2019年连云港市中考数学模拟试题与答案
2019年江苏省连云港市中考数学摸底考试试卷附解析
2019年江苏省连云港市中考数学摸底考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) A .223y x x =−+B .223y x x =−−C .223y x x =+−D .223y x x =++2. 已知二次函数2y ax bx c =++的图象如图所示,则在①a<0;②b>0;③c<0;④240b ac −>中,正确的判断是( )A .①②③④B .④C .①②③D .①④3.若化简︱1-x ︱- 1682+−x x 的结果是2x -5,则的取值范围是( ) A .x 为任意实数 B .1≤x ≤4C .x ≥1D .x ≤14.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( )A .75°B .45°C .30°D .15°5.一组数据2−,1−,0,1,2的方差是( )A.1B.2C.3D.46.三角形的三边长a 、b 、c 满足等式(22()2a b c ab +−=,则此三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形 7.如图,已知∠1 =∠2 = ∠3 =55°,则∠4的度数为( )A .110°B . 115°C . 120°D .125°8.下列方程组中,是二元一次方程组的是( )A.2626xyx y=⎧⎨−=⎩B.2131x yy z−=⎧⎨=+⎩C.213x yx y+=⎧⎨−=⎩D.2121xx y⎧=⎨+=⎩9.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二、填空题10.已如图所示,两个同样高度的建筑物 AB 和CD,它们相距 8m,在 BD 上一点E处测得A 点的仰角为 60°,C 点的仰角为 30°,则两建筑物的高度为 m.11.将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能卖出 20 个,若这种商品的零售价在一定范围内每降价1 元,其日销售量就增加1个,为获取最大的利润,则应降价元.12.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为(不要求写出自变量x的取值范围).13.已知等腰梯形的周长为25 cm,上、下底分别为7 cm和8 cm,则腰长为.14.□ABCD中,∠A:∠B8:∠C=2:3:2,则∠D= .15.某中学今年“五一”长假期问要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收人情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).分组频数频率1000~120030.0601200~1400120.2401400~1600180.3601600~l8000.2001800~200052000~220020.040合计50 1.000请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)这50个家庭收入的中位数落在第 小组内;(3)请你估算该小区600个家庭中收入较低(不足l400元)的家庭个数大约有 个. 16.棱长是1cm 的小立方体共10块,组成如图所示的几何体,那么这个几何体的表面积是 cm 2.17.一个直棱柱的表面展开图由三个长方形和两个三角形组成,则这个直棱柱是 . 18.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________.19.判断正误,在括号内打“√”或“×”.(1)三角形的一条角平分线把三角形分成面积相等的两部分. ( )(2)若一个三角形的两条高在这个三角形外部,则这个三角形是钝角三角形. ( ) (3)直角三角形的三条高的交点恰为直角顶点. ( ) (4)三角形的中线可能在三角形的外部. ( )20.根据条件“x 的 2倍与-9 的差等于x 的15与 6 的和”列出方程 . 21.底数是23−,指数是 3 的幂是 .22.已知x 的与 3 的差小于 5,用不等式表示为 .三、解答题23. 如图,已知直线y =12 x 与双曲线y =kx (k>0)交于A,B 两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线y =kx(k>0)上一点C 的纵坐标为8,求△AOC 的面积;(3)过原点O 的另一条直线l 交双曲线y =kx (k>0)于P,Q 两点(P 点在第一象限),若由点A ,B ,P ,Q 为顶点组成的四边形面积为24,求点P 的坐标.24.如图,已知正方形ABCD 内一点E ,且AE=EB=AB ,边长为2,求△BEC 和△AEC 的面积.3125.如图,已知△ABC . (1)求AC 的长;(2)若将△ABC 向右平移2个单位.得到A B C '''∆,求点A 的对应点A '的坐标;(3)若将△ABC 绕点C 按顺时针方向旋转90°后,得到△11A B C ∆,求点A 的对应点1A 的坐标.O x AyB26.小语同学在求一组数据的方差时,觉得运用公式2222121[()()()]n S x x x x x x n=−+−++−求方差比较麻烦,善于动脑的小语发现求方差的简化公式22222121[())]n S x x x nx n=+++−,你认为小语的想法正确吗?请你就n=3时,帮助小语证明该简化公式.27.如图,从山下到山上的一个小亭子修了138级台阶,每级台阶的高大约是24 cm ,宽大约是32 cm ,从山下到小亭子大约要走多远(精确至0.1 m)?28.解方程组32(2)2(3)(2)5x y x y −=−⎧⎨−+−=⎩53x y =⎧⎨=⎩29.(1)用如下图所示的两种正方形纸片甲、乙各 1 张,长方形纸片丙 2 张拼成一个大长方形(画出图示),并运用面积之间的关系,将一个多项式分解因式,并写出这个因式分解的过程.(2)请运用上面的方法将多项式2244a ab b ++分解因式,则需要正方形纸片甲 张,正方形纸片乙 张,长方形纸片丙 张拼成一个大的正方形. 画出图形并写出这个因式分解的过程.(3)假若要将多项式2254a ab b ++分解因式,你将利用什么样的图形的面积关系将它分解因式?30.如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A 、B 之间的距离),他从点B 出发,沿着与直线AB 成80°角的BC 方向(即∠CBD=80°)前进至C ,在C 处测得∠C=40°,他量出BC 的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.D5.B6.B7.D8.C9.D二、填空题10..第26题图1512.x x y 15212+−= 13. 5cm14.72°15.(1)略;(2)三;(3)18016.3617.直三棱柱18.1000119. (1)× (2)√ (3)√ (4)×20.12(9)65x x −−=+21. 827−22. 1352x −<三、解答题 23.(1)∵点A 横坐标为4,∴当x=4时,y=2. ∴点A 的坐标为(4,2).∵点A 是直线y =12 x 与双曲线y =kx (k>0)∴k=4×2=8. (2)如图1,∵点C 在双曲线上,当y=8时,x=1∴点C 的坐标为(1,8).过点A,C 分别做x 轴,y 轴的垂线,垂足为M,N ,得矩形DMON . S 矩形ONDM =32,S △ONC =4,S △CDA =9,S △OAM =4.3249415AOC ONC CDA OAM ONDM S S S S S =−−−=−−−=△△△△矩形.(3)反比例函数图象是关于原点O∴OP=OQ,OA=OB ,∴四边形APBQ 是平行四边形. ∴S △POA =14 S 平行四边形APBQ =14×24=6 设点P 横坐标为m (m>0且m ≠4),得P(m ,8m ). 过点P ,A 分别做x 轴的垂线,垂足为E ,F , ∵点P ,A 在双曲线上,∴S △POE =S △AOF =4. 若0<m<4,如图2,POE POA AOF PEFA S S S S +=+△△△梯形,6POA PEFA S S ∴==△梯形.182(4)62m m ⎛⎫+−= ⎪⎝⎭∴·. 解得m=2,m=-8(舍去).∴P (2,4). 若m>4,如图3,AOF AOP POE AFEP S S S S +=+△△△梯形6POA PEFA S S ∴==△梯形.182(4)62m m ⎛⎫∴+−= ⎪⎝⎭, 解得m=8,m=-2(舍去).∴P(8,1).∴点P 的坐标是P(2,4)或P(8,1).24.125.(1)AC = (2)A ′(1,2): (3)A 1(3,0)26.略27.55.2 m28.53x y =⎧⎨=⎩29. (1)如图 1. 2222()a ab b a b ++=+第26题图2第26题图3(2)1,4,4(如图 2);222a ab b a b++=+44(2)(3)需要 1张正方形纸片甲,4张正方形纸片乙,5张长方形纸片丙拼成一个大的长方形(如图 3)30.陈华同学的说法正确,理由略。
2019年江苏省连云港市中考数学全真模拟试卷附解析
2019年江苏省连云港市中考数学全真模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,在四边形ABCD 中,∠B=∠D=90°,:C :1:2:2CD B CA =,则∠DAB 等于( )A .60°B .75°C .90°D .105°2.如图是某小区的一块三角形空地,准备在上面种植某种草皮以美化环境,已知这种草皮每平方米售价为m 元,则购买这种草皮至少需要( )A .450m 元B .225m 元C .150m 元D .300m 元 3.已知某种品牌电脑的显示器的寿命大约为4210⨯小时,这种显示器工作的天数为d(天),平均每天工作的时间为t (小时),那么能正确表示d 与t 之间的函数关系的图象是( )4.一个五边形能画出的对角线条数为( )A .2条B .3条C .4条D .5条5. 已知 x ,y 满足等式11x y x −=+,则用x 的代数式表示得( ) A .11x y x −=+ B . 11x y x −=+ C .11x y x +=− D .11x y x +=− 6. 如果三角形的一个内角等于其他两个内角的差,那么这个三角形是( )A . 锐角三角形B .钝角三角形C .直角三角形D .无法确定7.下列实数中,无理数是( )A 4B .2πC .13D .12(图(图A B C 二、填空题8.林玲的房间里有一面积为3.5m 2的玻璃窗, 她站在窗内离窗子4 m 的地方向外看,她能看到前面一培楼房(楼房之间的距离为 20 m)的面积有 m 2. 9.图1是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图2),那么在Rt △ABC 中,sin B ∠的值是 . 10.如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠l=∠2;②BE=CF ;③△CAN ≌△ABM ;④CD=DN .其中正确的结论是 (将你认为正确的结论的序号都填上).11.已知x 为整数,且满足32≤≤x -,则x = . 12.在某次数学测验中,为了解某班学生的数学成绩情况,从该班测试试卷中随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83在这个问题中,总体是 ,样本是 ,样本平均数是 分,估计该班的平均成绩是 分.13. 若△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B =∠B ′,∠C=70°,AB=15 cm ,则∠C ′= ,A ′B ′= .14.已知一个长方形的边长为a 、b ,它的周长为14,面积为10,则a 2b+ab 2的值为 .15.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.16.在12−,14.3,2004,5−,%7−,23−−各数中,属于负分数的有 个,最小的有理数为 .17.某数的3倍比它的一半大2,若设某数为y ,则列方程为 .3y-0.5y=218.数轴上表示整数的点中,与原点距离最近的点所表示的数是 .三、解答题19.如图,以 0为圆心,方圆 8海里范围内有暗礁,某轮船行驶到距 0点正西 16海里的A 处接到消息,则该船至少向东偏南多少度航行才不会触礁?20.一个口袋中放有 20 个球,其中红球 6 个,白球和黑球各若干个,每个球除了颜色以外没有任何区别.(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在14左右,请你估计袋中黑球的个数;(2)若小王取出的第一个球是白球,将它放在桌上,闭上眼睛从袋中余下的球中再任意取出一个球,则取出红球的概率是多少?21.在正方形网格上有△ABC ,△DEF ,说明这两个三角形相似,并求出它们的相似比.22.已如图,在地面上有三个洞口,老鼠可以从任意一个洞口跑出来,问猫应该守在什么地方才能尽快抓到老鼠? FE D C B A23.求证:在直角三角形中,至少有一个角不大于45°.已知:如图△ABC中,∠C=90°,求证∠A、∠B中至少有一个不大于45°.证明:假设,则∠A 45°,∠B 45°,∴∠A+∠B+∠C>45°+ + >180°,这与相矛盾.∴不能成立.∴∠A、∠B中至少有一个不大于45°.24.把不等式组21xx≥−⎧⎨<⎩的解集表示在下面的数轴上:25.如图,在平面直角坐标系中,请接下列要求分别作出△ABC 变换后的图形(图中每个小正方形的边长为 1 个单位):(1)向右平移8个单位;(2)关于x轴对称.26.如图,已知点B,C,D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于H.(1)说明△BCE≌△ACD成立的理由;(2)说明CF=CH成立的理由;(3)判断△CFH的形状并说明理由.27.“5·12”汶川大地震后,灾区急需大量帐篷,某服装厂原有 4条成衣生产线和 5条童装生产线,工厂决定转产,计划用了天时间赶制 1000顶帐篷支援灾区,若启用 1条成衣生产线和 2条童装生产线,一天可以生产帐篷105顶;若启用 2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?28.先化简,再求值:22()a b a ba b b a ab++÷−−,其中31a=+,31b=−.29.如图,AB、CD相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.30.观察下列各式:1=21-l1+2=22-11+2+22=23-1猜想:(1)1+2+22+23+…+263= ;(2)若n是正整数,那么1+2+22+23+…+2n= .【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.D5.C6.C7.B二、填空题8.1269.10.①②③11.-1,0,112.该班学生的数学成绩,10名学生的数学成绩,81,8113.70°,15cm14.7015.16.3,-517.18.三、解答题19.该船要不触礁,则航线至少与⊙O 相切,过A 作⊙O 的切线 AB ,再过0点作0C ⊥AB 于 C ,则OC=8,又AO=16,在 Rt △OAC 中,81sin 162OC A OA ===,∴∠A= 30°,即当该船至少向东偏南30°航行时,才不会触礁. 20.(1)设口袋中有黑球x 个,由大量反复实验知1204x =,∴x=5,∴ 口袋中有黑球5 个(2)取出一个白球后619P = 21.相似,相似比为1:2.22.如图,猫应该守在△ABC 的外心P 处.23.∠A ,∠B 都大于45°;>;>;45°;90°;三角形的内角和等于l80°;∠A ,∠B 都大于45°24.略25.图略26.(1)略 (2) 略(3)△CFH 是等边三角形,理由略27.(1)凌每条成衣生产线和童装生产线平均每天生产帐篷分别为x 顶、y 顶.210523178x y x y +=⎧⎨+=⎩,解这个方程组4132x y =⎧⎨=⎩,经检验,这个解是原方程组的解,且符合题意. 答:每条成衣生产线和童装生产线平均每天生产帐篷分别为 41顶、32顶.(2)由 3×(4×41+5×32)=972<1000,可知即使工厂满负荷全面转产也不可能如期完成任务. 作为厂长可以安排加班生产、改进技术等,进一步挖掘自已厂的生产潜力,或动员其他厂家支援,想办法尽早完成生产任务,为灾区人民多作贡献.28.ab ,229.∠3=∠6=60°,∠4=30°,∠5=90°30.(1)6421− (2)121n +−。
2019-2020学年连云港市中考数学模拟试卷(有标准答案)
