初中数学 第五章 一元一次方程 复习课教案

合集下载

一元一次方程(复习课教案)

一元一次方程(复习课教案)

一元一次方程(单元复习课)【复习目标】1.系统了解一元一次方程的知识框架;2.知道解一元一次方程的步骤,熟练掌握一元一次方程的解法;3.知道列一元一次方程解应用题的步骤,会列方程解应用题;4.在小组合作交流的过程中培养学生学习数学的习惯和复习的方法.【复习重点】形成一元一次方程章节知识框架图.【活动设计】活动一、一元一次方程知识复习1.(1)已知关于x 的方程150k x -+=是一元一次方程,则k = .(2)已知关于x 的方程()250k x -+=是一元一次方程,则k .(3)已知关于x 的方程()1250k k x --+=是一元一次方程,则k = .说明:本题引导学生回忆一元一次方程的概念.2.已知3x =是关于x 的方程8203x a -=的解,则a = . 说明:本题引导学生回忆方程的解的概念.3.下列运用等式的性质进行的变形,不正确...的是( ) A.如果a b =,那么55a b +=+ B.如果a b =,那么ma mb =C.如果a b =,那么a b c c = D.如果a b c c=,那么a b = 说明:本题引导学生回忆等式的性质. 4.若2260x y --=,则2635y x --的值为 .说明:本题引导学生回忆方程的解的概念.5.解方程:211135x x ++-=. 说明:本题引导学生回忆解一元一次方程的步骤,及每一步骤的注意点. 6.如果方程()()322212x x ---=-也是关于x 的方程203m x --=的解,求m 的值. 说明:本题引导学生回忆方程的解的概念.【课堂小结】(1)一元一次方程、方程的解的概念?等式的基本性质?(2)解一元一次方程的步骤有哪些?每一步骤变形的依据是什么?活动二、利用一元一次方程知识解决实际问题思考:我们在这一章中重点学习了哪几种类型的应用题?(1)引导学生回忆类型:调配问题、行程问题、工程问题、数字问题、方案问题、盈亏问题; (2)引导学生回忆典型问题中的数量关系:如行程问题中:速度、时间、路程的关系;工程问题中:工作效率、工作时间、工作总量的关系;工作效率、工作时间、工作人数、工作总量之间的关系.盈亏问题中:利润=售价—进价=进价×利润率折数售价=标价×10……解决下列问题:1.某种长方体包装盒的表面展开图如图所示,如果该长方体包装盒的长比宽多4cm,求这种长方体包装盒的体积.2.小王逛超市看到如下两个超市的促销信息:(1)当一次性购物标价总额是300元时,甲乙超市实际付款分别是多少?(2)当标价总额是多少时,甲、乙超市实付款一样?(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?【课堂小结】列方程解应用题的步骤?教师总结:审.题,设.未知数,列.方程,解.方程,检验.,写出答.案.“审”是关键,“验”是保证,“设、列、解、答”是过程.附:板书设计:。

浙教版数学七年级上册第五章《一元一次方程》复习教学设计

浙教版数学七年级上册第五章《一元一次方程》复习教学设计

浙教版数学七年级上册第五章《一元一次方程》复习教学设计一. 教材分析浙教版数学七年级上册第五章《一元一次方程》是学生学习初中数学的重要内容,这部分知识为学生提供了用数学语言描述现实世界的基础工具,也为后续学习更复杂的方程和不等式打下基础。

本章主要介绍一元一次方程的概念、解法以及应用。

教材通过丰富的实例和循序渐进的练习,帮助学生理解和掌握一元一次方程的解法,并能够将其应用于解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于解决一些简单的数学问题已经有了一定的方法论。

但同时,这个阶段的学生还需要在逻辑思维、问题解决能力等方面得到进一步的培养。

在《一元一次方程》这部分内容的学习中,学生需要从具体的实例中抽象出方程,并通过变形和求解来找到问题的答案。

这对学生的抽象思维能力是一个挑战。

三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。

2.能够将一元一次方程应用于解决实际问题,提高解决实际问题的能力。

3.培养学生的抽象思维能力和逻辑推理能力。

四. 教学重难点1.重难点:一元一次方程的概念,一元一次方程的解法。

2.难点:将实际问题转化为方程,并求解。

五. 教学方法采用问题驱动的教学方法,通过丰富的实例,引导学生从具体到抽象的过程,逐步理解一元一次方程的概念和解法。

同时,通过小组合作和讨论,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.准备相关的实例和练习题,用于引导学生理解和巩固一元一次方程的知识。

2.准备多媒体教学工具,用于展示和讲解一元一次方程的解法。

七. 教学过程导入(5分钟)通过一个简单的实际问题引导学生思考如何用数学方法来描述和解决这个问题。

例如,可以通过一个关于分配物品的问题,让学生思考如何用数学方法来表示这个问题。

呈现(10分钟)在学生思考的基础上,呈现一元一次方程的概念和解法。

通过具体的实例,让学生理解什么是一元一次方程,以及如何求解一元一次方程。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)掌握一元一次方程的定义及解法。

