4.3用一元一次方程解决问题(5)

合集下载

苏教版初一数学4.3 用一元一次方程解决实际问题(第5课时 方案选择问题)

苏教版初一数学4.3 用一元一次方程解决实际问题(第5课时 方案选择问题)

4.3 用一元一次方程解决实际问题(第5课时方案选择问题)一、单选题(共10小题)1.(2018·重庆市期末)假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为()A.6名B.7名C.8名D.9名2.(2019·南岗区期中)某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25 B.3x+20=4x﹣25C.3x﹣20=4x﹣25 D.3x+20=4x+253.(2020·澧县期末)某汽车队运送一批货物,每辆汽车装4 t,还剩下8 t未装,每辆汽车装4.5 t就恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,可列方程为( )A.4x+8=4.5x B.4x-8=4.5xC.4x=4.5x+8 D.4(x+8)=4.5x4.(2019·沁阳市期末)为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买.”根据两人的对话,判断王老师的班级学生人数应为()一个,谢谢A.38 B.39 C.40 D.41 5.(2018·厦门市期末)某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定购一只茶壶赠一只茶杯,某人共付款171元,得茶壶、茶杯共30只(含赠品在内),则此人购得茶壶的只数为()A.8 B.9 C.10 D.11 6.(2020·杭州市期末)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A .0.6元B .0.7元C .0.8元D .0.9元7.(2019·官渡区期末)芳芳购买手机卡,可选择“全球通”卡和“神州行”卡,使用时“全球通”卡每月需交固定费用50元,免费通话时间为150分钟,超过150分钟的部分按0.50元/分钟计费;“神州行”卡不收固定费用,但通话每分钟收话费0.30元.若芳芳每月手机费预算为100元,那么她最合算的选择是( )A .“全球通”卡B .“神州行”卡C .“全球通”卡、“神州行”卡一样D .无法确定8.(2020·洛阳市期末)2019年猪肉涨价幅度很大.周日妈妈让张明去超市买猪肉,张明买二斤猪肉,剩余19元,买三斤猪肉还差20元.设妈妈一共给了张明x 元钱,则根据题意列方程是( )A .192023x x +-= B .192023x x -+= C .192023x x+=-D .192023x x-=+9.(2019·海淀区期末)某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元. A .300B .260C .240D .22010.(2020·萧山区期末)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二、填空题(共5小题)11.(2018·涪陵区期末)某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了36元,则该学生第二次购书实际付款_______元.12.(2018·上河区期末)全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有_____个同学,计划租用_____条船。

苏科版数学七年级上册4.3.3《用一元一次方程解决问题》教学设计

苏科版数学七年级上册4.3.3《用一元一次方程解决问题》教学设计

苏科版数学七年级上册4.3.3《用一元一次方程解决问题》教学设计一. 教材分析《苏科版数学七年级上册4.3.3》这一节主要让学生学会运用一元一次方程解决实际问题。

通过前面的学习,学生已经掌握了一元一次方程的基本概念和解法,本节内容将进一步巩固学生的知识,提高他们运用数学知识解决实际问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的基本知识,但实际应用能力较弱。

因此,在教学过程中,需要注重培养学生的实际应用能力,让学生能够灵活运用一元一次方程解决实际问题。

三. 教学目标1.知识与技能:使学生掌握用一元一次方程解决实际问题的基本方法。

2.过程与方法:通过解决实际问题,提高学生运用一元一次方程解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索的精神。

四. 教学重难点1.重点:运用一元一次方程解决实际问题。

2.难点:如何将实际问题转化为数学模型,并运用一元一次方程求解。

五. 教学方法1.情境教学法:通过创设实际问题情境,激发学生的学习兴趣。

2.案例教学法:分析典型实例,引导学生学会运用一元一次方程解决实际问题。

3.互动教学法:引导学生积极参与课堂讨论,提高他们的实际应用能力。

六. 教学准备1.准备相关实际问题案例,用于课堂讲解和练习。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如购物场景,引导学生思考如何用数学方法解决实际问题。

2.呈现(10分钟)呈现一个实际问题案例,如“小明买了一本书,原价是x元,打8折后花了8元,求原价是多少?”引导学生分析问题,并将其转化为数学模型。

3.操练(10分钟)引导学生运用一元一次方程解决实际问题。

让学生分组讨论,每组求解一个实际问题,并展示解题过程。

4.巩固(10分钟)对学生的解题过程进行点评,纠正错误,巩固正确解题方法。

同时,让学生完成课本上的练习题,加深对知识的理解。

5.拓展(10分钟)引导学生思考:如何判断一个实际问题能否用一元一次方程解决?让学生通过讨论,总结出判断方法。

六年级数学上册知识讲义-4.3 一元一次方程的应用:销售问题(附练习及答案)-鲁教版(五四学制)

六年级数学上册知识讲义-4.3 一元一次方程的应用:销售问题(附练习及答案)-鲁教版(五四学制)

学习目标一、考点突破弄清楚销售问题中的数量关系,能够根据进价、售价、标价、利润、销售量、利润率之间的关系找到相等关系列方程,用一元一次方程解决现实生活中的销售问题。