江苏省连云港初中毕业升学考试数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣2的绝对值是 A .﹣2 B .12-C .2D .122x 的取值范围是 A .x ≥1 B .x ≥0 C .x ≥﹣1 D .x ≤0 3.计算下列代数式,结果为5x 的是A .23x x +B .5x x ⋅C .6x x -D .552x x -4.一个几何体的侧面展开图如图所示,则该几何体的底面是5.一组数据3,2,4,2,5的中位数和众数分别是 A .3,2 B .3,3C .4,2D .4,36.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似 A .①处B .②处C .③处D .④处7.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是A .18m 2B .2C .2D 28.如图,在矩形ABCD 中,AD =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =2MP ;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为 A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.64的立方根是. 10.计算2(2)x -=.11.连镇铁路正线工程的投资总额约为46400000000元.数据“46400000000”用科学记数法可表示为. 12.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为. 13.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为.14.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于. 15.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为.16.如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是. 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11(1)2()3--⨯+.18.(本题满分6分)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.19.(本题满分6分)化简:22(1)42m m m ÷+--.19.(本题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为°;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本题满分10分)现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球. (1)从A 盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22.(本题满分10分)如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O . (1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.23.(本题满分10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每生产1吨甲产品需要A 原料0.25吨,每生产1吨乙产品需要A 原料0.5吨.受市场影响,该厂能获得的A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本题满分10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号) (参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)25.(本题满分10分)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A(﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3. (1)k =,b =; (2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数ky x=(x <0)的图像上,并说明理由.26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C(0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.27.(本题满分14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.......。
江苏省连云港市2019届中考数学模拟试卷(word版含解析)
江苏省连云港市2019年中考数学模拟试卷(word版含解析)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.)1.有理数﹣1,﹣2,0,3中,最小的数是()A.﹣1 B.﹣2 C.0 D.3【分析】先求出|﹣1|=1,|﹣2|=2,根据负数的绝对值越大,这个数就越小得到﹣2<﹣1,而0大于任何负数,小于任何正数,则有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1,∴有理数﹣1,﹣2,0,3的大小关系为﹣2<﹣1<0<3.故选B.【点评】本题考查了有理数的大小比较:0大于任何负数,小于任何正数;负数的绝对值越大,这个数就越小.2.据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A.4.47×106B.4.47×107C.0.447×107D.447×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据“4470000”用科学记数法可表示为4.47×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()A.丽B.连C.云D.港【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.计算:5x﹣3x=()A.2x B.2x2C.﹣2x D.﹣2【分析】原式合并同类项即可得到结果.【解答】解:原式=(5﹣3)x=2x,故选A【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.5.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.6.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3x B.C.D.y=x2【分析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,本题得以解决.【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.【点评】本题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质.7.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86 B.64 C.54 D.48【分析】分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.同理,得出S4、S5、S6的关系.【解答】解:如图1,S1=AC2,S2=BC2,S3=AB2.∵AB2=AC2+BC2,∴S1+S2=AC2+BC2=AB2=S3,如图2,S4=S5+S6,∴S3+S4=16+45+11+14=86.故选A.【点评】本题考查了勾股定理、等边三角形的性质.勾股定理:如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.8.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r 的取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<【分析】如图求出AD、AB、AE、AF即可解决问题.【解答】解:如图,∵AD=2,AE=AF=,AB=3,∴AB>AE>AD,∴<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,故选B.【点评】本题考查点由圆的位置关系、勾股定理等知识,解题的关键是正确画出图形,理解题意,属于中考常考题型.二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上.)9.化简:═2.【分析】直接利用立方根的定义即可求解.【解答】解:∵23=8∴=2.故填2.【点评】本题主要考查立方根的概念,如果一个数x的立方等于a,那么x是a的立方根.10.分解因式:x2﹣36=(x+6)(x﹣6).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+6)(x﹣6),故答案为:(x+6)(x﹣6)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是9.【分析】直接利用众数的定义得出答案.【解答】解:∵7,9,9,4,9,8,8,中9出现的次数最多,∴这组数据的众数是:9.故答案为:9.【点评】此题主要考查了众数的定义,正确把握定义是解题关键.12.如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=72°.【分析】由AB∥CD,根据平行线的性质找出∠ABC=∠1,由BC平分∠ABD,根据角平分线的定义即可得出∠CBD=∠ABC,再结合三角形的内角和为180°以及对顶角相等即可得出结论.【解答】解:∵AB∥CD,∠1=54°,∴∠ABC=∠1=54°,又∵BC平分∠ABD,∴∠CBD=∠ABC=54°.∵∠CBD+∠BDC=∠DCB=180°,∠1=∠DCB,∠2=∠BDC,∴∠2=180°﹣∠1﹣∠CBD=180°﹣54°﹣54°=72°.故答案为:72°.【点评】本题考查了平行线的性质、角平分线的定义以及三角形内角和定理,解题的关键是找出各角的关系.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.13.已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=.【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=0代入方程,即可得到一个关于a的方程,即可求得a的值.【解答】解:根据题意得:0+0+2a﹣1=0解得a=.故答案为:.【点评】本题考查了一元二次方程的解.一元二次方程的根一定满足该方程的解析式.14.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的圆心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.15.如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N.若AD=2,则MN=.【分析】设正方形的边长为2a,DH=x,表示出CH,再根据翻折变换的性质表示出DE、EH,然后利用勾股定理列出方程求出x,再根据相似三角形的判定性质,可得NE的长,根据线段的和差,可得答案.【解答】解:设DH=x,CH=2﹣x,由翻折的性质,DE=1,EH=CH=2﹣x,在Rt△DEH中,DE2+DH2=EH2,即12+x2=(2﹣x)2,解得x=,EH=2﹣x=.∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°,∵∠ANE+∠AEN=90°,∴∠ANE=∠DEH,又∠A=∠D,∴△ANE∽△DEH,=,即=,解得EN=,MN=ME﹣BC=2﹣=,故答案为:.【点评】本题考查了翻折变换的性质,勾股定理的应用,锐角三角函数,设出DH的长,然后利用勾股定理列出方程是解题的关键,也是本题的难点.16.如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD (点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.【分析】连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,根据垂径定理可得出AE=BE=AB,利用勾股定理即可求出PE的长度,再根据平行线的性质结合正方形的性质即可得出EF=BC=AB,DF=AE,再通过勾股定理即可求出线段PD的长度,根据边与边的关系可找出PF的长度,分析AB旋转的过程可知CD边扫过的区域为以PF为内圆半径、以PD为外圆半径的圆环,根据圆环的面积公式即可得出结论.【解答】解:连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=AB=3.在Rt△AEP中,AE=3,PA=5,∠AEP=90°,∴PE==4.∵四边形ABCD为正方形,∴AB∥CD,AB=BC=6,又∵PE⊥AB,∴PF⊥CD,∴EF=BC=6,DF=AE=3,PF=PE+EF=4+6=10.在Rt△PFD中,PF=10,DF=3,∠PFE=90°,∴PD==.∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=πPD2﹣πPF2=109π﹣100π=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,解题的关键是分析出CD边扫过的区域的形状.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)17.计算:(﹣1)2016﹣(2﹣)0+.【分析】原式利用乘方的意义,零指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=1﹣1+5=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+2x﹣x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.19.解不等式,并将解集在数轴上表示出来.【分析】先去分母、再去括号、移项、合并同类项、系数化为1即可求出此不等式的解集,再在数轴上表示出其解集即可.【解答】解:去分母,得:1+x<3x﹣3,移项,得:x﹣3x<﹣3﹣1,合并同类项,得:﹣2x<﹣4,系数化为1,得:x>2,将解集表示在数轴上如图:【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能正确求出不等式的解集.20.某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了50名学生,扇形统计图中m=32.(2)请根据数据信息补全条形统计图.(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?【分析】(1)由A的数据即可得出调查的人数,得出m=×100%=32%;(2)求出C的人数即可;(3)由1000×(16%+40%),计算即可.【解答】解:(1)8÷16%=50(人),m=×100%=32%故答案为:50,32;(2)50×40%=20(人),补全条形统计图如图所示:(3)1000×(16%+40%)=560(人);答:估计选择“非常了解”、“比较了解”共约有560人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.21.甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是.(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.【分析】(1)根据甲、乙两校分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是=;故答案为:;(2)将甲、乙两校报名的教师分别记为甲1、甲2、乙1、乙2(注:1表示男教师,2表示女教师),树状图如图所示:==.所以P(两名教师来自同一所学校)【点评】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.22.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.【分析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【解答】证明:(1)∵BE=DF,∴BE﹣EF=DF﹣EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,∴四边形ABCD是平行四边形,∴AO=CO.【点评】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.23.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性定客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?【分析】(1)设该店有客房x间,房客y人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.【解答】解:(1)设该店有客房x间,房客y人;根据题意得:,解得:.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性定客房18间,则需付费20×18×0.8=288千<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【点评】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.24.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,0),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.25.如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)【分析】(1)过A作AD⊥BC,交BC的延长线于点D,由含30°的直角三角形性质得AD=AC=2,由三角函数求出CD=2,在Rt△ABD中,由三角函数求出BD=16,即可得出结果;(2)在BC边上取一点M,使得CM=AC,连接AM,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=即可得出结果.