北师大版初一数学期中检测

合集下载

【北师大版】数学七年级上册《期中检测卷》含答案解析

【北师大版】数学七年级上册《期中检测卷》含答案解析

北师大版七年级上册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A. b a a b ->>->B. a a b b >->>-C. b a b a >>->-D. b a a b -<<-<3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯5. 下列图形中是正方体表面展开图的是( )A. B.C. D.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2B. -1,3C. 15-,3D. -1,27. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2B. m =-1,n =2C. m =-2,n =2D. m =2,n =-18. 下列计算正确的是( ) A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=-B. 若n 为正整数,则2(1)1n-=C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.13. 若mn 、满足221|(2)|0m n ++-=,则n m =__________. 14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y xab m y+-+的值为__________.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯- 16. (1)化简:2222(324)(343)x xy y xy y x +---+.(2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题: (1)用含x 的代数式表示应付的车费; (2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少? 20. 数学老师在黑板上抄写了一道题目:”当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a xx b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.23. 在实数的原有运算法则中我们补充定义新运算”⊕“如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款. 学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算? (2)若只在一家商店购买,请用含x代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱购买方案并求出最少的花费是多少. 28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数和这两点的距离;|4|x+的意义可理解为数轴上表示数和这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A和B,要在流水线上设一个材料供应点P往两个加工点输送材料,材料供应点P应设在才能使P到A的距离与P到B的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C,,,要在流水线上设一个材料供应点P往三个加工点输送材料,材料供应点P应设在才能使P到A B C,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D,,,,要在流水线上设一个材料供应点P往四个加工点输送材料,材料供应点P应设在才能使P到A B C D,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x++-的最小值是,此时x的范围是;②代数式|632x x x++++-|的最小值是,此时x的值为.③代数式7425||x x x x++++-+-的最小值是,此时x的范围是.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. -2019的相反数是( ) A. 2019B. -2019C.12019D. 12019-【答案】A 【解析】 【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-2019的相反数是2019. 故选A .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 有理数a 、b 在数轴上表示的点如图所示,则a 、a -、b 、b -的大小关系是( )A b a a b ->>-> B. a a b b >->>- C. b a b a >>->- D. b a a b -<<-<【答案】D 【解析】 【分析】根据各点在数轴上的位置判断出a ,b 的符号及绝对值的大小,进而可得出结论. 【详解】解:∵由图可知,a <0<b ,|a|<|b|=b , ∴b >-a >a >-b . 故选:D .【点睛】本题考查的是有理数的大小比较,数轴上右边的点表示的数总比左边的大是解答此题的关键. 3. 国际比赛用的乒乓球的标准直径是40毫米.以40毫米为标准,超过的记作正,不足的记作负,有4个乒乓球的直径如下,其中最合符标准的是( ) A. +0.3毫米B. -0.6毫米C. 0.5毫米D. -0.2毫米【答案】D 【解析】 【分析】根据正负数的性质,判断最符合标准的即可. 【详解】∵0.20.30.50.6-<<<- ∴-0.2毫米最符合标准 故答案为:D .【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.4. 讲究卫生要勤洗手,人的一只手上约有28000万个看不见的细菌.把28000万个用科学记数法表示为( )个A. 72810⨯B. 82.810⨯C. 92810.⨯D. 90.2810⨯【答案】B 【解析】 【分析】根据科学记数法的定义以及性质进行表示即可. 【详解】28000万82.810=⨯ 故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键. 5. 下列图形中是正方体表面展开图的是( )A. B.C. D.【答案】C 【解析】【分析】根据正方体表面的十一种展开图的性质进行判断即可. 【详解】A. 不属于正方体表面展开图,错误; B. 不属于正方体表面展开图,错误; C. 属于正方体表面展开图,正确; D. 不属于正方体表面展开图,错误; 故答案为:C .【点睛】本题考查了正方体展开图的问题,掌握正方体表面的十一种展开图的性质是解题的关键.6. 单项式25x y-的系数和次数分别是( ) A. 15-,2 B. -1,3C. 15-,3D. -1,2【答案】C 【解析】 【分析】根据单项式的定义以及性质来判断系数和次数即可. 【详解】系数和次数分别是15-,3 故答案为:C .【点睛】本题考查了单项式的系数和次数问题,掌握单项式的定义以及性质是解题的关键. 7. 如果单项式x 2y m +2与x n y 的和仍然是一个单项式,则m 、n 的值是( ). A. m =2,n =2 B. m =-1,n =2C. m =-2,n =2D. m =2,n =-1【答案】B 【解析】试题分析:本题考查同类项的定义,单项式x 2y m+2与x n y 的和仍然是一个单项式,意思是x 2y m+2与x n y 是同类项,根据同类项中相同字母的指数相同得出. 解:由同类项定义, 可知2=n ,m+2=1, 解得m=﹣1,n=2. 故选B .考点:同类项.8. 下列计算正确的是( )A. 22232x y yx x y -=B. 532y y -=C. 277a a a +=D. 325a b ab +=【答案】A 【解析】 【分析】根据整式的加减法法则对各项进行运算即可. 【详解】A. 22232x y yx x y -=,正确; B. 532y y y -=,错误; C. 78a a a +=,错误; D. 3232a b a b +=+,错误; 故答案为:A .【点睛】本题考查了整式的加减运算,掌握整式的加减法法则是解题的关键.9. 用黑白两种颜色的六边形砖按如下规律拼成若干个图案,第n 个图案中有白色砖( )块A. 42n +B. 64n +C. 6nD. 24n +【答案】A 【解析】 【分析】根据图形的规律可得第n 个图案中有白色砖块的数量应是差为4的等差数列,求出代数式即可. 【详解】第1个图案中有白色砖6块 第2个图案中有白色砖10块 第3个图案中有白色砖14块 故第n 个图案中有白色砖24n +块 故答案为:A .【点睛】本题考查了图形的规律题,掌握图形的规律求出代数式是解题的关键.10. 下列结论中正确的是( ) A. 100101(1)(1)1-+-=- B. 若n 为正整数,则2(1)1n -= C. 若||||a b =,则a b =D. 15(3)53-÷⨯+=-【答案】B 【解析】 【分析】根据幂的运算法则、绝对值的性质、实数的混合运算法则对各项进行计算即可. 【详解】A. ()100101(1)(1)110-+-=+-=,错误;B. 若n 为正整数,则2(1)1n -=,正确;C. 若||||a b =,则a b =±,错误;D. 15(3)453-÷⨯+=-,错误; 故答案为:B .【点睛】本题考查了实数的运算问题,掌握幂的运算法则、绝对值的性质、实数的混合运算法则是解题的关键.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 计算:53--=__________;28(2)-÷-=__________.【答案】 (1). 8- (2). 2- 【解析】 【分析】直接算减法即可;先算乘方,再算除法即可. 【详解】538--=-28(2)2-÷-=-故答案为:8-,2-.【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键. 12. 如图所示是计算机某计算程序,若开始输入x=3,则最后输出的结果是_____.【答案】38【解析】【分析】根据题意可知,该程序计算是先乘以4,再减去2,若结果大于10,则就是所求,若小于等于10,则重新进行计算.【详解】输入x=3,∴3x-2=3×4-2=10,所以应将10再重新输入计算程序进行计算,即10×4-2=38,故答案为38.【点睛】本题考查了程序运算,代数式求值,解题关键是弄清题意,根据题意把x 的值代入,按程序一步一步计算.13. 若m n 、满足221|(2)|0m n ++-=,则n m =__________. 【答案】14【解析】【分析】根据绝对值和平方的非负性,求出mn 、的值,再代入求解即可. 【详解】∵221|(2)|0m n ++-= ∴21020m n +=⎧⎨-=⎩解得1,22m n =-= 将1,22m n =-=代入n m 中 21124n m ⎛⎫=-= ⎪⎝⎭ 故答案为:14. 【点睛】本题考查了整式的运算,掌握绝对值和平方的非负性是解题的关键.14. 已知x y ,互为相反数且均不为0,a b ,互为倒数,m 是最大的负整数.则代数式2019x y x ab m y+-+的值为__________.【答案】2020-【解析】【分析】 根据相反数和倒数的定义以及性质得0111x x y ab m y +==-==-,,,,再代入求解即可. 【详解】∵x y ,互为相反数且均不为0, ∴0,1x x y y+==- ∵a b ,互为倒数∴1ab =∵m 是最大的负整数∴1m =- 将0111x x y ab m y +==-==-,,,代入2019x y x ab m y+-+中 原式020191=2020---=故答案为:2020-. 【点睛】本题考查了整式的混合运算,掌握相反数和倒数的定义以及性质、最大的负整数是1-是解题的关键.三、解答题:共54分.解答应写出文字说明、证明过程或演算步骤.15. 计算(1)20(14)(18)13+----(2)2210(2)8()3-⨯--÷- (3)36296.89()96.89()96.89()111111⨯--⨯++⨯- (4)2214[102(3)]2--⨯-⨯-【答案】(1)11 (2)28- (3)96.89- (4)12-【解析】【分析】(1)直接算加减法即可.(2)先算乘方,再算乘除法,最后算加法即可.(3)根据乘法分配律计算即可.(4)先算乘方,再算中括号内的乘法,再算中括号内的减法,再算乘法,最后算减法即可,.【详解】(1)20(14)(18)13+----11=(2)2210(2)8()3-⨯--÷- 10412=-⨯+4012=-+28=-(3)36296.89()96.89()96.89()111111⨯--⨯++⨯- 36296.89111111⎛⎫=⨯--- ⎪⎝⎭()96.891=⨯-96.89=-(4)2214[102(3)]2--⨯-⨯- 116[1029]2=--⨯-⨯ 116[1018]2=--⨯- 116[8]2=--⨯- 16+4=-12=-【点睛】本题考查了实数的混合运算,掌握实数混合运算法则是解题的关键.16. (1)化简:2222(324)(343)x xy y xy y x +---+. (2)已知23x y -=,求代数式362(31)(7)[]y x y x y --+-+-的值.【答案】(1)xy - (2)7-【解析】【分析】(1)先去括号,再合并同类项即可.(2)先去小括号,再去中括号,最后算加减法即可化简,再代入求值即可.【详解】(1)2222(324)(343)x xy y xy y x +---+ 2222324343x xy y xy y x =+--+-xy =-.(2)362(31)(7)[]y x y x y --+-+-3662[2]7y x y x y =---++-355[4]y x y =---3+554+y x y =-8+45y x =-将23x y -=代入原式中原式()8+542544357y x x y =-=--+=-⨯+=-.【点睛】本题考查了整式的混合运算,掌握整式混合运算法则、合并同类项的方法是解题的关键. 17. 如图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,请画出这个几何体的正视图和左视图.【答案】作图见解析【解析】【分析】根据几何体的三视图的性质,作出这个几何体的正视图和左视图即可.【详解】如图所示,即为所求.正视图左视图【点睛】本题考查了几何体的三视图问题,掌握几何体的三视图的性质是解题的关键.18. 高速公路养护小组乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+10,-9,+8,-12,-3,7,-6,-7,6,+4.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车行驶每千米耗油量为0.4升,求这一天养护小组的汽车共耗油多少升?【答案】(1)西方向,2千米(2)180【解析】【分析】(1)把所有行驶记录相加,即可判断最后位置方向和距离.(2)把所有行驶记录的绝对值相加,再除以汽车行驶每千米的耗油量,即可求解.-+--+--++=-.【详解】(1)1098123767642∵约定向东为正,向西为负∴养护小组最后到达的地方在出发点的西方向,距出发点2千米.(2)10+9+8+12+3+7+6+7+6+41800.4=(升) 故这一天养护小组的汽车共耗油180升.【点睛】本题考查了正负数的实际应用,掌握正负数的定义以及性质是解题的关键.19. 某市出租车收费标准如下:行程不超过3km 时,收起步价8元,3km 以后,每千米收费1.5元.某人乘坐该市出租车行驶xkm ,请解答下列问题:(1)用含x 的代数式表示应付的车费;(2)当5x km =时,求他应付的车费;(3)小明乘坐该市出租车去看外婆,下车时出租车计价器显示费用为20元,小明乘坐的路程是多少?【答案】(1)()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)11 (3)11 【解析】【分析】(1)根据题意,列出代数式即可;(2)将5x =代入方程求解即可;(3)将20y =代入方程求解即可.【详解】(1)设应付的车费为y 元,由题意得()()()8,038+1.53,3x y x x ⎧≤≤⎪=⎨->⎪⎩(2)∵53x =>∴()8 1.55311y =+⨯-=故他应付的车费为11元.(3)∵208>∴将20y =代入()8 1.53y x =+-中()208 1.53x =+-解得11x =故小明乘坐的路程是11km .【点睛】本题考查了一元一次方程的行程问题,掌握解一元一次方程的方法是解题的关键.20. 数学老师在黑板上抄写了一道题目:”当2a =-,3b =-时,求多项式2222215[(31)2(4)]2a b ab a b a b ab -+--++的值”,小明做题时把2a =-错抄成2a =,但他最终求出的值也正确,这是为什么?【答案】证明见解析【解析】【分析】先化简多项式,然后分别代入2a =-,3b =-和2a =,3b =-求原式的值,即可得证. 【详解】2222215[(31)2(4)]2a b ab a b a b ab -+--++ 222225[3128]a b ab a b a b ab =-+----225[9]a b a b =--2259a b a b =-+249a b =+当2a =-,3b =-时原式()()2423939=⨯-⨯-+=-当2a =,3b =-时原式()2423939=⨯⨯-+=- ∴小明做题时把2a =-错抄成2a =,但他最终求出的值也正确.【点睛】本题考查了多项式的计算问题,掌握化简多项式的方法、代入求值法是解题的关键.四、填空题(每题4分,满分20分,将答案填在答题纸上)21. 如果2324(2)25a x x b x x -+-+-+是关于x 的五次四项式,那么a b -=__________.【答案】9【解析】【分析】根据多项式的定义以及性质求出,a b 的值,再代入求值即可.【详解】∵2324(2)25a x x b x x -+-+-+是关于x 的五次四项式∴2520a b -=⎧⎨+=⎩解得7,2a b ==-将7,2a b ==-代入-a b 中原式()729=--=故答案为:9.【点睛】本题考查了多项式的问题,掌握多项式的定义以及性质是解题的关键.22. 用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.【答案】 (1). 14 (2). 10【解析】【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23. 在实数的原有运算法则中我们补充定义新运算”⊕“如下:当a b 时,2a b b ⊕=;当a b <时,a b a ⊕=,则当2x =时,(1)(3)x x x ⊕⋅-⊕的值为______【答案】2-..【解析】【分析】首先认真分析找出规律,然后再代入数值计算.【详解】在1⊕x 中,1相当于a ,x 相当于b ,∵x=2,∴符合a<b 时的运算公式,∴(1⊕x )x=2.在3⊕x 中,3相当于a ,x 相当于b ,∵x=2,∴符合a ⩾b 时的运算公式,∴3⊕x=4.∴(1⊕x)−(3⊕x)=2−4=−2.【点睛】此题考查有理数的混合运算,掌握运算法则是解题关键24. 有理数a b c ,,在数轴上的位置如图所示,则|a +|c +||||b c b a ---__________.【答案】222a b c -+【解析】【分析】根据绝对值的性质以及数轴的性质进行计算即可.【详解】由数轴得0,0,0a c b c b a +>-<-> ∴a c b c b a ++---a c cb b a =++--+222a b c =-+故答案为:222a b c -+.【点睛】本题考查了绝对值的运算问题,掌握绝对值的性质以及数轴的性质是解题的关键.25. 已知:a b c ,,都不为0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2020()m n +的值为__________.【答案】0【解析】【分析】根据绝对值的性质求出m 、n 的值,再代入求值即可.【详解】当0,0,0a b c >>>时,可得最大值=1+1+1+14a b c abc b a cm a c b +++== 当0,0,0a b c <<<时,可得最小值=11114a b c abc a b c a n bc+++----=-= ∴()20202020()440m n +=-=故答案为:0. 【点睛】本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.五、解答题:共30分.解答应写出文字说明、证明过程或演算步骤.26. 若代数式2222424,363,A x xy y B x xy y =-+=-+且23,16,0,x y xy ==<求()()423A A B A B ⎡⎤+--+⎣⎦的值.【答案】-216.【解析】试题分析:先化简()()423A A B A B ⎡⎤+--+⎣⎦可得34A B -,再把2222424,363A x xy y B x xy y =-+=-+代入34A B -可得其值为18xy ,再由23,16,0,x y xy ==<求得x 、y 的值,代入即可求值.试题解析:解:()()423A A B A B ⎡⎤+--+⎣⎦=423334A A B A B A B +---=-, 所以34A B -=22223(424)4(363)x xy y x xy y -+--+=222212612122412x xy y x xy y -+-+-=18xy ∵23,16,x y ==∴3,4,x y =±=±∵0,xy <∴x=3,y=-4或x=-3,y=4把x=3,y=-4代入,原式=183(4)216⨯⨯-=-;把x=-3,y=4代入,原式=18(3)4216⨯-⨯=-.考点:整式的加减混合运算.27. 甲,乙两家服装商店销售同一品牌的西装和领带,西装定价都是每套200元,领带定价都是每条40元.现两家商店都在促销:甲店:买一套西装送一条领带;乙店:西装和领带都按定价的90%付款.学校合唱团要购买西装20套,领带x 条(20x >),由后勤谢老师负责购买,请为谢老师出谋划策: (1)若只在一家商店购买,当60x =时,谢老师选择哪家商店购买西装和领带更划算?(2)若只在一家商店购买,请用含x 的代数式分别表示在两家商店的花费;(3)当60x =时,请设计最省钱的购买方案并求出最少的花费是多少.【答案】(1)若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元. (3)当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【解析】【分析】(1)分别根据题意计算出若只在甲购买和若只在乙购买的花费,比较两个花费的大小,即可判断哪种方案更划算.(2)根据题意列出代数式表示即可.(3)设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元,可得方程y=165760x -+,再根据020x ≤≤,即可确定最省钱的购买方案.【详解】(1)若只在甲购买:()20020+6020405600⨯-⨯=(元)若只在乙购买:2002090+4060905760⨯⨯⨯⨯=%%(元)∵56005760<若只在一家商店购买,当60x =时,谢老师选择甲商店购买西装和领带更划算.(2)若只在甲购买: ()20020+2040403200x x ⨯-⨯=+若只在乙购买: 2002090+4090360036x x ⨯⨯⨯=+%%故若只在一家商店购买,在甲商店的花费为403200x +元,在乙商店的花费为360036x +元. (3)∵单买领带时,乙商店比甲商店便宜∴要想花费最少,在甲商店购买的西装套数等于领带的条数∴设在甲商店购买x 套西装,x 条领带,即在乙商店购买20x -套西装,60x -条领带,总花费为y 元 ()()2002009020409060y x x x =+⨯⨯-+⨯⨯-%%=165760x -+.∵020x ≤≤∴当20x 时,总花费y 有最小值最小值为162057605440-⨯+=故当60x =时,最省钱的购买方案为在甲商店购买20套西装,20条领带,在乙商店购买0套西装,40条领带,最少的花费是5440元.【点睛】本题考查了一次函数的实际应用,掌握一次函数的性质以及最值问题是解题的关键.28. (1)探索材料1(填空):数轴上表示数m 和数n 的两点之间的距离等于||m n -.例如数轴上表示数2和5的两点距离为|25|-= ;数轴上表示数3和-1的两点距离为|3(1)|--= ;则|63|+的意义可理解为数轴上表示数 和 这两点的距离;|4|x +的意义可理解为数轴上表示数 和 这两点的距离;(2)探索材料2(填空):①如图1,在工厂的一条流水线上有两个加工点A 和B ,要在流水线上设一个材料供应点P 往两个加工点输送材料,材料供应点P 应设在 才能使P 到A 的距离与P 到B 的距离之和最小?②如图2,在工厂的一条流水线上有三个加工点A B C ,,,要在流水线上设一个材料供应点P 往三个加工点输送材料,材料供应点P 应设在 才能使P 到A B C ,,三点的距离之和最小?③如图3,在工厂的一条流水线上有四个加工点A B C D ,,,,要在流水线上设一个材料供应点P 往四个加工点输送材料,材料供应点P 应设在 才能使P 到A B C D ,,,四点的距离之和最小?(3)结论应用(填空):①代数式|3||4|x x ++-的最小值是 ,此时x 的范围是 ; ②代数式|632x x x ++++-|的最小值是 ,此时x 的值为 . ③代数式7425||x x x x ++++-+-的最小值是 ,此时x 的范围是 .【答案】(1)探索材料1(填空):3,46,3,,4x --,; (2)探索材料2(填空):①点A 和点B 之间;②点B 上;③点B 和点C 之间;(3)结论应用(填空):①7,34x -≤≤;②8,3-;③18,42x -≤≤. 【解析】【分析】(1)探索材料1(填空):根据给出的材料填写即可;(2)探索材料2(填空):分情况讨论点P 的位置,使点P 到其他点的距离之和最小; (3)结论应用(填空):根据探索材料2得出的结论填写即可.【详解】(1)探索材料1(填空): 253-=,()314--=,()6363+=--,()44x x +=--故答案:3,46,3,,4x --,. (2)探索材料2(填空):①1)当点P 在点A 左边2PA PB PA AB +=+2)当点P 在点A 之间PA PB AB +=3)当点P 在点B 右边2PA PB PB AB +=+∴当点P 在点A 和点B 之间,才能使P 到A 的距离与P 到B 的距离之和最小②1)当点P 在点A 左边2PA PB PC PA PB AC ++=++2)当点P 在点A 和点B 之间PA PB PC AC BP ++=+3)当点P 在点B 和点C 之间PA PB PC AC BP ++=+4)当点P 在点C 右边2+PA PB PC PC PB AC ++=+∴最小值为AC BP +,当点P 在点B 上时,值最小为AC∴当点P 在点B 上时,才能使P 到A B C ,,三点的距离之和最小③1)当点P 在点A 左边42PA PB PC PD PA AB BC AD +++=+++2)当点P 在点A 和点B 之间2PA PB PC PD PB BC AD +++=++3)当点P 在点B 和点C 之间PA PB PC PD AD BC +++=+4)当点P 在点C 和点D 之间2PA PB PC PD PC BC AD +++=++5)当点P 在点D 右边42PA PB PC PD PD CD BC AD +++=+++∴当点P 在点B 和点C 之间时,才能使P 到A B C D ,,,四点的距离之和最小故答案为:①点A 和点B 之间;②点B 上;③点B 和点C 之间.(3)结论应用(填空):①由探索材料2得,当34x -≤≤时,|3||4|x x ++-有最小值,最小值为|3||4|347x x x x ++-=++-=②由探索材料2得,这是在求点x 到6,3,2--三个点的最小距离,∴当3x =-时,|632x x x ++++-|有最小值,最小值为|3303386325-++++-=+--+=| ③由探索材料2得,这是在求点x 到7,4,2,5--四个点的最小距离,∴当42x -≤≤时,7425||x x x x ++++-+-有最小值,最小值为7425|742|518x x x x x x x x ++++-+-=++++-+-=.故答案为:①7,34x -≤≤;②8,3-;③18,42x -≤≤.【点睛】本题考查了数轴上两点之间的距离最值问题,掌握数轴上两点之间的距离公式、绝对值的性质是解题的关键.。