二、重难点提示重点:熟悉销售问题中的各种数量关系。

难点:分清商品的进价、成本价、售价、标价、折扣价,以及它们之间的关系。

考点精讲1. 销售问题中常出现的量有:进价(成本价)、售价、标价、利润等。

2. 销售问题中的数量关系:(1)商品利润=商品售价-商品成本价;(2)商品利润率=×100%;(3)商品销售额=商品销售价×商品销售量;(4)商品的销售利润=(销售价-成本价)×销售量;(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。

典例精讲例题1(无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元,若设铅笔卖出x支,则依题意可列得的一元一次方程为()A. 1.2×0.8x+2×0.9(60+x)=87B. 1.2×0.8x+2×0.9(60-x)=87C. 2×0.9x+1.2×0.8(60+x)=87D. 2×0.9x+1.2×0.8(60-x)=87思路分析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,据此列出方程即可。

答案:设铅笔卖出x支,由题意,得1.2×0.8x+2×0.9(60-x)=87,故选B。

技巧点拨:本题考查了由实际问题抽象出一元一次方程,根据描述找到等量关系是解题的关键。

六年级上册数学习题课件 4.3.5利用一元一次方程解决积分、计费问题 鲁教版

六年级上册数学习题课件 4.3.5利用一元一次方程解决积分、计费问题 鲁教版

整合方法
14.某旅行社拟在暑假期间面向学生推出“林州红旗渠一 日游”活动.收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动. 已知甲校报名参加的学生多于100人,乙校报名参加 的学生少于100人.经核算,若两校分别组团共需花费 20 800元,若两校联合组团只需花费18 000元.
整合方法
整合方法
(1)两所学校报名参加旅游的学生共有多少人? 解:设两校报名参加旅游的学生共有 x 人.若两校报名 参加旅游的学生多于 200 人,则 x=18 000÷75=240.若 两校报名参加旅游的学生在 100 人到 200 人(包括 200 人)之间,则 x=18 000÷85=2111137,不合题意,舍去.所 以两所学校报名参加旅游的学生共有 240 人.
A.5x+4(x+2)=44 B.5x+4(x-2)=44
C.9(x+2)=44
D.9(x+2)-4×2=44
夯实基础
9.参加保险公司的医疗保险,住院治疗的病人享受分 段报销,保险公司制定的报销细则如下表:
某人住院治疗后得到保险公司理赔金是1 100元,那 么此人住院的医疗费是( D ) A.1 000元 B.1 250元 C.1 500元 D.2 000元
LJ版六年级上
第四章 一元一次方程
4.3 一元一次方程的应用 第5课时 利用一元一次方程解决积分、
计费问题
夯实基础
1.李明是学校的篮球小明星,在一场篮球比赛中,他
一人得了21分,如果他只投进了2分球和3分球,且
投进的2分球比3分球多3个,那么他一共投进了
( C )个2分球.
A.2
B.3
C.6
D.7
C.3x+x=14
D.3x-x=14

七年级数学上册一元一次方程4.3用一元一次方程解决问题一题多变拓宽思路素材

七年级数学上册一元一次方程4.3用一元一次方程解决问题一题多变拓宽思路素材

一题多变 拓宽思路学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他两从同一起点沿跑道的同一方向同时出发,5分钟后小华第一次追上了小红,求他二人的跑步速度.分析:本题中的相等关系为:小华的行程-小红的行程=400米.解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意得,得4005355=-⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.【评注】此题属于环形行程中同时同地同方向运动类题。

解这类题常用的相等关系为:快者的行程-慢者的行程=跑道周长.拓展一:学校运动场跑道周长400米,小华跑步的速度是小红的35倍,他们从同一起点沿跑道方向背向同时出发,45分钟后小华第一次与小红相遇,求他二人的跑步速度. 分析:本题中的相等关系为:小华的行程+小红的行程=400米. 解:设小红跑步的速度为x 米∕分,则小华跑步的速度为35x 米∕分. 由题意,得400453545=+⨯x x 解得 120=x ,20035=x 答:小红跑步的速度为120米∕分,小华跑步的速度为200米∕分.评注:此题属于环形行程中同时同地背向运动类题。

解这类题常用的相等关系为:两者的行程之和=跑道周长.拓展二:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小红在小华的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=100米.解:设x 分钟后小华第一次与小红相遇. 由题意,得10012012035=-⨯x x解得x=45 答:经过45分钟后小华第一次与小红相遇 拓展三:学校运动场跑道周长400米,已知小红跑步的速度为120米∕分,小华跑步的速度是小红的35倍,若小华在小红的前方100米,他们同时同向出发,试问几分钟后小华第一次与小红相遇?分析:本题中的相等关系为:小华的行程-小红的行程=400米-100米解:设x 分钟后小华第一次与小红相遇 由题意,得10040012012035-=-⨯x x 解得x=415 答:经过415分钟后小华第一次与小红相遇 【评注】此题属于环形行程中同时异地同向运动类题,解这类题常用的相等关系:①若慢者在前,则为 快者的行程-慢者的行程=他们之间的距离;②若快者在前,则为快者的行程-慢者的行程=跑道周长-他们之间的距离.。