【解答】解:(1)过A作AD⊥BC,交BC的延长线于点D,如图1所示:在Rt△ADC中,AC=4,∵∠C=150°,∴∠ACD=30°,∴AD=AC=2,CD=ACcos30°=4×=2,在Rt△ABD中,tanB===,∴BD=16,∴BC=BD﹣CD=16﹣2;(2)在BC边上取一点M,使得CM=AC,连接AM,如图2所示:∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD===≈≈0.27≈0.3.【点评】本题考查了锐角三角函数、含30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;熟练掌握三角函数运算是解决问题的关键.26.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.(1)求此抛物线对应的函数表达式及点C的坐标;(2)若抛物线上存在点M,使得△BCM的面积为,求出点M的坐标;(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.【分析】(1)把A(﹣1,1),B(2,2)代入y=ax2+bx求得抛物线的函数表达式为y=x2﹣x,由于BC∥x轴,设C(x0,2).于是得到方程x02﹣x0=2,即可得到结论;(2)设△BCM边BC上的高为h,根据已知条件得到h=2,点M即为抛物线上到BC的距离为2的点,于是得到M的纵坐标为0或4,令y=x2﹣x=0,或令y=x2﹣x=4,解方程即可得到结论;(3)解直角三角形得到OB=2,OA=,OC=,∠AOD=∠BOD=45°,tan∠COD=①如图1,当△AOC∽△BON时,求得ON=2OC=5,过N作NE⊥x轴于E,根据三角函数的定义得到OE=4,NE=3,于是得到结果;②如图2,根据相似三角形的性质得到BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F解直角三角形得到BF=4,NF=3于是得到结论.【解答】解:(1)把A(﹣1,1),B(2,2)代入y=ax2+bx得:,解得,故抛物线的函数表达式为y=x2﹣x,∵BC∥x轴,设C(x0,2).∴x02﹣x0=2,解得:x0=﹣或x0=2,∵x0<0,∴C(﹣,2);(2)设△BCM边BC上的高为h,∵BC=,∴S△BCM=h=,∴h=2,点M即为抛物线上到BC的距离为2的点,∴M的纵坐标为0或4,令y=x2﹣x=0,解得:x1=0,x2=,∴M1(0,0),M2(,0),令y=x2﹣x=4,解得:x3=,x4=,∴M3(,0),M4(,4),综上所述:M点的坐标为:(0,0),(,0),(,0),(,4);(3)∵A(﹣1,1),B(2,2),C(﹣,2),D(0,2),∴OB=2,OA=,OC=,∴∠AOD=∠BOD=45°,tan∠COD=,①如图1,当△AOC∽△BON时,,∠AOC=∠BON,∴ON=2OC=5,过N作NE⊥x轴于E,∵∠COD=45°﹣∠AOC=45°﹣∠BON=∠NOE,在Rt△NOE中,tan∠NOE=tan∠COD=,∴OE=4,NE=3,∴N(4,3)同理可得N(3,4);②如图2,当△AOC∽△OBN时,,∠AOC=∠OBN,∴BN=2OC=5,过B作BG⊥x轴于G,过N作x轴的平行线交BG的延长线于F,∴NF⊥BF,∵∠COD=45°﹣∠AOC=45°﹣∠OBN=∠NBF,∴tan∠NBF=tan∠COD=,∴BF=4,NF=3,∴N(﹣1,﹣2),同理N(﹣2,﹣1),综上所述:使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标是(4,3),(3,4),(﹣1,﹣2),(﹣2,﹣1).【点评】本题主要考查的是二次函数与相似三角形的综合应用,难度较大,解答本题需要同学们熟练掌握二次函数和相似三角形的相关性质.27.我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)【分析】(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P 即为所求,只要证明∠3=∠4即可.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON于点P、Q.(3)如图3,光线的行进路线为S→A→B→C→B→A→S,则光线的行进路线为A→P→Q→B,求出SA+AB+BC+CB+BA+AS即可.(4)θ=30°,60°,90°,120°,150°,分别作出图形即可解决问题.【解答】解:(1)如图1,作A关于平面镜ML的对称点A′,连接A′B交ML于点P,则点P即为所求.证明:如图作PN⊥ML,∵A与A′关于ML对称,∴∠1=∠2,∵∠2+∠3=90°,∠1+∠2+∠3+∠4=180°,∴∠1+∠4=90°,∴∠3=∠4,∴AP是入射光线,PB是反射光线,P即为入射点.(2)如图2,作A关于OM的对称点A′,作B关于ON的对称点B′,连接A′B′分别交OM、ON于点P、Q.则光线的行进路线为A→P→Q→B.(3)如图3,光线的行进路线为S→A→B→C→B→A→S.∵∠SAN=∠OAB=∠MON=∠30°,∴OB=BA,∵BC⊥ON,∴CA=OA=,∴AB=,BC=,∴这束光线经过的路程为:SA+AB+BC+CB+BA+AS=(1++)×2=2+.(4)θ=30°,60°,90°,120°,150°.理由如图所示,【点评】本题考查轴对称、翻折变换等知识,解题的关键是充分利用反射角等于入射角解决问题,第四个问题容易漏解,考虑问题要全面,属于中考压轴题.。
2019年江苏省连云港市中考数学试卷附分析答案
4;
“车”、“炮”之间的距离为 1,
“炮”②之间的距离为 ⸱,“车”②之间的距离为 2 ,
⸱
∵
,
⸱
∴马应该落在②的位置,
故选:B.
7.(3 分)如图,利用一个直角墙角修建一个梯形储料场 ABCD,其中∠C=120°.若新建
墙 BC 与 CD 总长为 12m,则该梯形储料场 ABCD 的最大面积是( )
C、E、G 不在同一条直线上;③PC 圆心,其中正确的个数为( )
MP;④BP
AB;⑤点 F 是△CMP 外接圆的
A.2 个
B.3 个
C.4 个
D.5 个
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.不需要写出解答过程,请把答案直接
填写在答题卡相应位置上)
9.(3 分)64 的立方根为 10.(3 分)计算(2﹣x)2=
第 6页(共 31页)
长.
第 7页(共 31页)
2019 年江苏省连云港市中考数学试卷
参考答案与试题解析
一、选择题(本大题共有 8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,只有 一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(3 分)﹣2 的绝对值是( )
D.④处
7.(3 分)如图,利用一个直角墙角修建一个梯形储料场 ABCD,其中∠C=120°.若新建 墙 BC 与 CD 总长为 12m,则该梯形储料场 ABCD 的最大面积是( )
A.18m2
B.18 m2
C.24 m2
⸱ D.
m2
8.(3 分)如图,在矩形 ABCD 中,AD=2 AB.将矩形 ABCD 对折,得到折痕 MN;沿着 CM 折叠,点 D 的对应点为 E,ME 与 BC 的交点为 F;再沿着 MP 折叠,使得 AM 与 EM 重合,折痕为 MP,此时点 B 的对应点为 G.下列结论:①△CMP 是直角三角形;②点
连云港市2019年中考数学模拟试卷及答案
连云港市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
2019年江苏省连云港市中考数学试题(word版,含参考解析)
2019年江苏省连云港初中毕业升学考试数 学 试 题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣2的绝对值是A .﹣2B .12-C .2D .122x 的取值范围是A .x ≥1B .x ≥0C .x ≥﹣1D .x ≤0 3.计算下列代数式,结果为5x 的是A .23x x + B .5x x ⋅ C .6x x - D .552x x - 4.一个几何体的侧面展开图如图所示,则该几何体的底面是5.一组数据3,2,4,2,5的中位数和众数分别是A .3,2B .3,3C .4,2D .4,36.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似 A .①处 B .②处 C .③处 D .④处7.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是A .18m 2B .m 2C .2D m 28.如图,在矩形ABCD 中,AD =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PCMP ;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为 A .2个 B .3个 C .4个 D .5个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.64的立方根是 . 10.计算2(2)x -= .11.连镇铁路正线工程的投资总额约为46 400 000 000元.数据“46 400 000 000”用科学记数法可表示为 .12.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为 . 13.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 .14.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于 . 15.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为 .16.如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则APAT的最大值是 . 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11(1)2()3--⨯.18.(本题满分6分)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.19.(本题满分6分)化简:22(1)42m m m ÷+--.19.(本题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本题满分10分)现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球. (1)从A 盒中摸出红球的概率为 ;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22.(本题满分10分)如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O . (1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.23.(本题满分10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式; (2)若每生产1吨甲产品需要A 原料0.25吨,每生产1吨乙产品需要A 原料0.5吨.受市场影响,该厂能获得的A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本题满分10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)25.(本题满分10分)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A(﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3.(1)k = ,b = ; (2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数ky x=(x <0)的图像上,并说明理由.26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C(0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.27.(本题满分14分)问题情境:如图1,在正方形ABCD 中,E 为边BC 上一点(不与点B 、C 重合),垂直于AE 的一条直线MN 分别交AB 、AE 、CD 于点M 、P 、N .判断线段DN 、MB 、EC 之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN翻折,点P 落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.。
连云港市2019年中考数学试卷及答案(Word解析版)
江苏省连云港市2019年中考数学试卷一、单项选择题(共8小题,每小题3分,满分24分)1.(3分)(2019•连云港)下列实数中,是无理数的为()C.D.3.14A.﹣1 B.﹣分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是整数,是有理数,选项错误;B、是分数、是有理数,选项错误;C、正确;D、是有限小数,是有理数,选项错误.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2019•连云港)计算的结果是()A.﹣3 B.3C.﹣9 D.9考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选B点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.3.(3分)(2019•连云港)在平面直角坐标系内,点P(﹣2,3)关于原点的对称点Q的坐标为()A.(2,﹣3)B.(2,3)C.(3,﹣2)D.(﹣2,﹣3)考点:关于原点对称的点的坐标.专题:常规题型.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).解答:解:根据中心对称的性质,得点P(﹣2,3)关于原点对称点P′的坐标是(2,﹣3).故选A.点评:关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.4.(3分)(2019•连云港)“丝绸之路”经济带首个实体平台﹣﹣中哈物流合作基地在我市投入使用,其年最大装卸能力达410000标箱.其中“410000”用科学记数法表示为()A.0.41×106B.4.1×105C.41×104D.4.1×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将410000用科学记数法表示为:4.1×105.故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2019•连云港)一组数据1,3,6,1,2的众数和中位数分别是()A.1,6 B.1,1 C.2,1 D.1,2考点:众数;中位数.分析:根据众数和中位数的定义分别进行解答即可.解答:解:∵1出现了2次,出现的次数最多,∴众数是1,把这组数据从小到大排列1,1,2,3,6,最中间的数是2,则中位数是2;故选D.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.(3分)(2019•连云港)如图,若△ABC和△DEF的面积分别为S1、S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2考点:解直角三角形;三角形的面积.分析:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出选择.解答:解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△ABG中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故选:C.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.7.(3分)(2019•连云港)如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A.①③B.①④C.②④D.③④考点:圆周角定理.分析:①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,③先证出D、P、C、F四点共圆,再利用△AMP∽△FCP,得出结论.④直径所对的圆周角是直角.解答:证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,故②错误,③如图∵AB为直径,∴∠ACB=90°,∠FPD=90°,∴D、P、C、F四点共圆,∴∠CFP=∠CDB,∵∠CDB=CAB,∴∠CFP=CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确,故选:D.点评:本题主要考查了圆周角的知识,解题的关键是明确直径所对的圆周角是直角.8.(3分)(2019•连云港)如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤B.6≤k≤10 C.2≤k≤6 D.2≤k≤考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的坐标特征,分别求出过点A(1,2),B(2,5),C(6,1)的反比例函数解析式,再求出k=时,函数y=与y=﹣x+7交于点(,),此点在线段BC上,当k=时,与△ABC无交点,由此求解即可.解答:解:∵过点A(1,2)的反比例函数解析式为y=,过点B(2,5)的反比例函数解析式为y=,过点C(6,1)的反比例函数解析式为y=,∴k≥2.