p p -++>由,211253042p p -++=解得:或(舍去,抛物线的左侧过点),8p =14p =B ∵,抛物线开口向上,104>∴的解集为:或,211253042p p -++>8p <14p >综上所述,不等式的解集为:.68p <<【点睛】本题考查了新定义运算,二次函数的性质,熟练掌握二次函数的性质是解题的关键.25.(1)①③正确;②错误;(2);CQ =(3)①y 与x 之间的函数关系式为;②的最大值为10y x=AQ DQ ⋅50-【分析】(1)连接,利用圆周角定理,垂直的意义,通过等量代换得出,BQ ACQ CPA ∠=∠可判断①;再根据,可判断③;由是定值,是一个变化的值,CAQ PAC ∠=∠142CD =QD 可判断②;(2)通过证明,可得,即可求解;CAQ PAC ∽△△AC CQ AP CP =(3)①分别求出,,即可求解;280QAC PDQ S S x=⨯△△8DCQ PDQ S S x =△△②根据和分别表示出和,然后求得的关系CAQ PAC ∽△△PDQ PAC ∽△△AQ DQ AQ DQ ⋅式,根据基本不等式求得结果.【详解】(1)证明:连接,如图,BQ∵为的直径,AB O ∴,90AQB ∠=︒∴,90QAB B ︒∠+∠=∵,PE AE ⊥∴,90QAB P ︒∠+∠=∴,P B ∠=∠∵,B ACQ ∠=∠∴,故①正确;ACQ CPA ∠=∠又∵,CAQ PAC ∠=∠∴,故③正确;PAC CAQ △∽△∵的直径弦于点E ,,O AB ⊥CD 8CD =∴是定值,142CD =而点P 是延长线上异于点D 的一个动点,则是一个变化的值,故②错误;CD QD 故①③正确;②错误;(2)解:如图,连接,OD∵,,,10AB =8CD =AB CD ⊥∴,,5AO BO OD ===4DE CE ==∴,3OE ===∴,8AE =∴.AC ===∵,4PD =∴,812PE PC ==,∴,AP ===∵,ACQ CPA CAQ CAP ∠=∠∠=∠,∴,CAQ PAC ∽△△∴,AC CQ AP CP=12CQ =∴;CQ =(3)解:①∵四边形为圆的内接四边形,AQDC ∴,PDQ QAC ∠=∠∵,ACQ CPA ∠=∠∴,PDQ CAQ ∽∴,2280PDQQAC S DP x S AC ⎛⎫== ⎪⎝⎭△△∴,280QAC PDQ S S x =⨯△△∵与是等高的三角形,PDQ DCQ ∴,8DCQPDQ S CD S PD x==△△∴,8DCQ PDQ S S x =△△∵,QACQDC S y S =△△∴,801028QACQDC S y x S x∆∆===∴y 与x 之间的函数关系式为;10y x=②在中,Rt APE,AP ==由(1)得:,PAC CAQ △∽△∴,AC AP AQ AC=∴,2AC AQ AP ==∵四边形内接于,ACDQ O ∴,PDQ PAC ∠=∠∵,P P ∠=∠∴,PDQ PAC ∽△△∴,DQ PD AC AP=∴,AC PD DQ AP ⋅==∴,1808AQ DQ x x ⋅==++∵,80x x+≥=∴50AQ DQ ⋅≤=-∴的最大值为:AQ DQ ⋅50-【点睛】本题考查了圆的有关性质,相似三角形的判定和性质,完全平方公式等知识,解决问题的关键根据相似表示出相关线段的长.。

烟台市九年级下学期数学第一次月考试卷

烟台市九年级下学期数学第一次月考试卷

烟台市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)小丽做了四道题目,正确的是()。

A .B .C .D .2. (2分)下列交通标志图案中,是中心对称图形的是()A .B .C .D .3. (2分) (2019九下·揭西月考) “十二五”期间,将新建保障性住房约37000000套,用于解决中低收入人群和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是()A . 37×106B . 3.7×106C . 3.7×107D . 0.37×1084. (2分) (2019九下·揭西月考) 如图,AB∥CD,O为CD上一点,且∠AOB=90°.若∠B=33°,则∠AOC的度数是().A . 33°5. (2分)一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A . 0,2B . 1.5,2C . 1,2D . 1,36. (2分)(2016·十堰) 如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A . 1:3B . 1:4C . 1:5D . 1:97. (2分) (2019九下·揭西月考) 若3x>﹣3y ,则下列不等式中一定成立的是()A .B .C .D .8. (2分) (2019九下·揭西月考) 若实数m,n满足,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 8C . 10D . 10或89. (2分)(2018·白银) 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A . k≤﹣410. (2分)(2017·沂源模拟) 如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A . ①②B . ②③C . ①③D . ①④二、填空题 (共6题;共7分)11. (1分)(2016·天津) 计算(2a)3的结果等于________.12. (1分)已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________13. (1分) (2019九下·揭西月考) 若3<a<5,则|5﹣a|+|3﹣a|=________.14. (1分) (2019九下·揭西月考) 如图,△ABC内接于⊙O,∠C=45°,半径OB的长为3,则AB的长为________15. (2分)(2019·邹平模拟) 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为________.16. (1分) (2019九下·揭西月考) 如图,直线x=t(t>0)与反比例函数的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为________.三、解答题 (共9题;共77分)17. (5分)计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.18. (5分)(﹣15)+(﹣6).19. (5分) (2019九下·揭西月考) 某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元。