(2)能够运用一元一次方程解决实际问题。

(3)熟练运用解方程的方法求解方程。

2. 过程与方法:(1)通过复习,巩固一元一次方程的基本概念和解法。

(2)培养学生的逻辑思维能力和解决问题的能力。

(3)学会检验解的方法,确保解的正确性。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心。

(2)培养学生积极主动探索问题的习惯。

二、教学重点与难点1. 教学重点:(1)一元一次方程的定义及解法。

(2)运用一元一次方程解决实际问题。

2. 教学难点:(1)解一元一次方程的步骤和技巧。

(2)检验解的方法。

三、教学准备1. 教师准备:(1)复习相关的一元一次方程资料。

(2)设计具有代表性的练习题和实际问题。

2. 学生准备:(1)回顾一元一次方程的基本概念和解法。

(2)准备笔记本,记录复习内容。

四、教学过程1. 导入新课(1)回顾一元一次方程的基本概念:未知数、系数、常数、方程等。

(2)引导学生回顾解一元一次方程的步骤:去分母、去括号、移项、合并同类项、化系数为1。

2. 知识梳理(1)讲解一元一次方程的定义及解法。

(2)通过例题,展示解一元一次方程的步骤和技巧。

3. 课堂练习(1)让学生独立完成练习题,检验解的方法。

(2)引导学生运用一元一次方程解决实际问题。

4. 课堂讨论(1)让学生分享解题心得和经验。

(2)讨论解一元一次方程时可能遇到的问题和解决方法。

5. 总结与反思(1)总结一元一次方程的基本概念和解法。

(2)强调检验解的方法和重要性。

五、课后作业1. 巩固练习:(1)完成课后练习题,巩固一元一次方程的解法。

(2)挑选几道实际问题,运用一元一次方程解决。

2. 拓展提高:(1)研究一元一次方程在实际生活中的应用。

(2)探索解一元一次方程的其它方法。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及合作交流的表现,评价学生的学习态度和合作精神。

七年级数学上册:第五章 一元一次方程复习(2)教案 北师大版

七年级数学上册:第五章 一元一次方程复习(2)教案 北师大版

第五章一元一次方程复习(2)一、课题§一元一次方程复习复习(2)二、教学目标1.复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;2.培养学生综合运用知识解决问题的能力;3.渗透数形结合的思想.三、教学重点和难点重点:有理数概念和有理数运算.难点:负数和有理数法则的理解.四、教学手段引导——活动——讨论五、教学方法启发式教学六、教学过程(一)、讲授新课1.阅读教材中的“全章小结”,给关键性词语打上横线.2.利用数轴串讲有理数有关概念.本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数的范围在不断扩大.从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了实际意义,原点所表示的0也不再是最小的数了.数轴上的点所表示的数从左向右越来越大,A点所表示的数小于B点所表示的数,而D点所表示的数在四个数中最大.我们用两个大写字母表示这两点间的距离,则AO>BO>CO,这个距离就是我们说的绝对值.由AO>BO>CO可知,负数的绝对值越大其数值反而越小.由上图中还可以知道CO=DO,即C,D两点到原点距离相等,即C,D所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数.从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数.利用数轴,我们可以很方便地解决许多题目.例1 (1)求出大于-5而小于5的所有整数;(2)求出适合3<|x|<6的所有整数;(3)试求方程|x|=5,|2x|=5的解;(4)试求|x|<3的解.解:(1)大于-5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0(2)3<|x|<6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点.在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有-5,-4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5.所以适合3<|x|<6的整数有±4,±5.(3)|x|=5表示到原点距离有5个单位的数,显然原点左、右侧各有一个,分别是-5和5.所以|x|=5的解是x=5或x=-5.同样|2x|=5表示2x到原点的距离是5个单位,这样的点有两个,分别是5和-5.(4)|x|<3在数轴上表示到原点距离小于3个单位的所有点的集合.很显然-3与3之间的任何一点到原点距离都小于3个单位.所以-3<x<3.例2有理数a、b、c、d如图所示,试求|c|,|a-c|,|a+d|,|b-c|.解:显然c、d为负数,a、b为正数,且|a|<|d|.|c|=-c,(复述相反数定义和表示)|a-c|=-a-c,(判断a-c>0)|a+d|=-a-d,(判断a+d<0)|b-c|=b-c.(判断b-C>0)3.有理数运算三分钟练习(1)+17+20; (2)-13+(-21); (3)-15-19;(4)-31-(-16);(5)-11×12;(6)(-27)(-13);(7)-64÷16; (8)(-54)÷(-24);(13)-(2×3)2; (14)(-2)3+32.4.课堂练习(1)填空:①两个互为相反数的数的和是_______;②两个互为相反数的数的商是_____;(0除外)③_____的绝对值与它本身互为相反数;④_____的平方与它的立方互为相反数;⑤______与它绝对值的差为0;⑥______的倒数与它的平方相等;⑦______的倒数等于它本身;⑧______的平方是4,______的绝对值是4;⑨如果-a>a,则a是______;如果|a3|=-a3,则a是______;如果|a2|=-|a2|,那么a 是______;如果|-a|=-a,那么a是_____;⑩如果x3=14.76,(-24.53)3=-14760,那么x=________.(2)用“>”、“<”域“=”填空:当a<0,b<0,c<0,d<0时七、练习设计1.写出下列各数的相反数和倒数.2.计算:(1)5÷0.1;(2)5÷0.001; (3)5÷(-0.01);(4)0.2÷0.1;(5)0.002÷0.001; (6)(-0.03)÷0.01.3.计算:(7)[(-3)3-(-5)3]÷[(-3)-(-5)].5.如果ab<0,那么下列各式哪些一定不成立:(1)a<b<0;(2)0<a<b; (3)a=0并且b<a;6.解下列方程:(3)2.5-0.2x=1.7; (4)-0.4x-0.1=-0.8.7.当a为有理数时,计算|a|+|-a|-|-(-a)|-|-[-(-a)]|+|-{-[-(-a)]}|.8.有理数a,b,c在数轴上对应的点A,B,C,其位置如下图所示:试化简|c|-|c+b|+|a-c|+|b+a|.9.已知2|x|=12.4,|y-3|=2,试求代数式x+y2的值.10.当|2x|=12.4时,求x的值.11.当|x+2|=12.4时,求x的值.八、板书设计九、教学后记全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力.因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点.本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容,这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力.。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其基本性质。

