激光原理第5讲a
激光原理课件
吸收跃迁: 低 吸收能量 高 辐射跃迁: 高 辐射能量 低
(自发辐射)
h E1 E2
3. 受激辐射:
激光原理 . 第一章
爱因斯坦发现,若只有自发辐射和吸收跃迁, 黑体和辐射场之间不可能达到热平衡,要达 到热平衡,还必须存在受激辐射。
二、自发辐射、受激吸收和受激辐射
1. 自发辐射
E2
h
E1
发光前
发光后
h E2 E1
激光原理 . 第一章
普通光源(白炽灯、日光灯、高压水银灯)的发光过程 为自发辐射。各原子自发辐射发出的光彼此独立,频率、 振动方向、相位不一定相同——为非相干光。
A 自发跃迁几率(自发跃迁爱因斯坦系数): 21
1
A21 S
原子在能级 E2 的平均寿命
只与原子本身性质有关,与辐射场无关
爱因斯坦——1917年,提出受激辐射概念。 1. 黑体辐射的Planck公式:
任何物质在一定温度下都要辐射和吸收电磁辐射。
黑体:能够完全吸收任何波长 的电磁辐射的物体。
空腔辐射体
热平衡状态:
激光原理 . 第一章
黑体吸收的辐射能量 黑体发出的辐射能量
单色能量密度
:
dE
dVd
Planck辐射能量量子化假说:
激光原理 . 第一章
A21 B21
8 h 3
c3
n h
B12 f1 B21 f2
f1 f2
B12 B21 W12 W21
A21
8 h
c3
3
B21
结论:
激光原理 . 第一章
1. 其他条件相同时,受激辐射和受激吸收具有相同几率。
2. 热平衡状态下,高能级上原子数少于低能级上原子数,故 正常情况下,吸收比发射更频繁,其差额由自发辐射补偿。
激光原理与应用讲教学课件
激光设备应在指定的、安全的场所使用,并确保该场所没有其他人 员或物体受到激光的潜在危害。
规定操作流程
使用激光设备前,必须阅读并理解操作手册,并按照手册中的步骤 进行操作。任何违反操作流程的行为都可能导致严重的后果。
定期检查和维护
激光设备应定期进行检查和维护,以确保其处于良好的工作状态,并 消除任何潜在的安全隐患。
亮度高
激光的能量密度很大,亮 度高,可以在很短的时间 内集中很大的能量
激光的分 类
按工作物质分类 气体激光器、液体激光器、固体激光 器、化学激光器和自由电子激光器等
按输出波长分类
远红外激光器、近红外激光器、可见 激光器、紫外激光器、X射线激光器 和超短激光器等
材料加工
01
02
利用激光的高能量密度,实现金属和非金属材料的切割、 焊接、打孔等。
应用:汽车制造、航空航天、电子制造。
03
04
激光快速成型
利用激光制造三维物体,具有速度快、精度高、成本低 等优点。
05
06
应用:产品原型制造、医疗器械制造。
04 激光技术的前沿 与展望
高功率激光技 术
总结词
高功率激光技术是目前激光领域的前沿技术之一,是推动激光技术进步的重要力 量。
激光原理与应用教学课件
contents
目录
• 激光原理概述 • 激光原理的基本概念 • 激光器件及应用 • 激光技术的前沿与展望 • 激光安全与防护
01 激光原理概述
激光的产生
激光是受激辐射光放大的简称,是原子或分子中的电子在吸收能量后,从低能级跃 迁到高能级,再从高能级回落到低能级时,释放的能量以光子的形式放
详细描述
光纤激光器利用光纤作为增益介质,具有体积小、散热效果好、易于维护等优点。同时,光纤激光器的光束质量 也优于传统固体激光器,能够实现更远距离的传输和更好的聚焦效果。目前,光纤激光器已经被广泛应用于工业、 医疗、军事等领域。
激光原理概述课件
高强度激光产生的噪声可能对听力造 成损害。
激光安全标准与等级
国际标准
激光产品的安全等级按照
IEC 60825系列标准进行
划分,分为Class
1、
Class 2、Class 3等不同等
级。
国内标准