∵经过A(1,2),B(2,5)的直线解析式为y=3x﹣1,经过B(2,5),C(6,1)的直线解析式为y=﹣x+7,经过A(1,2),C(6,1)的直线解析式为y=﹣x+,当k=时,函数y=与y=﹣x+7交于点(,),此点在线段BC上,当k=时,函数y=与直线AB交点的横坐标为x=,均不符合题意;与直线BC无交点;与直线AC无交点;综上可知2≤k≤.故选A.点评:本题考查了反比例函数图象上点的坐标特征,两函数交点坐标的求法,有一定难度.注意自变量的取值范围.二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2019•连云港)使有意义的x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.解答:解:∵有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.10.(3分)(2019•连云港)计算:(2x+1)(x﹣3)=2x2﹣5x﹣3.考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:原式=2x2﹣6x+x﹣3=2x2﹣5x﹣3.故答案是:2x2﹣5x﹣3.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.11.(3分)(2019•连云港)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.考点:多边形内角与外角.分析:正多边形的一个外角等于30°,而多边形的外角和为360°,则:多边形边数=多边形外角和÷一个外角度数.解答:解:依题意,得多边形的边数=360°÷30°=12,故答案为:12.点评:题考查了多边形内角与外角.关键是明确多边形的外角和为定值,即360°,而当多边形每一个外角相等时,可作除法求边数.12.(3分)(2019•连云港)若ab=3,a﹣2b=5,则a2b﹣2ab2的值是15.考点:因式分解-提公因式法.分析:直接提取公因式ab,进而将已知代入求出即可.解答:解:∵ab=3,a﹣2b=5,则a2b﹣2ab2=ab(a﹣2b)=3×5=15.故答案为:15.点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.13.(3分)(2019•连云港)若函数y=的图象在同一象限内,y随x增大而增大,则m 的值可以是0(写出一个即可).考点:反比例函数的性质.专题:开放型.分析:根据反比例函数图象的性质得到m﹣1<0,通过解该不等式可以求得m的取值范围,据此可以取一个m值.解答:解:∵函数y=的图象在同一象限内,y随x增大而增大,∴m﹣1<0,解得m<1.故m可以取0,﹣1,﹣2等值.故答案为:0.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.14.(3分)(2019•连云港)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=31°.考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2=∠EFD.解答:解:∵AB∥CD,∴∠EFD=∠1=62°,∵FG平分∠EFD,∴∠2=∠EFD=×62°=31°.故答案为:31°.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.15.(3分)(2019•连云港)如图1,折线段AOB将面积为S的⊙O分成两个扇形,大扇形、小扇形的面积分别为S1、S2,若=0.618,则称分成的小扇形为“黄金扇形”.生活中的折扇(如图2)大致是“黄金扇形”,则“黄金扇形”的圆心角约为137.5°.(精确到0.1)考点:扇形面积的计算;黄金分割.专题:新定义.分析:设“黄金扇形的”的圆心角是n°,扇形的半径为r,得出=0.618,求出即可.解答:解:设“黄金扇形的”的圆心角是n°,扇形的半径为r,则=0.618,解得:n≈137.5,故答案为:137.5.点评:本题考查了黄金分割,扇形的面积的应用,解此题的关键是得出=0.618.16.(3分)(2019•连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M,EM交AB于N,则tan∠ANE=.考点:翻折变换(折叠问题).分析:设正方形的边长为2a,DH=x,表示出CH,再根据翻折变换的性质表示出DE、EH,然后利用勾股定理列出方程求出x,再根据同角的余角相等求出∠ANE=∠DEH,然后根据锐角的正切值等于对边比邻边列式计算即可得解.解答:解:设正方形的边长为2a,DH=x,则CH=2a﹣x,由翻折的性质,DE=AD=×2a=a,EH=CH=2a﹣x,在Rt△DEH中,DE2+DH2=EH2,即a2+x2=(2a﹣x)2,解得x=a,∵∠MEH=∠C=90°,∴∠AEN+∠DEH=90°,∵∠ANE+∠AEN=90°,∴∠ANE=∠DEH,∴tan∠ANE=tan∠DEH===.故答案为:.点评:本题考查了翻折变换的性质,勾股定理的应用,锐角三角函数,设出正方形的边长,然后利用勾股定理列出方程是解题的关键,也是本题的难点.三、解答题(共11小题,满分102分,,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)(2019•连云港)计算|﹣5|+﹣()﹣1.考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用立方根定义化简,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=5+3﹣3=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2019•连云港)解不等式2(x﹣1)+5<3x,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去括号,移项,合并同类项,系数化成1即可.解答:解:2(x﹣1)+5<3x,2x﹣2+5﹣3x<0,﹣x<﹣3,x>3,在数轴上表示为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.19.(6分)(2019•连云港)解方程:+3=.考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2+3x﹣6=x﹣1,移项合并得:2x=3,解得:x=1.5,经检验x=1.5是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(8分)(2019•连云港)我市启动了第二届“美丽港城,美在悦读”全民阅读活动,为了解市民每天的阅读时间情况,随机抽取了部分市民进行调查,根据调查结果绘制如下尚不完整的频数分布表:阅读时间0≤x<30 30≤x<60 60≤x<90 x≥90 合计x(min)频数450 400 10050 1000频率0.450.4 0.1 0.05 1(1)补全表格;(2)将每天阅读时间不低于60min的市民称为“阅读爱好者”,若我市约有500万人,请估计我市能称为“阅读爱好者”的市民约有多少万人?考点:频数(率)分布表;用样本估计总体.分析:(1)根据频数、频率与总数之间的关系分别进行计算,然后填表即可;(2)用500万人乘以时间不低于60min所占的百分比,即可求出我市能称为“阅读爱好者”的市民数.解答:解:(1)根据题意得:=1000(人),0≤x<30的频率是:=0.45,60≤x<90的频数是:1000×0.1=100(人),x≥90的频率是:0.05,填表如下:阅读时间0≤x<30 30≤x<60 60≤x<90 x≥90 合计x(min)频数450 400 100 50 1000频率0.45 0.4 0.1 0.05 1故答案为:0.45,100,0.05,1000;(2)根据题意得:500×(0.1+0.05)=75(万人).答:估计我市能称为“阅读爱好者”的市民约有75万人.点评:此题考查了频数(率)分布表,掌握频数、频率、总数之间的关系以及用样本估计总体的计算公式是本题的关键.21.(10分)(2019•连云港)如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接AE、BE,AE与BE相等吗?请说明理由.考点:矩形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)首先利用平行四边形的判定得出四边形DOCE是平行四边形,进而利用矩形的性质得出DO=CO,即可得出答案;(2)利用等腰三角形的性质以及矩形的性质得出AD=BC,∠ADE=∠BCE,进而利用全等三角形的判定得出.解答:(1)证明:∵DE∥AC,CE∥BD,∴四边形DOCE是平行四边形,∵矩形ABCD的对角线AC、BD相交于点O,∴AO=CO=DO=BO,∴四边形OCED为菱形;(2)解:AE=BE.理由:∵四边形OCED为菱形,∴ED=CE,∴∠EDC=∠ECD,∴∠ADE=∠BCE,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴AE=BE.点评:此题主要考查了矩形的性质以及菱形的判定和全等三角形的判定与性质等知识,熟练掌握矩形的性质进而得出对应线段关系是解题关键.22.(10分)(2019•连云港)如图1,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D,这些球除了所标字母外都相同,另外,有一面白色、另一面黑色、大小相同的4张正方形卡片,每张卡片上面的字母相同,分别标有A、B、C、D.最初,摆成图2的样子,A、D是黑色,B、C是白色.操作:①从袋中任意取一个球;②将与取出球所标字母相同的卡片翻过来;③将取出的球放回袋中再次操作后,观察卡片的颜色.(如:第一次取出球A,第二次取出球B,此时卡片的颜色变)(1)求四张卡片变成相同颜色的概率;(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与四张卡片变成相同颜色的情况,再利用概率公式即可求得答案;(2)由(1)中的树状图可求得四张卡片变成两黑两白,并恰好形成各自颜色矩形的情况,再利用概率公式即可求得答案.解答:解:(1)画树状图得:∵共有16种等可能的结果,四张卡片变成相同颜色的有4种情况,∴四张卡片变成相同颜色的概率为:=;(2)∵四张卡片变成两黑两白,并恰好形成各自颜色矩形的有8种情况,∴四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)(2019•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)根据图表可得小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据图表列出方程组求出x和y的值;(3)设商店是打a折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1062元,列出方程求解即可.解答:解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.点评:本题考查了二元一次方程组和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.24.(10分)(2019•连云港)在一次科技活动中,小明进行了模拟雷达扫描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(20﹣20)cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转201秒,交点又在什么位置?请说明理由.考点:解直角三角形的应用.分析:(1)如图1,过A点作AD⊥BC,垂足为D.令AB=2tcm.在Rt△ABD中,根据三角函数可得AD=AB=t,BD=AB=t.在Rt∠AMD中,MD=AD=t.由BM=BD﹣MD,得到关于t的方程,求得t的值,从而求得AB的长;(2)如图2,当光线旋转6秒,设AP交BC于点N,在Rt△ABN中,根据三角函数可得BN;如图3,设光线AP旋转2019秒后光线与BC的交点为Q.求得CQ=,BC=40.根据BQ=BC﹣CQ即可求解.解答:解:(1)如图1,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2tcm.在Rt△ABD中,AD=AB=t,BD=AB=t.在Rt∠AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD﹣MD.即t﹣t=20﹣20.解得t=20.∴AB=2×20=40cm.答:AB的长为40cm.(2)如图2,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN===.∴光线AP旋转6秒,与BC的交点N距点B cm处.如图3,设光线AP旋转2019秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2019=125×16+14,即AP旋转2019秒与旋转14秒时和BC的交点是同一个点Q.易求得CQ=,BC=40.∴BQ=BC﹣CQ=40﹣=.∴光线AP旋转2019秒后,与BC的交点Q在距点B cm处.点评:考查了解直角三角形的应用,主要是三角函数的基本概念及运算,注意方程思想的应用.25.(10分)(2019•连云港)为了考察冰川的融化状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km的圆形考察区域,线段P1P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平等移动,若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是s=n2﹣n+.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别为(﹣4,9)、(﹣13、﹣3).(1)求线段P1P2所在直线对应的函数关系式;(2)求冰川边界线移动到考察区域所需的最短时间.考点:二次函数的应用.分析:(1)设P1P2所在直线对应的函数关系式是y=kx+b,由待定系数法求出其解就可以得出结论;(2)由(1)的解析式求出直线P1P2与坐标轴的交点,设最短距离为a,由三角形的面积相等建立方程,求出a的值就求出了s的值,再代入s=n2﹣n+就可以求出时间.解答:解:(1)设P1P2所在直线对应的函数关系式是y=kx+b,根据题意,得,解得:,∴直线P1P2的解析式是:y=x+;(2)在y=x+中,当x=0,则y=,当y=0,则x=﹣,∴与x、y轴的交点坐标是(0,)、(﹣,0).由勾股定理,得=,设平移的距离是a,由题意,得:x,则××=×x,解得:x=,即s=﹣4=∵s=n2﹣n+,∴n2﹣n+=,解得:n1=6,n2=﹣4.8(舍去)答:冰川边界线移动到考察区域所需的最短时间为6年.点评:本题考察了待定系数法求一次函数的解析式的运用,勾股定理的运用,三角形的面积公式的运用,一元二次方程的解法的运用,解答时求出一次函数的解析式是关键.26.(12分)(2019•连云港)已知二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),交y轴于点C,直线l过点C,且交抛物线于另一点E(点E不与点A、B重合).(1)求此二次函数关系式;(2)若直线l1经过抛物线顶点D,交x轴于点F,且l1∥l,则以点C、D、E、F为顶点的四边形能否为平行四边形?若能,求出点E的坐标;若不能,请说明理由.(3)若过点A作AG⊥x轴,交直线l于点G,连接OG、BE,试证明OG∥BE.考点:二次函数综合题.分析:(1)由二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),直接利用待定系数法求解,即可求得此二次函数关系式;(2)以点C、D、E、F为顶点的四边形构成平行四边形,有两种情形,需要分类讨论,避免漏解:①若CD为平行四边形的对角线,如答图2﹣1所示;②若CD为平行四边形的边,如答图2﹣2所示;(3)首先过点E作EH⊥x轴于点H,设直线CE的解析式为:y=kx+3,然后分别求得点G与E的坐标,即可证得△OAG∽△BHE,则可得∠AOG=∠HBE,继而可证得OG∥BE.解答:解:(1)二次函数y=x2+bx+c,其图象抛物线交x轴于点A(1,0),B(3,0),∴,解得:,∴此二次函数关系式为:y=x2﹣4x+3;(2)假设以点C、D、E、F为顶点的四边形能成为平行四边形.①若CD为平行四边形的对角线,如答图2﹣1.过点D作DM⊥AB于点M,过点E作EN⊥OC于点N,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴点D(2,﹣1),点C(0,3),∴DM=1,∵l1∥l,∴当CE=DF时,四边形CEDF是平行四边形,∴∠ECF+∠CFD=180°,∵∠OCF+∠OFC=90°,∴∠ECN+∠DFM=90°,∵∠DFM+∠FDM=90°,∴∠ECN=∠FDM,在△ECN和△FDM中,,∴△ECN≌△FDM(AAS),∴CN=DM=1,∴ON=OC﹣CN=3﹣1=2,当y=2时,x2﹣4x+3=2,解得:x=2±;②若CD为平行四边形的边,如答图2﹣2,则EF∥CD,且EF=CD.过点D作DM⊥y轴于点M,则DM=2,OM=1,CM=OM+OC=4;过点E作EN⊥x轴于点N.易证△CDM≌△EFN,∴EN=CM=4.∴x2﹣4x+3=4,解得:x=2±.综上所述,以点C、D、E、F为顶点的四边形能成为平行四边形;点E的坐标为(2+,2)、(2﹣,2)、(2+,4)、(2﹣,4).(3)如图②,过点E作EH⊥x轴于点H,设直线CE的解析式为:y=kx+3,∵A(1,0),AG⊥x轴,∴点G(1,k+3),即OA=1,AG=k+3,∵E是直线与抛物线的交点,∴,解得:,∴点E(k+4,(k+1)(k+3)),∴BH=OH﹣OB=k+3,EH=(k+1)(k+3),∴,∵∠OAG=∠BHE=90°,∴△OAG∽△BHE,∴∠AOG=∠HBE,∴OG∥BE.点评:此题属于二次函数的综合题、综合性较强,难度较大,主要考查了待定系数法求二次函数的解析式、一次函数与二次函数的交点问题、平行四边形的性质以及相似三角形的判定与性质等知识.