(2)掌握一元一次方程的解法,包括代入法、加减法、乘除法等。

(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,加深对一元一次方程的理解,提高解题能力。

(2)培养学生运用一元一次方程解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生勇于探索、积极思考的精神。

二、教学内容1. 一元一次方程的概念及基本性质。

2. 一元一次方程的解法:代入法、加减法、乘除法。

3. 应用一元一次方程解决实际问题。

三、教学重点与难点1. 教学重点:(1)一元一次方程的概念及其基本性质。

(2)一元一次方程的解法。

(3)应用一元一次方程解决实际问题。

2. 教学难点:(1)一元一次方程的解法。

(2)运用一元一次方程解决实际问题。

四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其基本性质。

(2)引导学生回忆一元一次方程的解法。

2. 课堂讲解:(1)讲解一元一次方程的解法,包括代入法、加减法、乘除法。

(2)举例演示解题过程,引导学生跟随步骤进行解题。

3. 课堂练习:(1)布置练习题,让学生独立完成。

(2)选取部分学生的作业进行点评,纠正错误,解答疑问。

4. 应用拓展:(1)给出实际问题,引导学生运用一元一次方程进行解决。

(2)分小组讨论,分享解题思路和方法。

五、课后作业1. 复习一元一次方程的概念及其基本性质。

2. 巩固一元一次方程的解法,包括代入法、加减法、乘除法。

3. 运用一元一次方程解决实际问题。

4. 总结本节课的学习内容,思考还有什么问题需要进一步解决。

六、教学评估1. 课堂讲解评估:观察学生对一元一次方程解法的理解和掌握程度,以及能否熟练运用解法解决实际问题。

2. 课堂练习评估:检查学生的作业完成情况,评估其对一元一次方程解法的应用能力。

3. 应用拓展评估:通过小组讨论和分享,评估学生运用一元一次方程解决实际问题的能力和团队合作精神。

冀教版初中数学七年级上册 第五章 一元一次方程复习 教案

冀教版初中数学七年级上册  第五章  一元一次方程复习  教案

课题一元一次方程复习(第一课时)教学目标知识目标:了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透“转化”的思想方法。

能力目标:通过回顾与思考,使学生有目的的梳理学过的知识,形成知识体系。

情感目标:通过对本节内容的回顾与思考,让学生在学习的过程中获得成功的体验并培养归纳、总结以及语言的表达能力,增强学生学习数学的信心。

中考考点扫描一元一次方程的概念、解一元一次方程考查的主要形式填空题、选择题、简单的解答题复习重难点复习重点:一元一次方程的解法。

复习难点:灵活运用一元一次方程的解法。

教学方法引导、探究、归纳与练习相结合教学用具多媒体课件、小黑板、彩色粉笔教学过程教一、通过问题串,复习方程的相关概念:1、下列各式中,那些是方程?哪些是一元一次方程?(1)3a+4 (2)x+2y=8 (3)5-3=2 (4)3y2+y=2 (5)y=10 (6)3a<-2a (7) (8)问题1:什么叫方程?含有未知数的等式叫做方程。

注意:判断一个式子是不是方程,要看两点:一是等式;二是含有未知数。

问题2:什么是一元一次方程?只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫一元一次方程。

2、已知方程mx-4=2的解为x=-3,则m=____问题3:什么是方程的解:使方程中等号左右两边相等的未知数的值叫做方程的解.求方程的解的过程叫解方程。

3、大家判断一下,下列方程的变形是否正确?为什么?(1)由3+x=5,得x=5+3 ( )(2) 由7x=-4,得x=47- ( )12=-x移项,得6x +4x=1—1+2 合并同类项,得10x=2系数化为1,得X=6、发暗亏提升三、课堂检测:1、下列方程中,是一元一次方程的是 (只填序号) (1);342=-x x (2);0=x (3)2631xx =+-(4);12=+y x (5)1223+=-x x (6).11xx =- 2、知X=4是方程mx-8=20的解,则m=_____3、方程去分母正确的是( )A .B .C .D .4、解方程511241263x x x +--=+ 5、小结通过这节课的复习,你有何收获?练习设计必做题:教科书第111页复习题3的第1(1)、(2)题、第2(1)(2)题、第3题. 选做题:教科书第112页复习题3的第9题.51板书设计板书设计: 一元一次方程复习(第一课时)反思只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程等式的性质等号两边加(或减)同一个数(或式子),结果仍相等等号两边乘同一个数,或除以一个同一个不为0的数,结果仍相等一元一次方程解一元一次方程的步骤去分母去括号移项合并同类项系数化为1定义解方程求方程解的过程方程的解使方程中等号左右两边相等的未知数的值。