泰州市泰兴实验中学九年级下第一次月考试卷含答案解析

泰州市泰兴实验中学九年级下第一次月考试卷含答案解析

2022-2023江苏省泰州市泰兴实验中学九年级(下)第一次月考数学试卷一、选择题(每题3分):1.四个数﹣5,,﹣0.1,中为无理数的是()A.﹣5 B. C.﹣0.1 D.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2 D.5a﹣2a=33.已知下列函数:①y=2﹣3x;②y=﹣(x>0);③y=x﹣2;④y=2x2﹣1(x>1),其中y随x的增大而增大的函数有()A.1个B.2个C.3个D.4个4.不等式组的解集是x>a,则a的取值范围是()A.a<﹣2 B.a=﹣2 C.a>﹣2 D.a≥﹣25.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁6.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A.4种B.3种C.2种D.1种二、填空题(每题3分):7.若有意义,则x的取值范围是.8.因式分解:x4﹣16x2=.9.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.10.已知a m=3,a n=2,则a3m﹣2n=.11.用去分母的方法解关于x的方程产生增根,那么a的值是.12.若x2+(m﹣3)x+4是完全平方式,则m的值等于.13.若化简后的二次根式与是同类二次根式,则x=.14.若(x﹣2)x=1,则x=.15.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第次输出的结果为.16.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.三、解答题:17.(1)计算:|﹣3|﹣(﹣π)0+()﹣1+(2)解方程:.18.先化简,再从﹣2,﹣1,0,1四个数中选取一个适当的数作为x的值代入求值.19.鼓楼商场搞换季促销活动,若每件羽绒服按标价的5折销售可赚50元,按标价的6折销售可赚80元,?(请你在横线上提出一个问题然后再解答)20.某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题(1)试求出优秀员工人数所占百分比;(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为m ;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为n .(1)用列表法或画树状图表示出(m ,n )的所有可能出现的结果;(2)小明认为点(m ,n )在一次函数y=x+2的图象上的概率一定大于在反比例函数y=的图象上的概率,而小华却认为两者的概率相同.你赞成谁的观点?分别求出点(m ,n )在两个函数图象上的概率,并说明谁的观点正确.22.我校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式并确定花费最少的购买方案.23.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而“作差法”就是常用的解决问题的策略之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.(1)利用“作差法”解决问题如图1,把边长为a+b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,设两个小正方形面积之和为M ,两个矩形面积之和为N ,试比较M 与N 的大小. (2)类比应用①已知甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时(x 、y 是正数,且x ≠y ),试比较V 甲、V 乙的大小.②如图2,在边长为a 的正方形ABCD 中,以A 为圆心,为半径画弧交AB 、AD 于点E 、F ,以CD 为直径画弧,若图中阴影部分的面积分别为S 1,S 2,试比较S 1与S 2的大小.24.甲、乙两车在相距300千米的A 、B 两地匀速相向而行,两车同时出发,途中甲车配货停留1小时.甲、乙两车离B 地的距离y (千米)与出发时间x (小时)之间的关系如图①所示,甲、乙两车间的距离s(千米)与出发时间x(小时)之间的关系如图②所示,(1)求甲、乙两车的速度;(2)求甲车到B地所用的时间,并将图②补充完整;(3)乙出发多少小时时,两车相距20千米?25.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,(1)求证:AB=EF;(2)若∠CAE=∠BCE,AB=6,AC=8,①求EC的长;②求线段PE的长.26.如图,已知点A(0,a),B(b,0),C(0,c),且|a+4|+=0,(c+1)2≤0,点D与点C关于直线AB对称,(1)求直线AB的解析式和点C、D的坐标;(2)点E在直线AB上,直接写出|EO﹣ED|的最大值和最小值及对应的点E的坐标;(3)点F(﹣1,0),在平面内有一点P,使得△OAP∽△DAF,求点P的坐标.2022-2023江苏省泰州市泰兴实验中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分):1.四个数﹣5,,﹣0.1,中为无理数的是()A.﹣5 B. C.﹣0.1 D.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣5是整数,是有理数,选项错误;B、是无理数,选项正确;C、﹣0.1是有限小数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选B.2.下列计算正确的是()A.(ab3)2=a2b6B.a2•a3=a6C.(a+b)(a﹣2b)=a2﹣2b2 D.5a﹣2a=3【考点】多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据多项式乘多项式、合并同类项、同底数幂的乘法和幂的乘方与积的乘方分别进行解答,即可得出答案.