注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.27.(14分)(2019•连云港)某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF.(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在△APK、△ADK、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H 分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.考点:四边形综合题.分析:(1)设AP=x,则PB=1﹣x,根据正方形的面积公式得到这两个正方形面积之和=x2+(8﹣x)2,配方得到2(x﹣4)2+32,然后根据二次函数的最值问题求解.(2)根据PE∥BF求得PK=,进而求得DK=PD﹣PK=a﹣=,然后根据面积公式即可求得.(3)本问涉及点的运动轨迹.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示;(4)本问涉及点的运动轨迹.GH中点O的运动路径是与AB平行且距离为3的线段XY上,如答图4﹣1所示;然后利用轴对称的性质,求出OM+OB的最小值,如答图4﹣2所示.解答:解:(1)当点P运动时,这两个正方形的面积之和不是定值.设AP=x,则PB=8﹣x,根据题意得这两个正方形面积之和=x2+(8﹣x)2=2x2﹣16x+64=2(x﹣4)2+32,所以当x=4时,这两个正方形面积之和有最小值,最小值为32.(2)存在两个面积始终相等的三角形,它们是△APK与△DFK.依题意画出图形,如答图2所示.设AP=a,则PB=BF=8﹣a.∵PE∥BF,∴,即,∴PK=,∴DK=PD﹣PK=a﹣=,∴S△APK=PK•PA=••a=,S△DFK=DK•EF=•(8﹣a)=,∴S△APK=S△DFK.(3)当点P从点A出发,沿A→B→C→D的线路,向点D运动时,不妨设点Q在DA边上,若点P在点A,点Q在点D,此时PQ的中点O即为DA边的中点;若点Q在DA边上,且不在点D,则点P在AB上,且不在点A.此时在Rt△APQ中,O为PQ的中点,所以AO=PQ=4.所以点O在以A为圆心,半径为4,圆心角为90°的圆弧上.PQ的中点O所经过的路径是三段半径为4,圆心角为90°的圆弧,如答图3所示:所以PQ的中点O所经过的路径的长为:×2π×4=6π.(4)点O所经过的路径长为3,OM+OB的最小值为.如答图4﹣1,分别过点G、O、H作AB的垂线,垂足分别为点R、S、T,则四边形GRTH为梯形.数学试卷∵点O为中点,∴OS=(GR+HT)=(AP+PB)=4,即OS为定值.∴点O的运动路径在与AB距离为4的平行线上.∵MN=6,点P在线段MN上运动,且点O为GH中点,∴点O的运动路径为线段XY,XY=MN=3,XY∥AB且平行线之间距离为4,点X 与点A、点Y与点B之间的水平距离均为2.5.如答图4﹣2,作点M关于直线XY的对称点M′,连接BM′,与XY交于点O.由轴对称性质可知,此时OM+OB=BM′最小.在Rt△BMM′中,由勾股定理得:BM′==.∴OM+OB的最小值为.点评:本题是中考压轴题,难度较大.解题难点在于分析动点的运动轨迹,需要很好的空间想象能力和作图分析能力;此外本题还综合考查了二次函数、整式运算、四边形、中位线、相似、轴对称与勾股定理等众多知识点,是一道好题.。
江苏省连云港市2019年初三数学中考模拟数学试卷及答案解析
江苏省连云港市2019年中考模拟数学试题(含答案解析)一、选择题1、地球绕太阳每小时转动经过的路程约为110 000千米,110 000用科学记数法可表示为( )A .11×104B .0.11×107C .1.1×105D .1.1×1062、如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,∠AED=115°,则∠B 的度数是( )A .50°B .75°C .80°D .100°(第2题图) (第4题图) (第5题图) 3、下列计算正确的是( ) A .B .C .D .4、在△ABC 中,AB=AC=5,BC=6,D 为BC 中点,则AD 的长为( ) A .3 B .4 C .5 D .65、如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A .30°B .25°C .20°D .15° 二、选择题6、某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.8C .众数是2,平均数是3.75D .众数是2,平均数是3.87、下列图形中,能通过折叠围成一个三棱柱的是( )A .B .C .D .8、的倒数是( )A .B .-3C .D .3二、填空题9、分解因式:_______。
10、分式方程的解是________。
11、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是_______。
12、如图,在平面直角坐标系中,将线段AB 绕点A 按逆时针方向旋转90°后,得到线段AB ′,则点B ′的坐标为 。
2019-2020学年连云港市中考数学模拟试题有标准答案(Word版)
江苏省连云港初中毕业升学考试数 学 试 题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣8的相反数是 A .﹣8 B .18 C .8 D .18- 2.下列运算正确的是A .2x x x -=-B .2x y xy -=-C .224x x x +=D .22(1)1x x -=-3.地球上陆地的面积约为150 000 000 km 2,把“150 000 000”用科学记数法表示为 A .1.5×108B .1.5×107C .1.5×109D .1.5×1064.一组数据2,1,2,5,3,2的众数是A .1B .2C .3D .55.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是 A .23 B .16 C .13 D .126.右图是由5个大小相同的正方体搭成的几何体,这个几何体的俯 视图是7.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式h =﹣t 2+24t +1.则下列说法中正确的是A .点火后9s 和点火后13s 的升空高度相同B .点火后24s 火箭落于地面C .点火后10s 的升空高度为139mD .火箭升空的最大高度为145m8.如图,菱形ABCD 的两个顶点B 、D 在反比例函数ky x=的图像上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A(1,1),∠ABC =60°,则k 的值是A .﹣5B .﹣4C .﹣3D .﹣2二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.使2x -有意义的x 的取值范围是 .10.分解因式:216x -= .11.如图,△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 . 12.已知A(﹣4,1y )、B(﹣1,2y )是反比例函数4y x=-图像上的两个点,则1y 与2y 的大小关系为 . 13.一个扇形的圆心角是120°,它的半径是3cm ,则扇形的弧长为 cm .14.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB 于点P ,已知∠OAB =22°,则∠OCB = °.15.如图,一次函数y =kx +b 的图像与x 轴、y 轴分别相交于A 、B 两点,⊙O 经过A 、B 两点,已知AB =2,则kb的值为 . 16.如图,E 、F 、G 、H 分别为矩形ABCD 的边AB 、BC 、CD 、DA 的中点,连接AC 、HE 、EC 、GA 、GF ,已知AG⊥GF ,AC =6,则AB 的长为 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:20(2)201836-+-.18.(本题满分6分)解方程:3201x x-=-.19.(本题满分6分)解不等式组:3242(1)31 xx x-<⎧⎨-≤+⎩.20.(本题满分8分)随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成两幅不完整的统计图表.(1)本次被调查的家庭有户,表中m=;(2)本次调查数据的中位数出现在组,扇形统计图中,D组所在扇形的圆心角是度;(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10 000元以上的家庭有多少户?21.(本题满分10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?22.(本题满分10分)如图,矩形ABCD中,E是AD的中点,延长CE、BA交于点F,连接AC、DF.(1)求证:四边形ACDF是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.23.(本题满分10分)如图,在平面直角坐标系中,一次函数y =k 1x +b 的图像与反比例函数2k y x的图像交于A(4,﹣2)、B(﹣2,n )两点,与x 轴交于点C .(1)求k 2,n 的值;(2)请直接写出不等式k 1x +b <2k x的解集; (3)将x 轴下方的图像沿x 轴翻折,点A 落在点A ′处,连接A ′B、A ′C,求△A ′BC 的面积.24.(本题满分10分)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖,经过调查,获取信息如下:如果购买红色地砖4 000块,蓝色地砖6 000块,需付款86 000元;如果购买红色地砖10 000块,蓝色地砖3 500块,需付款99 000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12 000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000块,如何购买付款最少?请说明理由.25.(本题满分10分)如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34)26.(本题满分12分)如图1,图形ABCD是由两个二次函数21(0)y kx m k=+<与22(0)y ax b a=+>的部分图像围成的封闭图形,已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC、CD、AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.27.(本题满分14分)在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为734,求AE的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF 的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=3时,求AE的长.......。
江苏省连云港市2019学年度第二学期中考数学模拟试卷【含答案及解析】
江苏省连云港市2019学年度第二学期中考数学模拟试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列计算中,正确的是A. B.C. D.2. 下列说法正确的是()A. 要了解人们对“低碳生活”的了解程度,宜采用普查方式B. 随机事件的概率为50%,必然事件的概率为100%C. 一组数据3、4、5、5、6、7的众数和中位数都是5D. 若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定3. 如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A. B. C. D.4. 若一个圆锥的侧面展开图是一个半径为10cm,圆心角为252°的扇形,则该圆锥的底面半径为()A. 6cmB. 7cmC. 8cmD. 10cm5. |﹣8|的相反数是()A. ﹣8B. 8C.D.6. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A. 55°B. 45°C. 35°D. 65°7. 若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A. a>2B. a<2C. a>4D. a<48. 已知二次函数y=ax2+bx+c的图象如图所示,下列说法①a>0;②b2﹣4ac>0;③4a+2b+c>0;④c<0;⑤b>0.其中正确的有()A. 2个B. 3个C. 4个D. 5个二、填空题9. 若分式的值为0,则x=________.10. 把多项式2x2﹣8分解因式得:_______.11. 在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是________.12. 某公司2月份的利润为160万元,4月份的利润250万元,则平均每月的增长率为________.13. 如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的表达式为_______.14. 如图,点E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一条弦.则sin∠OBE=___.15. 如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为______.16. 如下一组数:,﹣,,﹣,…,请用你发现的规律,猜想第2016个数为_____.17. 甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有______.(在横线上填写正确的序号)18. 如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,On和点E4,E5,…,En.则OnEn=______AC.(用含n的代数式表示)三、解答题19. 先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.20. 计算:﹣14+(2016﹣π)0﹣(﹣)﹣1+|1﹣|﹣2sin60°.21. 如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向2的概率为.(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.四、填空题22. 某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?五、解答题23. 某商场为方便顾客停车,决定设计一个地下停车场,为了测得该校地下停车场的限高CD,在施工时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)1.2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米).24. 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)25. 大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.26. 探索研究:已知:△ABC和△CDE都是等边三角形.(1)如图1,若点A、C、E在一条直线上时,我们可以得到结论:线段AD与BE的数量关系为:,线段AD与BE所成的锐角度数为°;(2)如图2,当点A、C、E不在一条直线上时,请证明(1)中的结论仍然成立;灵活运用:如图3,某广场是一个四边形区域ABCD,现测得:AB=60m,BC=80m,且∠ABC=30°,∠DAC=∠DCA=60°,试求水池两旁B、D两点之间的距离.27. 在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1 与BD1的位置关系.(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.直接写出k的值和AC12+(kDD1)2的值.28. 如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.(1)当m=3时,求点A的坐标及BC的长;(2)当m>1时,连接CA,问m为何值时CA⊥CP?(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并求出相对应的点E坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2019届江苏省连云港市海州区九年级中考数学一模试卷(含详解)