一元一次方程复习教案设计

一元一次方程复习教案设计

一元一次方程复习教案设计一、教学目标1. 知识与技能:(1)理解一元一次方程的概念及其一般形式;(2)掌握一元一次方程的解法,包括加减法、乘除法、换元法等;(3)能够应用一元一次方程解决实际问题。

2. 过程与方法:(1)通过复习,巩固一元一次方程的基本概念和解法;(2)培养学生运用一元一次方程解决实际问题的能力;(3)提高学生自主学习、合作交流、归纳总结的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生合作交流、归纳总结的良好习惯。

二、教学内容1. 一元一次方程的概念及其一般形式;2. 一元一次方程的解法,包括加减法、乘除法、换元法等;3. 应用一元一次方程解决实际问题。

三、教学重点与难点1. 重点:一元一次方程的概念及其一般形式,一元一次方程的解法;2. 难点:一元一次方程的解法在实际问题中的应用。

四、教学过程1. 复习导入:(1)回顾一元一次方程的概念及其一般形式;(2)引导学生回忆一元一次方程的解法。

2. 课堂讲解:(1)讲解一元一次方程的解法,包括加减法、乘除法、换元法等;(2)通过例题演示和解题思路分析,让学生熟练掌握一元一次方程的解法;(3)引导学生运用一元一次方程解决实际问题,如购物问题、行程问题等。

3. 课堂练习:(1)设计具有代表性的练习题,让学生独立完成;(2)引导学生相互讨论、交流解题思路,培养合作精神;(3)对学生的练习结果进行点评,及时纠正错误,巩固知识点。

4. 归纳总结:(1)引导学生总结一元一次方程的概念、解法及实际应用;(2)强调一元一次方程在实际生活中的重要性;(3)鼓励学生在日常生活中发现和提出一元一次方程问题。

五、课后作业1. 请列出五个一元一次方程,并求解;2. 选择一个实际问题,运用一元一次方程进行解答;3. 总结一元一次方程的解法,并谈谈自己在解决实际问题中的心得体会。

教学评价:通过课后作业的完成情况,了解学生对一元一次方程的掌握程度及实际应用能力。

七年级数学第五章认识一元一次方程教案

七年级数学第五章认识一元一次方程教案

七年级数学第五章认识一元一次方程教案第一篇:七年级数学第五章认识一元一次方程教案.七年级数学第五章一元一次方程全章教案5.1:《认识一元一次方程》第一课时一:教学目标1、知识与技能:①理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;②会根据数量关系或简单问题情境列一元一次方程。

2、过程与方法:①经历判断一元一次方程的过程,进一步理解一元一次方程的含义。

②经历对实际问题情境的分析过程中感受方程模型的意义,感受数学与生活的联系。

3、情感、态度与价值观:通过已知的方程推导出未知量,形成概念,通过本节的学习,感受数学的实际价值,从中发现事物发展变化的规律,并培养学生的科学态度。

二:教学重点:一元一次方程的概念和解法是学习方程及其应用的重要基础。

三:教学难点:准确把握一元一次方程的概念是本节的难点一;本节内容还提出用尝试、检验的方法解决实际问题,这是难点二。

四:教学方法:1页.本节课宜采用自主探索与互相协作相结合,交流练习互相穿插的活动课形式。

同时,利用发现法和问题讨论等教学方法。

五:教学过程:Ⅰ、创设情境,引出课题创设情境:老师活动:同学们,今天我们要认识数学王国里的几位新朋友。

认识新朋友,可也别忘了我们的老朋友。

看,老朋友来了!(1)1+2=3(2)5=7-2(3)3+b=2b+1(4)4+x=7(5)2x-2=6 同学们,你们还认识它们吗?能叫出他们的名字吗?如果觉得有困难,就小组讨论一下学生活动:讨论说出等式,方程的概念。

老师活动:好,再和老朋友加深一下印象。

判断下列各式是不是方程(1)-2+5=3()(2)3χ-1=7()(3)m=0()(4)χ﹥3()(5)χ+y=8()(6)2χ2-5χ+1=0()(7)2a +b()(8)x=4()学生活动:积极判断老师活动:同学们能不能总结一下“方程”这位老朋友的特征?学生活动:判断方程的两要素:①有未知数②是等式老师活动:看,这边有两位小朋友在玩猜年龄的游戏,瞧瞧去!老师活动:引导学生看投影仪(课本130页),并思考怎样算年龄。