我国参照国际标准制定了 相应的激光产品安全标准 ,如GB 7247系列标准。
行业标准
不同行业根据自身特点制 定相应的激光安全标准, 如医疗行业、工业加工行 业等。
手段。
激光技术应用
医疗领域
激光在医疗领域的应用包括手术、美 容、眼科治疗等,具有创伤小、恢复 快的优点。
科研领域
激光在光谱分析、量子通信、光学陷 阱等领域发挥着重要作用,推动了科 学研究的进步。
工业领域
激光在加工、焊接、打标等领域的应 用提高了生产效率和产品质量。
军事领域
激光在武器制导、通信加密、防御系 统等方面具有重要的应用价值。
放大
当有大量原子处于激发态时,它们释放出的光子会相互作用并产生更多的光子, 形成光的放大效应。
激光器的基本组成
01
02
03
激活介质
激光器中的工作物质,通 常是气体、液体或固体, 它能实现光的受激辐射放 大。
泵浦源
为激活介质提供能量,使 其中的原子或分子被激发 到高能级。
谐振腔
由反射镜构成,用于选频 、共振和放大,使特定波 长的光在两个反射镜之间 来回反射并不断放大。
激光原理概述课件
BIG DATA EMPOWERS TO CREATE A NEW
ERA
• 激光原理简介 • 激光产生原理 • 激光特性与技术 • 激光安全与防护 • 未来激光技术展望
激光原理与技术PPT精品文档
ONE KEEP VIEW 激光原理与技术PPT精品文档目录CATALOGUE•激光基本原理•激光器类型及工作原理•激光技术应用领域•激光技术发展趋势与挑战•激光安全与防护知识普及•总结与展望PART01激光基本原理激光产生条件粒子数反转高能级粒子数大于低能级粒子数,是产生激光的必要条件。
增益大于损耗增益介质中的受激辐射放大作用要大于各种损耗,才能实现光放大。
光学谐振腔提供正反馈,使受激辐射光在腔内多次反射、放大,形成稳定振荡。
激光发射过程泵浦过程通过外部能量输入(如光、电、化学等),使增益介质中的粒子从低能级跃迁到高能级,实现粒子数反转。
受激辐射过程处于高能级的粒子在外部光子的作用下,跃迁到低能级并发出与入射光子完全相同的光子,实现光放大。
光学谐振腔内的振荡过程受激辐射产生的光子在腔内多次反射、放大,形成稳定的光场分布和振荡模式。
功率激光的功率决定了其能量大小和输出能力,高功率激光具有更强的穿透力和加工能力。
稳定性激光的稳定性决定了其长期运行的可靠性和稳定性,对于高精度、高稳定性的应用尤为重要。
光束质量激光的光束质量决定了其聚焦能力和传输效率,优质的光束质量可以提高激光加工的精度和效率。
波长激光的波长决定了其颜色和应用领域,不同波长的激光具有不同的特性和用途。
激光特性参数PART02激光器类型及工作原理工作原理通过激励源(泵浦源)将能量传递给工作物质,使其产生粒子数反转分布,然后在谐振腔内通过受激辐射产生激光。
特点具有体积小、重量轻、效率高、寿命长等优点,广泛应用于科研、工业、医疗等领域。
构成由工作物质、泵浦源和谐振腔三部分组成。
构成主要由放电管、反射镜和电源三部分组成。
工作原理在放电管中充入一定种类和压强的气体,通过高压放电激励气体分子或原子,使其产生受激辐射并放大,形成激光输出。
特点具有光束质量好、输出功率大、效率高、结构简单等优点,常用于高精度测量、光谱分析等领域。
构成主要由染料溶液、泵浦源和光学谐振腔三部分组成。
激光原理与应用讲第五章
典
数千瓦,脉冲峰值功率可达几十太瓦),结构紧凑牢固。
型
激 光
5.1.1 固体激光器的基本结构与工作物质
器
1.固体激光器基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成
介 绍
的。图5-1是长脉冲固体激光器的基本结构示意图(冷却、滤光系统未画出)。
§.
光 器5
1 固 体 激
图5-1 固体激光器的基本结构示意图
§.