【解答】解:A、(ab3)2=a2b6,故本选项正确;B、a2•a3=a5,故本选项错误;C、(a+b)(a﹣2b)=a2﹣ab﹣2b2,故本选项错误;D、5a﹣2a=3a,故本选项错误.故选A.3.已知下列函数:①y=2﹣3x;②y=﹣(x>0);③y=x﹣2;④y=2x2﹣1(x>1),其中y随x的增大而增大的函数有()A.1个B.2个C.3个D.4个【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】直接根据一次函数、二次函数和反比例函数的性质进行判断即可.【解答】解:①y=2﹣3x,y随x增大而减小;②y=﹣(x>0),y随x的增大而增大;③y=x﹣2,y随x的增大而增大;④y=2x2﹣1(x>1),y随x的增大而增大;其中y随x的增大而增大的函数有3个,故选C.4.不等式组的解集是x>a,则a的取值范围是()A.a<﹣2 B.a=﹣2 C.a>﹣2 D.a≥﹣2【考点】不等式的解集.【分析】根据不等式组的解集:同大取大,可得答案.【解答】解:由的解集是x>a,得a≥﹣2,故选:D.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S甲2=0.65,S乙2=0.55,S丙2=0.50,S丁2=0.45,则射箭成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【解答】解:∵ =0.65, =0.55, =0.50, =0.45,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.6.一宾馆有二人间,三人间,四人间三种客房供游客居住,某旅行团24人准备同时租用这三间客房共8间,且每个客房都住满,那么租房方案有()A.4种B.3种C.2种D.1种【考点】三元一次方程组的应用.【分析】首先设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意可得方程组,解方程组可得y+2z=8,又由x,y,z是非负整数,即可求得答案.【解答】解:设宾馆有客房:二人间x间、三人间y间、四人间z间,根据题意得:,解得:y+2z=8,y=8﹣2z,∵x,y,z是正整数,当z=1时,y=6,x=1;当z=2时,y=4,x=2;当z=3时,y=2,x=3;当z=4时,y=0,x=4;(不符合题意,舍去)∴租房方案有3种.故选:B.二、填空题(每题3分):7.若有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣1≥0且x≠0,解得x≥1且x≠0,所以,x≥1.故答案为:x≥1.8.因式分解:x4﹣16x2=x2(x+4)(x﹣4).【考点】提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=x2(x2﹣16)=x2(x+4)(x﹣4).故答案为:x2(x+4)(x﹣4).9.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.10.已知a m=3,a n=2,则a3m﹣2n=.【考点】同底数幂的除法.【分析】先将a3m﹣2n变形为a3m÷a2n,再利用幂的乘方得出(a m)3÷(a n)2,代入计算即可.【解答】解:∵a m=3,a n=2,∴a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2,=33÷22=27÷4=,故答案为.11.用去分母的方法解关于x的方程产生增根,那么a的值是2.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入化为整式方程的方程算出a的值.【解答】解:方程两边都乘(x﹣3),得a﹣2(x﹣3)=x﹣1,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3.当x=3时,a=2.故答案为:2.12.若x2+(m﹣3)x+4是完全平方式,则m的值等于m=7或﹣1.【考点】完全平方式.【分析】根据完全平方公式的特征判断即可得到m的值.【解答】解:∵多项式x2+(m﹣3)x+4是完全平方式,∴(m﹣3)=±4,解得:m=7或m=﹣1,则m的值为﹣1或7.故答案为:m=7或﹣1.13.若化简后的二次根式与是同类二次根式,则x=3或﹣6.【考点】同类二次根式.【分析】根据同类二次根式的定义得到:x2+4x=x+18,即可解答【解答】解:∵二次根式与是同类二次根式,∴x2+4x=x+18,解得:x1=﹣6,x2=3,故答案为:3或﹣6.14.若(x﹣2)x=1,则x=0或3.【考点】零指数幂;有理数的乘方.【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【解答】解:∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.15.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第次输出的结果为3.【考点】代数式求值.【分析】由图示知,当输入的数x为偶数时,输出x,当输入的数x是奇数时,输出x+3.按此规律计算即可求解.【解答】解:当输入x=48时,第一次输出48×=24;当输入x=24时,第二次输出24×=12;当输入x=12时,第三次输出12×=6;当输入x=6时,第四次输出6×=3;当输入x=3时,第五次输出3+3=6;当输入x=6时,第六次输出6×=3;…故第次输出的结果为3,故答案为:3.16.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【考点】抛物线与x轴的交点.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.三、解答题:17.(1)计算:|﹣3|﹣(﹣π)0+()﹣1+(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=3﹣1+4+2=8;(2)去分母得:x﹣5+x2﹣1=3x﹣3,即x2﹣2x﹣3=0,解得:x=3或x=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.18.先化简,再从﹣2,﹣1,0,1四个数中选取一个适当的数作为x的值代入求值.