第5章一元一次方程章末复习教案

第5章一元一次方程章末复习教案
-举例:引导学生通过画图、列表等方式,将现实问题中的数量关系转化为方程,帮助学生突破难点。
-解方程的策略选择:面对不同类型的一元一次方程,学生需要学会选择合适的解法,这是教学的难点。
-举例:比较不同解法(如加减消元法、代入法等)的适用情况,训练学生根据方程特点选择最合适的解法。
四、教学流程
(一)导入新课(用时5分钟)
-举例:讲解如何通过代入原方程的方法检验解是否正确。
-实际应用:一元一次方程在实际问题中的应用是教学的重点,要让学生学会从实际问题中抽象出方程模型。
-举例:通过购物、速度与时间等实际问题的引入,让学生学会如何构建一元一次方程模型。
2.教学难点
-移项与合并同类项:学生在解一元一次方程时,常常在移项和合并同类项时出错,这是教学难点。
其次,在新课讲授环节,我注重讲解一元一次方程的基本概念和解法,同时通过案例分析和重点难点解析,帮助学生掌握知识点。然而,我在讲解过程中发现,部分学生对移项和合并同类项这一部分仍然存在困难。因此,我考虑在下一节课中增加一些针对性的练习,让学生在实际操作中加深理解。
实践活动环节,分组讨论和实验操作使得学生能够将理论知识与实际应用相结合。但从成果展示来看,部分小组在讨论过程中可能存在依赖心理,导致成果不够理想。针对这一问题,我打算在今后的教学中加强对学生的引导,鼓励他们独立思考,提高小组合作的效果。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计

北师大版七年级数学上册第五章一元一次方程的应用复习课教学设计
2.教学方法:采用师生互动的方式,让学生回顾所学内容,总结解题方法和技巧。
3.学生活动:学生积极参与总结,分享自己的学习心得和体会,提高自己的表达能力。
4.教师总结:教师对本节课的教学内容进行梳理,强调重点和难点,布置课后作业,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学的一元一次方程应用知识,培养学生的独立思考和解决问题的能力,特布置以下作业:
2.教学方法:采用小组合作学习,促进学生之间的交流与互动,提高解决问题的能力。
3.学生活动:小组成员共同分析问题,列出方程,讨论解题方法,分工合作,共同解决问题。
4.教师指导:教师巡回指导,关注各小组的讨论情况,给予适当的提示和指导,确保学生掌握解题方法。
(四)课堂练习,500字
1.教学内容:布置适量的课堂练习题,涵盖一元一次方程的不同类型,让学生独立完成。
4.掌握一元一次方程在科学、社会、经济等方面的应用,提高解决问题的能力。
(二)过程与方法
1.在解决实际问题的过程中,培养观察、分析、抽象、概括的能力。
2.通过小组合作、讨论、交流等方式,提高解决问题的策略和方法。
3.学会对一元一次方程的解进行检验,培养反思、调整、优化的思维品质。
4.能够运用画图、列表等方法辅助解题,提高解决问题的直观性和形象性。
2.新课导入:呈现不同类型的实际问题,引导学生运用一元一次方程解决问题。
3.例题讲解:选取具有代表性的例题,详细讲解解题思路和方法。
4.小组合作:分组讨论,共同解决实际问题,培养学生的合作能力和解决问题的能力。
5.总结:对本章所学知识进行总结,提炼关键点,形成知识体系。
6.作业布置:布置适量的练习题,巩固所学知识,提高解题能力。
1.请同学们从生活中选取一个实际问题,运用一元一次方程的知识解决问题,并将解题过程和答案写在作业本上。

七年级数学上册:第五章 一元一次方程复习(3)教案 北师大版

七年级数学上册:第五章 一元一次方程复习(3)教案 北师大版

第五章一元一次方程复习(3)一、课题§一元一次方程复习(3)二、教学目标1.准确地理解方程、方程的解、解方程和一元一次方程等概念;2.熟练地掌握一元一次方程的解法;3.通过列方程解应用题,提高学生综合分析问题的能力;4.使学生进一步理解在解方程时所体现出的化归思想方法;5.使学生对本章所学知识有一个总体认识.三、教学重点和难点进一步复习巩固解一元一次方程的基本思想和解法步骤,以及列方程解应用题.四、教学手段引导——活动——讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题教师在上节课布置作业时将复习提纲及本节课的课堂练习题提前印发给学生.要求:①认真思考复习提纲的每一问题;②结合复习提纲仔细阅读教科书中小结与复习部分;③依据复习提纲,做出自己的书面小结提纲.课堂准备10分钟.教师提问,师生共同重点讲评提纲的第3、4题.附:复习提纲1.本章的主要内容是什么?2.什么叫一元一次方程?其标准形式是什么?它有几个解?3.什么叫移项法则?移项时需注意什么?4.解一元一次方程的一般步骤是什么?其解法体现的基本数学思想是什么?5.列方程解应用题的一般步骤是什么?(二)、课堂练习1.选择题:(投影)(1)下列各等式中,只有______是一元一次方程; [ ](3)已知方程y3-7y+6=0,且y1=1,y2=2,y3=-3,则 [ ]A.只有y1是方程的解;B.y1,y2和y3不都是方程的解;C.y1,y2,y3都是方程的解;D.只有y1和y2是方程的解.(答:D)2.填空:(投影)(1)若|x-y|+(y+1)2=0,则x2+y2= ______ ;(答:2)(2)已知 x=-2是方程 mx-6=15+m的解,则 m= ______ ;(答:-7)3.若2x3m-3+4m=0是关于x的一元一次方程,求m值及方程的解;5.若3a4b n+2与5a m-1b2n+3是同类项,求(m+n)(m-n)的值;7.甲、乙二人在公路上同方向匀速前进,甲的速度为3千米/小时,乙的速度为5千米/小时,甲正午通过A地,乙于下午2点才经过A地,问下午几点乙才能追上甲?追及地距A地多远?说明1.第1,2题用投影形式给出,请学生先在算草纸上自行完成,然后,请5名学生分别就各题阐述自己的解题思路,并得到问题的答案.最后教师小结:对于第1题中①、③,第2题中的②,主要是考查一元一次方程的概念及方程的解的概念.对于第1题中②可将所给数据代入公式后求解,第2题中①是求代数式的值,可利用非负数的性质先确定x、y的值,然后代入代数式求解.2.对第3、4、5题,应请三名学生板演,其余学生在练习本完成.第3、5题是确定未知数的值.第3题利用一元一次方程的概念可求解,第5题利用同类项的概念可求解.而第4题应利用互为相反数的概念列方程求解.3.对于第6题,应请学生在练习本上完成.教师巡视纠正同学们在解题时出现的错误.先做(1)、(3),(2)、(4)选做.4.第7题是追及问题,可借助下图帮助学生建立相等关系.设x小时可追上甲.本题相等关系是:甲所走路程=乙所走的路程.所列方程为:3×2=5x-3x.教师应指出:解决本题的关键是借助图示,弄清乙下午2点经过A点时,甲此时已走到距A地(3×2)千米的地方,即甲在乙的前面6千米.七、练习设计复习题七、试卷八、板书设计九、教学后记本节课的一个重要工作是将本章所学的主要知识形成知识链.通过预习及课上师生讨论复习,加深学生对本章所学主要内容的认识,以便较好地把握它们.对于课堂练习题,重点是强化学生对一元一次方程的概念及方程的解的概念的认识;强化训练学生解方程及列方程解应用题的能力.从而提高他们综合运用所学知识去分析问题和解决问题的能力.。