苏科版(2024)七年级上册数学第4章 一元一次方程4.3 用一元一次方程解决问题 教案

苏科版(2024)七年级上册数学第4章 一元一次方程4.3 用一元一次方程解决问题 教案

苏科版(2024)七年级上册数学第4章一元一次方程4.3 用一元一次方程解决问题教案【教材分析和学情分析】教材分析:第四章“一元一次方程”是苏科版七年级上册数学中的重要内容,它是在学生学习了基本的算术运算和代数初步知识的基础上展开的。

本章主要介绍了等式的基本性质,一元一次方程的定义、解法以及如何运用一元一次方程解决实际问题。

通过学习,学生不仅可以掌握解决一类数学问题的工具,还能培养他们的逻辑思维能力和抽象思维能力。

本章分为几个主要部分:等式的基本性质,解一元一次方程的步骤(包括移项、合并同类项、系数化为1等),以及如何从实际问题中抽象出一元一次方程。

此外,还会涉及到等式的解的概念,包括解的唯一性和无解的情况。

学情分析:在学习这一章之前,大多数七年级的学生已经具备了基本的算术运算能力,对代数表达式有一定的了解,但可能对如何运用代数方法解决实际问题还比较陌生。

他们可能对抽象的概念理解起来会有些困难,特别是将实际问题转化为数学模型的过程。

学生在学习过程中,可能会遇到的困难包括:理解等式性质和解方程的步骤,如何准确地从实际问题中提炼出数学问题,以及如何检查解的合理性。

因此,教学过程中需要通过丰富的实例和适当的引导,帮助学生逐步建立从实际问题到数学模型的转化能力,同时加强练习,巩固解题技巧。

【教学目标】1. 知识与技能:学生能够理解和掌握一元一次方程的概念,学会列一元一次方程解决实际问题,能正确解一元一次方程。

2. 过程与方法:通过实际问题的分析,引导学生经历从实际问题抽象出数学模型的过程,培养他们的抽象思维能力和问题解决能力。

3. 情感态度与价值观:培养学生对数学的兴趣,体验数学与生活的紧密联系,提高他们用数学知识解决实际问题的意识。

【教学重难点】1. 教学重点:理解一元一次方程的概念,学会列一元一次方程解决实际问题。

2. 教学难点:如何从实际问题中抽象出一元一次方程,以及正确解一元一次方程。

【教学过程】1. 导入新课:通过生活中的实例,如“小明有10元钱,他买了一本书花了5元,他还剩下多少钱?”引入一元一次方程的概念,让学生初步感知方程的形成。

七年级数学上册 第4章 一元一次方程 4.3 用一元一次方程解决问题教学课件

七年级数学上册 第4章 一元一次方程 4.3 用一元一次方程解决问题教学课件
3.8 m3.
第四页,共十六页。
解:设共做了x张桌子. 根据题意(tíyì),得
0.03x+4×0.002x=3.8. 解这个方程,得
x=100.
答:共做了100张桌子.
第五页,共十六页。
通过问题1的研究,你能概括出用一元一次方程解决问题的 一般(yībān)步骤吗?
(1)审题,即弄清题意和题目中的数量(shùliàng)关系. (2)设未知数,即用字母表示题目中的一个未知数. (3)找相等关系,即找出能够表述应用题的全部含义的一 个相等关系. (4)列方程,即根据所找出的相等关系列出需要的式子, 进而列出方程. (5)解方程,即解所列出的方程,求出未知数的值. (6)检验,即检验所得未知数的值是否为所列方程的解,是 否符合问题的实际意义. (7)作答,即写出答案.
工作效率=工作量 ÷工作时间
工作时间=工作量 ÷工作效率
两个或多个工作效率不 同的对象所完成的工作 量的和等于总工作量
第七页,共十六页。
注意事项
弄清“倍数”关系 及“多、少”关系 等 分清半径、直径
一般情况下把总 工作量设为1
涉及的公式
相遇 路程=速度×时间
问题 时间=路程÷速度
行 程 问
追及 速度=路程÷时间 问题
3.一件工作由一个人做要50小时,现在计划由一部分 人先做5小时,再增加2人和他们一起做10小时,完成 了这项工作,问先安排多少人工作?
4.某商品的进价是1 000元,售价是1 500元,由于 销售情况不好,商店决定降价出售(chūshòu),但又要 保证利润率不低于5%,那么商店最多可打几折出 售(chūshòu)此商品? 5.两列火车同时从相距600千米的甲乙两地相向而行, 经过4小时两列火车在途中相遇. 已知客车每小时行 驶80千米,则货车每小时行驶多少千米?