光 器5
1 固 体 激
图(5-8) 板条形固体激光器结构示意图
上一页 回首页 下一页 回末页 回目录
第 五 章
典 型 激 光 器 介 绍
光 器5
1 固 体 激
§.
小结:
固体激光器的特点:输出能量大,峰值功率高,结构紧凑牢固。 红宝石激光器输出的典型波长:694.3nm。 YAG激光器输出的典型波长:1064nm。
图(5-18) 染料的吸收-荧光光谱图
上一页 回首页 下一页 回末页 回目录
第 5.3.2 染料激光器的泵浦
五 1.闪光灯脉冲泵浦 章
典
2.激光脉冲泵浦
型
能够用于泵浦染料激光器的激光种类很多,主要有氮分子激光器,红宝石激
激
光器,钕玻璃激光器,铜蒸气激光器,准分子激光器,以及这些激光的二次、
光
三次谐波等。
器
介
图(5-19)是目前经常采用的三镜腔式染料激光器结构示意图。
绍
§.
光 器5
3 染 料 激
图(5-19) 三镜腔式染料激光器
上一页 回首页 下一页 回末页 回目录
第
五 5.3.3 染料激光器的调谐
章
典 1. 光栅调谐
第5讲-高斯光束
出结论,高斯光束的束腰半径越大,其准直距离越长,准直性越好。
5.1 均匀介质中的高斯光束
• 高斯光束的孔径
– 从基模高斯光束的光束半径表达式可以得到截面上振幅的分布为:
–
则其光强分布为:
I(r)
I0exp2r22
A(r)
A0expr22
20
lim(z) z z 0 z0
• 高斯光束在轴线附近可以看成一种非均匀高斯球面 波,在传播过程中曲率中心不断改变,其振幅在横 截面内为一高斯分布,强度集中在轴线及其附近, 且等相位面保持球面。
5.3 均匀介质中的高阶高斯光束
• 前面推导均匀介质中的基模高斯光束解时曾假设振幅横向分布与方位 角无关,如果考虑方位角的变化 0 ,则算符可以表示为:
2 0
z2 z20
1
1
即光束半径随传输距离的变化规律为双曲线,在z=0时有
最小值 0 ,这个位置被称为高斯光束的束腰位置。
1/ e
Z
Z
E (x,y,z)
E 0 (z 0)exp 2 r(2 z) exp相 位 移 i kz(z)2R kr(2 z)
总 相 位 移 ( x ,y ,z ) k z ( z ) 2 R k r ( 2 z ) k z 2 R r ( 2 z ) t a n 1 z 2 0
该表达式就是类透镜介质 的折射率表达式,证明我 们考虑的k(r)表达式代表
级数 展开
2 k0 12 kk20r2 n0 12 kk20r2
的正是在类透镜介质中的 情况。
波动方程
• 类透镜介质中波动方程的解,考虑在介质中传播的是一种 近似平面波,即能量集中在光轴附近,沿光轴方向传播。
激光原理 全套课件
1.1 激光简史
– 1963年,Herbert Kroemer和 Rudolf Kazarinov、Zhores Alferov的团队独立的提出了利 用异质结构造半导体激光器的 思路,这一工作使得他们获得 了2000年的诺贝尔物理学奖。
– 1964年,C. K. N. (Kumar) Patel研制了第一台CO2激光器;
1.1 激光简史
– 1965年,Anthony J.DeMaria, D. A. Stetser和H. A. Heynau报道了 第一台利用钕玻璃激光器和饱和吸 收器产生皮秒级脉冲的激光器。
– 1965年,George C. Pimentel和 Jerome V. V. Kasper 研制了第一 台化学激光器;
1.1 激光简史
– 1959年,Gordon Gould 发表论文“The LASER: Light Amplification by Stimulated Emission of Radiation”,这是 LASER这一术语第一次被提出。
– 1960年5月,休斯实验室的Maiman和Lamb 共同研制的红宝石激光器发出了694.3nm的 红色激光,这是公认的世界上第一台激光器。
激光原理与技术·原理部分
第一讲 激光简史、发展与应用
课程简介
– 先修科目
• 几何光学 • 物理光学 • 量子力学 • 数学物理方法
– 参考书目
• 激光原理 国防工业出版社 2000年版 周炳琨等编 • 量子电子学 科学技术出版社 1983年版 Amnon Yariv,刘
颂豪等翻译 • Lasers, Anthony E. Siegman, Maple-Vail Book Manufacturing
1.1 激光简史
唐霞辉-5-7讲习题---激光原理习题集
它所产生的高斯光束的腰斑半径 0 的大小和位置, 该高斯光束的 f 及 0 的大小。 解: R=z(1+z02/z2) R=2, Z=1
求出 z0=f=1(m)
0 2
0
3 3 . 7 * 1 0 f
f 1.8*103 m
验证:双曲线公式
3、(杨克成 P56,2.7)某高斯光束腰斑大小为 0 1.14mm , 10.6 m 。求与 束腰相距 30cm 、 10m 、 1000m 远处的光斑半径 及波前曲率半径 R .