【北师大版】初一数学下期中试题及答案

【北师大版】初一数学下期中试题及答案
【详解】
如果将一个图形上各点的横坐标不变,纵坐标乘以2,
则这个图形发生的变化是:纵向拉伸为原来的2倍.
故选B.
【点睛】
本题考查了坐标与图形性质:利用点的坐标计算相应的线段的长和判断线段与坐标轴的关系.
5.D
解析:D
【分析】
先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.
【详解】
解:∵ +|y+1|=0
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
解析:B
【分析】
根据横坐标不变,纵坐标变为原来的2倍得到整个图形将沿y轴变长,即可得出结论.
A.∠C'EF=35°B.∠AEC=120°C.∠BGE=70°D.∠BFD=110°
12.如图,已知 , 交 于点 ,且 ,则 的度数是( )
A. B. C. D.
二、填空题
13.已知点A( , )和点B(4, ),若直线 轴,则 的值为______.
14.如图所示,在平面直角坐标系中,一动点从原点 出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点 , , , , , ,…,则点 的坐标是______.
2.B
解析:B
【分析】
先根据第二象限点坐标符号特点可得 ,再化简绝对值可得x、y的值,然后代入即可得.
【详解】
点 在第二象限,

又 ,


故选:B.
【点睛】
本题考查了第二象限点坐标符号特点、化简绝对值,熟练掌握第二象限点坐标符号特点是解题关键.

2019-2020北京师范大学附属实验中学初一上册期中考试试卷数学(含答案解析).docx

2019-2020北京师范大学附属实验中学初一上册期中考试试卷数学(含答案解析).docx

北师大附属实验中学2019-2020学年度第一学期初一数学期中考试试卷一、选择题(本大题共10道小题,每小题3分,共30分)1.13-的相反数是( ).A .13 B .13- C .3 D .3-【答案】A 【解析】13-的相反数是13.2.下列各对数中,相等的一对数是( ).A .32-与23-B .()32-与32-C .()23-与23-D .()2--与2--【答案】B【解析】A 选项,328-=-,239-=-,故A 错误;B 选项,()328-=-,328-=-,故B 正确;C 选项,()239-=,239-=-,故C 错误;D 选项,()22--=,22--=-,故D 错误;3.下列运算正确的是( ).A .2222x x -=B .22a a a -=C .2222a a a --=-D .235235m m m +=【答案】C【解析】A 选项,2222x x x -=,故A 错误;B 选项,不是同类项,不能合并,故B 错误;C 选项,2222a a a --=-,故C 正确;D 选项,不是同类项,不能合并,故D 错误.4.多项式322563x y x y x y -+-的次数是( ).A .2B .3C .4D .5【答案】D【解析】多项式322563x y x y x y -+-的次数是5.5.下列结论不正确的是( ).A .若a c b c +=+,则a b =B .若abc c =,则a b =C .若a c b c =,则a b =D .若a x b =()0a ≠,则bx a =【答案】C【解析】A 选项,a c b c +=+,两边同时减去c ,则a b =,故选项A 正确;B 选项,a b c c=,两边同时乘以c ,则a b =,故选项B 正确; C 选项,当0c =时,a b =不一定成立,故选项C 错误; D 选项,若ax b =()0a ≠,两边同时除以a 得b x a=,故选项D 正确.6.在数轴上,与表示数1-的点的距离是3的点表示的数是( ).A .2B .4-C .3±D .2或4-【答案】D【解析】在数轴上,与表示数1-的点的距离是3的点表示的数有两个:134--=-;132-+=.7.下列方程中,解为4x =的方程是( ).A .82x= B .41x = C .14x -= D .()1115x -= 【答案】A 【解析】A 选项,把4x =代入,等式成立,因而4x =是方程的解.B 选项,把4x =代入,左边16=,左边≠右边;因而4x =不是方程的解;C 选项,把4x =代入得到,左边3=,左边≠右边,因而4x =不是方程的解;D 选项,把4x =,代入方程,左边35=,左边≠右边,因而4x =不是方程的解.8.己知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( ).A .a b <B .a b <C .0ab <D .0a b +>【答案】B【解析】根据数轴,得0b a <<.A 选项,a b >,故A 选项错误;B 选项,a b <,故B 选项正确;C 选项,两个数相乘,同号得正,0ab >,故C 选项错误;D 选项,同号的两个数相加,取原来的符号,0a b +<,故D 选项错误.9.一个多项式与221x x -+的和是32x -,则这个多项式为( ).A .253x x -+B .21x x -+-C .253x x -+-D .2513x x --【答案】C【解析】由题意得:这个多项式()23221x x x =---+ 23221x x x =--+-23221x x x =-++--253x x =-+-.10.某企业2014年的生产总值为a 万元,预计2015年的生产总值比去年增长20%,那么该企业这两年的生产总值之和是( ).A .20%a 万元B .()20%a +万元C .()120%a +万元D .()120%a a ++⎡⎤⎣⎦万元【答案】D【解析】由题意得,2015年的生产总值()120%a +,两年的生产总值之和是:()120%a a ++.二、填空题(本大题共8道小题,每空2分,共20分)11.若赢利2000元记作2000+元,则亏损800元记作__________元.【答案】800-【解析】若赢利2000元记作2000+元,则亏损800元记作800-元.12.比较大小:56-__________78-(填“>”或“<”)【答案】> 【解析】∵540648-=-,742848-=-, ∴40424848< ∴5768->-.13.单项式32xy -的系数是__________;次数是__________.【答案】2-,4【解析】单项式32xy -的系数为2-,次数为134+=次.14.用四舍五入法求0.12874精确到千分位的近似数为__________.【答案】0.129【解析】0.128740.129≈四舍五入法求0.12874精确到千分位的近似数为0.129.15.若()2320m n -++=,则m n +的值为__________.【答案】1【解析】由题意得,30m -=,20n +=,解得3m =,2n =-,所以,()32321m n +=+-=-=.16.若a 、b 互为相反数,c 、d 互为倒数,则22a bcd ++=__________.【答案】2【解析】根据题意得:0a b +=,1cd =,则原式02122+⨯=.17.若方程120k kx ++=是关于x 的一元一次方程,则k =__________.【答案】2-【解析】根据一元一次方程的性质可得:011k k ≠⎧⎨+=±⎩, 解得:2k =-.18.有一组数,13-,215,335-,463,599-,L .请观察这组数的构成规律,用你发现的规律确定第6个数是__________;第n 个数是__________. 【答案】6143;()()()12121n nn n --+【解析】第1个数是11133-=-⨯,第2个数是223515=⨯,第3个数是335735-=-⨯,L L第6个数是661113143=⨯第n 个数是()()()12121n nn n --+.三.计算题(本大题共4道小题,每小题16分,共16分) 19.()()()()20357-++---+【解析】原式20357=-++- 1757=-+-127=--19=-.20.310.25175⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭【解析】原式134475⎛⎫=-÷-⨯ ⎪⎝⎭174435=⨯⨯715=.21.()7111369126⎛⎫-+⨯- ⎪⎝⎭【解析】原式()()()71113636369126=⨯--⨯-+⨯-28336=-+-56=-1=-.22.22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【解析】原式43162581549⎛⎫=-⨯-+⨯- ⎪⎝⎭4316325815494=-⨯+⨯-⨯204633=-+-161833=--343=-.四.化简求值题(本大题共2道小题,每小题4分,共8分)23.2231253x x x x +----【解析】原式2232315x x x x =---+-2254x x =--.24.先化简,再求值:()()2221933213ab a b ab -++-+,其中2a =-,3b =.【解析】原式22231322a b a b a b =-++-- 22231322ab a b ab =-++--22232132ab ab a b =-+-+-22ab a b =+当2a =-,3b =时,原式()()222323=-⨯+-⨯()2943=-⨯+⨯1812=-+6=-.五.解方程(本大题共2道小题,每小题4分,共8分)25.()()235321x x ---=【解析】去括号得:2615521x x --+=,移项得:2521615x x +=++,合并同类项得:742x =,系数化1得:6x =.26.()312432x x ---=.【解析】去分母得:()()229124x x ---=,去括号得:429924x x --+=,移项得:292449x x --=--,合并同类项得:1111x -=,系数化1得:1x =-.六.解答题(本大题共3道小题,每小题6分,共18分)27.有理数a ,b 在数轴上的对应点位置如图所示,(1)用“<”连接0,a ,b ,1-;【解析】根据图示,可得10a b <-<<.(2)化简:2a a b b a ++--.【解析】∵0a <,0a b +<,0b a ->, ∴a a =-,()a b a b +=-+,b a b a -=-, ∴2a a b b a ++--()()2a a b b a =--+--22a a b b a =----+3b =-.28.(1)已知代数式234x x -的值为6,求代数式2689x x --的值;【解析】∵2346x x -=.∴()226892349x x x x --=--269=⨯-3=.(2)已知8a ba b -=+,求代数式()()24a b a b a b a b -+++-的值. 【解析】∵8a ba b -=+, ∴18a ba b +=-,∴()()24a b a b a b a b -+++-12848=⨯+⨯1162=+1162=.29.已知12m x y --与513n x y 是同类项,求()()()222522m n m n n m m n --+--++的值.【解答】解:∵由已知得:15m -=,2n =,∴4m =-,2n =,∴原式()()224m n m n =---+()()2422442=---⨯-⨯-+()()2842=---⨯- 648=-+56=-.30.填空题:(请将结果直接写在横线上)现定义运算“△”,对于两个有理数a ,b ,都有()a b a b a b =-+△,例如:()()()()212121211-=-⨯--+=---=-△,则51=△__________;()21m -=△__________;()1m n =△△ __________.【解析】∵()a b ab a b =-+△,∴()515151=⨯-+△56=-1=-;∴()()()212121m m m -=-⨯--+△221m m =--+-1=-;∴()()111m n m n n =⨯-+⎡⎤⎣⎦△△△()1m n n =--△()1m =-△()()11m m =⨯---1m m =--+21m =-+.31.探究题:下图是某月的月历.(1)如图1,带阴影的方框中的9个数之和是__________;(2)如果将带阴影的方框移至图2的位置,则这9个数之和是__________;(3)如果将带阴影的方框移至9个数之和为198的位置,求这9个数中最小的数.【解析】(1)34510111217181999+++++++++=;(2)8910151617222324144++++++++=;(3)设中心数为x ,则9个数之和为()()()()()()()()876116789x x x x x x x x x x -+-+-+-+++++++++=,根据题意,得9198x =,解得22x =,故最小数为814x -=.答:这9个数中最小的数为14.32.阅读理解题:如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等. 9 ★☆ x 6- 2L (1)可求得x =__________,第2015个格子中的数为__________; 【解析】∵任意三个相邻格子中所填整数之和都相等,∴表格中从左向右每三个数字一个循环,∴9x =,★6=-,☆2=,∵201536712÷=L ,∴第2015格子中的数为:6-.答:9x =,第2015个格子中的数为6-.(2)判断:前n 个格子中所填整数之和是否可能为2015?若能,求出n 的值,若不能,请说明理由;【解析】能.∵()9625+-+=,20155403÷=, ∴40331209n =⨯=,答:前n 个格子中所填整数之能为2015,n 等于1209.(3)若取前3格子中的任意两个数,记作a 、b ,且a b ≥,那么所有的a b -的和可以通过计算99-+-+-★☆☆★得到.其结果为__________;若取前19格子中的任意两个数,记作s 、t ,且s t ≥,求所有的s t -的和.【解析】∵取前3格子中的任意两个数,记作a 、b ,且a b ≥,∴所有的a b -的和为:()()96922630--+-+--=. ∵由于是三个数重复出现,那么前19个格子中,这三个数,9出现了7次,6-和2各出现了6次. ∴代入式子可得:()()9676927626661212--⨯⨯+-⨯⨯+--⨯⨯=.答:99-+-+-★☆☆★结果为30,所有的s t -的和为1212.。

最新北师大版初一数学上册期中考试试卷及答案

最新北师大版初一数学上册期中考试试卷及答案

:-新北师大版七年级数学上册期中试卷班级 ___ __ 姓名___ __ 分数___ __一、选一选,比比谁细心(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.12-的绝对值是( ). (A) 12 (B)12- (C)2 (D) -2 2.武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m ,用科学记数法表示这个数为( ).(A)×104m (B)×103 m (C)×104m (D)×103m3.如果收入15元记作+15元,那么支出20元记作( )元.(A)+5 (B)+20 (C)-5 (D)-204.有理数2(1)-,3(1)-,21-, 1-,-(-1),11--中,其中等于1的个数是( ). <(A)3个 (B)4个 (C)5个 (D)6个5.已知p 与q 互为相反数,且p ≠0,那么下列关系式正确的是( ).(A).1p q = (B)1q p = (C) 0p q += (D) 0p q -= 6.在代数式221,,0,5,,,33ab abc x y x π---中,单项式有( ) (A )3个 ( B )4个 ( C )5个 ( D )6个7.下列变形中, 不正确的是( ).(A) a +(b +c -d)=a +b +c -d (B) a -(b -c +d)=a -b +c -d(C) a -b -(c -d)=a -b -c -d (D) a +b -(-c -d)=a +b +c +d8.如图,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( ).(A) b -a>0(B) a -b>0(C) ab >0(D) a +b>0 9.下列说法正确的是( )¥(A )单项式是整式,整式也是单项式; (B )25与x 5是同类项 (C )单项式312x y π的系数是12π,次数是4; ( D )12x+是一次二项式 10.一个多项式加上3452--x x 得x x 32--,则这个多项式为( )(A )3742--x x (B )362--x x ( C )362++-x x ( D )3762---xx11.化简x-y-(x+y)的最后结果是( )(A)0 (B)2x (C)-2y (D)2x-2y12.已知a、b互为相反数,c、d互为倒数,x等于-4的2次方,则式子1 ()2cd a b x x---的值为().(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题4分, 共16分, 请将你的答案写在“_______”处)[13.写出一个比12-小的整数:.14.已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高____________m15.若123m a bc-和3222na b c--是同类项,则m n+=16%那么,当输入数据为8时,输出的数据为.三、解一解, 试试谁更棒(本大题共7小题,共86分)17.(本题20分)计算(1)13(1)(48)64-+⨯-(2)4)2(2)1(310÷-+⨯-解:解:(3)()2 411(10.5)233⎡⎤---⨯⨯--⎣⎦解::(4)()]41)4(240)53(5[31322⨯-÷--⨯-⨯--解:18.(本题10分)(1)化简 ()()b a b a 4392222--++ (2) 合并同类项2535232222+---+ab b a ab b a;19.(1)先化简再求值(5)22223])5.1(22[3xy xy y x xy xy y x ++---,其中2,3-=-=y x…(2)先化简,再求值(5分).2,3),23(4)32(=-=---+y xy x y y x 其中:20.( 7分)若23m a bc 和 322n a b c - 是同类项, 22223[22(2)]mn mn m n mn --+求的值.21.(本题10分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,(1) (2) 本周总的生产量是多少辆(3分) 解:%22.(10分)某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米元;超过5千米,每千米元。

北师大版七年级上册数学期中试卷及答案【完整版】

北师大版七年级上册数学期中试卷及答案【完整版】

北师大版七年级上册数学期中试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)6.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠58.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .09.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.若264a =3a =________.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β. ①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、40°3、724、-405、±26、1800°三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、x=3或-3是原方程的增根;m=6或12.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)略;(2)略.5、(1)30;(2)①补图见解析;②120;③70人.6、25元超市一共购进1200个魔方。

2023北京北师大实验中学初一(上)期中数学(含答案)

2023北京北师大实验中学初一(上)期中数学(含答案)