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=÷=•=﹣,由题意得到x≠±1且x≠2,取x=0,原式=﹣1.19.鼓楼商场搞换季促销活动,若每件羽绒服按标价的5折销售可赚50元,按标价的6折销售可赚80元,每件羽绒服的标价是多少元?(请你在横线上提出一个问题然后再解答)【考点】二元一次方程组的应用.【分析】可以问:每件羽绒服的标价是多少元?首先设每件羽绒服的标价是x元,由题意得等量关系:标价×5折﹣50元=标价×6折﹣80元,根据等量关系列出方程,再解即可.【解答】问题:每件羽绒服的标价是多少元?解:设每件羽绒服的标价是x元,由题意得:50%x﹣50=60%x﹣80,解得:x=300.答:每件羽绒服的标价是300元.20.某企业对每个员工在当月生产某种产品的件数统计如下:设产品件数为x(单位:件),企业规定:当x<15时为不称职;当15≤x<20时为基本称职;当20≤x<25为称职;当x≥25时为优秀.解答下列问题(1)试求出优秀员工人数所占百分比;(2)计算所有优秀和称职的员工中月产品件数的中位数和众数;(3)为了调动员工的工作积极性,企业决定制定月产品件数奖励标准,凡达到或超过这个标准的员工将受到奖励.如果要使得所有优秀和称职的员工中至少有一半能获奖,你认为这个奖励标准应定为多少件合适?简述其理由.【考点】条形统计图;中位数;众数.【分析】(1)首先求出总人数与优秀营业员人数,进而求出优秀营业员人数所占百分比,(2)根据中位数、众数的意义解答即可.(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.【解答】解:(1)根据条形图可以得出:优秀营业员人数为3人,总人数为:30人,则优秀营业员人数所占百分比:×100%=10%;(2)∵所有优秀和称职的营业员为21人,最中间的是第11个数据,第11个数据为22,∴中位数为:22,∵20出现次数最多,∴众数为:20;故所有优秀和称职的营业员中月销售件数的中位数22、众数20.(3)奖励标准应定为22件.中位数是一个位置代表值,它处于这组数据的中间位置,因此大于或等于中位数的数据至少有一半.所以奖励标准应定为22件.21.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为m;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为n.(1)用列表法或画树状图表示出(m,n)的所有可能出现的结果;(2)小明认为点(m,n)在一次函数y=x+2的图象上的概率一定大于在反比例函数y=的图象上的概率,而小华却认为两者的概率相同.你赞成谁的观点?分别求出点(m,n)在两个函数图象上的概率,并说明谁的观点正确.【考点】列表法与树状图法;一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由点(m,n)在一次函数y=x+2的图象上的有(1,3),(2,4);在反比例函数y=的图象上的有(2,3),(3,2),直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)小华正确.∵点(m,n)在一次函数y=x+2的图象上的有(1,3),(2,4);在反比例函数y=的图象上的有(2,3),(3,2),∴P(点(m,n)在一次函数y=x+2的图象上)=P(点(m,n)在反比例函数y=的图象上)==.∴小华正确.22.我校运动会需购买A、B两种奖品.若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍.设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式并确定花费最少的购买方案.【考点】一次函数的应用.【分析】(1)设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)根据花费=购买单价×购买数量,可以得出W 关于m 的函数解析式,由已知给定的条件可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,结合函数的单调性即可得出结论.【解答】解:(1)设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意可得:,解得:.答:A 种奖品的单价为10元,B 种奖品的单价为15元. (2)购买A 种奖品m 件,则购买B 种奖品100﹣m 件, 根据题意可知:W=10m+15=1500﹣5m , 且m 满足,即70≤x ≤75.由于W (元)关于m (件)之间的函数单调递减,故当m=75时,W 最小,且此时W=1125,100﹣75=25(件).答:W (元)与m (件)之间的函数关系式为W=1500﹣5m (70≤x ≤75),当A 种奖品购买75件,B 种奖品购买25件时,花费最少,最少费用为1125元.23.问题提出我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而“作差法”就是常用的解决问题的策略之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小.(1)利用“作差法”解决问题如图1,把边长为a+b (a ≠b )的大正方形分割成两个边长分别是a 、b 的小正方形及两个矩形,设两个小正方形面积之和为M ,两个矩形面积之和为N ,试比较M 与N 的大小. (2)类比应用①已知甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时(x 、y 是正数,且x ≠y ),试比较V 甲、V 乙的大小.②如图2,在边长为a 的正方形ABCD 中,以A 为圆心,为半径画弧交AB 、AD 于点E 、F ,以CD 为直径画弧,若图中阴影部分的面积分别为S 1,S 2,试比较S 1与S 2的大小.【考点】四边形综合题.【分析】(1)利用作差法比较M 与N 大小即可;(2)①利用甲、乙两人的速度作差,进而结合完全平方公式,比较即可; ②分别利用扇形面积求法表示出S 1,S 2的值,进而比较得出答案. 