02 L f i 1 02 q' l f L lf i l f
1 当束腰在样品表面时, real 0 ,即 q'
2 0 L f l f L lf l f 0 2
那么代入可以求得 qB
Aq A B nq A n iZ R l1 inZ R nl1 Cq A D
假设变换后的高斯光束束腰在 C 处,则
qC qB l1 lC inZ R 1 n l1 lC
处于束腰位置时,q 参数的实部为零
1 所以 real qC
f z 1 这里的 z 是由激光器腔中心到光功率计的 f
2
距离,用卷尺可以测量。光功率计放置在紧贴小孔光阑的后面,沿着光场横向移 动,测量出 z 。把测量的 z 和 z 代入公式,可以求出焦参数。 设计完毕(以上只是在理论上的分析,实际中的测量要复杂得多,实验室测量中 会用透镜扩束及平面镜反射出射光,增加距离进而增加测量精度)
矢光线, f R 2 cos , 为光轴与球面镜法线的夹角。
《激光原理》PPT课件
对未来学习建议
深入学习激光原理相关知识
包括激光器设计、激光光束质量控 制、非线性光学等,为从事激光相 关领域工作打下坚实基础。
关注前沿动态
及时了解激光领域的最新研究进展 和前沿动态,把握发展趋势。
拓展跨学科知识
学习光学、电子学、材料学等相关 学科知识,拓宽视野,为深入研究 激光技术提供多维度支持。
实践与应用
通过实验操作、项目实践等方式, 将所学知识应用于实际问题的解决 中,提升实践能力和创新能力。
THANKS
感谢观看
液体染料激光器技术特点
具有宽调谐范围、高转换效率、短脉冲输出等优点。同时 ,液体染料激光器也存在染料稳定性差、需要定期更换等 缺点。
液体染料激光器应用领域
广泛应用于光谱学、生物医学、光化学等领域。例如,可 用于荧光光谱分析、激光医疗、光动力疗法等。
半导体材料发光机制及器件结构
半导体材料发光机制
半导体材料中的电子在导带和价带之间跃迁时,会释放出能量并以光子的形式发出。通过 控制半导体材料的能带结构和载流子浓度,可以实现不同波长的激光输出。
量子点激光器优势
宽频带可调谐、低阈值电流、高稳定性等
其他新型激光器简介
表面等离激元激光 器
利用表面等离激元效应实现光放大和激光
微腔激光器
利用微纳加工技术实现高品质因子微腔,实现低阈值激光
生物激光器
利用生物组织或细胞中的荧光物质实现激光输出,具有生 物相容性和可降解性等优点。
06
激光调制、检测与应用 技术
典型案例分析:激光雷达测距系统
工作原理
激光雷达测距系统通过发射激光 束并接收目标反射回来的光信号 ,根据光信号的时间差或相位差 计算出目标距离。
《激光原理》课件
《激光原理》课件一、教学内容本节课的教学内容选自教材《物理》的第四章第三节,主要涉及激光的产生原理、激光的特性及其在现代科技领域的应用。
具体内容包括:激光的产生原理,激光的特性(单色性、相干性、方向性),激光在通信、医疗、科研等领域的应用。
二、教学目标1. 让学生了解激光的产生原理,理解激光的特性及其在现代科技领域的应用。
2. 培养学生运用物理知识解决实际问题的能力。
3. 激发学生对物理学科的兴趣,培养学生的创新意识。
三、教学难点与重点重点:激光的产生原理,激光的特性及其在现代科技领域的应用。
难点:激光的产生原理,激光的相干性及其在通信领域的应用。
四、教具与学具准备教具:多媒体课件、激光笔、实验器材。
学具:教材、笔记本、实验报告单。
五、教学过程1. 情景引入:通过展示激光表演,让学生感受激光的神奇,激发学生的学习兴趣。
2. 知识讲解:讲解激光的产生原理,引导学生理解激光的特性(单色性、相干性、方向性)。
3. 实验演示:进行激光实验,让学生直观地感受激光的特性。
4. 应用拓展:讲解激光在通信、医疗、科研等领域的应用,让学生了解激光的实际意义。