数学第五章一元一次方程复习学案

数学第五章一元一次方程复习学案

数学第五章一元一次方程复习学案一、知识回顾1.一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。

2. 一元一次方程的一般形式:ax + b = c,其中a、b、c为已知数,a≠0。

3.解一元一次方程的步骤(1)方程两边同时加上一个数,仍旧相等;(2)方程两边同时减去一个数,仍旧相等;(3)方程两边同时乘以一个数,仍旧相等;(4)方程两边同时除以一个非零数,仍旧相等。

4.解一元一次方程的实际问题时,要注意:(1)首先要建立方程;(2)根据题意,用合适的解释把各个数和未知数处理成方程的各个项;(3)求解方程得到未知数的值;(4)验证解是否符合题意。

二、重点难点梳理1.一元一次方程的定义和基本形式。

解:一元一次方程是指只含有一个未知数的一次方程,它的一般形式为ax + b = c,其中a、b、c为已知数,a≠0。

2.解一元一次方程的步骤。

解:(1)方程两边同时加上一个数,仍旧相等;(2)方程两边同时减去一个数,仍旧相等;(3)方程两边同时乘以一个数,仍旧相等;(4)方程两边同时除以一个非零数,仍旧相等。

三、综合练习1.解下列方程:(1)4x-3=9(2)2(x+3)=10(3)5-3x=7x-2解:(1)4x-3=94x=9+3(方程两边同时加上3)4x=12x=12÷4(方程两边同时除以4)x=3(2)2(x+3)=102x+6=10(使用分配率)2x=10-6(方程两边同时减去6)2x=4x=4÷2(方程两边同时除以2)x=2(3)5-3x=7x-2-3x-7x=-2-5(方程两边同时减去5)-10x=-7(进行合并)x=-7÷-10(方程两边同时除以-10)x=7÷102.小明的年龄比小红大6岁,如果小红的年龄是x岁,求小明的年龄。