2023北京北师大实验中学初一(上)期中数学一、选择题(本大题共10道小题,每小题3分,共30分)1.﹣的倒数是()A.B.C.﹣D.﹣2.华为Mate60Pro手机搭载了海思麒麟9000s八核处理器,预装华为自主研发的HarmonyOS4.0操作系统,为全球首款支持卫星通话的智能手机.预计至2024年底,这款手机的出货量将达到70000000台.将70000000用科学记数法表示应为()A.7×108B.70×106C.7×107D.0.7×1083.下列各组数中,互为相反数的是()A.﹣7与B.|﹣9|与﹣32C.23与32D.﹣(﹣3)与34.已知代数式﹣与3x2y是同类项,则a+b的值为()A.5B.4C.3D.25.下列各式进行的变形中,正确的是()A.若3a=2b,则3a﹣3=2b+3B.若3a=2b,则3ac=2bcC.若3a=2b,则9a=4bD.若3a=2b,则6.如图,空白部分的面积不可以表示为()A.2x B.x(x+2)﹣x2C.2(x+3)﹣6D.(x+3)(x+2)7.若关于x的一元一次方程kx=x+3的解为正整数,则整数k的值为()A.2B.4C.0或2D.2或48.有理数在数轴上的对应点位置如图所示,化简|a+1|﹣|b﹣1|得()A.﹣a+b﹣2B.﹣a﹣b C.a﹣b+2D.a+b9.我国古代数学著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、物价各几何?”译文:“有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,则还差16文钱,问买鸡的人数、鸡的价钱各是多少?”,下列说法错误的是()A.买鸡的人数为(11+16)÷(9﹣6)人B.设鸡的价钱为x文,根据题意可列方程C.设人数为y人,根据题意可列方程6y﹣16=9y+11D.设人数为y人,根据题意可列方程6y+16=9y﹣1110.当输入x=60时,输出结果是297;当输入x=20时,输出结果是482;如果输入x的值是正整数,输出结果是182,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个二、填空题(本大题共10道小题,每小题2分,共20分)11.如果“盈利10%'记为+10%,那么“亏损6%”记为.12.比较大小:﹣2﹣2.3.(填“>”、“<”或“=”)13.用四舍五入法对3.026取近似数(精确到百分位)为.14.关于a、b的多项式﹣2a2b3+kab﹣2ab﹣3次数为,若该多项式不含二次项,则k=.15.如果x=2是关于x的方程2x﹣a=2的解,则a=.16.已知2x﹣y=3,则代数式6x﹣3y﹣2=.17.已知|a|=1,|b|=2,且ab<0,a+b<0,则a=,b=.18.某工厂有工人60名,每人每天可以生成14个螺栓或20个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?若设安排x名工人生产螺栓,则可列方程为.19.当式子(x+3)2+|y﹣4|+2取最小值时,x y=.20.数轴上,点M和P的距离记为MP,点A和P的距离记为AP.给出如下定义:若AP不小于MP,且AP不大于2MP,则称点A是点P关于点M的捕获点.已知:如图,点O为原点,点N表示的数是2,点B表示的数是4,点C表示的数是5.例如:若点A表示3,则ON=2,AO=3,AO不小于ON,不大于2ON.故点A是点O关于点N的捕获点.(1)若点A是点O关于点N的捕获点,则点A所表示数的最大值为:.(2)若点A表示的数为a,点A既是点O关于点N的捕获点,还是点C关于点B的捕获点,写出a的取值范围:.三、计算题(本大题共4道小题,每小题4分,共16分)21.(4分)﹣12+(+9)+(﹣5)﹣(﹣2).22.(4分)﹣1×(﹣)÷(﹣).23.(4分).24.(4分)﹣12022÷(﹣)2×|﹣|﹣42÷(﹣2)3.四、解方程(本大题共2道小题,每小题5分,共10分)25.(5分)3x+x+2=4x﹣6.26.(5分)=1﹣.五.解答题(本大题共4、28题每题5分,第29题6分,第30题8分,共24分)27.(5分)先化简,再求值:6b2+(a2b﹣3b2)﹣2(2b2﹣a2b),其中a=﹣2,b=.28.(5分)列一元一次方程解应用题:数学老师为了表扬计算擂台赛满分的同学,决定从网店给同学们买一些练习本作为奖品,该网店按表中所示的方式卖本:(1)当老师买多少本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同?8折出售.当老师想买20个本时,怎么购买更合理?29.(6分)数轴上两个点A和B表示的数分别为3和﹣7.点P和点Q分别从A、B两点以每秒2个单位和5个单位的速度相向运动,设运动时间为t秒.(1)用含t的式子表示点P和点Q所表示的数;(2)若当点Q到达点A时调转方向继续以相同速度运动,点P到达点B时,P、Q两点同时停止运动.在整个的运动过程中,直接写出当t为多少时,P、Q两点间距离为2?30.(8分)如图,我们把以O为圆心,1,2,3,…,n(n为正整数)为半径的圆:W1,W2,W3,…,W n称为“纬线”,过O的三条“数轴”被点O分成六条射线,分别记:j1,j2,…,称为“经线”,“经线”与“纬线”的交点称为“格点”(O为特殊的格点),把所有整数按如图方式放在格点上(整数0放在“原点”O处).如:把整数1摆放到j1与W1交点位置,记作:(j1,w1)=(1);又如,格点A表示的数是﹣5,则A点的位置可记作:(j6,W2)或A(﹣5).(1)若(j m,w n)=(﹣3),则m=,n=;(2)已知:格点A(a)、B(b)、C(c)分别在“经线”j3、j4、j5上,并在同一“纬线”W n上.①用含n的代数式表示a、b、c;②当a+b+c=16时,求n的值;(3)以格点A(a)、B(b)、C(c)为顶点的三角形我们称为格点三角形(A、B、C不在同一直线上),记作:G△ABC,其中a、b、c和的绝对值叫G△ABC的“偏心率”,记作:<G△ABC>=|a+b+c|.问题:若在同一“纬线”W n存在三个格点A、B、C,使得“偏心率”<G△ABC>=2023,直接写出n的值.六、填空题(本卷共20分,第31,32题每题7分,第33题6分)31.(7分)(1)观察下面的点阵图与等式的关系,并填空:1+3+5+7+5+3+1=+.(2)观察猜想,写出第n(n为正整数)个点阵图相对应的等式:=+.(3)根据以上猜想,得出1+3+5+…+201+203+201+…+5+3+1=.(需要计算出准确值)32.(7分)有一个运算程序:当规定a⊕b=n时,则:(a+c)⊕b=n+c,a⊕(b+c)=n﹣2c.例如:当规定3⊕3=5时,则2⊕3=(3﹣1)⊕3=5+(﹣1)=4,3⊕5=3⊕(3+2)=5﹣2×2=1.(1)若5⊕5=﹣2,那么1⊕5=,100⊕100=;(2)若对于正整数m,规定m⊕m=(﹣1)m•m2,3m⊕3m=8m,求m的值.33.(6分)规定:将n个整数x1,x2…,x n按一定顺序排列组成一个n元有序数组,n为正整数,记作X=(x1,x2,⋯,x n)称此数组中各个数绝对值之和为“模和”S,即S=|x1|+|x2|+⋯+|x n|.将所有满足“模和”为S的n元有序数组的个数为记为N(n,S).例如:若二元数组的“模和”S=1,即|x1|+|x2|=1,其中满足条件的二元有序数组有(0,1),(1,0),(﹣1,0),(0,﹣1),共4个,则N(2,1)=4.请根据以上规定完成下列各题:(1)填空:N(1,1)=,N(2,3)=.(2)若N(2,S)=200,则S=.(3)用含k(k为正整数)的式子填空:N(3,k)=.参考答案一、选择题(本大题共10道小题,每小题3分,共30分)1.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选:D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.【分析】将一个数表示为a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:70000000=7×107,故选:C.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.【分析】运用平方、绝对值和相反数的知识进行逐一辨别.【解答】解:∵﹣7与是互为倒数,不是互为相反数,∴选项不符合题意;∵|﹣9|=9,﹣32=﹣9,∴|﹣9|和﹣32是互为相反数;∴选项不符合题意;∵23=8,32=9,∴23和32不是互为相反数,∴选项不符合题意;∵﹣(﹣3)=3,∴﹣(﹣3)与3不是互为相反数,∴选项不符合题意,故选:B.【点评】此题考查了平方、绝对值和相反数知识的应用能力,关键是能准确理解并运用以上知识.4.【分析】根据同类项的定义可得a=2,b﹣2=1,从而可得:a=2,b=3,然后代入式子中进行计算,即可解答.【解答】解:∵代数式﹣与3x2y是同类项,∴a=2,b﹣2=1,解得:a=2,b=3,∴a+b=2+3=5,故选:A.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.5.【分析】利用等式的性质对题目中的四个选项逐一进行甄别即可得出答案.【解答】解:对于等式3a=2b,两边同时减去3,得:3a﹣3=2b﹣3,两边同时加上3,得:2a+3=2b+3,因此选项A不正确;对于等式3a=2b,当c≠0时,两边同时乘以c,得:3ac=2bc,当c=0时,3ac=2bc=0,因此选项B 正确;对于等式3a=2b,两边同时乘以3,得9a=6b,因此选项C不正确;对于等式3a=2b,当c≠0时,两边同时除以c,得:因此选项D不正确.故选:B.【点评】此题主要考查了等式的性质,熟练掌握等式的性质是解决问题的关键.6.【分析】根据长方形面积公式列代数式,可求得空白部分的面积表示,选出符合题意的选项.【解答】解:如图所示,空白部分是一个长为2,宽为x的长方形,∴空白部分的面积=2x,也可以表示为:x(x+2)﹣x2、2(x+3)﹣6、(x+3)(x+2)﹣x2﹣3(x+2),故D符合题意,故选:D.【点评】本题考查了列代数式,关键是根据题意正确列出代数式.7.【分析】先求出方程的解,再根据关于x的一元一次方程kx=x+3的解为正整数和k为整数得出k﹣1=1或k﹣1=3,再求出k即可.【解答】解:解方程kx=x+3得:x=,∵关于x的一元一次方程kx=x+3的解为正整数,k为整数,∴k﹣1=1或k﹣1=3,∴k=2或4.故选:D.【点评】本题考查了一元一次方程的解,能根据题意得出关于k的方程是解此题的关键.8.【分析】根据数轴上点的位置判断出a+1与b﹣1都为负值,利用绝对值的代数意义化简,合并同类项即可得到结果.【解答】解:根据数轴上点的位置得到:a<﹣1<0<b<1,∴a+1<0,b﹣1<0,则|a+1|﹣|b﹣1|=﹣a﹣1﹣1+b=﹣a+b﹣2.故选:A.【点评】此题考查了整式的加减运算,以及绝对值的代数意义,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.【分析】分别根据不同的未知数和等量关系判断即可.【解答】解:A、买鸡的人数为(11+16)÷(9﹣6)人,故不符合题意;B、设鸡的价钱为x文,根据题意可列方程,故不符合题意;C、设人数为y人,根据题意可列方程6y﹣16=9y+11,故符合题意;D、设人数为y人,根据题意可列方程6y﹣16=9y+11,故不符合题意.故选:C.【点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是读懂题意,找到等量关系列方程.10.【分析】采用逆推法:首先令5x﹣3=182,解得x=37,再令5x﹣3=37,解出x=8,以此类推即可得出答案.【解答】解:当5x﹣3=182时,解得:x=37,当5x﹣3=37时,解得:x=8,当5x﹣3=8时,解得:x=2.2,不合题意,舍去.故得如果第一次输入8时,结果为37,再次输入37时,结果为182,如果第一次输入37时,结果为182.因此满足条件的x的值最多有两个是8或37.故选:B.【点评】此题主要考查了一元一次方程的应用,理解题意,熟练掌握解一元一次方程的方法与技巧是解答此题的关键.二、填空题(本大题共10道小题,每小题2分,共20分)11.【分析】由盈利为正,得到亏损为负,即可得到结果.【解答】解:根据题意得:“亏损6%”记为﹣6%.故答案为:﹣6%.【点评】此题考查了正数与负数,熟练掌握相反意义的量是解本题的关键.12.【分析】直接根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣2|=2≈2.33,|﹣2.3|=2.3,2.33>2.3,∴﹣2.33<﹣2.3,∴﹣2<﹣2.3.故答案为:<.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解答此题的关键.13.【分析】把千分位上的数字6进行四舍五入即可.【解答】解:3.026≈3.03(精确到百分位).【点评】本题考查了近似数:“精确到第几位”是近似数的精确度的常用的表示形式.14.【分析】先合并同类项,根据多项式的次数等于得出次数是5,根据多项式不含二次项得出k﹣2=0,求出k即可.【解答】解:关于a、b的多项式﹣2a2b3+kab﹣2ab﹣3次数为5,﹣2a2b3+kab﹣2ab﹣3=﹣2a2b3+(k﹣2)ab﹣3,∵该多项式不含二次项,∴k﹣2=0,∴k=2.故答案为:5,2.【点评】本题考查了多项式的次数定义和合并同类项法则,能熟记多项式的次数定义(多项式中次数最高的项的次数叫多项式的次数)和得出k﹣2=0是解此题的关键.15.【分析】把x=2代入方程2x﹣a=2得出4﹣a=2,再求出a即可.【解答】解:把x=2代入方程2x﹣a=2,得4﹣a=2,解得:a=2.故答案为:2.【点评】本题考查了一元一次方程的解,能根据题意得出关于a的方程4﹣a=2是解此题的关键.16.【分析】将原式变形后代入已知数值计算即可.【解答】解:∵2x﹣y=3,∴6x﹣3y﹣2=3(2x﹣y)﹣2=3×3﹣2=9﹣2=7,故答案为:7.【点评】本题考查代数式求值,将原式进行正确的变形是解题的关键.17.【分析】根据绝对值的性质分析出a与b的取值范围,再根据ab<0,a+b<0即可判断a与b的值.【解答】解:∵|a|=1,|b|=2,∴a=±1,b=±2,∵ab<0,∴a与b异号,∴a=1,b=﹣2或a=﹣1,b=2,∵a+b<0,∴负数的绝对值大于正数的绝对值,∴a=1,b=﹣2【点评】本题考查有理数的乘法、有理数的加法和绝对值,熟练掌握相关知识点是解题的关键.18.【分析】设分配x名工人生产螺栓,则(60﹣x)生产螺母,根据每人每天可以生产14个螺栓或20个螺母,1个螺栓需要配2个螺母,可列出方程.【解答】解:分配x名工人生产螺栓,则(60﹣x)人生产螺母,根据题意可列方程为:20(60﹣x)=2×14x.故答案为:20(60﹣x)=2×14x.【点评】此题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.19.【分析】根据偶次方和绝对值的非负数性质解答即可.【解答】解:∵(x+3)2≥0,|y﹣4|≥0,∴当式子(x+3)2+|y﹣4|+2取最小值时,x+3=0,y﹣4=0,解得x=﹣3,y=4,∴x y=(﹣3)4=81.故答案为:81.【点评】此题考查了非负数的性质:任意一个数的偶次方都是非负数,任意一个数的绝对值都是非负数.20.【分析】(1)根据捕获点的定义求点A所表示数的取值范围,得到最大值.(2)点A既是点O关于点N的捕获点,还是点C关于点B的捕获点,找到两个范围,取公共部分即可.【解答】解:点A是点O关于点N的捕获点,∴ON≤AO≤2ON,∵ON=2,∴2≤OA≤4,∴点A所表示数的最大值为:4.故答案为:4.(2)∵点A是点C关于点B的捕获点,∴BC≤AC≤2BC,∵BC=1,∴1≤AC≤2,∵点C表示的数是5,∴3≤a≤4或6≤a≤7.∴点A是点O关于点N的捕获点,∴ON≤AO≤2ON,∵ON=2,∴2≤OA≤4,∴﹣4≤a≤﹣2或2≤a≤4,∴3≤a≤4.故答案为:3≤a≤4.【点评】本题考查了新定义“捕获点”的阅读理解,关键是定义的阅读要准确.三、计算题(本大题共4道小题,每小题4分,共16分)21.【分析】利用有理数的加减法则计算即可.【解答】解:原式=﹣3﹣5+2=﹣8+2=﹣6.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.22.【分析】先算括号内的,把带分数化为假分数,把除化为乘,再约分即可.【解答】解:原式=﹣×(﹣)÷=﹣×(﹣)×6=.【点评】本题考查有理数混合运算,解题的关键是掌握有理数相关的运算法则.23.【分析】按照“两数相除,同号得正,并把绝对值相除”的法则直接计算.【解答】解:原式=×(﹣24)=×(﹣24)=2×2=4.【点评】本题属于基础题,考查了对有理数的除法运算法则掌握的程度.此题除了有除法以外,还考查了分数的加减法,分数的加减是异分母的要先通分然后再进行计算.24.【分析】先算乘方和去绝对值,然后计算乘除法即可.【解答】解:﹣12022÷(﹣)2×|﹣|﹣42÷(﹣2)3.=﹣1÷×﹣16÷(﹣8)=﹣1×81×+2=﹣18+2=﹣16.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.四、解方程(本大题共2道小题,每小题5分,共10分)25.【分析】移项,合并同类项,系数化成1即可.【解答】解:3x+x+2=4x﹣6,移项,得3x+x﹣4x=﹣6﹣2,合并同类项,得﹣x=﹣8,系数化成1,得x=16.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.26.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得,2(x+3)=12﹣3(3﹣2x),去括号得,2x+6=12﹣9+6x,移项得,2x﹣6x=12﹣9﹣6,合并同类项得,﹣4x=﹣3,系数化为1得,x=.【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.五.解答题(本大题共4道小题,第27、28题每题5分,第29题6分,第30题8分,共24分)27.【分析】先将原式去括号,合并同类项后代入已知数值计算即可.【解答】解:原式=6b2+a2b﹣3b﹣4b2+2a2b=3a2b﹣b2,当a=﹣2,b=时,原式=3×(﹣2)2×﹣()2=6﹣=.【点评】本题考查整式的化简求值,熟练掌握相关运算法则是解题的关键.28.【分析】(1)设当老师买x(20<x≤40)本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同,利用总价=单价×数量+邮费,结合分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同,可列出关于x的一元一次方程,解之即可得出结论;(2)分别求出购买20本及21本时所需费用,比较后即可得出结论.【解答】解:(1)设当老师买x(20<x≤40)本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同,根据题意得:4x+5×2=4×20+4×0.8(x﹣20)+14,整理得:0.8x﹣20=0,解得:x=25.答:当老师买25本时,分两次购买(每次购买数量不超过20本)与一次性购买所花费用相同;(2)当购买20本时,所需费用为4×20+5=85(元),当购买21本时,所需费用为4×0.8×21+14=81.2(元).∵85>81.2,∴当老师想买20个本时,购买21个本更合理.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.29.【分析】(1)根据点P和Q在数轴上的初始位置和运动方向分别写出所表示的数即可;(2)用含t的代数式表示出点Q到达点A时调转方向后在数轴上对应的数.当0≤t≤2和2<t≤5时,分别令P、Q两点对应的数之差的绝对值为2,求出对应的t值即可.【解答】解:(1)根据题意,点P表示的数为﹣2t+3,点Q表示的数为5t﹣7.∴用含t的式子表示点P和点Q所表示的数分别为﹣2t+3和5t﹣7.(2)点Q到达点A时用时=2(秒),点P到达点B时用时=5(秒),∴点Q到达点A时调转方向继续以相同速度运动时,点Q表示的数为﹣5(t﹣2)+3=﹣5t+13(2<t≤5).①当0≤t≤2时,|﹣2t+3﹣(5t﹣7)|=2,解得t=或;②当2<t≤5时,|﹣2t+35+13)|=2,解得t=或4.综上,在整个的运动过程中,当t为,,或4时,P、Q两点间距离为2.【点评】本题考查数轴及一元一次方程的应用等,正确表示出数轴上动点对应的数是解题的关键.30.【分析】(1)根据新定义,得出﹣3在j2与w1交点位置,即可求解;(2)①观察j3,j4,j5上的数可以发现,得出a=3n﹣1,b=﹣3n+2,c=3n,进而计算a+b+c;②根据题意建立方程即可求解;(3)观察图形,根据(2)的方法得出j1,j2,j6上点的规律,根据题意分情况讨论,分别计算即可求解.【解答】解:(1)∵﹣3在j2与w1交点位置,∴(j2,w1)=(﹣3),∴m=2,n=1,故答案为:2,1;(2)①观察j3,j4,j5上的数可以发现,j3,2,5,8,……,3n﹣1;j4,﹣1,﹣4,﹣7,……,﹣(3n﹣2);j5,3,6,9,……,3n,∴a=3n﹣1,b=﹣3n+2,c=3n;②a+b+c=3n﹣1﹣3n+2+3n=3n+1=16,解得:n=5;(3)∵j1上的点:1,4,7,……,3n﹣2;j2上的点:﹣3,﹣6,﹣9,……,﹣3n;j6上的点:﹣2,﹣5,﹣8,……,﹣(3n﹣1),且j1,j4在同一直线,j2,j5在同一直线,j3,j6在同一直线,∵n为整数,即三个点的和的整数部分为1、4或﹣2时,才能被3整除,当点在j2,j5,j1上时,|a+b+c|=|3n﹣2|=2023,解得:n=675(负值已舍去);当点在j3,j6,j1上时,|a+b+c|=|3n﹣2|=2023,解得:n=675(负值已舍去);当点在j3,j6,j4上时,|a+b+c|=|3n﹣2|=2023,解得:n=675(负值已舍去);当点在j2,j5,j4上时,|a+b+c|=|3n﹣2|=2023,解得:n=675(负值已舍去);当点在j3,j4,j5上时,|a+b+c|=|3n﹣1﹣3n+2+3n|=|3n+1|=2023,解得:n=674(负值已舍去);当点在j1,j2,j3上时,|a+b+c|=|3n﹣2﹣3n+3n﹣1|=|3n+1|=2023,解得:n=674(负值已舍去);……;综上所述,n的值为674或675.【点评】本题考查了新定义,数字类规律题,整式的加减,一元一次方程的应用,理解题意是解题的关键.六、填空题(本卷共20分,第31,32题每题7分,第33题6分)31.【分析】(1)观察第3(2)根据前三个点阵的规律,可求得第n个点阵对应的等式;(3)由203=101+102,确定原式=1012+1022,求得结果.【解答】解:(1)观察第3个点阵,等式右边是由1个3×3的点阵加上1个4×4的点阵,故答案为:32,42;(2)∵第1个点阵:1+3+1=12+22,第2个点阵:1+3+5+3+1=22+32,第3个点阵:1+3+5+7+5+3+1=32+42,∴第n个点阵:1+3+5…+2n+1…+5+3+1=n2+(n+1)2,故答案为:1+3+5…+2n+1…+5+3+1,n2,(n+1)2;(3)1+3+5+…+201+203+201+…+5+3+1=1012+1022=20605,故答案为:20605.【点评】本题考查了点阵与等式的关系,关键找出其中蕴含的规律.32.【分析】(1)根据新定义列出算式计算即可;(2)根据新定义得到关于m的方程,即可得到答案.【解答】解:(1)1⊕5=(5﹣4)⊕5=﹣2+(﹣4)=﹣6;100⊕100=(5+95)⊕(5+95)=﹣2+95﹣2×95=﹣97;故答案为:﹣2;﹣97;(2)∵3m⊕3m=(m+2m)⊕(m+2m)=(﹣1)m•m2+2m﹣2×2m=(﹣1)m•m2﹣2m,∴(﹣1)m•m2﹣2m=8m,∴(﹣1)m•m2=10m,∵m为正整数,∴m=10.【点评】本题考查整式的混合运算,涉及新定义,解题的关键是读懂题意,能根据新定义列出算式.33.【分析】(1)根据例子,仿照写出N(1,1)、N(2,3);(2)从例子和(1)求得的值,总结规律;(3)求k=1、k=2、k=3时,N(3,k)的值,从中总结规律.【解答】解:(1)n=1,S=1,即|x1|=1,满足条件的一元有序数组有(1)、(﹣1),共两个,N(1,1)=2,n=2,S=3,即|x1|+|x2|=3,满足条件的二元有序数组有(0,3)、(3,0)、(1,2)、(2,1)、(﹣3,0)、(0,﹣3)、(﹣1,﹣2)、(﹣2,﹣1),共8个,则N(2,3)=8,故答案为:2,8;(2)由N(2,1)=4、N(2,3)=8,可得,N(2,S)=2(S+1),N(2,S)=200时,S=﹣1=99,故答案为:99;(3)k=1时,|x1|+|x2|+|x3|=1,满足条件的三元有序数组有(0,0,1)、(0,1,0)、(1,0,0)、(0,0,﹣1)、(0,﹣1,0)、(﹣1,0,0),共6个,则N(3,1)=6,∴k=2时,N(3,2)=12,k=3时,N(3,3)=18,∴N(3,k)=2×3k=6k,故答案为:6k.【点评】本题考查了数字的变化类,找到变化规律是解题的关键.。