5. 课堂互动:设置随堂练习,让学生运用所学知识解决实际问题。
六、板书设计激光原理:1. 产生原理2. 特性:单色性、相干性、方向性3. 应用:通信、医疗、科研等领域七、作业设计1. 请简述激光的产生原理。
2. 请列举三个激光的应用实例,并说明其原理。
3. 请结合生活实际,谈谈你对激光应用的认识。
八、课后反思及拓展延伸2. 拓展延伸:激光技术在不断发展,教师可以引导学生关注激光技术的最新动态,了解其在不同领域的应用前景,培养学生的创新意识。
同时,可以组织学生进行激光实验,提高学生的实践能力。
重点和难点解析一、教学内容本节课的教学内容选自教材《物理》的第四章第三节,主要涉及激光的产生原理、激光的特性及其在现代科技领域的应用。
具体内容包括:激光的产生原理,激光的特性(单色性、相干性、方向性),激光在通信、医疗、科研等领域的应用。
激光原理ppt课件
3 纯化学型 这种运转方式要比上述的原子态激励型更为先进
和实用。其特点是不需要外界各种能源,完全靠体 系本身的化学反应自由能来得到所需要的自由原子。 例如用NO+F2燃烧解离来得到氟原子。然后,氟原子 与氢分子反应,获得激发态的粒子数反转而产生激光。
注:文本框可根据需求改变颜色、移动位置;文字可编辑
其泵浦源为化学反应所释放的能量。这类 激光器大部分以分子跃迁方式工作,典型波 长范围为近红外到中红外谱区。最主要的有 氟化氢和氟化氘两种装置。前者可以在2.6~ 3.3微米之间输出15条以上的谱线;后者则约 有25条谱线处于3.5~4.2微米之间。这两种 器件目前均可实现数兆瓦的输出。
注:文本框可根据需求改变颜色、移动位置;文字可编辑
3 电子跃迁化学激光器
利用化学反应释放的能量将激射介质泵到电子激发态, 并达到粒子数反转,然后受激发射产生激光。电子激发态 能量受到化学键能的限制,只有3~4电子伏。如果电子激 发态能量超过4电子伏,就必须借助于低能阶电子激发态 粒子与其他激发态粒子间的多次碰撞传能才可能达到高能 阶电子激发态,电子跃迁化学激光器的典型例子是氧- 碘 传能激光器。
化学激光器
注:文本框可根据需求改变颜色、移动位置;文字可编辑
1 原理
目录
2 工作方式
3 运转类型
4 器件分类
5 应用
注:文本框可根据需求改变颜色、移动位置;文字可编辑
1 原理
化学激光器是另一类特殊的 气体激光器,即是一类利用化 学反应释放的能量来实现工作 粒子数布居反转(简称粒子数 反转)的激光器。化学反应产 生的原子或分子往往处于激发 态,在特殊情况下,可能会有 足够数量的原子或分子被激发 到某个特定的能级,形成粒子 数反转,以致出现受激发射而 引起光放大作用。。
激光原理 第五章 激光放大.ppt
当 t0<T2,如锁模激光脉冲(ps量级)作为输入信 号时。要考虑光场相位的影响,速率方程均不可 用,需用半经典理论处理。
激光原理与技术
8、若输入光信号为高重复率脉冲序列,且脉冲周
期T<<T1,则光放大器工作物质的反转集居数只在 稳定值附近作微小波动。可近似采用稳态速率方程
处理。例:掺铒光纤放大器。
激光原理与技术
5.2 均匀激励连续激光放大器 的增益特性
• 均匀激励的光放大器,工作物质中的小信号增 益系数、小信号反转粒子数密度及饱和光强均 为与传输距离无关的常数。
1、输入信号强度对放大器增益的影晌
dI z I z dz
g
0 H
1
I z 1 Is
3、实现高功率高能量的方法——激光放大器
激光原理与技术
椭圆柱聚光腔
激光放大器分为:连续激光放大器、脉冲 激光放大器和超短脉冲激光放大器。
①典型固体激光放大器示意图
激光振荡器
Laser rod
泵浦灯
激光原理与技术
Laser rod
泵浦灯
储能器
触发器
储能器
触发器
延时器
②激光放大器的特点 a、多数不需要谐振腔镜,为行波放大器。 特例:再生放大器。