江苏省句容市石狮中学苏科版七年级数学上册4.3用一元一次方程解决问题》(5)教案

江苏省句容市石狮中学苏科版七年级数学上册4.3用一元一次方程解决问题》(5)教案

课题:4.3用一元一次方程解决问题(5)审核:初一数学组课型:新授课班级姓名日期【学习目标】基本目标:能利用表格或圆形示意图作为建模策略,分析工程问题中的数量关系列方程解决问题;提高目标:利用利用表格或圆形示意图分析问题中的数量关系,列方程解决问题;【重点难点】重点:利用表格或圆形示意图,分析工程问题中的数量关系列方程解决问题;难点:如何画示意图来反映问题中的数量关系.【预习导航】1.知识准备:(1)工程或工作问题中常见的数量有哪几个?它们有什么关系?2.一项工程,甲单独做20天完成,乙单独做30天完成,甲单独做5天后,余下的部分由甲、乙合作,需要几天完成.分析:本题可以把工作总量看作_______,则甲的工作效率为_______,乙的工作效率为______ 相等关系:_______________________________________________________解:……【课堂导学】问题1:一件工作,甲单独做20h完成,乙单独做12h完成,则:(1)甲每小时完成全部工作的;乙每小时完成全部工作的;(2)两人合做时,1小时完成全部工作量的;(3)甲在m小时内完成全部工作量的;(4)乙在m小时内完成全部工作量的;(5)甲、乙合做m小时完成的工作量为 .2.例题1:将一批会计报表输入电脑,甲单独做需20小时完成,乙单独做需12小时完成.现在先由甲独做4小时,剩下的部分由甲、乙合做完成,甲、乙两人合做的时间是多少?分析:本题可以列表分析或画环形示意图分析,请试试看.解:【课堂检测】1.某项工程由甲队单独做需18天完成,由乙队做只需甲队的一半时间完成,设两队合作需x天完成,则可得方程()A.x=+91181B.1)91181(=+xC.x=+361181D.1)361181(=+x2.某部书稿,甲、乙两个打字员一起打10天可以完成,若由甲单独打需14天完成。

现两人合打4天后,余下的书稿由乙单独打,设乙还需要x天才能完成,则列方程为____________ 。

苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)说课稿

苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)说课稿

苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)说课稿一. 教材分析《苏科版数学七年级上册4.3《用一元一次方程解决问题》(第1课时)》这一节内容,是在学生学习了代数基本概念、一元一次方程的解法的基础上,进一步引导学生学会用一元一次方程解决实际问题。

通过本节课的学习,使学生能运用一元一次方程解决生活中的简单问题,培养学生的数学应用意识,提高学生解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了代数基本概念和一元一次方程的解法,对用代数式表示实际问题已有一定的认识,具备了一定的解决问题的能力。

但学生在生活中运用数学知识解决问题的经验还不够丰富,因此在教学中,要注意引导学生将实际问题转化为数学问题,培养学生运用一元一次方程解决实际问题的能力。

三. 说教学目标1.知识与技能目标:使学生掌握用一元一次方程解决实际问题的基本方法,培养学生解决实际问题的能力。

2.过程与方法目标:通过自主学习、合作交流,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观目标:培养学生热爱数学的情感,体验数学在生活中的应用价值,增强学生学习数学的兴趣。

四. 说教学重难点1.教学重点:使学生掌握用一元一次方程解决实际问题的基本方法。

2.教学难点:如何引导学生将实际问题转化为数学问题,如何找出等量关系,列出方程。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、启发引导的教学方法,让学生在实践中掌握知识,提高解决问题的能力。

2.教学手段:利用多媒体课件、黑板、粉笔等教学工具,辅助教学。

六. 说教学过程1.导入新课:通过生活中的实际问题,引导学生思考如何用数学知识解决问题,从而引入本节课的内容。

2.自主学习:让学生自主探究一元一次方程解决实际问题的步骤,总结方法。

3.合作交流:学生分组讨论,分享解题方法,互相学习,互相启发。

4.启发引导:教师通过提问、设疑,引导学生找出实际问题中的等量关系,列出方程。

七年级数学上册 第四章 一元一次方程 4.3 用一元一次方程解决问题 怎样应用一元一次方程解答“仓库

七年级数学上册 第四章 一元一次方程 4.3 用一元一次方程解决问题 怎样应用一元一次方程解答“仓库

怎样应用一元一次方程解答“仓库搬运”问题?
难易度:★★★
关键词:方程
答案:
仓库运输类的问题就明确如下关系:原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量,根据这一关系式,准确设置未知数,列出方程解答。

【举一反三】
典例:某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
思路导引:一般来说,此类问题应先找等量关系式,(原来重量-运出重量=剩余重量)
若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,可列出方程。