2019届江苏省连云港市海州区九年级中考一模试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题1.-2的倒数是( )A. -B.C. 2D. -2【答案】A【解析】分析:直接利用倒数的定义得出答案.详解:-2的倒数是:-.故选A.点睛:本题主要考查了倒数,正确把握定义是解题的关键.2. 下列运算中,计算正确的是()A. a3·a2=a6B. a8÷a2=a4C. (ab2)2=a5D. (a2)3=a6【答案】D【解析】试题解析:A.a3·a2=a5,故该选项错误;B.a8÷a2=a5,故该选项错误;C.(ab2)2=a2b4,故该选项错误;D.(a2)3=a6,该选项正确.故选D.考点:1.同底数幂的乘法2.同底数幂的除法;3.积的乘方与幂的乘方.3.下列调查中,适宜采用全面调查方式的是()A. 了解一批圆珠笔的使用寿命B. 了解全国九年级学生身高的现状C. 考查人们保护海洋的意识D. 检查一枚用于发射卫星的运载火箭的各零部件【答案】D【解析】试题解析:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选D.4.一组数据1、2、3、4、5、15的平均数和中位数分别是()A. 5、5B. 5、4C. 5、3.5D. 5、3【答案】C【解析】【分析】根据平均数和中位数的定义进行求解结合选项即可得正确答案.【详解】这组数据按从小到大的顺序排列为:1、2、3、4、5、15,故平均数为:(1+2+3+4+5+15)÷6=5,中位数为:(3+4)÷2=3.5,故选C.【点睛】本题考查了中位数和平均数,熟练掌握平均数与中位数的概念以及求解方法是解题的关键.5.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A. 图象开口向上B. 图象的对称轴是直线x=1C. 图象有最低点D. 图象的顶点坐标为(﹣1,2)【答案】D【解析】【分析】二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k),据此进行判断即可.【详解】∵﹣1<0,∴函数的开口向下,图象有最高点,这个函数的顶点是(﹣1,2),对称轴是x=﹣1,∴选项A、B、C错误,选项D正确,故选D.【点睛】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.6.将一副三角板如图放置,使点A在DE上,BC∥DE,则∠ACE的度数为( )A. 10°B. 15°C. 20°D. 25°【答案】B【解析】∵BC∥DE,∴∠BCE=∠E=30°,∴∠ACE=∠ACB-∠BCE=45°-30°=15°;故选D。
江苏省连云港市2019年中考数学试题(含答案)
2019年江苏省连云港初中毕业升学考试数 学 试 题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣2的绝对值是A .﹣2B .12-C .2D .122x 的取值范围是A .x ≥1B .x ≥0C .x ≥﹣1D .x ≤03.计算下列代数式,结果为5x 的是A .23x x +B .5x x ⋅C .6x x -D .552x x -4.一个几何体的侧面展开图如图所示,则该几何体的底面是5.一组数据3,2,4,2,5的中位数和众数分别是A .3,2B .3,3C .4,2D .4,3 6.在如图所示的象棋盘(各个小正方形的边长均相等)中,根据“马走日”的规则,“马”应落在下列哪个位置处,能使“马”、“车”、“炮”所在位置的格点构成的三角形与“帅”、“相”,“兵”所在位置的格点构成的三角形相似A .①处B .②处C .③处D .④处7.如图,利用一个直角墙角修建一个梯形储料场ABCD ,其中∠C =120°.若新建墙BC 与CD 总长为12m ,则该梯形储料场ABCD 的最大面积是A .18m 2B .2C .2D .2m 28.如图,在矩形ABCD 中,AD =.将矩形ABCD 对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =2;④BP =2AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为A .2个B .3个C .4个D .5个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.64的立方根是 .10.计算2(2)x -= .11.连镇铁路正线工程的投资总额约为46 400 000 000元.数据“46 400 000 000”用科学记数法可表示为 .12.一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为 .13.如图,点A 、B 、C 在⊙O 上,BC =6,∠BAC =30°,则⊙O 的半径为 .14.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于 .15.如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为 .16.如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作OC 与直线BD 相切,点P是OC 上一个动点,连接AP 交BD 于点T ,则AP AT的最大值是 . 三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:11(1)2()3--⨯.18.(本题满分6分)解不等式组:2412(3)1x x x >-⎧⎨-->+⎩.19.(本题满分6分)化简:22(1)42m m m ÷+--.19.(本题满分8分)为了解某地区中学生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示尚不完整的统计图.(1)本次调查共随机抽取了 名中学生,其中课外阅读时长“2~4小时”的有人;(2)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 °;(3)若该地区共有2000名中学生,估计该地区中学生一周课外阅读时长不少于4小时的人数.21.(本题满分10分)现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为 ;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.22.(本题满分10分)如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O .(1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由.23.(本题满分10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x (吨),生产甲、乙两种产品获得的总利润为y (万元).(1)求y 与x 之间的函数表达式;(2)若每生产1吨甲产品需要A 原料0.25吨,每生产1吨乙产品需要A 原料0.5吨.受市场影响,该厂能获得的A 原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.24.(本题满分10分)如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.(1)求观察哨所A 与走私船所在的位置C 的距离;(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)(参考数据:sin 37°=cos 53°≈,cos 37 =sin 53°≈去,tan 37°≈2,tan 76°≈)25.(本题满分10分)如图,在平面直角坐标系xOy 中,函数y x b =-+的图像与函数ky x=(x <0)的图像相交于点A (﹣1,6),并与x 轴交于点C .点D 是线段AC 上一点,△ODC 与△OAC 的面积比为2:3.(1)k = ,b = ;(2)求点D 的坐标;(3)若将△ODC 绕点O 逆时针旋转,得到△△OD ′C ′,其中点D ′落在x 轴负半轴上,判断点C ′是否落在函数k y x=(x <0)的图像上,并说明理由.26.(本题满分12分)如图,在平面直角坐标系xOy 中,抛物线L 1:2y x bx c =++过点C (0,﹣3),与抛物线L 2:213222y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q 分别是抛物线L 1、抛物线L 2上的动点.(1)求抛物线L 1对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标;(3)设点R 为抛物线L 1上另一个动点,且CA 平分∠PCR ,若OQ ∥PR ,求出点Q 的坐标.27.(本题满分14分)问题情境:如图1,在正方形ABCD中,E为边BC上一点(不与点B、C重合),垂直于AE的一条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上,(1)如图2,若垂足P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂足P在正方形ABCD的对角线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处.若正方形ABCD的边长为4 ,AD的中点为S,求P'S的最小值.问题拓展:如图4,在边长为4的正方形ABCD中,点M、N分别为边AB、CD上的点,将正方形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂足分别为G、H.若AG=52,请直接写出FH的长.11。
2019年江苏省连云港市海州区中考数学一模试卷解析版
2019年江苏省连云港市海州区中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为()△AOBA.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O 上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDE,请求出相应的BF的长.2019年江苏省连云港市海州区中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.【点评】本题考查了倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【分析】根据二次根式的加减,合并同类项法则、同底数幂的除法、单项式乘以单项式法则分别求出每一个式子的值,再判断即可.【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.【点评】本题考查了二次根式的加减,合并同类项法则、同底数幂的除法、单项式乘以单项式法则等知识点,能正确求出每个式子的值是解此题的关键.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.【解答】解:俯视图是三角形的是选项D,故选:D.【点评】本题考查了简单组合体的三视图,从上面看的到的视图是俯视图4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【分析】根据中位数的定义与众数的定义,结合图表信息解答.【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.【点评】本题考查了中位数与众数,确定中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数;众数是出现次数最多的数据,众数有时不止一个.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为()△AOBA.2B.3C.4D.5【分析】根据点A在反比例函数图象上结合反比例函数系数k的几何意义,即可得出关于k的含绝对值符号的一元一次方程,解方程求出k值,再结合反比例函数在第一象限内有图象即可确定k值.【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S=|k|=2,△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.【点评】本题考查了反比例函数的性质以及反比例函数系数k的几何意义,解题的关键是找出关于k的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k的几何意义找出关于k的含绝对值符号的一元一次方程是关键.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【分析】直接利用顶点式的特点可知顶点坐标.【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【分析】连接OB,如图,利用切线的性质得OB⊥AB,在Rt△AOB中利用勾股定理得AB=12,利用面积法求得BH=,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【分析】过点A′作A′M⊥BC于点M.设CM=A′M=x,则BM=7﹣x.在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2.由此求得x的值;然后在等腰Rt△A′CM中,CA′=A′M.【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.【点评】本题考查了矩形的性质,翻折变换(折叠问题).解题的关键是作出辅助线,构建直角三角形△A′MB和等腰直角△A′CM,利用勾股定理将所求的线段与已知线段的数量关系联系起来.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【分析】根据因式分解法即可求出答案.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.【点评】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故答案为:6.7×106.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【分析】根据互补的性质可求得∠BOC的度数,再根据同弧所对的圆周角是圆心角的一半求得∠D的度数.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【分析】钟表的分针经过40分钟转过的角度是240°,即圆心角是240°,半径是5cm,弧长公式是l=,代入就可以求出弧长.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.【点评】正确记忆弧长公式是解题的关键.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【分析】首先根据点B坐标为(3,1)可得AO=3,AB=CO=1,再根据矩形OABC和OA′B′C′全等,可得OA′=OA=3,A′B′=AB=1,然后证明△CDO∽△A′B′O,根据相似三角形对应边成比例得到CD的长,进而得到D点坐标,设出反比例函数解析式,代入D点坐标即可求出答案.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.【点评】此题主要考查了待定系数法求反比例函数解析式,相似三角形的判定与性质,矩形的性质,解决问题的关键是求出D点坐标.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O 上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【分析】根据点D运动到(﹣1,0)时,正方形面积最大,可得正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,据此进行计算即可.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.【点评】本题主要考查了扇形面积的计算以及正方形性质的运用,解题时注意:正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【分析】原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可求出值.【解答】解:原式=4﹣5﹣5=﹣6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)化简:【分析】先把括号内的两项通分,利用同分母分式减法法则计算,再把除法转化成乘法,约分即可.【解答】解:原式=•=•=.【点评】本题考查的是分式的混合运算,需熟练掌握运算顺序及运算法则,也需要对通分、分解因式、约分等知识点的熟练掌握.19.(6分)解不等式组:【分析】分别求出各不等式的解集,再求出其公共解集.【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【分析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)首先分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,然后画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【分析】(1)由已知条件证明△ABE≌△ADF,根据全等三角形的性质可得到AE=AF;(2)连接AC,根据有一个角为60°的等腰三角形是等边三角形即可得证.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.【点评】本题考查了菱形的性质、全等三角形的判定和性质、垂直平分线的性质以及等腰三角形的判定和性质等边三角形的判定和性质,题目的综合性很强,难度中等.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【分析】根据题意知:在△ABC中,∠BAC=30°,∠C=45°,BC=10海里,求AC 长,解斜三角形ABC需转化为解直角三角形求解,因此需作高,作BD⊥AC于D点,分别求AD和CD长.【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.【点评】“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角(30°、45°、60°).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【分析】(1)观察函数图象,根据图象上的点的坐标,利用待定系数法即可求出日销售y(件)与销售价x(元/件)之间的函数关系式;(2)设当天的销售价为x元时,可出现收支平衡,分40≤x≤58和57<x≤71两种情况找出关于x的一元二次方程,解之即可得出结论.【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)分40≤x≤58和57<x≤71两种情况列出关于x的一元二次方程.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【分析】(1)根据邻边相等的平行四边形是菱形解答;(2)根据菱形的性质得到OC=BC,得到△BOC为等边三角形,△BOA为等边三角形,得到∠OCD=90°,根据切线的判定定理证明;(3)证明四边形OCDE为矩形,DE=OC,∠AEO=90°,根据含30°的直角三角形的性质、平行线分线段成比例定理计算即可.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.【点评】本题考查的是切线的判定、菱形的判定、矩形的判定和性质、等边三角形的判定和性质,掌握切线的判定定理、平行线分线段成比例定理是解题的关键.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【分析】(1)利用直线y=x+m与抛物线y=x2+nx﹣8都经过A点,得出m的值,再利用一次函数解析式得出B点坐标,进而得出n的值;(2)利用D,E点坐标结合DE的长求出D,E点坐标,进而求出四边形面积;(3)利用当AC∥BE时,△DEB∽△DCA,当=时,△DEB∽△DAC,分别求出符合题意的答案.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).【点评】此题主要考查了二次函数综合以及四边形面积求法和相似三角形的判定与性质等知识,利用分类讨论得出是解题关键.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF =S△BDE,请求出相应的BF的长.。