要求:入射光需在谐振腔本 征频率附近,保证频率匹配。
r1
r2
I0 P0
I1
I
2
I l
g>0
I1
I
2
Pl
增益:用多光束干涉处理
工作物质单程传 输的增益为:
经过复杂的推算后得:
GS
I
2
激光原理与技术课件课件
激光原理与技术课件一、引言激光作为一种独特的人造光,自20世纪60年代问世以来,已经在众多领域取得了举世瞩目的成果。
激光原理与技术已经成为现代科学技术的重要组成部分,并在光学、通信、医疗、工业加工等领域发挥着重要作用。
本课件旨在阐述激光的基本原理、特性以及应用技术,使读者对激光有更深入的了解。
二、激光的基本原理1.光的粒子性与波动性光既具有粒子性,也具有波动性。
在量子力学中,光被视为由一系列光子组成的粒子流,光子的能量与频率成正比。
而在波动光学中,光被视为一种电磁波,具有频率、波长、振幅等波动特性。
2.光的受激辐射受激辐射是指处于激发态的原子或分子在受到外来光子作用后,返回基态并释放出一个与外来光子具有相同频率、相位、传播方向和偏振状态的光子。
这个过程是激光产生的核心原理。
3.光的放大与谐振在激光器中,通过光学增益介质实现光的放大。
当光在增益介质中往返传播时,不断与激发态原子或分子发生受激辐射,使光子数不断增加。
同时,通过谐振腔的选择性反馈,使特定频率的光得到进一步放大,最终形成激光。
三、激光的特性1.单色性激光具有极高的单色性,即频率单一。
这是由于激光器中的谐振腔对光的频率具有高度选择性,只有满足特定频率的光才能在谐振腔内稳定传播。
2.相干性激光具有高度的相干性,即光波的相位关系保持稳定。
相干光在传播过程中能形成稳定的干涉图样,广泛应用于光学检测、全息成像等领域。
3.方向性激光具有极高的方向性,即光束的发散角很小。
这是由于激光器中的谐振腔对光的传播方向具有高度选择性,只有沿特定方向传播的光才能在谐振腔内稳定传播。
4.高亮度激光具有高亮度,即单位面积上的光功率较高。
这是由于激光的单色性、相干性和方向性使其在空间上高度集中,从而具有较高的亮度。
四、激光的应用技术1.光通信激光在光通信领域具有广泛应用,如光纤通信、自由空间光通信等。
激光的高单色性、相干性和方向性使其在传输过程中具有较低的信号衰减和干扰,从而实现高速、长距离的数据传输。
激光原理与应用课件
1 .3 激光工作物质的能级结构
一、三能级系统
激发态的平均寿命只有10-8(s)。然而在原子的能 级中,有一种特殊的能级,其寿命可达10-3(s)甚
至更长。我们称这种状态为原子的亚稳态。
在He、Ne、CO2 、N2等物质中都有这种能级结 构
10
物质三能级系统的示意图
抽运
快 E3
E2 (亚稳态)
n 受激辐射出的光子,与入射光子具有相
同的频率,相同的初相,相同的传播方
向,相同的偏振态等。
E2
hv
E1
hv
E2
hhvv
输入 hv
hv hv
hv hv 输出
E1
hv
受激辐射示意图
受激辐射光放大示意图
6
1 .2 粒子数反转
n 处在温度为T的平衡态下,各能级上分布的分 子数,服从玻尔兹曼分布,
n 高能态En'上分布的分子数与低能态En上分布的 分子数之比为:
34
3.4 激光在几何参数测量方面的应用
一、激光测距技术
1、激光脉冲计数方法
2、相位测距法
B
X A
He-Ne激 光
45°
二、利用激光技术和几M何学d原理可以对板N参材考平面
的厚度进行测量
激光测厚原理示意图
35
3.5 激光条码检测技术
n 条码技术是通过一定形状和间隔的条纹 组合来表达计算机“0” 、“1”语言的一种方 法。
慢
E1 (基态)
n 应该注意:三能级系统,是指激光器在运转过 程中,所涉及到的三级能级。并不是指该系统 仅有这三条能级。
11
二、四能级系统
抽运
快 E4
E3 (亚稳态)