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)

最新北师大版七年级上学期数学期中试卷(含参考答案)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、﹣5的相反数是()A.﹣5B.5C.D.﹣2、如果向北走5米记作+5米,那么﹣7米表示()A.向东走7米B.向南走7米C.向西走7米D.向北走7米3、袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克4、如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A.B.C.D.5、下列平面图形不能够围成正方体的是()A.B.C.D.6、下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=17、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±48、一个两位数,十位数字是a,十位数字比个位数字小2,这个两位数是()A.a(a+2)B.10a(a+2)C.10a+(a+2)D.10a+(a﹣2)9、已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202110、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.11、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定12、高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3;②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2≤x<3;④当﹣1⩽x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,满分18分)13、比较大小:(填>,=,<).14、如果3x2y m与﹣2x n﹣1y3是同类项,那么m+n=.15、若等式|x﹣2|+(y+1)2=0成立,那么y x的值为.16、一个多项式加上x2﹣2y2等于3x2+y2,则这个多项式是;17、下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.18、如图,5个棱长为1cm的正方体摆在桌子上,为了美观,将这个几何体的所有露出部分(不包含底面)都喷涂油漆,若喷涂1cm2需要油漆0.2克,则喷涂这个几何体需要克油漆.最新北师大版七年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2);20、如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21、化简与计算:(1)化简:3(2a2﹣4b)﹣2(a2﹣4b);(2)先化简再求值:2(a2b+ab2)﹣2(a2b﹣1)+2ab2﹣2,其中a=﹣2,b=2.22、已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.(1)若A+B的值与x无关,求a b.(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.23、某县教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.如表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日+9+10﹣10+13﹣20+8与标准的差(分钟)(1)星期五婷婷读了分钟;(2)她读得最多的一天比最少的一天多了分钟;(3)求她这周平均每天读书的时间.24、有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.25、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价80元,厂方在开展“双11”促销活动期间,可以同时向客户提供两种优惠方案,方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款,现某客户要到该服装厂购买西装20套,领带x条(x超过20).(1)若该客户按方案①购买,需付款元(用含x化简后的式子表示);若该客户按方案②购买,需付款元(用含x化简后的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,请给出一种更为省钱的购买方案,并计算出所需的钱数.26、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣2和﹣6的两点之间的距离是.③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.参考答案1-12:BBCABB DCACBA13、<14、6 15、1 16、2x2+3y2 17、(7n+1 18、3.219、(1)原式=﹣42(2)原式=120、解:如图所示:21、(1)原式=4a2﹣4b (2)原式=﹣3222、解:(1)、﹣27(2)、1623、解:(1)、28;(2)、23;(3)、她这周平均每天读书的时间为34分钟.24、解:(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=a.25、解:(1)答案为:(10400+80x);(10800+72x);(2)按方案①购买较为合算;(3)更为省钱的购买方案为:先按方案①购买20套西装,则领带赠送20条,再按方案②购买剩余的10条领带,共需花费12720元.26、解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|=a+4+3﹣a=7;=5+0+2=7,③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小理由是:a=1时,正好是3与﹣4两点间的距离.。

北师大实验中学2023~2024学年初一上学期数学期中模拟试题参考答案

北师大实验中学2023~2024学年初一上学期数学期中模拟试题参考答案

北师大实验中学2023~2024学年度第一学期初一数学期中模拟考试答案 一、选择题(本大题共10道小题,每小题3分,共30分)二、填空题(本大题共10道小题,每小题2分,共20分)11.12、2-; 12.<; 13.12.240; 14.27-、3;15.1; 16.1-; 17.2a b+;18.2a -; 19.()()23212n n n n ++=++; 20.162--或.(少写扣1分,错写不给分)三.计算题(本大题共4道小题,每小题5分,共20分) 21.()()()75410--++---22.31112424⎛⎫⎛⎫-⨯-÷- ⎪ ⎪⎝⎭⎝⎭7541012142=--++=-+=解:原式33442912=⨯⨯=解:原式(第一行每个1分,结果1分) (第一行每个1分,符号1分,结果1分)23.5132360241845⎛⎫-⨯-+- ⎪⎝⎭()()51323603603602418457526016169⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭=-+=-解:原式 (第一行1分,第二行每项1分,结果1分)24.()()324212322⎡⎤⎛⎫-÷-+-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦[]1491684924747⎡⎤=-÷-⨯⎢⎥⎣⎦=-÷-=-÷=-解:原式(第一行每个数1分,结果1分)四、解方程(本大题共2道小题,每小题5分,共10分)25.()()2311132x x --=-+ 26.3157146y y ---=-621136631162331x x x x x x -+=---+=---==-解:()()1233125712931014910141231y y y y y y y --=---+=-+-+=--=-解:(去括号每个括号去对给1分,其余步骤每步1分)五.解答题(本大题共4道小题,第27、28题各4分,第29、30题各6分,共20分)27.解:∵()2130a b -++=,()210,30a b -≥+≥,∴13a b =⎧⎨=-⎩,(2分)原式=222222223321a b ab a b ab a b ab +-+--=-++,(1分)将13a b =⎧⎨=-⎩代入,得:原式=()()221313113-⨯-+⨯-+=.(1分)28.(方法一)解:∵2287A B x x -=--,∴()()()222228723587143B A x x x x x x x x =---=+----=+-,(2分) ∴()()2222352143251A B x x x x x x -=+--+-=--+.(2分) (方法二)解:∵()2223A B A B A -=--,(2分)∴()()2222287335251A B x x x x x x -=---+-=--+.(2分)29.解:(1)5x ;(1分)(2)7360x -;(2分,没化简扣1分)(3)∵平均水价大于前两阶梯水价,∴该用户用水量处于第三阶梯,(1分) 设该用户用水量为x 立方米,由题意得:()()5180726018092607.4x x ⨯+⨯-+-=,(1分) 解得:x =550,答:该用户用水量为550立方米.(1分)30.解:(1)4;(1分)(2)P 的位置是42t -,Q 的位置是10t +,(1分)()()4210312PQ t t t =--+=-;(1分)(也可以分类讨论,每类1分) (3)P 的位置是42t -;Q 的位置是10t +;B 的位置是10;当PB =PQ 时,P 为BQ 中点:1010422t t ++-=,解得247t =;(1分) 当PB =BQ 时,B 为PQ 中点:1042102t t ++-=,解得125t =;(1分)当PQ =BQ 时,Q 为PB 中点:4210102t t -++=,解得6t =.(1分)六、附加题(本大题共3小题,第31、32题各6分,第33题8分,共20分)31.(1)90;(2)()()312n n ++;(3)25.(每空2分,第2问结果对即可)32.(1)246x -;(2)334x --;(3)248x -+.(每空2分,第3问答案不唯一,248x ax -++的形式都可以)33.(1)①C 、D ;(2分,少写扣1分,多写或错写不给分)②1≤x ≤5;(2分,边界没取等号扣1分,边界求错不给分)(2)与点H 关于线段OM “区间对称”的点所对应的数的范围是5≤x ≤9,只要让线段KL 上的所有点都在这个范围内即可, 点K 对应的数为43t -,点L 对应的数为41t -,(1分) 当点K 表示的数是5时,435t -=,解得2t =;(1分) 当点L 表示的数是9时,419t -=,解得 2.5t =;(1分) ∴2 2.5t ≤≤.(1分)。

最新北师大版七年级上学期数学期中考试试卷(附答案答卷)

最新北师大版七年级上学期数学期中考试试卷(附答案答卷)

最新北师大版七年级上学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、8的相反数是()A.B.C.﹣8D.82、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元3、某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.﹣9℃4、开州区大约有1680000人口,1680000用科学记数法表示,正确的是()A.168×104B.16.8×105C.1.68×104D.1.68×1065、下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a36、下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.7、下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|8、下列说法正确的是()A.﹣15ab的系数是15 B.的系数是C.4a2b2的次数是4D.a4﹣2a3b2+b2的次数是49、当x=1时,整式ax3+bx﹣1的值等于10,那么当x=﹣1时,整式ax3+bx﹣1的值为()A.﹣10B.10C.﹣12D.1210、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形的图形需要11根火柴;图③搭3个六边形的图形需要16根火柴;…;按此规律,搭369个六边形的图形需要的火柴数是()A.2214B.2213C.1848D.1846二、填空题(每小题3分,满分18分)11、如果单项式3x m y与﹣5x3y n﹣1是同类项,那么m n的值是.12、比较大小:(填“>”或“<”)13、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种生活现象可以反映的数学原理是.14、在数轴上点P表示的数是﹣2,将点P沿数轴移动4个单位长度后所得的点A表示的数是.15、已知a,b互为相反数,c,d互为倒数,|m﹣3|+|2n﹣4|=0,x的绝对值为2,则的值为.16、已知a、b、c为实数,且abc>0,则+=.最新北师大新版七年级上学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:32÷(﹣1)2+5×(﹣2)+|﹣4|.18、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=2,y=﹣3.19、如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,求2x﹣y+z的值.20、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21、有理数a<0,b>0,c>0,且|b|<|a|<|c|.(1)在数轴上将a,b,c三个数填在相应的括号中;(2)化简:|2a﹣b|+|c﹣b|﹣2|a﹣c|.22、已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B 的值.23、某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米收费1.3元;超过5千米,每千米收费2.4元.(不足1千米的按1千米计算)(1)若某人乘坐了2千米的路程,则他应支付的费用为,乘坐了4千米的路程,则他应支付的费用为,乘坐了8千米的路程,则他应支付的费用为;(2)若某人乘坐了x(x>5的整数)千米的路程,则他应支付的费用为多少?(3)若某人乘坐了14.2千米的路程,请聪明的你为他算一算需准备多少车费?24、先阅读并填空,再解答问题:我们知道,,,那么:(1)用含有n的式子表示你发现的规律:;(2)计算:;(请写出解题过程)(3)计算:.(请写出解题过程)25、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b﹣2|=0,A、B之间的距离记为|AB|=|a﹣b|或|b﹣a|,请回答问题:(1)直接写出a,b,|AB|的值,a=,b=,|AB|=.(2)设点P在数轴上对应的数为x,若|x﹣3|=5,则x=.(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣1,动点P表示的数为x.①若点P在点M、N之间,则|x+1|+|x﹣4|=;②若|x+1|+|x﹣4|=10,则x=;③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?最新北师大版七年级上学期数学期中考试参考答案11、9 12、> 13、点动成线 14、﹣6或2 15、21或﹣19 16、4或0三、解答题17、318、﹣2119、020、解:(1)答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:21、解:(a<0<b<c,如图,(2)﹣c.22、解:(1)a=﹣2,b=1 (2)﹣19.23、解:(1)10元,11.3元,19.8元;(2)(2.4x+0.6)元;(3)需准备36.6元车费.24、解:(1)(2);(3).25、解:(1)﹣3,2,5.(2)8或﹣2.(3)①、答案为:5;②、答案为:﹣3.5或6.5;③经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.。

北师大版七年级下册数学《期中检测试卷》及答案

北师大版七年级下册数学《期中检测试卷》及答案
[详解]A.∵∠B=∠5,∴AB∥CD,故本选项不符合题意;
B.∵ ,∴AB∥CD,故本选项不符合题意;
C.∵ ,∴AB∥CD,故本选项不符合题意;
D.∵ ∴AD∥BC,故本选项符合题意.
故选D.
[点睛]此题考查平行线的判定,解题关键在于掌握判定定理.
5.点A(3,4)和点B(3,-5),则A、B相距()
A. 1个单位长度B. 6个]C
[解析]
[分析]
根据点A、B的坐标特征即可求出线段AB的长.
[详解]解:∵点A(3,4)和点B(3,-5)的横坐标相同
∴A、B相距4-(-5)=9个单位长度
故选C.
[点睛]此题考查的是求平面直角坐标系中两点之间的距离,掌握横坐标相同的两点之间的距离求法是解决此题的关键.
12.用吸管吸易拉罐内的饮料时,如图,∠1=100°,则2=_____(易拉罐的上下底面互相平行)
13. 的绝对值是_______.
14. 的相反数是______.
15.如图,各个小正方形格子的边长均为1,图中A,B两点的坐标分别为(-3,5),(3,5),则点C在同一坐标系下的坐标为_______.
三、解答题(一)(每题6分,共18分)
18.计算:
[答案]
[解析]
[分析]
根据合并同类二次根式法则计算即可.
[详解]解:
=
=
[点睛]此题考查的是二次根式的加减运算,掌握合并同类二次根式法则是解决此题的关键.
19.计算:
[答案]1
[解析]
分析]
根据绝对值的性质和合并同类二次根式法则计算即可.
[详解]解:
[详解]解:(1)∵数m的两个不等的平方根为a+3和2a-15

最新北师大版数学七年级上册《期中检测试题》(含答案)

最新北师大版数学七年级上册《期中检测试题》(含答案)