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000.
标准答案:原来有 50 000千克面粉.。

苏科版七年级上《4.3用一元一次方程解决问题》课时练习有答案

苏科版七年级上《4.3用一元一次方程解决问题》课时练习有答案

2018-2019学年度苏科版数学七年级上册课时练习4.3 用一元一次方程解决问题学校:___________姓名:___________班级:___________一.选择题(共12小题)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元2.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120 元B.100 元C.80 元D.60 元3.太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A.11 B.8 C.7 D.54.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时5.在如图的2018年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.72 B.69 C.51 D.276.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x7.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场 B.4场 C.5场 D.6场8.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.59.如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在()A.点A B.点B C.点C D.点D10.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm211.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.4412.一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.25 B.16 C.34 D.61二.填空题(共6小题)13.三角形的周长是84cm,三边长的比为17:13:12,则这个三角形最短的一边长为cm.14.一项工作甲单独做20h可以做完,乙单独做12h可以做完,若甲、乙两人合作,要做h才能做完.15.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.16.按照一定规律排列的n个数﹣2,4,﹣8,16,﹣32,64,…,若最后三个数的和为768,则n=.17.一环形跑道长400米,小明跑步每秒行5米,爸爸骑自行车每秒15米,两人同时同地反向而行,经过秒两人首次相遇.18.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过秒时线段PQ的长为5厘米.三.解答题(共4小题)19.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.20.A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.(1)求甲每分钟走多少米?(2)两人出发多少分钟后恰好相距480米?21.为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.22.现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?参考答案一.选择题(共12小题)1.C.2.C.3.B.4.B.5.A.6.A.7.C.8.D.9.C.10.C.11.C.12.B.二.填空题(共6小题)13.24cm.14.7.5.15.486.16.10.17.20.18.或1或3或9.三.解答题(共4小题)19.解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.20.解:(1)设甲每分钟走x米,则乙每分钟走2x米,根据题意得:﹣=15,解得:x=80,经检验,x=80是原分式方程的解,且符合题意.答:甲每分钟走80米.(2)设两人出发y分钟后恰好相距480米,根据题意得:|2400﹣80y﹣160y|=480,解得:y1=8,y2=12.答:两人出发8或12分钟后恰好相距480米.21.解:设老张家到单位的路程是x千米,依题意,得13+2.3(x﹣3)=8+2(x﹣3)+0.8x,解这个方程,得x=8.2,答:老张家到单位的路程是8.2千米.22.(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元.。

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件

4.3 用一元一次方程解决问题课时3 用线形示意图解决问题 苏科版数学七年级上册课件


5x-9=111.
• 答:小组成员共有24名,他们计划做111个“中国结”
• 小结:一种事情分成两种情况,这两种情况的总量不变。
当堂小练
• 1、某汽车对运送一批货物,每辆汽车装4吨还剩下8吨 未装,每辆汽车装4.5吨就恰好装完,该车队运送货物 的汽车共有多少辆?
• 解:设该车队运送货物的汽车共有x辆,根据题意,得: 4x+8=4.5x 解得: x=16
5x个
计划做“中国结”的个数
9个
由图可知,这个小组计划做“中国结”
个。
由(2)的数量关系可以画出如图的线段示意图:
计划做“中国结”的个数
4x个
1ቤተ መጻሕፍቲ ባይዱ个
可知,这个小组计划做“中国结”________个。
• 问题3、题目中的相等关系是什么? 计划做“中国结”的个数相等。
• 解:设小组成员共有x名. • 根据题意,得 5x-9=4x+15. • 解这个方程,得 x=24.
12(x )=39 x=3 答:原定的时间是3小时,他行的路程是39千米.
拓展与延伸
• 一件夹克衫先按成本提高50%标价,再以8折(标价的 80%)出售,结果获利28元,这件夹克衫的成本是多 少元?
• 如果利用线形示意图进行分析,你能求出结果吗?

标价(1+50%)x元
成本x元
28元
售价:(1+50%)x·80%元
• 答:该车队运送货物的汽车共有16辆。
当堂小练
• 2.一个邮递员骑自行车在规定时间内把特快专递送到单 位。他每小时行15千米,可以早到24分钟,如果每小 时行12千米,就要迟到15分钟。原定的时间是多少? 他去的单位有多远? 解:设原定的时间为x小时,由题意可得方程 15(x )=12(x+ )

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

2024年苏科版七年级数学上册 4.3 用一元一次方程解决问题(课件)

知1-练
解题秘方:紧扣等量关系“两片国槐树叶与三片银杏树叶 一年的滞尘总量为164 mg”列出方程求解. 解:设一片国槐树叶一年的平均滞尘量为x mg,则一片银 杏树叶一年的平均滞尘量为(2x-4)mg. 根据题意,得2x+3(2x-4)=164. 解这个方程,得x=22, 此时,2x-4 =40. 答:一片银杏树叶一年的平均滞尘量为 40 mg,一片国槐树叶一年的平均滞尘量为22 mg .
知2-讲
方法总结 常见的两种基本等量关系:
(1)总量与分量关系问题:总量=各分量的和; (2)余缺问题: 表示同一个量的两个不同的式子相等.
知2-练
例 2 派派的妈妈和派派今年共36岁,再过5年, 派派妈妈 的年龄比派派年龄的4倍还大1岁, 则派派今年的年 龄为___4_岁____.
解题秘方:设派派今年的年龄为x岁,紧扣“5 年后 派派妈妈的年龄=4×5 年后派派的年龄+1 岁”, 即可列出关于x的一元一次方程.
“一读,二划,三复述,四表示.”“一读”就是读题,
审题 方法
初步感知题意;“二划”就是在题目上面划符号,找 出重点词句, 理出脉络,使题目简单明了;“三复述” 就是复述题意,使题目变得详细,题意清晰;“四表
示”就是画图表示题意, 使题目变得一目了然
续表:
知1-讲
(1)直接设法:题目问什么,就设什么,它一般适用
知2-练
例 4 [定价格][中考·泰州]某校七年级社会实践小组去商场 调查商品销售情况, 了解到该商场以每件80 元的价 格购进了某品牌衬衫500 件, 并以每件120 元的价格 销售了400 件, 商场准备采取促销措施, 将剩下的 衬衫降价销售. 请你帮商场计算一下, 当每件衬衫降 价多少元时, 销售完这批衬衫正好达到盈利45%的 预期目标?