激光器的工作原理【爆款】.ppt
.精品课件.
1
激光的基本原理及特性
激光产生的基本原理
(一)、激光的形成及产生的基本条件
1、粒子数反转分布
E
E2 E1
n3 n2
玻尔兹曼分布
n2
E2 E1
e KT
n1
n n1
E
E2 E1
n1 n2
反转分布
n3
单位时间内STE增加的光子数密度 单位时间内STA减少的光子数密度
.精品课件.
2
LL
g1 g 2
(1
)(1 R1
R2
)
因此,反射镜曲率半径的取值范围:
L2 R
最大曲率半径R1= R2
∞ 是平行平面腔;
1 .精品课件.
27
最小曲率半径R1= R2
2 是共心腔
二.给定稳定腔的一块反射镜,要选配另一块反射镜的曲 率半径,其取值范围如何确定?
例如: R1 = 2L 则 g1 =0.5
R1R2
即
g1g2<1
0< g1g2<1
如果 R1=R2 ,则此双凹腔为对称双凹腔,上述的两种稳
定条件可以合并成一个,即: R1=R2=R>L/2
.精品课件.
14
2.平凹稳定腔: 由一个凹面反射镜和一个平面反射镜组成的谐振腔称为平
凹腔。其稳定条件为:R>L
R
L
证明:∵ R1>L ,
g1
1
L
R1 ;
决定因素: 由两镜的反射率、几何形状及组合形式。 2. 控制光束特性: 包括纵模数目、横模、损耗、输出功
率等。
.精品课件.
7
二.光腔 —— 开放式共轴球面光学谐振腔的构成 1.构成:在激活介质两端设置两面反射镜(全反、部分反)。
最新激光原理及应用讲述教学讲义ppt课件
那一把蒲扇。蒲扇,是记忆中的农村 ,夏季 经常用 的一件 物品。
记忆中的故
乡,每逢进入夏天,集市上最常见的 便是蒲 扇、凉 席,不 论男女 老少, 个个手 持
一把,忽闪忽闪个不停,嘴里叨叨着 “怎么 这么热 ”,于 是三五 成群, 聚在大 树
激光的方向性
当=10-3 弧度时, =10-6 弧度,这意味一般激光只在 数量级为10-6弧度立体角内传输。而白炽灯在4 弧度的
立体角范围发光。由此可见,激光束比普通光束的方向性 好几百万倍。
亮1000,000倍
激光的高亮度
光源的亮度是表征光源辐射强弱的一个重要参量。 对于在光源表面法向的发光亮度定义为
经过40多年的发展,激光已经被用在生活、科研 的方方面面:激光笔、激光针灸、激光裁剪、激 光切割、激光焊接、激光淬火、激光唱片、激光 指示器、激光测距仪、激光陀螺仪、激光铅直仪、 激光手术刀、激光炸弹、激光雷达、激光枪、激 光炮等等,在不久的将来,激光肯定会有更广泛
的应用。
一、激光发展历史
二、激光原理
Light Amplification by Stimulated Emission of Radiation
意思是“受激辐射的光放大”。 激光的英文全名已经完全表达了制造激光
的主要过程。 激光的原理早在1916年已被 著名的美国物理学家爱因斯坦发现,但直 到1960年激光才被首次成功制造。1964年 按照我国著名科学家钱学森建议将“光受 激发射”改称“激光”。
由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;
由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发 热的能量来源。 相比核裂变,核聚变几乎不会带来放射性 污染等环境问题,而且其原料可直接取自海水中的氘,来源 几乎取之不尽,是理想的能源方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x ' 2
2L
dx '
8
取出经过多次迭代后的结果进行比较
u2
具 体 结 果
u1 u301
a 25 λ L 100 λ a2 6.25 Lλ
进一步的研究:除此“基模”外,还有高阶模存在!