2020-2021学年度第一学期期中测试北师大版七年级数学试题一、选择题(本题满分24分,共有8道小题,每小题3分)1.-14的相反数是()A. - 4B. 14C. 4D. -142.下列几何体中,从正面、左面、上面观察的几何体的形状相同的有()个A. 1B. 2C. 3D. 43.唐家山堰塞湖是汶川大地震形成的最大、最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为()立方米A. 2037B. 2.037×103C. 2037×104D. 2.037×1074.在数轴上,点,A B表示的数分别是 1.2和5.2,点C到,A B两点的距离相等,则点C表示的数是()A. 1B. 2C. 3D. 45.在一张日历上,任意圈出竖列上的三个数的和可能是()A. 78B. 40C. 39D. 286.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()A B.C. D.7.有理数()22312,2,2,2----按从小到大的顺序排列是( ) A. ()23212222-<-<-<- B. ()22312222-<-<-<- C. ()22312222-<-<-<- D. ()22312222-<-<-<- 8.观察下列数据的排列规律:1, 2, 3, 4, 5, 6, 7,14,13,12,11,10,9, 8,15,16,17,18,19,20,21,28,27,26,25,24,23,22,……用(a ,b )可以表示任意一个数的位置,如5的位置可以用(1,5)表示,26的位置可以用(4,3)来表示,则2012这个数的位置可以表示为( )A. (288,3)B. (288,5)C. (287,3)D. (287,5)二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.213-的倒数是___________,|2|-的相反数是____________. 10.2325x y π-的系数是____________,次数是___________. 11.若()2320m n -++=,则m+2n 的值是______. 12.某日傍晚,崂山的气温由上午的零上2C 下降了7C ,这天傍晚崂山的气温是______________C . 13.将一张0.1毫米厚的白纸对折30次后,其厚度为____________毫米(只要求列算式).14.若m ,n 互相反数(m ,n 均不为0),且x ,y 互为倒数,则()5m xy m n xy n+-+=___________. 15.已知312+n a b 与223--m a b 是同类项,则这两个同类项和为___________.16.在抗震救灾中,搭建如图①所示的单顶帐篷需要17根钢管,若这样的帐篷按图②、③的方式串起来,则n 顶这样的帐篷串起来共需____________根钢管.三、解答题(本题满分72分,共有8道小题)17.请分别画出图中几何体从左面、上面看到的形状图.18.计算下列各题(1)2318(8)(16)---+-(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(3)1111364912⎛⎫-+⨯-+ ⎪⎝⎭(4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭19.化简下列各题(1)3(24)2()x x y y x --+-(2)()221282a ab a ab -+- 20.先化简,再求值(1)已知236A m mn =-,22B m mn n =--,求123A B -的值,其中1m =-,3n =. (2)若6a b -=,1ab =,求(223)(322)(4)ab a b ab b a a b ab -++-+--++的值.21.某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).22.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负. 2019年10月29日,他先后办理了七笔业务: +2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.(1)若他早上领取备用金4000元,那么下班时应交回银行_________元钱.(2)请判断在这七次办理业务中,小张在第_______次业务办理后手中现金最多,第_________次业务办理后手中现金最少.(3)若每办一件业务,银行发给业务量的0.2%作为奖励,小张这天应得奖金多少元?(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.23.某班将买一些羽毛球和羽毛球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的羽毛球和羽毛球拍,羽毛球拍每副定价48元,羽毛球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒羽毛球,乙店全部按定价的9折优惠. 该班要买球拍5副,羽毛球x 盒(x 不小于5盒).(1)用代数式表示去甲、乙两店购买所需的费用.(2)当购买30盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?(2)当购买50盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?24.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________; 你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321②由②式左右两边分别减去①式左右两边,得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程.答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.-14的相反数是()A. - 4B. 14C. 4D. -14【答案】B【解析】【分析】根据相反数的定义求解即可.【详解】解:-14的相反数是14,故选B.【点睛】本题考查相反数的定义:只有符号不同的两个数互为相反数.2.下列几何体中,从正面、左面、上面观察的几何体的形状相同的有()个A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:第一个正方体的三视图都是正方形,符合题意;第二个球的三视图都是圆,符合题意;第三个圆锥的主视图和左视图都是矩形,但俯视图是圆,不符合题意;第四个的三视图都是都是,符合题意;故选:C.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题的关键.3.唐家山堰塞湖是汶川大地震形成的最大、最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为()立方米A. 2037B. 2.037×103C. 2037×104D. 2.037×107【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:2 037万=2 037×104=2.037×107=2.037×107.故选:D.【点睛】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.4.在数轴上,点,A B表示的数分别是 1.2-和5.2,点C到,A B两点的距离相等,则点C表示的数是()A. 1 B. 2 C. 3 D. 4【答案】B【解析】【分析】根据线段中点公式即可求出点C表示的数.【详解】1.2 5.24222C-+===故答案为:B.【点睛】本题考查了数轴上的中点问题,掌握中点公式是解题的关键.5.在一张日历上,任意圈出竖列上的三个数的和可能是()A. 78B. 40C. 39D. 28 【答案】C【解析】可以设中间一个数是x,其它两个分别是x+7和x-7,求出它们三数的和,恰好是3的倍数,以此来判断.【详解】解:设圈出的第二个数为x,则第一数为x-7,第三个数为x+7,三个数的和为:x+(x-7)+(x+7)=3x,三个数的和为3的倍数,由四个选项可知只有78和39是3的倍数,但78÷3=26,26不可能是中间数,故选:C.【点睛】本题考查了一元一次方程的应用,解题的关键是找出三数的关系,然后根据三数之和与选项对照求解.6.下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()A. B.C. D.【答案】B【解析】【分析】根据图中三个数字所处的位置关系作答.【详解】A.由展开图知,1与2是相对的面,不相邻,不符合题意.B.由展开图知,1与2相邻,1与3相邻,3与2相邻,B选项中的展开图折叠后与所得正方体的各个面上所标数字一致,符合题意.C.由展开图知,1与3是相对的面,不相邻,不符合题意.D.由展开图知,2与3是相对的面,不相邻,不符合题意.【点睛】考查正方体的表面张开图,掌握相对不相邻是解题的关键.考查学生的空间想象能力.7.有理数()22312,2,2,2----按从小到大的顺序排列是( ) A. ()23212222-<-<-<- B. ()22312222-<-<-<- C. ()22312222-<-<-<- D. ()22312222-<-<-<- 【答案】B【解析】【分析】计算各有理数的值,再比较大小即可得出答案.【详解】224-=-,()224-=,328-=,1122-=- ∵14482-<-<< ∴()22312222-<-<-<- 故答案为:B .【点睛】本题考查了有理数大小的比较问题,掌握乘方的运算法则和绝对值的性质是解题的关键. 8.观察下列数据的排列规律:1, 2, 3, 4, 5, 6, 7,14,13,12,11,10,9, 8,15,16,17,18,19,20,21,28,27,26,25,24,23,22,……用(a ,b )可以表示任意一个数的位置,如5的位置可以用(1,5)表示,26的位置可以用(4,3)来表示,则2012这个数的位置可以表示为( )A. (288,3)B. (288,5)C. (287,3)D. (287,5)【答案】B【解析】【分析】观察所给数据可知,第一行最后一个数是7,第二行第一个数为14,第三行最后一个数为21,第四行第一个数是28…找到7的奇数倍的数在奇数行最后一个,7的偶数倍的数在偶数行第一个的规律即可求解;【详解】解:观察所给数据可知,7的奇数倍的数在奇数行最后一个,7的偶数倍的数在偶数行第一个,∵7×288=2016,∴2016在第288行第一个,∴2012在第288行第五个, ∴2012这个数的位置可以表示为(288,5).故选:B.【点睛】本题考查了规律型问题中的数字变化问题,规律就在数据中,所以学生平时要锻炼自己的总结能力及逻辑能力.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.213-的倒数是___________,|2|-的相反数是____________.【答案】(1). -35,(2). -2【解析】【分析】直接利用倒数的定义以及相反数的定义分析得出答案.【详解】解:213-的倒数为:-35,|2|-=2的相反数为:-2.故答案为:-35,-2.【点睛】本题考查了倒数、相反数的定义,正确把握相关定义是解题的关键.10.2325x yπ-的系数是____________,次数是___________.【答案】(1). -225π,(2). 4【解析】分析】根据单项式系数和次数的概念求解.【详解】解:单项式2325x yπ-的系数为-225π,次数为4.故答案为:-225π,4.【点睛】本题考查了单项式的概念:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.11.若()2320m n-++=,则m+2n的值是______.【答案】-1【解析】【分析】根据绝对值的非负性质以及偶次方的非负性可得关于m 、n 的方程,求得m 、n 的值即可求得答案.【详解】由题意得:m-3=0,n+2=0,解得:m=3,n=-2,所以m+2n=3-4=-1,故答案为-1.【点睛】本题考查了非负数的性质,代数式求值,熟知“几个非负数的和为0,那么和每个非负数都为0”是解题的关键.12.某日傍晚,崂山的气温由上午的零上2C 下降了7C ,这天傍晚崂山的气温是______________C .【答案】5-【解析】【分析】 根据有理数的减法法则计算即可.【详解】275C -=-故答案为:5-.【点睛】本题考查了有理数的加减运算,掌握有理数的加减运算法则是解题的关键.13.将一张0.1毫米厚的白纸对折30次后,其厚度为____________毫米(只要求列算式).【答案】0.1×230【解析】【分析】 根据对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米,对折三次的厚度是0.1×23毫米…,根据此规律可知对折30次的厚度为0.1×230毫米. 【详解】解:∵一张纸的厚度是0.1毫米, ∴对折一次的厚度是0.1×21毫米,对折两次的厚度是0.1×22毫米…, ∴对折11次的厚度为0.1×211毫米. 故答案为:0.1×230. 【点睛】本题考查了有理数乘方的运算法则,本题属规律性题目,根据题意找出每次对折后纸片厚度的规律是解题的关键.14.若m ,n 互为相反数(m ,n 均不为0),且x ,y 互为倒数,则()5m xy m n xy n +-+=___________. 【答案】6【解析】【分析】由m=-n ,xy=1,即可推出m+n=0,m n=-1,即可推出原式=1×0-(-1)+5×1=0+1+5=6. 【详解】解:∵m 、n 互为相反数,x 、y 互为倒数,∴m=-n ,xy=1,∴m+n=0,m n=-1, ∴原式=1×0-(-1)+5×1=0+1+5=6. 故答案为6.【点睛】本题主要考查相反数、倒数的定义和性质,关键在于根据相关的性质推出xy=1,m+n=0,m n =−1. 15.已知312+n a b 与223--m a b 是同类项,则这两个同类项的和为___________.【答案】32a b -【解析】【分析】根据同类项的定义即可确定x ,y 的次数,然后根据合并同类项的法则即可求解.【详解】解:因为单项式312+n a b 与223--m a b 是同类项,所以3221m n =-⎧⎨=+⎩, 解得:m=5,n=1.∴312+n a b +(223--m a b )=323223a b a b - =32a b -.故答案为:32a b -.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.16.在抗震救灾中,搭建如图①所示的单顶帐篷需要17根钢管,若这样的帐篷按图②、③的方式串起来,则n 顶这样的帐篷串起来共需____________根钢管.【答案】11n+6【解析】【分析】图①中,需要17根;图②中,需要17+11(根),即后边多1顶帐篷,多11根钢管,根据规律计算即可. 【详解】解:结合图形,发现:图①中,需要17根;图②中,需要17+11(根),即后边多1顶帐篷,多11根钢管.则n顶这样的帐篷串起来共需17+11(n−1)=11n+6(根).故答案为11n+6.【点睛】本题考查图形类规律探索,此题要能够结合图形,发现钢管数量之间的关系:在17的基础上,多1顶帐篷,多11根钢管.三、解答题(本题满分72分,共有8道小题)17.请分别画出图中几何体从左面、上面看到的形状图.【答案】见解析【解析】【分析】根据三视图的定义画出图形即可.【详解】如图所示:【点睛】本题考查了三视图的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.18.计算下列各题(1)2318(8)(16)---+-(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭(3)1111364912⎛⎫-+⨯-+⎪⎝⎭ (4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭【答案】(1)-3;(2)74-;(3)7;(4)-90. 【解析】【分析】(1) 根据有理数的加减法法则解答即可;(2)先通分,再利用有理数的加法法则计算即可;(3) 原式利用乘法分配律计算即可得到结果;(4) 原式先计算乘方运算,再计算乘除运算,最后算加减即可得到结果;【详解】(1)2318(8)(16)---+-=23-18+8-16=-3;(2)31544263⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭=9610167121212124--+-=- ;(3)1111364912⎛⎫-+⨯-+ ⎪⎝⎭=-1+1113636364912⨯-⨯+⨯=-1+9-4+3=7; (4)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭=5116(5)(64)84-⨯-⨯-⨯-=-10-80=-90. 【点睛】本题考查了有理数的混合运算,解题的关键是掌握先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简下列各题(1)3(24)2()x x y y x --+-(2)()221282a ab a ab -+- 【答案】(1)-7x+14y;(2)231722a ab -. 【解析】【分析】(1)先去括号,然后合并同类项,继而可得出答案;(2)先去括号,再合并同类项.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】(1)3(24)2()x x y y x --+-=x-6x+12y+2y-2x=-7x+14y;(2)()221282a ab a ab -+-=2a²-12ab-12a²-8ab=231722a ab -. 【点睛】本题考查了整式的加减,解题的关键是熟记去括号法则,熟练运用合并同类项的法则. 20.先化简,再求值(1)已知236A m mn =-,22B m mn n =--,求123A B -的值,其中1m =-,3n =. (2)若6a b -=,1ab =,求(223)(322)(4)ab a b ab b a a b ab -++-+--++值. 【答案】(1)-m²+2n²,17;(2)-6ab+3a-3b ,12. 【解析】【分析】(1)把A 与B 代入123A B -中,去括号合并得到最简结果,将m 与n 的值代入计算即可求出值; (2)先将(223)(322)(4)ab a b ab b a a b ab -++-+--++变形得出-6ab+3(a-b),再将6a b -=,1ab =代入,即可求出答案.【详解】解:(1)∵236A m mn =-,22B m mn n =--, ∴123A B -=2221(36)2()3m mn m mn n ----=m²-2mn-2m²+2mn+2n²=-m²+2n², 当m=-1,n=3时,原式=-1+18=17;(2)∵6a b -=,1ab =,∴(-2ab+2a+3b)-(3ab+2b-2a)-(a+4b+ab)=-2ab+2a+3b-3ab-2b+2a-a-4b-ab =-6ab+3a-3b=-6ab+3(a-b)=-6×1+3×6=12.【点睛】本题考查了整式的化简求值,解题的关键是在进行整式的化简求值时,先化简再求值,以简化计算.21.某市设计的长方形休闲广场如图所示,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积.(2)若休闲广场的长为90米,宽为40米,求广场空地的面积(计算结果保留π).【答案】(1)xy-516π x 2;(2)3600-101254π. 【解析】【分析】 (1)根据中广场空地面积=长方形广场的面积-两个半圆形花坛的面积-圆形喷水池的面积求解即可; (2)将数值x 和y 代入(1)中的面积公式可得广场空地的面积.【详解】解:(1)广场空地的面积为:xy−π(2x )2−π(4x )2=xy−516πx 2; (2)当x=90,y=40时,广场空地的面积为:90×40−516π×902=3600−101254π,因此,广场空地的面积为(3600-101254π)米2.【点睛】本题考查了列代数式及代数式求值,关键是熟练掌握有关圆形面积和长方形面积的相关计算.22.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负. 2019年10月29日,他先后办理了七笔业务:+2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.(1)若他早上领取备用金4000元,那么下班时应交回银行_________元钱.(2)请判断在这七次办理业务中,小张在第_______次业务办理后手中现金最多,第_________次业务办理后手中现金最少.(3)若每办一件业务,银行发给业务量的0.2%作为奖励,小张这天应得奖金多少元?(4)若记小张第一次办理业务前的现金为0点,用折线统计图表示这7次业务办理中小张手中现金的变化情况.【答案】(1)4300元;(2)五,七;(3)7.3元.(4)见解析.【解析】【分析】(1)他办理的七笔业务的数据相加,在加上4000元既得下班时应交回银行的钱数.(2)根据所给的数据直接计算比较可得在第五次业务办理后手中现金最多,第七次业务办理后手中现金最少.(3)求出七笔业务给出的数据的绝对值的和,在乘以0.1%即可.(4)根据他办理的七笔业务的数据,先描点,在用线段连接即可得折线图.【详解】解:(1)下班时应交回银行:4000+2000-800+400-800+1400-1700-200=4300(元).(2)+2000元、-800元、+400元、-800元、+1400元、-1700元、-200元.第一次:2000元;第二次:2000-800=1200元;第三次:1200+400=1600元;第四次:1600-800=800元;第五次:800+1400=2200元;第六次:2200-1700=500元;第七次:500-300=200元;∴小张在第五次办理业务后,手中的现金最多;第七次办理业务后,手中的现金最少.故答案为:五,七.(3)|+2000|+|-800|+|+400|+|-800|+|+1400|+|-1700|+|-200|=7300,这天小张应得奖金为7300×0.1%=7.3元.(4)画出折线统计图如下:【点睛】本题考查了正负数的运用和折线统计图的画法,注意先描点再用线段连接是画折线统计图的基本步骤.23.某班将买一些羽毛球和羽毛球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的羽毛球和羽毛球拍,羽毛球拍每副定价48元,羽毛球每盒定价12元,经洽谈后,甲店每买一副球拍赠一盒羽毛球,乙店全部按定价的9折优惠. 该班要买球拍5副,羽毛球x盒(x不小于5盒).(1)用代数式表示去甲、乙两店购买所需的费用.(2)当购买30盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?(2)当购买50盒羽毛球时,若让你选择一家商店去买,你打算去哪家商店购买?为什么?【答案】(1)甲(12x+180)元;乙(10.8x+216)元;(2)见解析;(3)见解析.【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=40代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先甲店购买5副球拍,送5盒乒乓球,另外45盒乒乓球再乙店购买即可.【详解】解:(1)甲店购买需付款48×5+(x-5)×12=(12x+180)元;乙店购买需付款48×90%×5+12×90%×x=(10.8x+216)元;(2)当x=30时,甲店需12×30+180=540元; 乙店需10.8×30+216=540元; 所以甲乙店购买一样;(3)当x=50时,甲店需12×50+180=780元; 乙店需10.8×50+216=756元; 所以乙店购买合算;先甲店购买5副球拍,送5盒乒乓球,另外35盒乒乓球再乙店购买,则共需:5×48+(50-5) ×12×0.9=726元,∵726<756<780, ∴先甲店购买5副球拍,送5盒乒乓球240元,另外45盒乒乓球再乙店购买需486元,共需726元.【点睛】本题考查了一元一次方程的应用,理解两种方案的优惠方案,得出运算的方法是解题的关键. 24.填空并解答相关问题:(1)观察下列数1,3,9,27,81…,发现从第二项开始,每一项除以前一项的结果是一个常数,这个常数是________;根据此规律,如果a n (n 为正整数)表示这列数的第n 项,那么a n =__________; 你能求出它们的和吗?计算方法:如果要求1+3+32+33+…+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得3S=3+32+33+…+320+321②由②式左右两边分别减去①式左右两边,得3S-S=(3+32+33+…+320+321)-(1+3+32+33+…+320),即2S=321-1,两边同时除以2得()211312S =-. (2)你能用类比的思想求1+6+62+63+…+6100的值吗?写出求解过程.(3)你能用类比的思想求1+m+m 2+m 3+…+m n (其中mn≠0,m≠1)的值吗?写出求解过程.【答案】(1) 3, a n =13n -;(2) ()1011651S =-;(3) ()1111-n m S m +=-. 【解析】【分析】(1) 从第二项开始,每一项除以前一项的结果是一个常数3,据此解答即可;(2) 设可令S=1+6+62+63+…+6100,根据等式性质,此等式的两边同时乘以6,得6S=6+62+63+…+6100+6101,两等式相减得6S-S=6101-1,解关于S 的方程可求解;(3) 设可令S=1+m+m 2+m 3+…+m n ,根据等式的性质,此等式的两边同时乘以m ,得mS=m+m 2+m 3+…+m n +m n+1,两等式相减得(m-1)S=m n+1-1,解关于S 的方程可求解..【详解】(1)从第二项开始,每一项除以前一项的结果是一个常数,这个常数是3, a n =13n -;(2) 可令S=1+6+62+63+ (6100)将①式两边同乘以6,得6S=6+62+63+…+6100+6101②由②式左右两边分别减去①式左右两边,得6S-S=(6+62+63+…+6100+3101)-(1+6+62+63+…+6100),即5S=6101-1,两边同时除以6得()1011651S =-. (3) 可令S=1+m+m 2+m 3+…+m n ①将①式两边同乘以m ,得mS=m+m 2+m 3+…+m n +m n+1②由②式左右两边分别减去①式左右两边,得mS-S=(m+m 2+m 3+…+m n +m n+1)-(1+m+m 2+m 3+…+m n ),即(m-1)S=m n+1-1,两边同时除以m 得()1111-n m S m +=-. 【点睛】本题考查了规律型中的数字的变化类,解题的关键是仿照例子计算1+3+32+33+…+320,本题其实是等比数列的求和公式,但初中未接触过该方面的知识,需要借助于错位相减法来求出结论.。