2019年连云港市中考数学模拟试题
(第8题)2019 年中考数学模拟试题(五)(本试卷满分 150 分 考试时间 120 分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.16的算术平方根是(▲) A .±2 B .2 C .4 D .±4 2.下列运算结果正确的是(▲)A .6332a a a =⋅B .623)(a a -=-C .66a a a =÷D .632125)5(a a -=-3.下面数学符号,既是轴对称图形,又是中心对称图形的是(▲)A. B. C. D.4.不等式-2x -1<0的解集是(▲) A .x >﹣2 B .x >12-C .x <﹣2D .x <12- 5.已知点 A (﹣1,1),B (1,1),C (2,4)在同一个函数图象上,这个函数图象可能是(▲)A. B. C. D.6.不透明的袋子中装有红球1个、蓝球1个、白球2个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是(▲) A .21 B .41 C .61 D .1217.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为(▲) A .50° B .55° C .60° D .65° 8.如图,⊙OABCD 为⊙O 的内接矩形,AD =6, M 为DC 中点,E 为⊙O 上的一个动点,连结DE ,作DF ⊥DE 交射线EA于F ,连结MF ,则MF 的最大值为(▲)A.B.C. D .第 II 卷(非选择题 共 126 分)二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.已知x 是2-10的整数部分,则x = ▲. 10.分解因式:23a a - = ▲ .(第7题)12.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=28°,那么∠2的度数是 ▲ .13.若关于x 的一元二次方程(a -3) x 2-2x +1=0有两个实数根,则a 的取值范围是 ▲ . 14. 如图,将半径为2,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,点B 、C 的对应点分别为点D 、E 且点D 刚好在上,则阴影部分的面积为 ▲ .15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).按照小明的要求,小亮所搭几何体的表面积最小为 ▲ .16.如图,在正方形ABCD 中,AB =54,E 是边BC 的中点,F 是AB 上一点,线段AE 、CF 交于点G ,且CE =EG ,将△CBF 沿CF 翻折,使得点B 落在点M ,连接GM 并延长交AD 于点N ,则△AGN 的面积为 ▲ .三、解答题 (本大题共11小题,共102分,请在答题卡的指定区域内.........作答,解答时写出必要的文字说明、证明过程或演算步骤)17. (本题满分6分)计算:()2019118245sin 4-+---︒.18.(本题满分6分)解不等式组: ⎩⎨⎧-<---≥-+)1(21123)1(7x x x x ,.19.(本题满分6分)先化简1168)1141(2++-÷+---a a a a a a ,再从-1,2,4中选择一个合适..的数代入,求出这个代数式的值.20.(本题满分8分) 有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字-1和2;乙袋中有三个完全相同的小球,分别标有数字-2、0和4.小丽先从甲袋中随机取出一个小球,记下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数2+-=x y 图像上的概率.21.(本题满分8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:(第14题)(第16题)(第15题)(第12题)请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a=,b=;并补全条形统计图;(2)若该辖区共有居民5000人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.(本题满分10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=2,C D= 4,求图中阴影部分的面积.23.(本题满分10分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为12m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)24.(本题满分10分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD 的延长线于F.(1)若∠F=26°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.25.(本题满分12分)暑期临近,我市某中学校为了丰富学校的暑期文化生活,同时帮助孩子融洽亲子关系,增进亲子间的情感交流,计划组织学生去某景区参加为期一周的“亲子一家游”活动.若报名参加此次活动的学生人数共有56人,其中要求参加的每名学生都至少需要一名家长陪同参与.(1)假设参加此次活动的家长人数是参加学生人数的2倍少2人.为了此次活动学校专门为每名学生和家长购买一件T 恤衫,家长的T 恤衫每购买8件赠送1件学生T 恤衫(不足8件不赠送),学生T 恤衫每件15元,学校购买服装的费用不超过3401元,请问每件家长T 恤衫的价格最高是多少元?(2)已知该景区的成人票价每张100元,学生票价每张50元.为了支持此次活动,该景区特地推出如下优惠活动:每张成人票价格下调a %.学生票价格下调a %.另外,经统计此次参加活动的家长人数比学生人数多a %.参加此次活动的购买票价总费用比未优惠前减少了a %,求a 的值. 26.(本题满分12分)知识迁移 我们知道,函数)(00,02>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数)n m k (n m x ky 0,0,0>>≠+-=的图像是由反比例函数x k y =的图像向右平移m 个单位,再向上平移n 个单位得到,其对称中心坐标为(m ,n ).理解应用 函数232+-=x y 的图像可以由函数xy 2=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .灵活运用 如图,在平面直角坐标系xOy 中,请根据所给的xy 4-=的图像画出函数224---=x y 的图像,并根据该图像指出,当x 在什么范围内变化时,y ≥-1?实际应用 某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x ,发现该生的记忆存留量随x 变化的函数关系为441+=x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前第27题的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为ax y -=82.如果记忆存留量为21时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?27.(本题满分14分)如图1,在直角坐标系xoy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴、y 轴的垂线,垂足为A 、C ,点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 或轴对称的△BC′D .(1)当∠CBD =15°时,求点C ′的坐标. (2)当图1中的直线l 经过点A ,且k =33-时(如图2),求点D 由C 到O 的运动过程中,线段BC′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C′时(如图3),以DE 为对称轴,作于△DOE 或轴对称的△DO′E ,连结O′C ,O′O ,问是否存在点D ,使得△DO′E 与△CO′O 相似?若存在,求出k 、b 的值;若不存在,请说明理由.九年级数学中考模拟试题(五)答题纸(本试卷满分 150 分 考试时间 120 分钟)第I 卷(选择题 共 24 分)一、选择题.(本大题共有 8 小题,每小题 3 分,共 24 分)二、填空题.(本大题共有 8 小题,每小题 3 分,共 24 分)9. 13. 10. 14. 11. 15. 12.16.三、解答题(本大题共 11 小题,共 102 分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤.)17. (本题满分6分)计算:()2019118245sin 4-+---︒.18.(本题满分6分)解不等式组: ⎩⎨⎧-<---≥-+)1(21123)1(7x x x x ,.19.(本题满分6分)先化简1168)1141(2++-÷+---a a a a a a ,再从-1,2,4中选择一个合适..的数代入,求出这个代数式的值.20.(本题满分8分) 有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字-1和2;乙袋中有三个完全相同的小球,分别标有数字-2、0和4.小丽先从甲袋中随机取出一个小球,记下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数2+-=x y 图像上的概率.21.(本题满分8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)扇形统计图中a = ,b = ;并补全条形统计图;(2)若该辖区共有居民5000人,请估计年龄在0~14岁的居民的人数.(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?22.(本题满分10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=2,CD= 4,求图中阴影部分的面积.23.(本题满分10分)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为12m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.温馨提示:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)24.(本题满分10分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD 的延长线于F.(1)若∠F=26°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求▱ABCD的面积.25.(本题满分12分)暑期临近,我市某中学校为了丰富学校的暑期文化生活,同时帮助孩子融洽亲子关系,增进亲子间的情感交流,计划组织学生去某景区参加为期一周的“亲子一家游”活动.若报名参加此次活动的学生人数共有56人,其中要求参加的每名学生都至少需要一名家长陪同参与.(1)假设参加此次活动的家长人数是参加学生人数的2倍少2人.为了此次活动学校专门为每名学生和家长购买一件T 恤衫,家长的T 恤衫每购买8件赠送1件学生T 恤衫(不足8件不赠送),学生T 恤衫每件15元,学校购买服装的费用不超过3401元,请问每件家长T 恤衫的价格最高是多少元?(2)已知该景区的成人票价每张100元,学生票价每张50元.为了支持此次活动,该景区特地推出如下优惠活动:每张成人票价格下调a %.学生票价格下调a %.另外,经统计此次参加活动的家长人数比学生人数多a %.参加此次活动的购买票价总费用比未优惠前减少了a %,求a 的值.26.(本题满分12分)知识迁移 我们知道,函数)(00,02>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数)n m k (n m x ky 0,0,0>>≠+-=的图像是由反比例函数x k y =的图像向右平移m 个单位,再向上平移n 个单位得到,其对称中心坐标为(m ,n ).理解应用 函数232+-=x y 的图像可以由函数xy 2=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 .灵活运用 如图,在平面直角坐标系xOy 中,请根据所给的xy 4-=的图像画出函数224---=x y y ≥-1?实际应用 某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x ,发现该生的记忆存留量随x 变化的函数关系为441+=x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为ax y -=82.如果记忆存留量为21时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?27.(本题满分14分)如图1,在直角坐标系xoy 中,直线l :y =kx +b 交x 轴,y 轴于点E ,F ,点B 的坐标是(2,2),过点B 分别作x 轴、y 轴的垂线,垂足为A 、C ,点D 是线段CO 上的动点,以BD 为对称轴,作与△BCD 或轴对称的△BC′D .(1)当∠CBD =15°时,求点C ′的坐标. (2)当图1中的直线l 经过点A ,且k =33时(如图2),求点D 由C 到O 的运动过程中,线段BC′扫过的图形与△OAF 重叠部分的面积.(3)当图1中的直线l 经过点D ,C′时(如图3),以DE 为对称轴,作于△DOE 或轴对称的△DO′E ,连结O′C ,O′O ,问是否存在点D ,使得△DO′E 与△CO′O 相似?若存在,求出k 、b 的值;若不存在,请说明理由.2019 年中考数学模拟试题(五)答案一、选择题.二、填空题.9. 1 13. a≤410. a(a-3)14.3+π11. 1.3×104 15. 46 12. 118°16. 1056-三、解答题17.33-- 18.-1≤x≤3 19.4-a a ,-1 20.(1)图略(2)3121.(1)20%,12%,图略;(2)1000人;(3)最少66分22.(1)连AD,OD ,推出OD ⊥DF 即可证明DF 是⊙O 的切线;(2)π3838- 23.1米 24.(1)128°;(2)3225. (1)最高25元(2)2526. (127. (1。
2019年江苏省连云港市赣榆区中考数学一模试卷(解析版)