9
u1
u2
u301
结论:初始平面波经多次渡越后,振幅和位相都发 生变化,振幅形成中间强、边缘弱的稳态场分布; 相位不再是等相位面,即场分布不再是平面波。
7
三.迭代举例:
对称条形平行平面镜腔:宽: 2a,腔长: L 设初始场分布为均匀平面波: u 1 1
代入前面的平行平面镜腔的衍射积分方程:
u 2
a ik i ikL e a u1 x ' e L
x x ' 2
2 a u2 x ' e L
vm ( x ) m K x ( x, x ') vm ( x ') dx '
a a a
x x ' 2 y y ' 2 ik 2L 2L
dx ' dy '
vn ( y ) m K x ( y, y ') vn ( y ') dy '
开腔镜面场的分布
ik u j 1 ( x , y ) 4
u
S
j
( x ', y ')
1
e ik
(1 cos ) ds '
i
模的自再现条件
u j 1
开腔稳态场的分布 v ( x , y ) K ( x , y , x ', y ') v ( x ', y ') ds '
其中
L gi 1 Ri
i 1, 2
特例: 方形镜对称共焦腔
xx ' yy ' x , y , x ', y ' L L
5
2.4
平行平面腔模的迭代解法
能解析求解积分本征值方程的开腔是很少的,此时 一.迭代解法的原理 可以利用腔模的“自再现”理论,通过计算机进行 利用菲涅耳—基尔霍 u 数值求解,称为腔模的Fox-Li迭代解法。 Ku j ds j 1 夫衍射积分公式 S
10
a
——积分本 征值方程
镜面上场分布函数
vmn x, y vm x vn y
mn m n
2
③场分布函数的其它表示形式:
v mn x , y Amn x , y e
场的振幅分布
i mn x , y
场的位相分布
3
一般球面镜腔 模方程的化简
S
u j (e
uj ) e
模的单程总相移
arg uj 1 arg uj
1
若满足: arg
q
开腔自再现模 的谐振条件
1
L
则自再现模方程变为:
a b
x x '
2L
2
y y '
2L
2
i ikL v ( x, y ) ( )e v( x ', y ') e L a b
x, y, x ', y ' P1 P2 P1 P2 P1 P1 P2P2
P1 P2 L
x x '
2L
2
y y '
2L
2
x2 y2 P1 P1 2 R1
x 2 y 2 P2 P2 2 R2
4
1 2 2 2 2 L g1 x y g2 x ' y ' 2 xx ' yy ' 2L
设初始场分布为u1 ,代入上式算u2 ,再以u2 作初始 场,再代入上式算u3,以此类推,迭代多次后,若 满足自再现关系:
u j 1
1
u j , u j2
u j 1 , 则说明找到了腔的 一个自再现模!
1
6
二.迭代解法的意义
1.直接而直观地证明了开腔自再现模式的存在性。 2.因数学迭代过程与自再现模的形成过程对应,因 而迭代解法可加深对自再现模形成过程的理解。 3.具有普遍性:原则上可以计算任何几何形状的开腔 的自再现模。 4.可计算腔镜的倾斜、不平整等对模造成的扰动。 缺点:计算复杂,迭代次数多。