【解答】解:(1)根据题意得:M=a 2+b 2,N=ab+ab , ∵M ﹣N=a 2+b 2﹣2ab=(a ﹣b )2>0, ∴M >N ;(2)①∵甲、乙两人的速度分别是V 甲=千米/小时、V 乙=千米/小时,∴﹣=﹣=>0,∴V 甲、V 乙的大小关系为:V 甲>V 乙; ②设两阴影部分的公共空白面积为d ,则S 1=﹣d=a 2﹣d ,S 2=﹣d=﹣d ,∵a 2>,∴S 1>S 2.24.甲、乙两车在相距300千米的A 、B 两地匀速相向而行,两车同时出发,途中甲车配货停留1小时.甲、乙两车离B 地的距离y (千米)与出发时间x (小时)之间的关系如图①所示,甲、乙两车间的距离s (千米)与出发时间x (小时)之间的关系如图②所示,(1)求甲、乙两车的速度;(2)求甲车到B 地所用的时间,并将图②补充完整; (3)乙出发多少小时时,两车相距20千米?【考点】一次函数的应用.【分析】(1)结合图①图②可知,当1.5≤x ≤2.5时,甲车在装货,结合图②中点的坐标即可求出甲、乙两车的速度;(2)由时间=路程÷速度+停留时间,即可得出甲车到达的时间,结合一次函数的性质,可补充完整图②;(3)由图②中点的意义可得知两车两次相距20千米时,甲车都在装货,由时间=路程÷速度即可得出结论.【解答】解:(1)结合图形①②可知:乙车的速度为30÷(2﹣1.5)=60(千米/小时);甲车的速度为÷1.5﹣60=120(千米/小时).答:甲车的速度为120千米/小时,乙车的速度为60千米/小时.(2)甲车到乙地的时间为300÷120+1=3.5(小时).答:甲车到B地所用的时间为3.5小时.补充完图②如下图所示.(3)由图形②可知,当两车相距20千米时,甲车正在装货.当两车第一次相距20千米时,乙车出发时间为:1.5+(30﹣20)÷60=(小时);当两车第二次相距20千米时,乙车出发时间为:1.5+(30+20)÷60=(小时).答:乙出发或小时时,两车相距20千米.25.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,(1)求证:AB=EF;(2)若∠CAE=∠BCE,AB=6,AC=8,①求EC的长;②求线段PE的长.【考点】切线的性质.【分析】(1)证得△ABC∽△DEC,得出∠ACB=∠ECD,即可求得=,得出AB=EF;(2)①连接OE,根据勾股定理得出半径,进一步证得△COE是等腰直角三角形,解直角三角形即可求得;②由△DEF和△ADC是等腰直角三角形,求得DE和AD,即可求得AE,设BG=x,则CG=10﹣x,证得△ABG∽△CEG,根据相似三角形的性质得出AG=,EG=,根据题意得出AE=+=7,解得x的值,得出AG=,根据切线的性质得出OE⊥PE,进而得出BC∥PE,根据平行线分线段成比例定理得出,即可求得PE的值.【解答】解:(1)∵BC是⊙O的直径,∴AB⊥AC,∵AE⊥CF,∠CED=∠ABC,∴△ABC∽△DEC,∴∠ACB=∠ECD,∴=,∴AB=EF;(2)①连接OE,∵AB=6,AC=8,∴BC==10,∴⊙O的半径为5,∵∠BAE=∠CAE=∠BCE,∠BAC=90°,∴∠BAE=∠CAE=∠BCE=45°,∴=,∴OE⊥BC,∴△COE是等腰直角三角形,∴EC==5;②由(1)可知EF=AB=6,∵∠EFC=∠EAC=45°,AE⊥CF,∴△DEF和△ADC是等腰直角三角形,∴DE=EF=3,AD=AC=4,∴AE=7,设BG=x,则CG=10﹣x,∵∠BAG=∠ECG,∠ABG=∠CEG,∴△ABG∽△CEG,∴==,即==,解得AG=,EG=,∴AE=+=7,解得x=,∴AG=,∵PE是⊙O的切线,∴OE⊥PE,∵OE⊥BC∴BC∥PE,∴,即=,解得PE=.26.如图,已知点A(0,a),B(b,0),C(0,c),且|a+4|+=0,(c+1)2≤0,点D与点C关于直线AB对称,(1)求直线AB的解析式和点C、D的坐标;(2)点E在直线AB上,直接写出|EO﹣ED|的最大值和最小值及对应的点E的坐标;(3)点F(﹣1,0),在平面内有一点P,使得△OAP∽△DAF,求点P的坐标.【考点】一次函数综合题.【分析】(1)由非负数的性质可求得a、b、c的值,从而得到点A、B、C的坐标,然后依据待定系数法可求得AB的解析式,由等腰直角三角形的性质和翻折的性质可证明△ADC为等腰直角三角形,从而可求得点D的坐标;(2)由轴对称图形的性质可知EC=ED,由三角形的三边关系可知当点E与点A重合时,|EO﹣ED|有最大值,当EO=EC时,|EO﹣ED|有最小值;(3)依据两边对应成立且夹角相等的两个三角形相似可知∠PAO=∠FAD且,从而可求得点P的坐标,作P关于y轴对称点P′,由轴对称的性质可知△OAP′∽△DAF.【解答】解:(1)∵|a+4|+=0,∴a+4=0,b﹣4=0.解得:a=﹣4,b=4.∴A(0,﹣4)、B(4,0).设直线AB的解析式为y=kx+b.∵将A(0,﹣4)、B(4,0)代入得,解得:,∴直线AB的解析式为y=x﹣4.∵(c+1)2≤0,(c+1)2≥0,∴c+1=0.解得:c=﹣1.∴点C(0,﹣1).如图1所示:∵A(0,﹣4)、B(4,0),∴OB=OA.∴∠OAB=45°.∵点C与点D关于AB对称,∴∠DAE=45°,CA=DA=3.∴∠CAD=90°.∴点D的纵坐标为(3,﹣4).(2)如图2所示:∵点D与点C关于AB对称,∴CE=DE.∴|EO﹣ED|=|EO﹣ED|=|EO﹣EC|.∴当点O、C、E在一条直线上时,|EO﹣EC|有最大值.∴当点E的坐标为(0,﹣4)时,|EO﹣EC|的最大值为1,即|EO﹣ED|的最大值为1.∵EO=EC时,|EO﹣ED|=|EO﹣EC|=0,∴点E在OC的垂直平分线上.∴点E的纵坐标为﹣.∵将y=﹣代入y=x﹣4得:x=,∴E(,﹣).∴点E的坐标为(,﹣)时,|EO﹣ED|的最小值为0.(3)如图3所示:过点P作PG⊥AD,垂足为G.当∠PAO=∠FAD且时,△OAP∽△DAF.∵∠PAO=∠FAD,∴∠FAO=∠PAG.∴=.设PG=a,则AG=4a.则由勾股定理可知:AP==a.∵OF=1,OA=4,∴AF=.∴.解得:a=.∴PG=,AG=.∴点G的坐标为(﹣,).作点P关于y轴对称点P′,由轴对称图形的性质可知△OAP≌△OAP′,P′(,).∵△OAP∽△DAF,∴△OAP′∽△DAF.综上所述,点P的坐标为(﹣,)或(,)时,△OAP∽△DAF.。