新北师大版七年级数学下册期中阶段检测试题卷含答案解析(49)

新北师大版七年级数学下册期中阶段检测试题卷含答案解析(49)

一、选择题(共10题)1.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足( )A.a=32b B.a=2b C.a=52b D.a=3b2.首条贯通丝绸之路经济带的高铁线进入全线拉通试验阶段,试运行期间,一列动车匀速从西安开往西宁,一列普通列车匀速从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,下列说法:①西宁到西安两地相距1000千米,两车出发后3小时相遇;②普通列车到达终点共需12小时;③普通列车的速度是2503千米/小时;④动车的速度是250千米/小时,其中正确的有( )个.A.2B.3C.4D.03.如图,一只蚂蚁以均匀的速度沿台阶A1→A2→A3→A4→A5爬行,那么蚂蚁爬行的高度ℎ随时间t变化的图象大致是( )A.B.C.D.4.下列运算正确的是( )A.a−2÷a−1=a2B.a−1×a2=a−2 C.(a−2)−1=a2D.a−2+a−1=a−35.下列运算正确是( )A.ab÷(a+b)=b+a B.1a +1b=2a+bC.a5÷a2=a3D.(ab2)3=a3b56.一辆公共汽车从车站开出,加速一段时间后开始匀速行驶,过了一段时间,发现没多少油了,开到加油站加了油,几分钟后,又开始匀速行驶,下面哪一幅图可以近似刻画出该汽车这段时间内的速度变化情况( )A.B.C.D.7.如图,在长方形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧几里得在《几何原本》中利用该图解释了(a+b)(a−b)=a2−b2,连接AC,记△ABC的面积为S1,图中阴影部分的面积为S2,若a=3b,则S1S2的值为( )A.32B.718C.34D.548.如图,直线y=−2x+8交x轴、y轴于A,B两点,点P为线段AB上的点,过点P作PE⊥x轴于点E,作PF⊥y轴于点F,PF=2,将线段AB沿y轴负方向向下移动a个单位,线段AB扫过矩形PEOF的面积为Z,则下图描述Z与a的函数图象可能是( )A.B.C.D.9.如图,下列条件:① ∠1=∠3;② ∠2+∠4=180∘;③ ∠4=∠5;④ ∠2=∠3;⑤ ∠6=∠2+∠3,其中能判定直线l1∥l2的有( )A.5个B.4个C.3个D.2个10.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→ B→ C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.二、填空题(共7题)11.若0.0000003=3×10x,则x=.12.如图,已知AB∥CD,∠A=140∘,∠C=120∘,那么∠APC的度数为.13.已知平面上有三条不重合的直线,这三条直线最多将平面分成a个部分,最少分成b个部分,则a−b=;已知平面上有n条不重合的直线,这n条直线最多将平面分成a个部分,最少分成b个部分,则a−b=.14.本学期我们学习了“有理数的乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:“a m”与“a n”(a≠0,m,n都是正整数)叫做同底数幂,同底数幂除法记作a m÷a n.其中“同底数幂除法”运算法则中规定当m=n时,a m÷a n=a m−n=a0=1,根据“同底数幂除法”法则中的规定和你已经学过的知识,如果等式x2x+4÷x x+7=1成立,则请写出满足等式成立的所有的x的值.15.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是.16.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑500米.当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计)并立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是米.17.计算:(−a)3⋅(a2b3)2=.三、解答题(共8题)18.如图,将含30∘的直角三角尺的边AB紧靠在直线l上,∠ABC=60∘,D为直线l上一定点,射线DF与CB所在直线垂直.(1) 画出射线 DF .(2) 若射线 DF 保持不动,将 △ABC 绕点 B 以每秒 a ∘ 的速度顺时针旋转,同时射线 DP 从射线 DF 开始,绕点 D 以每秒 b ∘ 的速度逆时针旋转,且 a ,b 满足 √b −3a+∣a +b −4∣=0.当射线 DP 旋转一周后,与 △ABC 同时停止转动.设旋转时间为 t 秒. ① 求 a ,b 的值;② 是否存在某时刻 t ,使得 DP ∥BC ,若存在,请求出 t 的值,若不存在,请说明理由.19. 求方程 x 2+y 2−8x +10y +16=0 的整数解.20. 计算:∣∣−√8∣∣−(π−3)0+2cos45∘+(13)−1.21. 如图,C 为线段 AB 上一点,以 AC ,BC 为一边,在 AB 同侧作长方形 ACDE 和长方形CBFG ,且满足 AC =2AE ,CB =2BF ,记 AC =2a ,BC =2b (a >b ).(1) 记长方形 ACDE 的面积为 S 1,长方形 CBFG 的面积为 S 2,若 AB =6,a =2b ,求 S 1−S 2.(2) 如图 2,点 P 是线段 CA 上的动点.①当点 P 从点 C 向左移a−b 3个单位后,求 △EAP 与 △FBP 的面积之差.②当点 P 从点 C 向左移动a−b n(n >1) 个单位后,求 △EAP 与 △FBP 的面积之差为m 1.当点 P 从点 C 向左移动 (a −b ) 个单位后,求 △EAP 与 △FBP 的面积之差为 m 2,求m 1m 2的值(结果用含 n 的代数式表示).22. 有一张边长为 a 厘米的正方形桌面,因为实际需要,需将正方形边长增加 b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab +b 2=(a +b )2,对于方案一,小明是这样验证的:a 2+ab +ab +b 2=a 2+2ab +b 2=(a +b )2. 请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:23.已知3m=6,9n=2,求32m−4n+1的值.24.如图,已知AB∥EF,GC⊥CF,∠ABC=65∘,∠EFC=40∘,求∠BCG的度数.25.解方程:2x(x−1)−(x−4)(x+4)=x(x+2).答案一、选择题(共10题)1. 【答案】B【解析】由图形可知,S2=(a−b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2−S2=2ab−b2,∵S2=2S1,∴a2+2b2=2(2ab−b2),∴a2−4ab+4b2=0,即(a−2b)2=0,∴a=2b.【知识点】完全平方公式2. 【答案】C【解析】①由x=0时,y=1000知,西宁到西安两地相距1000千米,由x=3时,y=0知,两车出发后3小时相遇,正确;②由图象知x=t时,动车到达西宁,∴x=12时,普通列车到达西安,即普通列车到达终点共需12小时,正确;③普通列车的速度是100012=2503千米/小时,正确;④设动车的速度为x千米/小时,根据题意,得:3x+3×2503=1000,解得:x=250,动车的速度为250千米/小时,正确.【知识点】用函数图象表示实际问题中的函数关系3. 【答案】B【解析】因为蚂蚁以均匀的速度沿台阶A1⇒A2⇒A3⇒A4⇒A5爬行,从A1⇒A2的过程中,高度随时间匀速上升,从A2⇒A3的过程,高度不变,从A3⇒A4的过程,高度随时间匀速上升,从A4⇒A5的过程中,高度不变,所以蚂蚁爬行的高度ℎ随时间t变化的图象是B,故B正确.【知识点】图像法4. 【答案】C【解析】A.a−2÷a−1=a−1=1a,故此选项不符合题意;B.a−1×a2=a,故此选项不符合题意;C.(a−2)−1=a2,正确;D.a−2+a−1=1a2+1a=1+aa2,故此选项不符合题意.【知识点】负指数幂运算5. 【答案】C【解析】A选项:ab÷(a+b)=aba+b,故A错误;B选项:1a +1b=bab+aab=a+bab,故B错误;C选项:a5÷a2=a5−2=a3,故C正确;D选项:(ab2)3=a3b6,故D错误.【知识点】同底数幂的除法6. 【答案】B【解析】公共汽车经历:加速—匀速—减速到站—加速—匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.观察四个选项的图象是否符合题干要求,只有B选项符合.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】C【知识点】平方差公式8. 【答案】C【解析】由题意可知PF=2,PE=4,线段AB向下移动a个单位,当0<a≤4时,得AG=PN=a,FG=4−a,MF=12(4−a),所以MP=2−12(4−a)=12a,所以线段AB扫过矩形PEOF的面积Z=12×PM×PN=14a2,当4<a≤8时,如图,得AG=a,OG=8−a,OH=12(8−a),所以线段AB扫过矩形PEOF的面积Z=8−12×OG×OH=−14a2+4a−8,所以画成函数图象为:【知识点】用函数图象表示实际问题中的函数关系9. 【答案】B【解析】① ∵∠1=∠3,∴l1∥l2;② ∵∠2+∠4=180∘,∴l1∥l2;③ ∵∠4=∠5,∴l1∥l2;④由∠2=∠3不能判定l1∥l2;⑤ ∵∠6=∠2+∠3,∴l1∥l2.故选B.【知识点】同旁内角10. 【答案】B【知识点】图像法二、填空题(共7题)11. 【答案】−7【知识点】负指数科学记数法12. 【答案】100°【解析】如图:过P作PE∥AB,则AB∥PE∥CD,因为∠A=140∘,所以∠APE=180∘−140∘=40∘,因为∠C=120∘,所以∠CPE=180∘−120∘=60∘,所以∠APC=60∘+40∘=100∘.【知识点】平行公理的推论、同旁内角互补13. 【答案】3;n2−n2【知识点】相交线、用代数式表示规律14. 【答案】3或1【解析】有两种情况:①当x=1时,x2x+4÷x x+7=16÷18=1,② (2x+4)−(x+7)=0,解得:x=3,所以x=3或1.【知识点】同底数幂的除法、零指数幂运算15. 【答案】乙【解析】设三角形的底为a,高为ℎ与正方形重叠部分的高为ℎ1,速度为v,正方形边长为b,由图②可知,当三角形进入正方形时,易知ℎ1ℎ=vxa,则有ℎ1=vxℎa,∴S重叠=12vx⋅vxℎa=v2ℎ2ax2(v2ℎ2a为常数),且v2ℎ2a>0,故阴影部分面积S和时间x是一个开口向上的二次函数,当三角形开始离开正方形时,vx−ba =ℎ1ℎ,故ℎ1=ℎvx−ℎba,S重叠=12aℎ−12(vx−b)⋅ℎ=−ℎv22ax2+ℎvbax+aℎ2−ℎb22a,∵ℎ,a,v,b都为常数,∴阴影部分面积S和时间x是一个开口向下的二次函数.综上所述正确的答案为乙.【知识点】图像法16. 【答案】75【解析】由图形可知:乌龟125分钟到达终点,∴乌龟的速度为:500÷125=4(米/秒),设螃蟹的速度为v米/秒,25v−25×4=300,v=16,故螃蟹的速度为16米/秒,300÷4=75(分),75+25=100,∴点P(100,0),螃蟹惊醒后到达终点的时间为:(500−25×16)÷16=6.25 分钟,则螃蟹到达终点时,乌龟距终点的距离为:4×(125−100−6.25)=75(米). 故答案为:75.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】 −a 7b 6【知识点】积的乘方三、解答题(共8题) 18. 【答案】(1) 如图:射线 DF 的位置有两种情况. (2) ①∵√b −3a+∣a +b −4∣=0, ∴{b −3a =0,a +b −4=0,∴{a =1,b =3.② 以射线 DF 在直线 l 下方为例计算:Ⅰ.当 DP 和 BC 在直线 l 的两侧时,∠CBD =∠BDP 时,如图: 依题意得:180−60−t =30+3t ,解得:t =22.5.Ⅰ.当射线 DP 和线段 BC 在直线 l 的两侧时,当如图所示时: 180−60−t =30−(360−3t ),解得:t =112.5. Ⅰ.当射线 DP 和线段 BC 在直线 l 的同侧时,如图: ∠CBD +∠BDP =180∘,依题意得:180−60−t +(360−30−3t )=180,解得:t =67.5.∴ 当 t =22.5秒或67.5秒或112.5秒 时,DP ∥BC .【知识点】直线、射线、线段的画法、内错角、同旁内角、几何问题、二次根式有意义的条件、垂线19. 【答案】 x 2−8x +16+y 2+10y +25=25(添项),(x −4)2+(y +5)2=25(配方).∵25 拆成两个整数的平方和,只能是 0 和 25,9 和 16, ∴{(x −4)2=0,(y +5)2=25,或 {(x −4)2=25,(y +5)2=0,或 {(x −4)2=9,(y +5)2=16,或 {(x −4)2=16,(y +5)2=9.∴ 共有 12 个整数解:{x 1=4,y 1=0, {x =4,y =−10,{x =9,y =−5, {x =−1,y =−5, {x =7,y =−1, {x =1,y =−1, {x =1,y =−9, {x =7,y =−9, {x =8,y =−2, {x =8,y =−8, {x =0,y =−2, {x =0,y =−8.【知识点】消元法解二元二次方程组、完全平方公式20. 【答案】∣∣−√8∣∣−(π−3)0+2cos45∘+(13)−1=2√2−1+2×√22+3=3√2+2.【知识点】负指数幂运算、特殊角的余弦值、实数的简单运算21. 【答案】(1) ∵AC =2a ,BC =2b ,a =2b , ∴AC =2BC ,∴AB =6,AC +BC =6, ∴AC =4,BC =2, ∴a =2,b =1, ∴S 1=2,S 2=12, ∴S 1−S 2=32.(2) ①如图 1 中, 由题意:PA =2a −a−b 3=5a+b 3,PB =a−b 3+2b =a+5b 3,∴S △PAE −S △PBF =12⋅5a+b 3⋅a −12⋅b ⋅a+5b 3=56(a 2−b 2).②当点 P 从点 C 向左移动 a−b n(n >1) 个单位后,由题意 PA =2a −a−b n,PB =2b +a−b n,∴m 1=S △EPA −S △PBF =12⋅a ⋅(2a −a−b n)−12⋅b ⋅(2b +a−b n)=12(2−1n )⋅(a 2−b 2),当点 P 从点 C 向左移动 (a −b ) 个单位后,PA =2a −(a −b )=a +b ,PB =2b +(a −b )=a+b,m2=S△EPA−S△PBF=12⋅a⋅(a+b)−12⋅b⋅(a+b)=12(a2−b2),∴m1m2=2−1n(n>1).【知识点】矩形的面积、单项式乘多项式、整式加减的应用22. 【答案】方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2.方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.【知识点】完全平方公式23. 【答案】27【知识点】同底数幂的除法24. 【答案】∠BCG=15∘.【知识点】内错角相等、平行公理的推论25. 【答案】去括号,得2x2−2x−x2+16=x2+2x,移项,得2x2−2x−x2−x2−2x=−16,合并同类项,得−4x=−16,两边同除以−4,得x=4.【知识点】平方差公式、去分母去括号。

【北师大版】初一数学下期中第一次模拟试卷带答案

【北师大版】初一数学下期中第一次模拟试卷带答案

一、选择题1.点()P 3,2-在平面直角坐标系中所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限2.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定3.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上4.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 5.2x -,则x+y 的值为( )A .-3B .3C .-1D .16.有下列说法:①在1和22,3②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②7.实数a ,b 在数轴上的位置如图所示,那么化简33a b a b ++-+的结果为( )A .2a -B .22b a -C .0D .2b8.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n9.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等 C .三角形的内角和等于180︒D .相等的角是对顶角10.下列哪个图形是由图1平移得到的( )A .B .C .D .11.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.512.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º二、填空题13.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.14.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示,则点A 400的坐标为_______.15.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”的表示方法都不够百分百准确;于是小刚用21-来表示2的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:因为459<<,即253<<,所以,5的整数部分为2,小数部分为52-也就是说,任何一个无理数,都可以夹在两个相邻的整数之间. 根据上述信息,请回答下列问题:(1)13的整数部分是______,小数部分是_______;(2)107+也是夹在两个整数之间的,可以表示为107a b <+<,则a b +=_____; (3)若404x y -=+,其中x 是整数,且01y <<.求:x y -的相反数. 16.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.17.已知21a -的平方根是17±,31a b +-的算术平方根是6,求4a b +的平方根. 18.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'. (3)计算出△ABC 的面积.22.已知点()24,1P m m +-,试分别根据下列条件,求出P 点的坐标. (1)点P 到x 轴的距离是5;(2)点P 在过点()2,3A 且与x 轴平行的直线上.23.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-的点,并比较它们的大小.24.已知a 是10的整数部分,b 是10的小数部分,求代数式()1b 10a --的平方根.25.己知:线段a 如图所示. 求作:正方形ABCD ,使得AB a .26.如图,已知直线AB 及直线AB 外一点P ,按下列要求完成画图和解答:(1)连接PA ,PB ,用量角器画出∠APB 的平分线PC ,交AB 于点C ; (2)过点P 作PD ⊥AB 于点D ; (3)用刻度尺取AB 中点E ,连接PE ;(4)根据图形回答:点P 到直线AB 的距离是线段 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案. 【详解】 解:30>,20-<,∴点()3,2P -所在的象限是第四象限.故选D . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),.+-根据各象限内点的坐标特征解答.2.B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可.3.B解析:B 【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B. 【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.4.B解析:B 【分析】根据图象可得移动4次图象完成一个循环,从而可得出42n OA n =,20201010OA =,据此利用三角形的面积公式计算可得. 【详解】由题意得:12345(1,0)(1,1)(2,1)(2,0)(3,0),A A A A A 、、、、 ∴图象可得移动4次图象完成一个循环∴42n OA n =,20201010OA =3202034202011==11010=50522OA A S A A OA ⨯⨯⨯⨯△故选B 【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.5.D解析:D 【分析】先根据绝对值和算术平方根的非负性,求得x 、y 的值,最后求和即可. 【详解】解:∵∴x-2=0,y+1=0 ∴x=2,y=-1 ∴x+y=2-1=1. 故答案为D . 【点睛】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x 、y 的值是解答本题的关键.6.D解析:D 【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得. 【详解】①在1和2之间的无理数有无限个,此说法错误; ②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误;④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②, 故选:D . 【点睛】本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键.7.A解析:A 【分析】先根据数轴上点的坐标特点确定a ,b 的符号,再去绝对值符号和开立方根,化简即可.【详解】由图可知:0a b <<, 且a b >,∴0a b +<,0a ->, 原式()()a b a b =-++-+a b a b =---+ 2a =-. 故选:A . 【点睛】考查了数轴,解答此题时可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.8.B解析:B 【分析】根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】 解:∵n+p=0, ∴n 和p 互为相反数, ∴原点在线段PN 的中点处, ∴绝对值最大的一个是Q 点对应的q . 故选B . 【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.9.C解析:C 【分析】利用反例对A 进行判断;根据平行线的性质对B 进行判断;根据三角形内角和定理对C 进行判断;根据对顶角定义对D 进行判断. 【详解】解:A 、当a=-2,b=-1时,则a+b<0,ab>0,所以A 选项错误; B 、两直线平行,内错角相等,所以B 选项错误,是假命题; C 、三角形的内角和等于180°,所以C 选项为真命题;D 、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D 选项错误,是假命题; 【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.B解析:B 【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案. 【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误; 故选:B . 【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.11.C解析:C 【分析】根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可. 【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤. 故选:C . 【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.12.C解析:C 【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数. 【详解】∵AO ⊥CO 和∠1=20º, ∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补), ∴∠2=110º. 故选:C . 【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.二、填空题13.3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形根据点坐标的性质可求得四边形ABFC 的底与高即可求出面积【详解】∵A(43)点C(53)∴AC=5-4=1∵沿AC 方向平移AC 长度的到∴AC解析:3【分析】根据平移的性质可判断出四边形ABFC 为平行四边形,根据点坐标的性质可求得四边形ABFC 的底与高,即可求出面积.【详解】∵A(4,3),点C(5,3),∴AC=5-4=1,//AC x ,∵OAB ∆沿AC 方向平移AC 长度的到ECF ∆,∴AC=BF ,∴四边形ABFC 为平行四边形,∴四边形ABFC 的高为C 点到x 轴的距离,∴133ABFC S =⨯=四边形,故答案为:3.【点睛】本题主要考查的是平移的性质,点坐标的性质以及四边形面积的求解,熟练掌握平移的性质,点坐标的性质以及四边形面积的求解是解答本题的关键.14.(2000)【分析】根据图象可得移动4次图形完成一个循环从而可得出点的坐标【详解】解:由图象可得移动4次图形完成一个循环即所以:故答案为:【点睛】本题考查的是点的坐标规律的探究掌握规律探究的方法是解 解析:(200,0)【分析】根据图象可得移动4次图形完成一个循环,从而可得出点400A 的坐标.【详解】解:由图象可得移动4次图形完成一个循环,4004100∴÷= ,()()()48122,0,4,0,6,0,,A A A …()4001002,0,A ∴⨯即()400200,0,A所以:()400200,0A .故答案为:()400200,0A本题考查的是点的坐标规律的探究,掌握规律探究的方法是解题的关键.15.(1)3;(2)25;(3)【分析】(1)由3<<4可得答案;(2)由2<<3知12<10+<13可求出ab 的值据此求解可得;(3)得出即可得出xy 从而得出结论【详解】解:(1)∵9<13<16∴3解析:(1)3 3-;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.16.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.17.【分析】根据算术平方根和平方根的定义列式求出ab 的值然后代入代数式求出的值再根据平方根的定义解答即可【详解】解:根据题意得解得所以∵∴的平方根是【点睛】本题考查了算术平方根和平方根的定义能够熟记概念 解析:7±【分析】根据算术平方根和平方根的定义列式求出a 、b 的值,然后代入代数式求出4a b +的值,再根据平方根的定义解答即可.【详解】解:根据题意,得2117a -=,2316a b +-=,解得9a =,10b =,所以,4941094049a b +=+⨯=+=,∵()2749±=, ∴4a b +的平方根是7±.【点睛】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a 、b 的值是解题的关键.18.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.19.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).20.12【解析】分析:由图形可知内部小三角形直角边是大三角形直角边平移得到的故内部五个小直角三角形的周长为大直角三角形的周长详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的故内部五个小解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)A (−1,6),B (−2,0),C (−4,3);(2)见解析;(3)7.5.【分析】(1)根据A ,B ,C 的位置写出坐标即可;(2)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,依次连接各点即可; (3)利用割补法求三角形的面积即可.【详解】解:(1)A (−1,6),B (−2,0),C (−4,3).(2)如图,△A'B'C'即为所求.(3)S △ABC =3×6−12×3×3−12×2×3−12×1×6=7.5. 【点睛】 本题考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的性质.22.(1)()16,5P 或()4,5--;(2)()12,3P .【分析】(1)根据平面直角坐标系内点的点到x 距离为纵坐标的绝对值即可求解;(2)让纵坐标为-3求得m 的值,代入点P 的坐标即可求解.【详解】(1)∵P 点到x 轴距离为5, ∴15m -=,∴15m -=或15m -=-,∴6m =或4m =-.∴P 点坐标为()16,5或()4,5--.(2)∵过点()2,3A 且与x 轴平行的直线解析式为3y =,∵点A 在直线3y =上,∴13m -=,∴4m =,P 点坐标为()12,3.【点睛】本题考查了坐标与图形性质,主要利用了平行于x 轴的直线上的点的纵坐标相同及坐标系内的点到x 轴的距离纵坐标的绝对值.23.(1)2,2-;(2)①见解析;②见解析, 350.5-+<-【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a ,∵a 2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b ,∴b 2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.24.3±.【分析】根据223104<<可得3104<<,即可得到10的整数部分是3,小数部分是103-,即可求解.【详解】解:∵223104<<,∴3104<<,∴10的整数部分是3,则3a =,10的小数部分是103-,则103b =-, ∴()()()1312101031039a b ---=--=-=, ∴9的平方根为3±.【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键. 25.见解析【分析】先画线段AB=a ,再以AB 为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.26.(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)PD .【详解】试题分析:(1)、用量角器量出∠APB 的度数,然后求出一半的度数得出答案;(2)、根据垂线的作法得出答案;(3)、用刻度尺量出AB 的长度,然后找出中点,从而得出答案;(4)、点到直线的距离是指点到直线垂线段的长度.试题(1)、如图所示;(2)、如图所示;(3)、如图所示;(4)、PD.。