苏教版七年级上册数学 第4章 4.3 用一元一次方程解决问题(第5课时)

苏教版七年级上册数学  第4章 4.3 用一元一次方程解决问题(第5课时)

苏教版七年级上册数学 第4章 一元一次方程4.3 用一元一次方程解决问题第5课时 用一元一次方程解决问题(5)1.某项工程,甲单独做30天完成,乙单独做40天完成,若乙先单独做15天,剩下的由甲完成,问甲、乙一共用几天完成工程?若着设甲、乙共用x 天完成,则符合题意的是( ) A.140153015=+-x B.140153015=++x C. 1403015=++x x D.1301540=-+x x 2.有一个水池,只打开进水管,2 h 可把空水池注满;只打开出水管,3 h 可把满池水放空.若两管同时打开,则把空水池注满到水池的65需要的时间是( ) A.3h B.4h C.5h D.6h3.(2019秋・贵阳白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要________ 天才能完成该工程.4.为进一步缓解城东干道交通拥堵现象,市政府决定修建一条高架道路,为使工程能提前3个月完成,施工单位增加了机械设备,将原定的工作效率提高了20%.则原计划完成这项工程需要____________个月.5.(2019秋・哈尔滨道里区校级月考)整理一批图书,如果一个人单独整理需要30小时,现在先安排一部分人用1小时整理,随后又安排了6人和他们一起又整理了2小时,恰好整理完成假设每个人的工作效率相同,先安排整理的人员有多少人?6.一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独做需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?7.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时,若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?( )A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分8.甲、乙两人完成一项工作,甲先做了3天,然后乙加入一起做,完成剩下的工作,设工作总量为1,工作进度如下表,则完成这项工作共需( )A.9天B.10天C.11天D.12天9.(2019秋・哈尔滨南岗区校级月考)有9人14天完成了一件工作的53,而剩下的工作必须要在4天内完成,则需增加工作效率相同的人数是________人.10.一项工程,甲独做50小时完成,乙独做30小时完成,现在甲先做1小时,然后乙做2小时,再由甲做3小时,接着乙做4小时……两人如此交替工作,完成任务共需__________ 小时.11.某水池中有甲、乙两个进水管和丙出水管,若单独开甲水管,则24分钟可注满一池水,若单独开乙水管,则40分钟可注满一池水,若单独开丙水管,则1小时可排光一池水.现水池中原有51池水,先开乙水管10分钟,不关闭乙水管的情况下,再同时打开甲、丙两水管,问:再经过多长时间后,水池中的水开始溢出?12.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请向甲、乙两工程队合修需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度地节省资金.(时间按整月计算)13.(绍兴中考题)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入__________分钟的水量后,甲与乙的水位高度之差是0.5cm.14.某中学举行数学竞赛,计划用A ,B 两台复印机复印试卷.如果单独用A 机器需要90分钟印完,如果单独用B 机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)若两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B 复印机出了故障,暂时不能复印,此时离发卷还有13分钟.请你计算一下,如果由A 复印机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B 复印机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?。

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册

4.3 用一元一次方程解决问题(课件)苏科版(2024)数学七年级上册
项目
只数
足数


合计
35
94
解:设鸡有 只.根据题意,得 .解得 . .答:鸡有23只,兔有12只.
2.利用列表法找工程问题中的等量关系
工程问题中的等量关系
工作量 工作效率×工作时间(或人均效率×时间×人数);合作的效率 各部分单独做的效率和;总工作量 各部分工作量之和.
典例5 (一题多解)检查一处住宅区的自来水管,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成.求乙中途离开了几天?
解:设后两车相距 .根据等量关系,得 ,解得 .答:后快车与慢车相距 .
列表法是一种建模策略,它可以帮助我们分析实际问题中数量之间的等量关系,从而列方程解决问题.1.利用列表法找鸡兔同笼问题中的等量关系
鸡兔同笼问题中的等量关系
鸡的数量兔的数量头的数量,鸡的足数 鸡的数量兔的足数 兔的数量 足的总数量
沿直线运动
沿圆周运动(同时同地)
追及问题
同地不同时
同时不同地
等量关系
时间
(行程问题中常用的三个量之间的关系:路程 速度×时间)
典例3 (一题多问)甲、乙两站相距 ,一列慢车从甲站开出,行驶速度为 ,一列快车从乙站开出,行驶速度为 .
(1)两车相向而行,慢车先开出 ,快车再开.问快车开出多少小时后两车相遇?
解:解所列出的一元一次方程.验:检验所得的解是不是所列方程的解、是否符合实际意义.答:写出答案(包括单位名称).
用一元一次方程解决实际问题的基本过程:审:审清题意,找出题中的等量关系,分清题中的已知量、未知量.设:设未知数,用含未知数的代数式表示其他未知量.列:根据题中的等量关系,列出一元一次方程.