九年级下学期第一次月考数学试卷

九年级下学期第一次月考数学试卷

九年级(下)第一次月考数学试卷一.选择题(共10小题,30分)1.﹣9的绝对值等于()A.﹣9 B.9 C.D.2.如图,某江段江水流向经过B、C、D三点拐弯后与原来方向相同,若∠ABC=125°,∠BCD=75°,则∠CDE的度数为()A.20°B.25°C.35°D.50°3.下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1 D.(a+b)2=a2+b24.如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方体①移动到小正方体②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生变化B.俯视图发生变化C.主视图发生改变D.左视图、俯视图和主视图都发生改变5.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC6.关于x的分式方程的解为负数,则a的取值范围为()A.a>1 B.a<1 C.a<1且a≠2 D.a>1且a≠2 7.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°8.掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是()A.1 B.C.D.9.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,分析下列四个结论,其中正确结论的个数有()①abc<0;②3a+c>0;③(a+c)2<b2;④4ac﹣8a<b2.A.1个B.2个C.3个D.4个二.填空题(共6小题,18分)11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km.用科学记数法表示1个天文单位是km.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为cm2.13.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”则物价为.14.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=40x﹣2才能停下来.15.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC=4,点P是对角线AC上的一个动点,E(0,3),当△EPD 周长最小时,点P的坐标为.16.在菱形ABCD中,∠B=60°,BC=2cm,M为AB的中点,N为BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE,CE,当△CDE为等腰三角形时,线段BN的长为.三.解答题(共9小题,72分)17.先化简,再求值:(﹣x+1)÷,其中x=﹣2.18.已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若x1,x2满足x12+x22=16+x1x2,求实数k的值.19.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离AB是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离CD是0.7米,看旗杆顶部E的仰角为45°.两人相距7米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF;(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据: 1.4, 1.7)20.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?21.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A (﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.22.如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=,CE=2,求CD的长.23.襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如表所示:有机蔬菜种类进价(元/kg)售价(元/kg)甲m 16乙n 18(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2.5a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值(精确到十分位).24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D 重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB 边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.25.如图,抛物线y=ax2+bx+12与x轴交于A,B两点(B在A的右侧),且经过点C(﹣1,7)和点D(5,7).(1)求抛物线的函数表达式;(2)连接AD,经过点B的直线l与线段AD交于点E,与抛物线交于另一点F.连接CA,CE,CD,△CED的面积与△CAD的面积之比为1:7,点P为直线l上方抛物线上的一个动点,设点P的横坐标为t.当t为何值时,△PFB的面积最大?并求出最大值;(3)在抛物线y=ax2+b≤﹣n的取值范围.(直接写出结果即可)。

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)

九年级数学下册第一次月考试卷(附答案)一.单选题。

(共40分)1.﹣2的相反数是()A.12B.﹣12C.2D.﹣22.如图所示几何体的左视图是()A. B. C. D.3.一个数是890 000,这个数用科学记数法表示为()A.0.89×106B.89×104C.8.9×106D.8.9×1054.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x95.下列图形中,是中心对称图形的是()A. B. C. D.6.如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3等于()A.20°B.30°C.50°D.80°(第6题图)(第8题图)7.在一次学生运动会上,参加男子跳高的15名运动员成绩如下表所示:则这些运动员成绩的中位数、众数分别是( )A.1.70,1.75B.1.70,1.70C.1.65,1.75D.1.65,1.708.如图,某同学利用标杆BE 测量建筑物的高度,测得标杆BE 为1.2m ,而且该同学测得AB :BC=1:8,则建筑物CD 的高是( )A.9.6mB.10.8mC.12mD.14m9.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则cos ∠BFE 的值是( )A.√3B.√32 C.√33 D.12(第9题图) (第10题图)10.如图,二次函数y=ax 2+bx+c 图象的一部分,对称轴为x=12,且经过点(2,0),下列说法:①abc <0;②﹣2b+c=0;③4a+2b+c <0;④若(﹣52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am+b ),(m ≠12),其中说法正确的是( ) A.①②④⑤ B.①②④ C.①④⑤ D.③④⑤ 二.填空题。