2022-2023学年北京北师大实验中学初一上学期期中数学试卷(及答案)

2022-2023学年北京北师大实验中学初一上学期期中数学试卷(及答案)

2022北京北师大实验中学初一(上)期中数 学满分120分,考试时间100分钟A 卷一、选择题(本大题共10道小题,在每小题给出的四个选项中,只有一项最符合题意。

每小题3分,共30分) 1.12023-的绝对值是( ) A .2023-B .2023C .12023D .12023-2.北京地铁19号线,又称北京地铁R3线,是一条穿越中心城的大运量南北向地铁线路。

位于北京市西部地区,于2015年开工建设,标识色为暗粉色,该线路呈南北走向,南起丰台区新宫站,途经西城区,北至海淀区牡丹园站,采用A 型车8节编组,全线长22400m 。

其有利于承接北京功能向外疏解。

将22400用科学记数法表示应为( ) A .322.410⨯B .42.2410⨯C .222.410⨯D .32.2410⨯3.下列各对数中,互为相反数的是( ) A .(3)--与3-- B .3+与3- C . (3)--与3-D .(3)-+与(3)+-4.下列是一元一次方程的是( ) A .23x y +=B .32x -C .26x x +=D .1233x -= 5.下列计算错误的是( ) A .()35352--=-++= B .()()23236-⨯-=⨯= C .144(2)82x ⎛⎫+-+-=- ⎪⎝⎭D .()23(9)9--=--=6.高度每增加1千米。

气温就下降2℃,现在地面气温是10℃。

那么高度增加7千米后高空的气温是( ) A .4-℃B .14-℃C .24-℃D .14℃7.下列说法正确的是( ) A .“a 与3的差的2倍”表示为23a - B .单项式223xy -的次数为5 C .多项式223x y -+是一次二项式 D 单项式2xy 的系数为2x8.下列变形中不正确的是( ) A .若x y =,则33x y +=+B 若22x y -=-,则x y =C .若x y =,则x y c c= D .若x ym m=,则x y = 9.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( ) A .0B .2-C .2D .1-10.如图所示:把两个正方形放置在周长为2m 的长方形ABCD 内,两个正方形的周长和为4n ,则这两个正方形的重叠部分(图中阴影部分所示)的周长可用代数式表示为( ) A .m n + B .42n m - C .24m n + D .4m n +二、填空题(本大题共8道小题。

【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析

【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析

北师大版七年级下册期中质量检测卷(六)数学(考试时间:100分钟试卷满分: 120分)班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷满分120分,试题共25题,选择10道、填空8道、解答7道,答在本试卷上无效。

2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。

一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a62.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣93.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b29.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣310.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为千米.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=(度).18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别判断得出答案.【解析】A、a3+a2,无法合并,故此选项错误;B、x(x m)3=x3m+1,故此选项错误;C、a8÷a2=a6,故此选项错误;D、(﹣2a3)2=4a6,正确.故选:D.2.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】0.000000014=1.4×10﹣8.故选:B.3.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角【分析】根据同位角定义可得答案.【解析】直线b、c被直线a所截,则∠1与∠2是同位角,故选:B.4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD【分析】根据平行线的性质和判定逐个判断即可.【解析】A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°【分析】根据折叠的性质和平角的定义,可以得到∠3的度数,再根据平行线的性质,即可得到∠AEF 的度数.【解析】由折叠的性质可得,∠2=∠3,∵∠1=44°,∴∠2=∠3=68°,∵AD∥BC,∴∠AEF+∠3=180°,∴∠AEF=112°,故选:D.6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.【分析】根据容器的粗细变化情况,可得答案.【解析】因为容器内容积的横截面先变大,再变小,而水滴的速度是相同的,所以容器下面大,上升速度慢,上面较小,上升速度变快,故选:D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2﹣b2;因为拼成的长方形的长为(a+b),宽为(a﹣b),根据“长方形的面积=长×宽”代入为:(a+b)×(a﹣b),因为面积相等,进而得出结论.【解析】由图可知,大正方形减小正方形剩下的部分面积为a2﹣b2;拼成的长方形的面积:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:A.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解析】根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解析】(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64【分析】根据正方形的面积可以求出其边长,即可得到a+b,a﹣b,进而又可以求出a、b的值,再逐个判断即可.【解析】∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.【分析】先根据同底数幂的除法和幂的乘方的性质的逆用,把23m﹣2n转化为用已知条件表示,然后代入数据计算即可.【解析】∵2m=3,2n=4,∴23m﹣2n=(2m)3÷(2n)2,=27÷16,.故应填:.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=4.【分析】原式利用平方差公式分解,把各自的值代入计算即可求出值.【解析】∵m+2n=2,m﹣2n=2,∴m2﹣4n2=(m+2n)(m﹣2n)=2×2=4.故答案为:4.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是35°.【分析】根据平行线的性质和三角形内角和,可以求得∠B的度数,本题得以解决.【解析】∵∠DEC=100°,∠DEC=∠BEA,∴∠BEA=100°,∵AB∥CD,∠C=45°,∴∠C=∠A=45°,∴∠B=180°﹣∠A﹣∠BEA=35°,故答案为:35°.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是y=8+0.2x(x>0).【分析】根据水位高度随着时间x的变化关系,得出y与x之间的函数关系式.【解析】由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为75千米.【分析】根据函数图象中的数据,可以计算出货车的速度已经轿车返回时的速度,然后即可计算出相遇处到甲地的距离.【解析】由图象可得,货车的速度为:90÷2=45(千米/小时),轿车返回时的速度为:90÷(2.5﹣1.5)=90(千米/小时),设当轿车从乙地返回甲地的途中与货车相遇时,货车行驶的时间为a小时,45a+90(a﹣1.5)=90,解得,a,4575(千米),即相遇处到甲地的距离是75千米.故答案为:75.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是a>b>c.【分析】直接利用积的乘方运算法则以及乘法公式进而计算得出答案.【解析】∵a=20170=1,b=2105×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1﹣20162=﹣1,c=()2016×()2017=[()×()]2016×(),∴a>b>c.故答案为:a>b>c.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=142(度).【分析】根据平行线的性质和角平分线的定义解答即可.【解析】∵BD平分∠ABC,∴∠ABD=∠DBC,设∠ABD=x°,DE与BC交于点M,∵∠AGB=∠DGE,∵∠AGB=180°﹣∠A﹣∠ABD,∠DGE=180°﹣∠D﹣∠AED,∴∠AED=x+2°,∵∠DGE=2∠AED,∴∠DEF=2x+4°,∵BC∥EF,∴∠DMC=∠DEF=2x+4°,∵∠DMC=∠D+∠DBC,∴2x+4°=20°+x,解得:x=16°,∴∠AGB=180°﹣∠A﹣∠ABD=180°﹣22°﹣16°=142°,故答案为:142.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=x2020﹣1.【分析】根据已知算式得出规律,再根据所得的规律得出答案即可.【解析】∵(x﹣1)(x+1)=x2﹣1=x1+1﹣1,(x﹣1)(x2+x+1)=x3﹣1=x2+1﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1=x3+1﹣1,…∴(x﹣1)(x2019+x2018+…+x+1)=x2019+1﹣1=x2020﹣1,故答案为:x2020﹣1.三.解答题(共7小题)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)【分析】(1)先计算单项式的乘方,再计算单项式乘单项式即可得.(2)根据平方差公式解答.【解析】(1)原式=(x6y3)•(﹣3xy2)=()×(﹣3)•x2×3+1y3+2x7y5;(2)原式=z2﹣x2y2.20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解析】原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当,时,原式.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.【分析】(1)根据角平分线的性质可得∠1=∠2∠GHD,再根据平行线的性质可得∠2=∠3=35°,进而可得∠1的度数;(2)根据两直线平行同位角相等可得∠EGB=∠GHD,进而可得答案.【解析】(1)∵HM平分∠EHD,∴∠1=∠2∠GHD,∵GB∥HD,∴∠2=∠3=35°,∴∠1=35°;(2)∵∠1=∠2=35°,∴∠GHD=70°,∵GB∥HD,∴∠EGB=∠GHD=70°.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.【分析】(1)直接利用垂线的定义结合平角的性质得出答案;(2)设∠AOD为x°,则∠EOF为5x°利用周角的性质得出答案.【解析】(1)∵EO⊥AB,∴∠AOE=90°.∵∠AOD=40°,∴∠EOC=180°﹣∠AOD﹣∠AOE=180°﹣40°﹣90°=50°.(2)∵∠AOD:∠EOF=1:5,设∠AOD为x°,则∠EOF为5x°∵DO⊥FO,∴∠DOF=90°.∵∠AOD+∠AOE+∠EOF+∠DOF=360°,∴x+90°+5x+90°=360°.解得x=30°,即∠AOD=30°.又∴∠BOC=∠AOD=30°(对顶角相等),∵OP是∠BOC的平分线,∴∠POB∠BOC30°=15°.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为s =2t.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?【分析】(1)根据函数的定义可得出自变量为时间t,因变量为函数:路程s;(2)根据表格可知,每分钟行2千米,由公式t,再得出行驶路程s为20km时,所花的时间t即可;(3)从表中得出随着t逐渐变大,s逐渐变大;(4)路程、速度、时间之间的关系式为s=vt,再把v=2代入即可;(5)把t=300代入s=2t即可得出答案.【解析】(1)自变量是时间,因变量是路程;(2)∵当t=1时,s=2,∴v2,∴t10分钟;(3)由表得,随着t逐渐变大,s逐渐变大(或者时间每增加1分钟,路程增加2千米);(4)由(2)得v=2,∴路程s与时间t之间的关系式为s=2t,故答案为s=2t;(5)把t=300代入s=2t,得s=600.24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37代入(1)中得到的关系式,然后进行计算即可;(3)根据所拼图形写出m的值即可.【解析】(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解析】(1)过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴,,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:∠DAC.。

北师大版七年级数学第一学期期中考试试题(含答案)

北师大版七年级数学第一学期期中考试试题(含答案)

北师大版七年级数学第一学期期中考试试卷亲爱的同学,你好!今天是展示你才华的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!可要注意喽,本试卷共8页,24道小题,总分为120分,考试时间为100分钟.不能用计算器.一、精心选一选.(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.把符合题目要求的选项前的字母填在题后相应的括号内.)1.在-1,0,1,2这四个数中,既不是正数也不是负数的是 ( ) A.1- B.0 C.1 D.2 9. -2010的倒数是A .-2010B .2010C .12010D .-120103.已知泗县某天的最高温度为10°C ,最低温度为-5°C ,则泗县这天的温差为( ) A .15°C B .5°CC .-15°CD .-5°C4.用一个平面去截一个正方体,截面形状不可能是 ( ) A.三角形 B.五边形 C.六边形 D.圆5.下面化简正确的是( )A .x +y=2x yB .6x 2-5x 2 =1C .4ab +3ab=7a 2b 2D .2 m 2n -m 2n = m 2n 6.一个正方体的表面展开图如图所示,则原正方体中的“★”所在面的对面所标的字是( ) A .泗 B .县 C .欢 D .迎 7.在公式1()2S a b h =+,已知a=3,h=4,b =7,那么 S =( ) A .15 B .40 C .20 D .258.如图所示的运算程序中,若开始输入的x 值为48 第二次输出的结果为12,…,则第2010次输出的结果为( )A.6B.3C.200623 D.10033231003⨯+9.数轴上的点A 到原点的距离是3,则点A 表示的数为 ( )A. 3或-3B. 6C. -6D. 6或-6 10.如果代数式4y 2-2y +5的值是7,那么代数式2y 2-y +1的值等 A . 2 B . 3 C .-2 D .4 二、耐心填一填.(本大题共10个小题,每小题3分,共30分) 11. -2 的相反数是 . 12.计算:-1-2×(-3)=_______________.13.从10边形的某一个顶点出发,连接该顶点与其余各顶点,可以把这个多边形分成_____个三角形. 14.请写出一个与-2x 2y 是同类项,且它们的系数和为3. ______________. 15.“枪打一条线,棍打一大片”这个现象说明:______________.16现有四个数:3,3,7,7,请按“24点”游戏规则.写出一个算式,使结果为24.算式 是_____________________________________. 17.一个棱柱有18条棱,则它有________个面.18.一个几何体是由一些大小相同的正方体摆成的,其左视图和主视图如图,则组成这个几何体的小正方体最少有______________块.19.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是___________.20 下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是________________________________. 21(本题共四个小题,每小题6分,共24分)(1) 计算:-3×(-2)2+[(-3)×2]2; (2) 计算: 411113)2131(215÷⨯-⨯-(3)5x 4+3x 2y -1-3x 2y -6x 4+2 (4) 3( x 2 y+xy 2 )-(3x 2 y -1)-3xy 2主视图左视图0 284 24 62 46 84422.(本题6分)下图是由4个完全相同的小立方块搭成的几何体,请画出它的三视图.23.(本题8分)下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)城市 纽约 巴黎 东京 时差-13-7+1(1)如果北京时间14:00,那么三个地区的时间分别是多少?(2)如果小明想给远在纽约旅游的爸爸打电话,他在北京时间下午2:00打电话,你认为合适吗?说明理由.24.(本题10分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)求和:211⨯+321⨯+431⨯+…+201020091⨯ .25(本题10分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V )、面数(F )、棱数(E )之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数(V )、面数(F )、棱数(E )之间存在的关系式是_______________.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是____________.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x 个,八边形的个数为y 个,求y x +的值.四面体 长方体 正八面体正十二面体考答案和评分标准一.精心选一选(每题3分,共30分)二.耐心填一填.(每小题3分,共30分)11、2 , 12、5, 13、8 , 14、5x 2y, 15、点动成线,线动成面, 16、7(3÷7+3), 17、8 ,18、4, 19、74, 20、495.20.(本题共四个小题,每小题6分,共24分)(1)24 (2)51-(3)1-x 4 (4)122.(本题6分,)23.(本题8分)(2)三个地区时间分别是:1,7,15 …3分 (2)不合适,理由略.…8分 24.(本题10分)(1)111n n -+ ········································································ 3分 (2)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ····································································· 10分 25.(本题12分)(1)两空格填写6,6;E =V+F -2…………4分(2)12…………6分(3) V =24,E =(24×3)÷2=36, F =x+y ,由E =V+F -2得36=24+ x+y -2,所以x+y =14……………12分俯视图主视图左视图。