解:根据题意,可以得到方程x+6=小明的年龄。

3.电商平台举办了一次限时抢购活动,商品原价200元,限时抢购后降价到x元,抢购后有100人购买该商品,求x的值。

初一数学上册第五章一元一次方程复习教案

初一数学上册第五章一元一次方程复习教案

初一数学上册第五章一元一次方程复习教案以下是为您推荐的初一数学上册第五章一元一次方程复习教案,希望本篇文章对您学习有所帮助。

初一数学上册第五章一元一次方程复习教案一、等式的概念和性质1.等式的概念,用等号=来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则.2.等式的类型楷体五号(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立.如:数字算式 .(2)条件等式:只能用某些数值代替等式中的字母,等式才能成立.方程需要才成立.(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立.如, . 注意:等式由代数式构成,但不是代数式.代数式没有等号.体五号3.等式的性质五号等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若,则 ;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则, .注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边.(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果,那么.②等式具有传递性,即:如果,,那么 .黑体小四二、方程的相关概念黑体小四1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号2.方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元.楷体五号3.方程的已知数和未知数楷体五号已知数:一般是具体的数值,如中( 的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示.未知数:是指要求的数,未知数通常用、、等字母表示.如:关于、的方程中,、、是已知数,、是未知数.楷体五号4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号5.解方程求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.6.方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是.黑体小四三、一元一次方程的定义体小四1.一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的元是指未知数,次是指含未知数的项的最高次数.楷体五号2.一元一次方程的形式楷体五号标准形式: (其中,,是已知数)的形式叫一元一次方程的标准形式.最简形式:方程 ( ,,为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程与方程是不同的,方程的解需要分类讨论完成.黑体小四四、一元一次方程的解法1.解一元一次方程的一般步骤五号(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成的形式. 注意:字母和其指数不变.(5)系数化为1:在方程的两边都除以未知数的系数 ( ),得到方程的解 . 注意:不要把分子、分母搞颠倒.体五号2.解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等.3.关于_的方程 a_ b 解的情况⑴当a 0时,_ ⑵当a ,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是( )A.等式两边都加上一个数或一个等式,所得结果仍是等式.B.等式两边都乘以一个数,所得结果仍是等式.C.等式两边都除以一个数,所得结果仍是等式.D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.2.根据等式的性质填空.(1) ,则 ; (2) ,则 ;(3) ,则 ; (4) ,则 .练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①;② ;③ ;④ ;⑤ ;⑥ ;⑦ ;⑧ ;⑨ .2.判断题.(1)所有的方程一定是等式. ( )(2)所有的等式一定是方程. ( )(3) 是方程. ( )(4) 不是方程. ( )(5) 不是等式,因为与不是相等关系. ( )(6) 是等式,也是方程. ( )(7)某数的3倍与6的差的含义是,它是一个代数式,而不是方程. ( )练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3_+5=12; (2) + =5; (3)2_+y=3; (4)y2+5y-6=0; (5) =2.2.已知是关于的一元一次方程,求的值.3.已知方程是关于_的一元一次方程,则m=_________4.已知方程是一元一次方程,则 ; .练习4、一元一次方程的解与解法1)一元一次方程的解一)、根据方程解的具体数值来确定1.若关于_的方程的解是,则代数式的值是_________。

七年级数学第五章一元一次方程章末复习教案

七年级数学第五章一元一次方程章末复习教案

第五章一元一次方程【知识与技能】掌握本章重要知识,能灵活运用有关知识解决具体问题。

【过程与方法】通过梳理本章知识,回顾解决问题中所涉及转化思想和数学建模思想,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识,构建知识体系。

【教学难点】利用相关知识解决具体问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1。

一元一次方程和方程的解在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解。

2。

等式的基本性质等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.等式两边同时乘以同一个数(或除以同一个不为0的数)所得结果仍是等式。

3.解一元一次方程的一般步骤(1)去分母.(2)去括号.(3)移项。

(4)合并同类项.(5)未知数的系数化为1。

4.列方程解应用题的一般步骤(1)设未知数.(2)找等量关系式。

(3)列方程.(4)解方程.(5)检验.(6)写出答案。

三、典例精析,复习新知例 1 已知下列方程:①x+3=1/x;②7x=3;③4x—3=3x+2;④x=2;⑤x+y=5;⑥x2+3x=1.其中是一元一次方程的有()A.2个B.3个C。

4个D。

5个【分析】①中分母中含有未知数,⑤中含有两个未知数,⑥中未知数的最高次数是2,所以是一元一次方程的是②,③,④,故选B.例2 下列等式变形正确的是()A。

如果1/2x=6,那么x=3B。

如果x—3=y—3,那么x—y=0C.如果mx=my,那么x=yD.如果S=1/2ab,那么b=S/(2a)【分析】C两边同时除以m,m可能为0,A、D变形都出现了错误,故选B。

一元一次方程复习课教案

一元一次方程复习课教案

一元一次方程复习课教案一、教学目标1. 知识与技能:(1)掌握一元一次方程的定义及其一般形式;(2)学会解一元一次方程的方法,并能灵活运用;(3)理解一元一次方程的解与系数的关系。

2. 过程与方法:(1)通过复习,加深对一元一次方程概念的理解;(2)通过举例,让学生熟练掌握解一元一次方程的步骤;(3)培养学生运用一元一次方程解决实际问题的能力。

3. 情感态度与价值观:(2)培养学生克服困难的意志,增强自信心;(3)培养学生合作交流的意识,提高团队协作能力。

二、教学内容1. 一元一次方程的定义及一般形式;2. 一元一次方程的解法;3. 一元一次方程的解与系数的关系;4. 一元一次方程在实际问题中的应用。

三、教学重点与难点1. 教学重点:一元一次方程的定义、一般形式和解法;2. 教学难点:一元一次方程的解与系数的关系,以及在一元一次方程实际问题中的应用。

1. 采用讲解法,引导学生复习一元一次方程的基本概念和解法;2. 采用案例分析法,让学生通过具体例子,掌握一元一次方程的解法;3. 采用实践法,让学生动手解一元一次方程,提高解题能力;4. 采用讨论法,引导学生探讨一元一次方程的解与系数的关系。

五、教学过程1. 复习导入:回顾一元一次方程的定义、一般形式和解法;2. 案例分析:举例讲解一元一次方程的解法,让学生动手解题;3. 讲解分析:讲解一元一次方程的解与系数的关系;4. 实践环节:布置练习题,让学生独立解答;5. 总结提升:总结一元一次方程的解法,强调解题注意事项;6. 拓展延伸:探讨一元一次方程在实际问题中的应用;7. 课堂小结:回顾本节课所学内容,加深记忆。

六、教学资源1. 教学课件:制作包含一元一次方程复习内容的课件,以便于学生直观理解;2. 练习题库:准备一定数量的一元一次方程练习题,包括简单、中等和困难难度的题目;3. 参考资料:提供一些关于一元一次方程的拓展阅读材料,供学生课后自学。