2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷

2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷

2023年湖南省永州市冷水滩区李达中学九年级下学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.抛物线264y x x =-+-的对称轴是( )A .2x =-B .2x =C .3x =D .3x =- 2.如图所示几何体的左视图是( )A .B .C .D . 3.关于函数()2312y x =-+-,下列描述错误的是( )A .开口向下B .对称轴是直线=1x -C .函数最大值是2-D .当1x >-时,y 随x 的增大而增大 4.在平面直角坐标系中,二次函数2()y a x h =-(0a ≠)的图象可能是( ) A . B . C . D . 5.把抛物线24y x =-向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式为( )A .24(2)3=-+-y xB .24(2)3=---y xC .24(3)2=--+y xD .24(3)2=---y x6.如图,△ABC 中,内切圆I 和边BC ,AC ,AB 分别相切于点D ,E ,F ,若65,75B C ∠=︒∠=︒,则∠EDF 的度数是( )A .65︒B .140︒C .55︒D .70︒ 7.如图,有一圆心角为120°、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )A .BC .D . 8.如图,正六边形ABCDEF 内接于O e ,过点O 作OM ⊥弦BC 于点M ,若O e 的半径为4,则弦心距OM 的长为( )A .B C .2 D .9.如图,AD 是半圆O 的直径,四边形ABCD 内接于半圆O ,20ADB ∠=︒,则C ∠=( )A .100°B .110°C .120°D .130° 10.如图,抛物线2(0)y ax bx c a =++≠的对称轴是直线2x =-,并与x 轴交于AB 两点,若5OA OB =,则下列结论中;①0abc >;②22()0a c b +-=;③90a c +<;④若m 为任意实数,则224am bm b a ++≥,正确的个数是( )A .1B .2C .3D .4二、填空题11.二次函数()235y x =-+的顶点坐标是______.12.抛物线221y ax x =--与x 轴有唯一一个交点,则a 的值为________.13.在O e 中,弦AB =8,则弦AB 所对的圆周角是_____________. 14.二次函数243y x x =-+,当14x -≤<时,y 的取值范围为____________. 15.如图,PA 、PB 是O e 的切线,切点分别为A 、B .若30OBA ∠=︒,3PA =,则AB 的长为___________.16.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.17.二次函数()20y ax bx c a =++≠的部分图象如图,图象过点()1,0-,对称轴为直线2x =,当函数值0y <时,自变量x 的取值范围是__________.18.如图,点A 的坐标是()(),00a a <,点C 是以OA 为直径的B 上一动点,点A 关于点C 的对称点为P 当点C 在OB 上运动时,所有这样的点P 组成的图形与直线=1y x --有且只有一个公共点,则a 的值等于_____________.三、解答题19.某几何体从三个方向看到的图形分别如图;(1)该几何体是.(2)求该几何体的表面积?(结果保留π)20.如图,若对于函数245y x x =--,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点.请回答下列问题;(1)图象的对称轴,顶点坐标各是什么?(2)若P 为二次函数图象上一点,且6ABP S ∆=,求点P 的坐标.21.在Rt ABC △中,90ACB ∠=︒,D 是边AB 上一点,以BD 为直径作O e 交BC 于点F ,并且O e 与AC 相切于点E ,连接OE .(1)求证;BC OE ∥;(2)若O e 的半径为5,30A ∠=︒,求BC 的长.22.一座桥如图,桥下水面宽度AB 是10米,高CD 是4米.如图,若把桥看做是抛物线的一部分,建立如图坐标系.(1)求抛物线的解析式;(2)要使高为3米的船通过,则其宽度须不超过多少米?23.如图,有长为30m 的篱笆,一面利用墙(墙的最大可用长度为10m ),围成中间隔有一道篱笆(平行于AB )的长方形花圃设花圃的面积为S m 2,请问能围成面积比63平方米更大的花圃吗?如果能,请求出最大的面积.如果不能,请说明理由.24..如图,AB 是O e 直径,弦CD 垂直于AB ,交AB 于点E ,连接AC ,30CDB ∠=︒,CD =(1)求半径OC ;(2)»BC的弧长;(3)求阴影面积.25.如图,在ABC V 中,90ABC ∠=︒,以AB 的中点O 为圆心、OA 为半径的圆交AC 于点D ,E 是BC 的中点,连接DE ,OE .(1)判断DE 与O e 的位置关系,并说明理由;(2)求证;2BC CD AC =⋅(3)若3cos 5BAD ∠=,6BE =,求OE 的长. 26.如图,已知抛物线:22y x bx c =-++与x 轴交于点A ,(2,0)B (A 在B 的左侧),与y 轴交于点C ,对称轴是直线12x =,P 是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)若点D 为线段OC 的中点,则POD V 能否是等边三角形?请说明理由;(3)过点P 作x 轴的垂线与线段BC 交于点M ,垂足为点H ,若以P ,M ,C 为顶点的三角形与BMH V 相似,求点P 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9题图
第四次月考数学试题
注意:请同学们将所有答案填写到答题卡上,试卷上答题无效!
一.精心选一选 (9×3分)
5个小正方体搭成的几何体,则它的主视图是( ) 2.下列运算错误的是( )
532=+A 、 632=*B 、 326=÷C 、 ()
22
2
=-D 、
3.一元二次方程0432
=-+x x 的解是( )
A 、4121
-==,x x B 、4121=-=,x x C 、4121-=-=,x x D 、4121==,x x
4.在ΔABC 中,∠C=90°,sinA=5
4,则tanB=( )
34A 、 4
3B 、 53C 、 54D 、 5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全相同,搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ) 81A 、 61B 、 41C 、 4
3D 、 6.已知两圆的半径R 、r 分别为方程0652
=+-x x 的两根,两圆的圆心矩为1,两圆的位置关系是( )
A 、外离
B 、内切
C 、相交
D 、外切 7.二次函数12
2
-++=a x ax y 的图象可能是( )
8.如图,已知圆锥侧面展开图的扇形面积为65πcm 2, 扇形的弧长为10πcm ,则圆锥母线长是( )
A .5cm
B .10cm
C .12cm
D .13cm 9.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12AB 、AC A .64π- B .16π- C .16π- D .16π-
二.细心填一填(6×3分)
10.如图,在△ABC 与ΔC B A '''是位似图形,且相似比是1:2,若AB=2cm,则B A ''=____________cm,并在图中画出位似中心。