【北师大版】初一数学上期中试卷带答案

【北师大版】初一数学上期中试卷带答案

一、选择题1.若代数式210k x y x ky +-+-的值与x 、y 的取值无关,那么k 的值为( ) A .0 B .±1C .1D .1- 2.如图,两个长方形的面积分别为20,6,两阴影部分的面积分别为a ,b ,且a b >,则()a b -等于()A .6B .7C .14D .163.下列图形都是由同样大小的矩形按一定的规律组成,其中,第1个图形中一共有6个矩形,第2个图形中一共有11个矩形,第3个图形中一共有16个矩形,…,按此规律,第7个图形中矩形的个数为( )A .30B .36C .41D .45 4.下列运算正确的是( ) A .2347a a a +=B .44a a -=C .32523a a a +=D .10.2504ab ab -+= 5.若a >0,b <0,且a >|b|,那么a ,b ,-b 的大小关系是( ) A .-b <b <a B .b <a <-b C .b <-b <a D .-b <a <b6.下列各式的值一定为正数的是( )A .(a +2)2B .|a ﹣1|C .a +1D .a 2+1 7.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D . 8.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D . 9.如图所示的几何体是由若干个完全相同的小正方体组成,从左面看这个几何体得到的平面图形是( )A .B .C .D . 10.如图所示的运算程序中,若开始输入的x 值为24,我们发现第1次输出的结果为12,第2次输出的结果为6,……则第2021次输出的结果为( )A .6B .3C .24D .1211.辽宁男篮夺冠后,从4月21日至24日各类媒体关于“辽篮CBA 夺冠”的相关文章达到810000篇,将数据810000用科学记数法表示为( )A .40.8110⨯B .50.8110⨯C .48.110⨯D .58.110⨯ 12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友二、填空题13.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______. 14.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片,……按此规律排列下去,图n 中黑色正方形纸片的张数为________.(用含有n 的代数式表示)15.如图,在3×3的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这个数表称为三阶幻方.若﹣2、﹣1、0、1、2、3、4、5、6这9个数也能构成三阶幻方,则此时每行、每列及每条对角线的3个数字之和都为_____.16.若2(2)|1|0a b ++-=,则a b -=______.17.国家统计局刚刚发布数据,初步核算,2020年全年国内生产总值为1015986亿元,将1015986科学记数法可以表示为___.18.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,则x y z ++的值为______.19.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.20.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.三、解答题21.先化简,再求值(1)已知()2a 1b-20++=,求()()2222225a -b 2a -b -5a -3b -ab + (2)已知a 2+5ab =76,3b 2+2ab =51,求代数式a 2+11ab +9b 2的值.22.对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=-,如()()616319⊕-=-⨯-=.(1)计算:()124⎛⎫-⊕- ⎪⎝⎭; (2)已知()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭,求+a b 的值. 23.计算:(1)1132446⎛⎫--⨯-⎪⎝⎭; (2)2320211(2)(4)(1)2⎛⎫----⨯-+- ⎪⎝⎭. 24.计算:(1)15324468⎛⎫-⨯-+⎪⎝⎭ (2)()()220212343214392⎛⎫-÷⨯+-⨯--- ⎪⎝⎭25.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)画出图中几何体的主视图、左视图.(2)如果移走图中的一个小正方体,使新几何体的主视图、左视图一样,应该移走哪一个?(在相应小正方体上标上字母M ).(3)在原图的基础上添加一些小正方体,使新几何体的主视图、左视图与原几何体的主视图、左视图分别相同,则最多添加多少个小正方体?26.如图是几个小立方块所搭几何体的俯视图,小正方形的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用合并同类项得运算法则得出k 的值,进而得出答案.【详解】210k x y x ky +-+-合并同类项得()()21110k x k y -++-210k x y x ky +-+-的值与x 、y 无关210,10k k ∴+=-=解得1k =-故选:D .【点睛】本题考查了合并同类项以及代数式求值,正确得出x ,y 的系数关系是解题的关键. 2.C解析:C【分析】设重叠部分面积为c ,(a-b )可理解为(a+c )-(b+c ),即两个正方形面积的差.【详解】解:设重叠部分面积为c ,a-b=(a+c )-(b+c )=20-6=14,故选:C .【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 3.B解析:B【分析】根据前3个图形中矩形的个数归纳类推出一般规律,由此即可得出答案.【详解】由图可知,第1个图形中矩形的个数为6511=⨯+,第2个图形中矩形的个数为11521=⨯+,第3个图形中矩形的个数为16531=⨯+,归纳类推得:第n 个图形中矩形的个数为51+n ,其中n 为正整数,则第7个图形中矩形的个数为57136⨯+=,故选:B .【点睛】本题考查了用代数式表示图形的规律,正确归纳类推出一般规律是解题关键.4.D解析:D【分析】根据合并同类项得法则计算即可.【详解】解:A.347a a a +=,故A 选项错误;B.43a a a -=,故B 选项错误;C.3a 与22a 不是同类项,不能合并,故C 选项错误;D.10.2504ab ab -+=,故D 选项正确; 故选:D .【点睛】 本题考查了合并同类项,掌握合并同类项的法则是解题的关键.5.C解析:C【分析】先根据>0,b <0,得到b <a ,b <0<-b ,再根据a >|b|得到-b <a ,即可求解.【详解】解:∵a >0,b <0,∴b <a ,b <0<-b ,∵a >|b|∴-b <a ,∴b<-b<a.故选:C【点睛】本题考查了有理数的大小比较,理解绝对值,相反数的意义,有理数的大小比较方法是解题关键.6.D解析:D【分析】先举出反例,再根据正数的定义判断即可.【详解】解:A.当a=-2时,(a+2)2为0,不是正数,故本选项不符合题意;B.当a=1时,|a﹣1|为0,不是正数,故本选项不符合题意;C.当a=-2时,a+1=-1,是负数,不是正数,故本选项不符合题意;D.不论a为何值,a2+1≥1,即a2+1是正数,故本选项符合题意;故选:D.【点睛】本题考查了正数和负数的定义,能举出反例是解此题的关键.7.C解析:C【解析】【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案.【详解】A、圆柱的侧面展开图是矩形,故A错误;B、三棱柱的侧面展开图是矩形,故B错误;C、圆锥的侧面展开图是扇形,故C正确;D、三棱锥的侧面展开图是三个三角形拼成的图形,故D错误,故选C.【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.8.C解析:C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题9.B解析:B【解析】【分析】从左面看得到从左往右3列,正方形的个数依次为3,2,1,依此画出图形即可.【详解】从左面看这个几何体得到的平面图形是:故选B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.10.B解析:B【分析】根据数字的变化类规律,比较输入与输出结果的规律即可得结论.【详解】解:根据运算程序,得第1次输出的结果为12,第2次输出的结果为6,第3次输出的结果为3,第4次输出的结果为6,第5次输出的结果为3,……∴(2021-1)÷2=1010∴第2021次输出的结果为3.故选:B.【点睛】本题考查了数字的变化规律、有理数的混合运算、代数式求值,解决本题的关键是输入数字后准确计算输出的结果.11.D解析:D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.810000=58.110⨯,故选:D .【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.12.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题13.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1,∴x 2021=±1, ∴2021a b x cd cd+-+ =1-1+0=0;或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 14.【分析】设图n 中有an (n 为正整数)张黑色正方形纸片观察图形根据各图形中黑色正方形纸片张数的变化可找出变化规律an=2n+1(n 为正整数)此题得解【详解】解:设图n 中有an (n 为正整数)张黑色正方形解析:21n【分析】设图n 中有a n (n 为正整数)张黑色正方形纸片,观察图形,根据各图形中黑色正方形纸片张数的变化可找出变化规律“a n =2n+1(n 为正整数)”,此题得解.【详解】解:设图n 中有a n (n 为正整数)张黑色正方形纸片,观察图形,可知:a 1=3=2×1+1,a 2=5=2×2+1,a 3=7=2×3+1,a 4=9=2×4+1,…,∴a n =2n+1(n 为正整数).故答案是:2n+1.【点睛】本题考查了规律型:图形的变化类,根据图形中黑色正方形纸片张数的变化,找出变化规律“a n =2n+1(n 为正整数)”是解题的关键.15.【分析】把﹣2﹣10123456这9个数相加除以3即可【详解】解:把﹣2﹣10123456这9个数相加除以3得:(﹣2﹣1+0+1+2+3+4+5+6)=6故答案为:6【点睛】本题考查了幻方的构造熟解析:【分析】把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3即可.【详解】解:把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3得:13(﹣2﹣1+0+1+2+3+4+5+6)=6, 故答案为:6.【点睛】本题考查了幻方的构造,熟练掌握有理数的混合运算,准确理解幻方的意义是解题的关键.16.-3【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】由题意得【点睛】本题考查了非负数的性质:几个非负数的和为0时这几个非负数都为0【分析】根据非负数的性质列式求出 a 、 b 的值,然后代入代数式进行计算即可得解.【详解】由题意得2010a b +=⎧⎨-=⎩, 21a b =-⎧∴⎨=⎩, 213a b ∴-=--=-.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.17.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:61.01598610⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1015986=61.01598610⨯,故答案为:61.01598610⨯.【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.18.419.②③④解析:②、③、④20.5三、解答题21.(1)2a²-ab ,4;(2)229【分析】(1)根据绝对值和偶次方的非负性分别求出a 、b ,根据整式的加减运算法则把原式化简,代入求值即可得出答案;(2)先将a 2+11ab +9b 2化为与a 2+5ab 和3b 2+2ab 相关的式子再将值代入即可得出答案.(1)解:()()2222225a -b 2a -b-5a -3b -ab + =5a²-b²+2a²-2b²-5a²+3b²-ab=2a²-ab∵|a+1|+(b-2)²=0∴|a+1|=0,(b-2)²=0解得a=-1 ,b=2代入2a²-ab得2×(-1)²-(-1)×2=4(2)解:∵3b²+2ab=51∴3(3b²+2ab )=9b²+6ab=51×3=153又a²+5ab=76∴a²+11ab+9b²=a²+5ab+(9b²+6ab )=229.【点睛】本题考查了整式的化简求值、非负数的性质,熟练掌握整式的加减运算是解题的关键. 22.(1)234;(2)-5 【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案;(2)结合题意,通过合并同类项计算,即可得到答案.【详解】(1)()124⎛⎫-⊕- ⎪⎝⎭ ()1324=--⨯- 164=-+ =234; (2)∵()15103a b b a ⎛⎫+⊕-=- ⎪⎝⎭ ∴153103a b b a ⎛⎫+--=- ⎪⎝⎭∴2210a b +=-∴5a b +=-.【点睛】本题考查了有理数运算、合并同类项的知识;解题的关键是熟练掌握有理数混合运算、合并同类项的性质,从而完成求解.23.(1)-5;(2)8【分析】(1)先按照乘法分配律进行计算,然后依次进行计算即可;(2)先计算乘方,再计算乘除,后计算加减;【详解】解:(1)1132446⎛⎫--⨯- ⎪⎝⎭ 113242446⎛⎫=--⨯-⨯- ⎪⎝⎭364=--+5=-.(2)2320211(2)(4)(1)2⎛⎫----⨯-+- ⎪⎝⎭ 1(8)(4)(1)4=---⨯-+- 8(1)1=--- 811=+-8=.【点睛】本题考查了有理数的混合运算,正确掌握有理数的运算法则是解题的关键;24.(1)5;(2)1072-【分析】(1)利用乘法分配律计算即可;(2)根据有理数混合运算法则,先算乘方,再算乘除,最后算加减法计算即可.【详解】解:(1)原式= ()()153242424468-⨯--⨯+-⨯ = 6209-+-= 5(2)原式=99814944-⨯⨯-⨯- = 81492--- =1072- 【点睛】本题考查了有理数混合运算.掌握有理数混合运算法则和常用的简便运算技巧是解答本题的关键.25.见解析;【解析】【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,2,1,左视图有,2列,每列小正方形数目分别为2,1;据此可画出图形.(2)可在最底层第2列第1行移走一个;(3)可在最底层第1列第1行加一个,第3列第2行加1个,共2个.【详解】(1)如图所示:(2)如图所示:(3)最底层第1列第1行加一个,第3列第2行加1个,共1+1=2个.故最多添加2个小正方体.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.26.见解析.【解析】【分析】主视图从左往右3列正方形的个数依次为1,3,4;左视图2列正方形的个数依次为4,2.依此作出图形即可求解.【详解】解:如图所示:【点睛】考查三视图的画法;用到的知识点为:主视图,左视图分别是从物体正面,左面看得到的平面图形.。

【北师大版】初一数学下期中试卷及答案

【北师大版】初一数学下期中试卷及答案
22.如图,在平面直角坐标系中,点C(-1,0),点A(-4,2),AC⊥BC且AC=BC,求点B的坐标.
23.计算:
(1) .
(2) .
24.
25.补全解答过程:
如图,EF∥AD,∠1=∠2,若∠BAC=70°,求∠AGD.
解:∵EF∥AD,(已知)
∴∠2=,(两直线平行,同位角相等).
又∵∠1=∠2,(已知)
【详解】
解:∵ ,
∴ 或 ,
∴点P在坐标轴上,
故选:D.
【点睛】
本题考查坐标轴上点的坐标特征,掌握点的坐标特征是解题的关键.
2.A
解析:A
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2020=505×4,
所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,
A.1B.2C.3D.4
6.关于x的多项式 与多项式 相加后不含x的二次和一次项,则 平方根为()
A.3B. C. D.
7.和数轴上的点一一对应的数是()
A.自然数B.有理数C.无理数D.实数
8.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣ 不仅是有理数,而且是分数;④ 是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )
B、(1,1)是第一象限内的点,故选项B不符合题意;
C、(1,﹣1)是第四象限内的点,故C不符合题意;
D、(﹣1,1)是第二象限内的点,故D符合题意;

【北师大版】初一数学上期中试卷附答案

【北师大版】初一数学上期中试卷附答案
C.0与﹣3是同类项;
D.3与a不是同类项.
故选C.
【点睛】
本题考查了同类项,能熟记同类项的定义是解答本题的关键.
17.在数轴上,若点 与表示 的点相距 个单位,则点 表示的数是__________.
18.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.
19.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.
20.点A表示数轴上的一个点,将点A向右移动10个单位长度,再向左移动8个单位长度,终点恰好是原点,则点A到原点的距离为______.
一、选择题
1.B
解析:B
【分析】
根据代数式的意义,可得答案.
【详解】
解:代数式x2﹣ 的正确解释是x的平方与y的倒数的差,
故选:B.
【点睛】
本题考查了代数式,理解题意(代数式的意义)是解题关键.
2.C
解析:C
【分析】
本题首先求解矩形面积,继而求解空白部分的圆形面积,最后作差求解阴影面积.
【详解】
由已知得:矩形面积为 ,空白圆形半径为 ,故圆形面积为 ,则阴影部分的面积为 .
三、解答题
21.如图,数轴上 , 两点之间的距离为30,有一根木棒 ,设 的长度为 . 数轴上移动, 始终在左, 在右.当点 移动到与点 , 中的一个重合时,点 所对应的数为9,当点 移动到线段 的中点时,点 所对应的数是多少?
22.观察下面的点阵图和相应的等式,探究其中的规律:
(1)在④和⑤后面的横线上分别写出相应的等式:
一、选择题
1.代数式x2﹣ 的正确解释x的平方与y的倒数的差
C.x的平方与y的差的倒数D.x与y的差的平方的倒数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

b
C 、0是最小的整数;
D 、两个有理数的绝对值相等,则这两个有理数也相等; 2、下列计算正确的是( )
A 、-323=-278;
B 、-(-32)2=94;
C 、+(-32)3=276;
D 、-(-53)3=125
27.
3、下列立体图形的侧面展开图分别是哪些平面图形,正确说法的个数是( )
①圆柱的侧面展开图一定是长方形或正方形; ②圆锥的侧面展开图一定是半圆形; ③三棱柱的侧面展开图一定是三角形; ④圆台的展开图一定是扇形 A 、1 B 、2 C 、3 D 、4
4、下列各组式子中,不是同类项的是( )
A 、23与-32;
B 、5a 4与0.3ay 4;
C 、abc 与10cba ;
D 、-4x 2y 与3yx 2
5、表示有理数的字母a 、b 在数轴上的位置如图所示,则在①a+b ,②a-b ,③b-a ,④ab 这四个代数式中,值为负数的是( )
A 、①③④
B 、①②④
C 、②③④
D 、①②③④
6、汽车运一批石料,第一次用载重量为a 吨的汽车4辆,载重量为b 吨的汽车3辆;因任
务紧,第二次由调来这两种汽车各2辆,恰好完成任务,则这批石料共有( )吨。

A 、6a+5b B 、4a+5b C 、10a+8b D 、8a+8b
二、填空题:(3’×8=24’) 1、下列有理数-3
21、0、-2、7.5、511、-4
3中负数有__________,非正整数有________.
2、用一个平面去截一个几何体,所截出的面如右图所示,共有四种形式,试猜想这几何体可能是________.
3、寻找规律,在横线上填数: (1)-3、+6、-12、+2
4、________.(2)-319、9
17、-2713、817、_________. 4、若-3x m-1
y 3
与-23x 2y n+1
是同类项,则这两项的系数与m 、n 和是_________. 5、若(2a-1)2+|a+2
1
b|=0,则b-a=______.
6、如图是一数值转换机,若输入的x 为-3,则输出的结果为_______.
7、若代数式y 2-2y+N 中的y 用4代替后其值为0,则可断定N 的值为______.
左视图和俯视图。

2、下面左图是有几个小立方体所搭几何体的俯视图(小正方形中的数字表示在该位置小正方体的各数,其中“?”不知有几个小正方体),右图是主视图,你能根据所给的主视图和俯视图画出这个几何体的左视图吗,有几种画几种。

3、如右图是一图形旋转一周得到的几何体,你能推断出它是由哪个图形旋转而成的吗?请你画在虚线框内。

四、解答题:(69’)
1、(4’)小明发现飞机螺旋桨本来是三只类似金属帮的桨组成的,但转起来后却形成了一个圆面,你能替他用学过的数学知识解释着一现象吗?你还能举出其它事例吗?
2、计算下列各式(5’×6=30’) (1)-43-(-5)+0.4-(-153)+0.75 (2)32÷(-3)2+|-6
1
|×(-6)
(3)(-5)3
×(-5
3)-32÷(-2)2
×(-14
1
) (4)a-(2a-b)-(a+2b)
输出×
1 2 3 2 ? 俯视图 主视图
(5)已知:A=-2a2+2+3x;B=a-a2+1;求2A-4B
(6)先化简再求值:
2
1
a-2(-a-
3
1
b2)-(
2
3
a-
3
1
b2),其中a=-
2
1
、b=-
2
1

3、(5’)出租车司机小李某天中午营运全是在香港中路上进行的,如果规定向东为正,向西
为负,他这天中午行车里程(单位:千米)如下:15,-2,5,-6,10,-3,-2,12,4,-5
(1)将最后一名乘客送到目的地时,小李距离出发点多远?
(2)若汽车耗油量为0.1千克/千米,这天中午小李行车共耗油多少千克?
4、(5’)某餐厅中1张长方形的桌子可坐6人,按下图方式将桌子拼在一起。


可拼成8张大桌子,共可坐_______人。

(2)在上题中若改成每8张桌子拼成1张大桌子,则共可坐______人。

5、(6’)右图是某矿井示意图,以地面为准,A点的高度
是+4米,B、C两点的高度分别是-15米和-30米,A点比B
点高多少米?A点比C点高多少米?
6、(6’)一种商品出售时要在进价的基础上加上一定的利润,其数量x与售价y的关系如下:
y的公式;
(2)计算如果现有16.1元能买几件这样的商品。

7、(7’)“十一”黄金周期间,我市植物园在7天长假期中,每天旅游的人数变化如下表(正
数表示比前一天多的人数,负数表示比前一天少的人数):
(2)请判断7天内地游客人数最多的是哪天?共有多少万人?
8、(7’)右图是一圆形纸板,根据需求,需通过
多次剪裁,把它剪成若干个扇形。

操作过程如下:
第1次剪裁,将圆形纸板等分4个扇形;第2次
剪裁,将上次得到的扇形面中的1个再等分成4
个扇形;以后按第2次剪裁的做法进行下去。


你通过操作和猜测,将第3次、第4次和第n次。

相关文档
最新文档