七、教学环境1. 教室环境:保证教室内的网络、投影仪等设备正常使用,以便于课件展示和讲解;2. 学生活动空间:预留足够空间,以便学生在课堂实践中进行解题和讨论。

第五章一元一次方程复习课(教案)

第五章一元一次方程复习课(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
课堂上,我尝试用不同的案例来展示一元一次方程的应用,希望以此来激发学生们的兴趣。从他们的反应来看,这种方法是有效的。我看到了他们在解决问题时的积极性和主动性,这让我相信,只要教学方法得当,学生们是完全能够理解和掌握这些数学概念的。
在小组讨论环节,我发现学生们能够积极地参与到讨论中,互相交流想法,共同解决问题。这种合作学习的方式不仅提高了他们的问题解决能力,也增强了他们的团队协作精神。但同时,我也观察到有些学生在讨论中不够主动,可能需要我在今后的教学中更多地鼓励他们发言,增强他们的自信心。
3.重点难点解析:在讲授过程中,我会特别强调移项和合并同类项这两个重点。对于难点部分,我会通过具体的方程例题来帮助大家理解和掌握。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的方程求解实验。这个操作将演示如何将实际问题转化为方程并求解。
5.引导学生掌握一元一次方程及其解法,培养严谨的数学思维和精确的计算能力。
三、教学难点与重点
1.教学重点
-重点一:一元一次方程的定义及解法。掌握方程的解法是解决相关问题的基础,需重点讲解移项、合并同类项、系数化为1等方法。
-举例:讲解如何将方程3x + 5 = 2x + 10的解法步骤详细解释,强调每一步的运算规则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 一元一次方程
要点复习:
1.只含有一个未知数,并且未知数的次数是一次的整式方程叫做一元一次方程
2.解一元一次方程的一般步骤是:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为“1”
3.一元一次方程ax=b 的解的情况:
(1)当a ≠0时,ax=b 有唯一的解
(2)当a=0,b ≠0时,ax=b 无解
(3)当a=0,b=0时,ax=b 有无穷多个解
1.列一元一次方程解应用题,必须认真做到“设、列、解、验、答”五个步骤: “设”――审清题意,明确等量关系,恰当地设立未知数来表示某个未知量。

“列”——根据问题中的等量关系列出方程。

“解”——解方程。

检验方程的解,并判断方程的解是否应用题的实际意义。

“验”——双重检验,检验根的正确性,检验解的合理性
“答”——写出应用题的答案。

2.应用题中常见的基本关系式:
(1)行程问题:路程=速度时间
(2)工程问题:工作量=工作效率时间
练习题:
1.有两个工程队,第一队有46人,第二队有28人,从第一队调x 人到第二队使两队人数相等,列方程得:________________________________________
2.一项工程,甲队单独做10天可以完成,乙队单独做15天可以完成,两队合作x 天可以完成,列方程得:________________________________________
3.某汽车厂今年生产汽车16000辆,去年生产x 辆,今年比去年生产的汽车增加1倍还多1000辆,列方程得:________________________________________
4.某车间接到x 件零件加工任务,计划每天加工120件,可以如期完成,而实际加工每天多做40件,结果提前6天完成,列方程得:___________________________________
5.将5千克浓度为85%的农药配成浓度为2%的药水杀虫,应该加水x 千克
⨯⨯
列方程得:________________________________________
6.甲、乙两车工在一天内共加工零件180个,其中甲车工加工x 件,乙车工完成的件数是甲车工的,列方程得:________________________________________ 7.收割一块小麦,第一组需要5小时收割完,第二组需要7小时收割完。

第一组收割1小时后再增加第二组一起收割,两组共同收割完用了x 小时
列方程得:________________________________________
8.正方形边长为x 米,将它的一边减少1.2米,另一边减少1.5米,所得到的矩形面积比正方形面积减少14.4平方米, 列方程得:
________________________________________
二、分析应用题
1.甲、乙两站相距240千米,客车每小时行65千米,货车每小时行35千米。

货车从甲站开往乙站1小时后,客车从乙站开往甲站,货车开出后x 小时两车相遇.
列表分析
2.要配制浓度为10%的硫酸溶液980千克,需要用x 千克浓度为98%的硫酸溶液 列表分析
三、填空题
1.两数之和是a ,其中一个数是x ,那么这两个数之积是__________________________
2.a 是一个两位数,b 是一个一位数,若把b 放在a 的右边,这个三位数是
_________________
3.梯形下底是a ,上底是下底的
,高比下底小7,那么梯形的面积是__________________ 5
43
2
4.刘庄、王湾两村合修一个小型水库,按受益面积3:5分担建筑费用a万元,那么刘庄应承担____________万元,王湾应承担_________________万元
四、列方程解应用题
1.我国四大发明之一的黑火药,它所用的原料硝酸钾、硫磺、木炭的重量比是15:2:3,要配制这种火药160千克,问三种原料应各取多少克?
2.A、B两城相距200千米,客车在A城,速度为每小时40千米,吉普车在B城,速度为每小时60千米,两车同时相向而行,问经过多少小时相遇?
3.某学校同学参加绿化植树活动,松树、柏树和柳树共栽了900棵,其中柏树是松树的2倍,柳树是柏树的3倍,问松树、柏树和柳树各栽了多少棵?
课后反思:。

相关文档
最新文档