七年级数学教案:用一元一次方程解决问题(全6课时)

七年级数学教案:用一元一次方程解决问题(全6课时)
(3)某电脑价格一月份下降了10%,二月份上升了10%,则二月份的价格与原价相比()
A、不增也不减;B、增加1%;
C、减少9% ;D、减少1
二.探究交流
活动1:在日历上,小明生日那天的上、下、左、右4个日期数的和为64,你能说出小明生日是几号吗?
(1)设小明生日为x号,上、下、左、右4个日期为_______,________,________,_______
课时NO:主备人:审核人用案时间:年月日星期
教学课题
4.3用一元一次方程解决问题(1)
教学目标
1.能用一元一次方程解决简单的实际问题,包括列方程、解方程,并能根据实际
问题的意义检验所得结果是否合理,提高分析问题和解决问题的能力.
2.经历“问题情境——建立数学模型——解释、应用与拓展”的过程,体会数学的
若设租用客车 辆,共可乘坐44 人,加上乘坐校车的64人,就是全体328人.可得方程___________________________________
如何解这个方程?
2 。(1)某复读机的进价是250元,按标价的9折出售时,利润率为15.2%,那么此复读机的标价是__________________元.
教学难点
分析数量关系,列出等量关系
教学方法
教具准备
教学课件
教学过程
个案补充
一.自主先学:
行程问题的基本关系:路程=×
基本类型:
(1)相遇问题:甲路程+乙路程=
(2)追击问题:两人间距离(或慢者先行路程)+=快者路程.
(3)环形跑道问题:
①同时同向而行:首次相遇快者路程-慢者路程=
②同时反向而行:首次相遇两者路程之和=
相遇问题怎么解决?

用一元一次方程解决问题

用一元一次方程解决问题

用一元一次方程解决问题在生活中,我们常常会遇到各种各样的数学问题。

其中,一元一次方程是最基本且常用的数学问题之一。

本文将向您介绍使用一元一次方程来解决实际问题的方法。

一、什么是一元一次方程一元一次方程是指仅含有一个未知数,并且该未知数的最高次幂为1的代数方程。

一般情况下,它的形式为ax+b=0。

其中,a和b分别代表已知量,x代表未知量。

二、如何解决一元一次方程1. 移项法移项法是解决一元一次方程的一种常用方法。

它的步骤如下:首先,将方程式中的常数项和未知量项分别移动到同一侧。

其次,合并同类项,将移项后的结果进行简化。

最后,通过运用求根公式或消元法来求解未知量。

例如,对于方程式2x+3=7x-5,我们可以将方程式化为2x-7x=-5-3,也就是-5x=-8。

再将其代入求解,得到x=8/5。

2. 代入法代入法也是一种常用的解决一元一次方程的方法。

其步骤如下:首先,将方程中的常数项和未知量项相互抵消,整理成形如x=a的式子。

其次,将求得的a代入到原方程中,计算出未知量x。

例如,对于方程式5x+3=8x-2,我们可以先将方程式转化为5x-8x=-2-3,即-3x=-5。

然后将得到的a=5/3代入到原方程式中,得到未知量x=4/3。

3. 二元一次方程求解有时候我们会遇到两个未知量的情况,此时就需要用到二元一次方程的求解方法。

一般情况下,我们可以通过以下步骤来求解:首先,将两个方程中的某一未知量消去,得到一个仅含有一个未知量的方程。

其次,代入另一个方程中,求解未知量。

最后,将求解出来的未知量代入到第一个方程中,解出另一个未知量。

例如,对于方程组2x+3y=9和4x-5y=-6,我们可以通过将第一个方程式乘以5,第二个方程式乘以3,然后将它们相加,消去y,得到一个仅含有x的方程式22x=27。