A B C D
11.如图,已知Rt ΔABC 中,斜边BC 上的高AD = 4,cosB =
5
4
,则
AC=____________. 第10题图 第12题图 第13题图
12.如图为二次函数c bx ax y ++=2的图象,给出下列说法:①0<ab ;②方程0
2
=++c bx ax 的根为3121=-=,x x ;③0>++c b a ;④当1>x 时,y 随x 的增大而增大;⑤当0>y 时,
31<<-x 。

其中,正确的说法有_______________________.(请写出所有正确说法的序号)
13.如图,在矩形ABCD 中,DE ⊥AC 于E,设∠ADE=α,且cos α=5
3
,AB=4,则AD 的长为
____________.
14.如图,已知AB 是半圆O 的直径,弦AD 、BC 相交于点P,若∠DPB=α,那么AB
CD
等于____________.(用含α的式子表示)
第14题图 第15题图
15.如图,二次函数)0(2
1≠++=a c bx ax y 与一次函数)0(2≠+=k m kx y 的图象相交于点 A(-2,4),B(8,2),则能使21y y >成立的x 的取值范围是____________.
三.用心做一做
16.(6分)计算:302)1(82
114.345sin 2)31(-++-+
--)(π
17.(6分)在一个不透明的盒子里,装有三个分别写有数字 -1、0、1的乒乓球(形状、大小一样),
先从盒子里随机取出一个乒乓球,记下数字后放回盒子,摇匀后再随机取出一个乒乓球,记下数字.
(1)请用树状图或列表的方法求出两次取出乒乓球上的数字相同的概率; (2)求两次取出乒乓球上的数字之积等于0的概率.
18.(6分)如图,在平面直角坐标系中,ΔABC 的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3). (1)画出ΔABC 关于x 轴对称的Δ111C B A ,并写出1C 的坐标;
(2)画出ΔABC 绕原点O 顺时针旋转90°后得到的Δ222C B A ,并写出点2C 的坐标;
(3)将Δ222C B A 平移得到Δ333C B A ,使点2A 的对应点是3A ,点2B 的对应点是3B ,点2C 的对应点是3C (4,-1),在坐标系中画出Δ333C B A ,并写出的33、B A 坐标.
第11题图 A
B
C
D
19.(9分)如图,⊙0的弦AD ∥BC,过点D 的切线交BC 的延长线于E,AC ∥DE 交BD 于点H,DO 及延长线分别交AC 、BC 于点G 、F. (1)求证:DB 垂直平分AC; (2)求证:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O 的半径.
20.(8分)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方4050元的均价开盘销售. (1)求平均每次下调的百分率;
(2)某人准备以开盘价买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择: ①打9.8折;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?
21、(9分)如图,线段AB 、DC 分别表示甲、乙两建筑物的高,,AB BC DC BC ⊥⊥,从B 点测得D 点的仰角a 为60°,从A 点测得D 点的仰角β为30°,已知甲建筑物高AB=36米。

(1)求乙建筑物的高DC ;
(2
BC (结果精确到0.01米)。

1.732≈=)
第`21题图 第22题图
22、(10分)如图,花丛中有一路灯杆AB ,在灯光下,小明在D 点处的影长DE=3米,沿BD 方向行走到达G 点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB 的高度(精确到0.1米).
23.(10分)某宾馆有50个房间供游客住宿,当每个房间的房价为每天l80元时,房间会全部住
满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x 元(x 为
10的正整数倍).
第19题图
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大? 最大利润是多少元?
24、(11分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0) 三点。

⑴求抛物线的解析式;
⑵若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积S,求S关
于m的函数关系式,并求出S的最大值;
⑶若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、
Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。

第四次月考数学试题
答题卡
一.精心选一选(9×3分)
二.细心填一填(6×3分)
10、
11、
12、
13、第10题图
14、15、
三.用心做一做
16、(6分)
17、(6分)
18、(6分)
19、(9分)
20、(8分)
21、(9分)
22、(10分)
23、(10分)
24、(11分)。

相关文档
最新文档