然后将求得的x=27/22代入到第一个方程式中,解得y=3/2。

三、实际应用一元一次方程在现实生活中有着广泛的应用。

例如,在购买商品时,我们可以利用一元一次方程来计算折扣后的价格;在计算速度和时间的关系时,我们可以用一元一次方程来计算物体的速度;在计算工人生产率时,我们可以使用一元一次方程来计算他们在单位时间内的产量等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、你能说出利润率的计算公式吗?
常写成:利润 成本 利润率
有人认为: 成本 成本 利润率 售价 你觉得合理吗?为什么?
利润
=
进价×利润率
售价 = 进价 + 利润
售价=进价+进价×利润率
基础练习: 1、某商品的进价是200元, 售价是260元。求 商品的利 润、利润率。
利润 售价 进价
5、甲同学买进一批水果,以成本价 提高40%后出售,结果卖得280元, 则这批水果的进价是__ 元。
解:设这批水果的进价是x元,则 X+40%x=280 解得 x=200 答:这批水果的进价是200元
探究1
想一想:
1.盈利率、亏损率指的是什么?
2.这一问题情境中有哪些已知
量?哪些未知量?如何设未知
解得
x=1100
答:设该商品的标价为1100元.
销 售 中 的 盈 亏
熟记下列关系式
●售价、进价、利润的关系式:
商品利润 = 商品售价—商品进价
●进价、利润、利润率的关系:
利润率=
商品利润 商品进价
×100%
标价、折扣数、商品售价关系 : 折扣数
商品售价= 标价×
10
商品售价、进价、利润率ຫໍສະໝຸດ 关系:3、某商品的进价是200元, 若售价是160元,则结果如 何?
利润=售价-进价
若售价>进价,利润是正数,表示盈利 分析: 若售价<进价,利润是负数,表示亏损
解: 利润 160 200 40元
因为利润是负数,所以结果是亏损40元。 (口答)亏损率是多少?
40 答:亏损率 20% 200
数?相等关系是什么?
¥60 ¥60
3.如何判断是盈是亏?
分析:① 设盈利25%衣服的进价是 x元,则商 品利润是 0.25x 元;依题意列方程 x + 0.25x = 60 由此得 x = 48 ② 设亏损25%衣服的进价是 y 元,则商品 亏损是 0.25y 元;依题意列方程 y -0.25y=60 由此得 y = 80 两件衣服的进价是 x+y= 48+80=128 (元) 两件衣服的售价是60×2=120 (元) > 售价 因为 进价 所以可知卖这两件衣服总的盈亏情况是 亏损.
解:设成本为x元,依题意可得:
x 20% x 60
(1 20%) x 60 1.2 x 60 x 50
答:该商品的进价是50元。
练一练:比比谁又准又快。
1、一件商品的售价是40元,利润是15元,则进 价是__元。 25 2、某商品的进价是80元,想获得25%的利润率, 应把售价定为__ 100 元。 3、某服装店为了清仓,某件成本为90元的衣服 9 亏损了10%,则卖这件衣服亏了__元。 4、一块手表的成本价是x元,亏损率是30﹪,则 X-30%x 这块手表的售价应是__ 元。 5、甲同学买进一批水果,以成本价提高40%后出 200 售,结果卖得280元,则这批水果的进价是__ 元。
折扣数
10
进价 + 进价×利润率 = 售价
进价+进价×利润率=标价×
折扣数
10
拓展提高
某商场把进价为800元的商品按标 价的八折出售,仍获利10%, 则该商 品的标价为多少元?
进价+进价×利润率=标价×
800 800 10%
折扣数
10
x
解:设该商品的标价为x元.
800+800×10%=80%x
80%
4、某商品的售价是60元,利 润率为20%。求 商品的进价。
售价=进价+利润 利润 成本 利润率
? x
X
回忆公式: 用哪一个好? 三个量中已知两个,
只有一个是未知量, 可以设这个量为x。 设成本为x元,则
成本 成本 利润率 售价

? x
+
x × 20% = 60
20%
60
4、某商品的售价是60元,利 润率为20%。求 商品的进价。
售价= 进价 + 进价×利润率
随州某琴行同时卖出两台钢琴, 每台售价为960元。其中一台盈 利20%,另一台亏损20%。这次琴 行是盈利还是亏损,或是不盈不 亏?
感谢指导!
Byebye!
商品利润 =260-200= 60(元)
利润 利润率 成本
60 商品利润率 = 200
× 100%= 30%
2、某商品的进价是50 元,利润率为20%。 求 商品的利润。 回忆公式: 选用哪一个?
利润 成本 利润率
售价=进价+利润 利润 成本 利润率
商品利润=商品利润率×商品进价 =20% ×50 =10(元)
商场中常 用到的有哪些 数学术语?
售价指商品 卖出去时的的实 际售价。
进价指的是商 家从批发部或厂家 批发来的价格。进 价指商品的买入价, 也称成本价。
1、你能用公式说明售价、进价、利 润之间的关系吗?
利润 售价 进价 常写成:售价=进价+利润
利润 利润率 100% 成本
标价指的是商 家所标出的每件 物品的原价。它 与售价不同,它 指的是原价。
打折指的是原价乘以 十分之几或百分之几,则 称将标价打了几折。
标价的六折指在买货中, 将标价打了六折,即标价的 百分之六十。
折扣数 售价= 标价× 10
售价= 标价×
折扣数 10
售价
299 × 6
10
=181.4
售价= 标价×
解:设盈利25%的那件衣服的进价是x元, 另一 件的进价为y元,依题意,得 x+0.25x=60 解得 x=48 y-0.25y=60 解得 y=80 60+60-48-80=-8(元) 答:卖这两件衣服总的亏损了8元。
拓展提高
某商场把进价为800元的商品按标 价的八折出售,仍获利10%, 则该商 品的标价为多少元?
相关文档
最新文档