2019年江苏省连云港市赣榆区中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣2019的绝对值是()A.2019 B.C.﹣2019 D.﹣2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3 C.a3×a3=2a3D.a3÷a=a23.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.4.已知△ABC∼△DEF,且△ABC的面积为2cm2,△DEF的面积为8m2,则△ABC与△DEF的相似比是()A.1:4 B.4:1 C.1:2 D.2:15.下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设“中奖概率为”,购买100张彩票就一定会中奖一次C.某地会发生地震是必然事件D.若甲组数据的方差S2甲=0.1,乙组数据的方差S2乙=0.2,则甲组数据比乙组稳定6.下列四个实数中,比5小的是()A.2B.C.D.7.已知函数:①y=x;②y=(x<0);③y=﹣x+3;④y=x2+x(x≥0),其中,y随x的增大而增大的函数有()A.1个B.2个C.3个D.4个8.已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l (cm),则R关于l的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.若分式有意义,则x的取值范围是.10.分解因式:a2b﹣b3=.11.“白日不到处,青春恰自来.苔花如米小,也学牡丹开”若苔花的花粉直径约为0.0000084米,则数据0.0000084可以用科学记数法表示为.12.一次函数的图象经过第二、四象限,则这个一次函数的关系式可以是.(写出一个即可)13.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于.14.如图,在四边形ABCD中,∠A=130°,∠C=80°,将△BEF沿着EF翻折,得到△B'EF,若B'F∥AD,B'E∥DC则∠B的度数为.15.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则sin∠BOD的值等于.16.如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x 轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(本题共11小题,共102分:解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:.18.(6分)化简:.19.(6分)解不等式组:.并把它的解集在数轴上表示出来.20.(8分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;看法频数频率赞成 5无所谓0.1反对40 0.8(1)本次调查共调查了人;(直接填空)(2)请把整理的不完整图表补充完整;(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.21.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.(1)他随手拿出一只,恰好是右脚鞋的概率为;(2)他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.22.(10分)如图,B、C在直线EF上,AE∥FD,AE=FD,且BE=CF.(1)求证:△ABE≌△DCF;(2)求证:以A、B、D、C为顶点的四边形是平行四边形.23.(10分)如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数的图象与AD边交于E(﹣4,),F(m,2)两点.(1)则k=,m;(2)求经过E、F两点的直线的函数关系式;(3)直接写出函数图象在菱形ABCD内的部分所对应的x的取值范围.24.(10分)如图,某考察船在某海域进行科考活动,在点A测得小岛C 在它的东北方向上,它沿南偏东37°方向航行了2海里到达点B处,又测得小岛C在它的北偏东23°方向上.(1)求∠C的度数;(2)求该考察船在点B处与小岛C之间的距离.(精确到0.1海里)(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,=1.41,=1.73)25.(10分)某手机专营店,第一期进了品牌手机与老年机各50部,售后统计,品牌手机的平均利润是160元/部,老年机的平均利润是20元/部,调研发现:①品牌手机每增加1部,品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部,设品牌手机比第一期增加x部.(1)第二期品牌手机售完后的利润为8400元,那么品牌手机比第一期要增加多少部?(2)当x取何值时,第二期进的品牌手机与老年机售完后获得的总利润W最大,最大总利润是多少?26.(12分)抛物线y=ax2+bx+5经过A(1,0)和B(5,0),与y轴交于点C,顶点为点D,连接BC,BD.点P是抛物线对称轴上的一个动点.(1)求a和b的值;(2)若∠CPB=90°,求点P的坐标;(3)是否存在点P,使得以P、D、B为顶点的三角形中有两个内角的和等于∠ABC?若存在,求出点P的坐标;若不存在,说明理由.27.(14分)【问题情境】如图1,点E是平行四边形ABCD的边AD上一点,连接BE、CE.求证:.(说明:S表示面积)请以“问题情境”为基础,继续下面的探究【探究应用1】如图2,以平行四边形ABCD的边AD为直径作⊙O,⊙O 与BC边相切于点H,与BD相交于点M.若AD=6,BD=y,AM=x,试求y与x之间的函数关系式.【探究应用2】如图3,在图1的基础上,点F在CD上,连接AF、BF,AF与CE相交于点G,若AF=CE,求证:BG平分∠AGC.【迁移拓展】如图4,平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,E是AB的中点,F在BC上,且BF:FC=2:1,过D分别作DG⊥AF于G,DH⊥CE于H,请直接写出DG:DH的值.2019年江苏省连云港市赣榆区中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【分析】直接利用绝对值的定义进而得出答案.【解答】解:﹣2019的绝对值是:2009.故选:A.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看外面是正方形,里面是没有圆心的圆,故选:A.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.4.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC的面积为2cm2,△DEF的面积为8m2,∴△ABC与△DEF的面积比为1:4,∵△ABC∼△DEF,∴△ABC与△DEF的相似比为1:2,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.5.【分析】根据用全面调查和抽样调查的条件,必然事件与随机事件的区别,方差的意义,分析判断即可.【解答】解:A、因为数量太大,不宜采用全面调查,应采用抽样调查,故选项错误;B、某彩票设“中奖概率为”,购买100张彩票中奖为随机事件,故选项错误;C、显然是随机事件,故选项错误;D、正确.故选:D.【点评】考用到的知识点为:不易采集到的数据的调查方式应采用抽样调查的方式;随机事件是指在一定条件下,可能发生也可能不发生的事件;一组数据的方差越小,稳定性越好.6.【分析】根据无理数的估计解答即可.【解答】解:∵,4,5,,故选:B.【点评】考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;注意应熟记常见无理数的约值.7.【分析】直接利用反比例函数以及二次函数和一次函数的性质分别分析得出答案.【解答】解:①y=x,是y随x的增大而增大的函数;②y=(x<0),是y随x的增大而增大的函数;③y=﹣x+3,是y随x的增大而减小的函数,不合题意;④y=x2+x(x≥0),是y随x的增大而增大的函数,故选:C.【点评】此题主要考查了反比例函数的性质、二次函数函数的性质、一次函数的性质,正确记忆相关函数的性质是解题关键.8.【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.【解答】解:由题意得,×2πR×l=8π,则R=,故选:A.【点评】本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.【分析】分式有意义,分母不等于零.【解答】解:依题意得:2﹣x≠0,解得x≠2.故答案是:x≠2.【点评】本题考查了分式有意义的条件,分式有意义的条件是分母不等于零.10.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=b(a2﹣b2)=b(a+b)(a﹣b),故答案为:b(a+b)(a﹣b)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000084=8.4×10﹣6.故答案为:8.4×10﹣6.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.【分析】由一次函数的图象经过的象限判断出k的取值范围,由此即可确定最后的答案.【解答】解:∵一次函数y=kx+b的图象经过第二,四象限,∴k<0,∴k的值可以为﹣1,故答案是:y=﹣x+1(答案不唯一).【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.13.【分析】由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.【解答】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B与∠C是对的圆周角,∴∠B=∠C=40°.故答案为:40°.【点评】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.14.【分析】由平行线的性质可得∠A=∠BFB'=130°,∠C=∠BEB'=80°,由四边形的内角和定理可求∠B的度数.【解答】解:∵B'F∥AD,B'E∥DC∴∠A=∠BFB',∠C=∠BEB',∵∠A=130°,∠C=80°,∴∠BFB'=130°,∠BEB'=80°,∵将△BEF沿着EF翻折,得到△B'EF,∴∠B=∠B'∵∠B+∠B'+∠BFB'+∠BEB'=360°∴2∠B+130°+80°=360°∴∠B=75°【点评】本题考查了翻折变换,平行线的性质,折叠的性质,熟练运用四边形的内角和定理解决问题是本题的关键.15.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得sin∠BOD的值,本题得以解决.【解答】解:连接AE、EF,如图所示,则AE∥CD,∴∠FAE=∠BOD,设每个小正方形的边长为a,则AE=,AF=,EF=a,∵,∴△FAE是直角三角形,∠FEA=90°,∴sin∠FAE==,即sin∠BOD=,故答案为:.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.16.【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.【点评】本题主要考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本题共11小题,共102分:解答时写出必要的文字说明、证明过程或演算步骤)17.【分析】先分别计算立方根、零指数幂、幂的运算,然后算加减法.【解答】解:原式=﹣2+1﹣1=﹣2【点评】本题考查了实数的运算,熟练掌握立方根、零指数幂、幂的运算是解题的关键.18.【分析】先将原式进行因式分解化为÷,然后再进行化简运算即可.【解答】解:原式=÷=•=.【点评】本题考查因式分解,分式的化简.能够正确的将多项式进行因式分解是解题的关键.19.【分析】先求不等式组中每个不等式的解集;再利用数轴求公共部分.【解答】解:解不等式①,可得x<1;解不等式②,可得x≥﹣1;∴不等式组的解集为﹣1≤x<1,在数轴上表示解集为:【点评】本题主要考查了解一元一次不等式组,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.20.【分析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点评】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【解答】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【分析】(1)根据SAS即可证明;(2)只要证明AB∥CD,AB=CD即可解决问题.【解答】证明:(1)∵AE∥DF,∴∠AEF=∠DFE,∴∠AEB=∠DFC,∵AE=FD,BE=CF,∴△AEB≌△DFC(SAS).(2)连接AC、BD.∵△AEB≌△DFC,∴AB=CD,∠ABE=∠DCF,∴AB∥DC,∴四边形ABDC是平行四边形.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【分析】(1)根据一次函数图象上点的坐标特征求出k和m;(2)利用待定系数法求出经过E、F两点的直线的函数关系式;(3)根据菱形ABCD和反比例函数y=﹣的图象是中心对称图形,利用数形结合思想解答.【解答】解:(1)反比例函数y=的图象经过点E(﹣4,),则k=﹣4×=﹣2,点F(m,2)在反比例函数y=的图象上,则=2,解得,m=﹣1,故答案为:﹣2;=﹣1;(2)设经过E、F两点的直线的函数关系式为:y=ax+b,则,解得,,∴经过E、F两点的直线的函数关系式为:y=x+;(3)∵菱形ABCD和反比例函数y=﹣的图象是中心对称图形,E(﹣4,),F(﹣1,2),∴点M的坐标为(4,﹣),点N的坐标为(1,﹣2),∴当﹣4<x<﹣1或1<x<4时,函数y=﹣的图象在菱形ABCD内部.【点评】本题考查的是一次函数的图象和性菱形的性质,掌握待定系数法求反比例函数解析式、一次函数解析式的一般步骤是解题的关键.24.【分析】(1)由已知方位角,根据平行线的性质、角的和差关系及三角形的内角和定理可得∠CAB、∠ABC、∠C的度数.(2)过点A作AM⊥BC,构造直角△ABM和直角△CAM,利用直角三角形的边角关系,可求出线段AM、CM、BM的长,从而问题得解.【解答】解:(1)过点A作AM⊥BC,垂足为M.由题意知:AB=2海里,∠NAC=∠CAE=45°,∠SAB=37°,∠DBC=23°,∵∠SAB=37°,DB∥AS,∴∠DBA=37°,∠EAB=90°﹣∠SAB=53°.∴∠ABC=∠ABD+∠DBC=37°+23°=60°,∠CAB=∠EAB+∠CAE=53°+45°=98°.∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣98°﹣60°=22°.(2)在Rt△AMB中,∵AB=2海里,∠ABC=60°,∴BM=1海里,AM=海里.在Rt△AMC中,tan C=,∴CM==4.25(海里)∴CB=CM+BM=4.25+1=5.25(海里)答:考察船在点B处与小岛C之间的距离为5.25海里.【点评】本题主要考查了解直角三角形的应用﹣方向角问题.解决本题的关键是作垂线构造直角三角形,利用直角三角形的边角间关系求解.25.【分析】(1)品牌手机利润=销售品牌手机的数量×每件品牌手机的利润,根据这个关系即可列出方程;(2)第二期进的品牌手机与老年机售完后获得的总利润=品牌手机利润+老年机的利润,根据二次函数,即可求出最大利润.【解答】解:(1)根据题意,(50+x)(160﹣2x)=8400,解得x1=10,x2=20,因为老年机的利润不变,增加10件和增加20件品牌手机的利润是相同的,故第二期品牌手机售完后的利润为8400元,品牌手机应该增加10部;(2)W=(50+x)(160﹣2x)+20(50﹣2x)=﹣2(x﹣5)2+9050,当x取5时,第二期进的品牌手机与老年机售完后获得的总利润W最大,最大总利润是9050元.【点评】本题考查了一元二次方程和二次函数的实际应用,能够根据实际问题列出一元二次方程和二次函数是解答此题的关键.26.【分析】(1)根据待定系数法将A,B坐标代入y=ax2+bx+5即可求得;(2)作CE∥x轴,交对称轴于E,设对称轴交x轴于M,设P(3,n),通过证明△PCE∽△BPM,得出=,即=,解方程即可求得;(3)先证明△OBC为等腰直角三角形,则∠CBO=45°,推出以P,D,B为顶点的三角形必有一个135°的钝角,当点P在对称轴上点D的上方时,在线段MD上截取MP1,使MP1=MB=2,此时∠DP1B=135°,可求出点P的坐标,再通过构造相似三角形,求出点P的另一个坐标,当点P在对称轴上点D的下方时,通过求出∠MDB<45°,可知不存在点P.【解答】解:(1)∵抛物线y=ax2+bx+5经过A(1,0)和B(5,0),∴,解得,;(2)如图1,作CE∥x轴,交对称轴于E,设对称轴交x轴于M,∵∠CPB=90°,∴∠CPE+∠BPM=90°,∵∠PCE+∠BPM=90°,∴∠CPE=∠PCE,∵∠PEC=∠PMB=90°,∴△PCE∽△BPM,∴=,由抛物线y=ax2+bx+5可知C(0,5),∵A(1,0)和B(5,0),∴抛物线的对称轴为直线x==3,设P(3,n),则PM=|n|,∴PE=|n﹣5|,∵CE=3,MB=5﹣3=2,∴=解得n=6或﹣1,∴P(3,6)或(3,﹣1);(3)在抛物线y=ax2+bx++5中,当a=1,b=﹣6时,y=x2﹣6x+5=﹣(x﹣3)2﹣4,∴顶点坐标为(3,﹣4),当x=0时,y=5,∴C(0,5),∵B(5,0),∴OC=OB=5,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴以P,D,B为顶点的三角形必有一个135°的钝角,设抛物线对称轴与x轴交点为M,则BM=2,DM=4,∴DB==2,①当点P在对称轴上点D的上方时,如图2,在线段MD上截取MP1,使MP1=MB=2,则△MP1B为等腰直角三角形,∴∠MP1B=45°,∴∠DP1B=180°﹣∠MP1B=135°,∴∠P1BD+∠P1BD=45°,∵MP1=2,∴P1(3,﹣2);在射线DM上截取DP2,使=,∵∠P1DB=∠BDP2,∴△P1DB∽△BDP2,即=,∴DP2=10,∴MP2=10﹣MP1=6,∴P2(3,6);②当点P在点D下方时,∵∠MP1B=45°,∴∠MDB<45°,∴在以P,B,D为顶点的三角形中不可能存在有两个内角的和为45°;综上所述,点P坐标为(3,﹣2)或(3,6).【点评】本题考查了待定系数法求解析式,相似三角形的判定与性质等,解题的关键是会利用特殊角45°构造特殊形状的三角形.27.【分析】【问题情境】作EF⊥BC于F,则S△BCE=BC×EF,S平行四边=BC×EF,即可得出结论;形ABCD【探究应用1】连接OH,由切线的性质得出OH⊥BC,OH=AD=3,求出平行四边形ABCD的面积=AD×OH=18,由圆周角定理得出AM⊥BD,得出△ABD的面积=BD×AM=平行四边形的面积=9,即可得出结果;【探究应用2】作BM⊥AF于M,BN⊥CE于N,同图1得:△ABF的面积=△BCE的面积=平行四边形ABCD的面积,得出AF×BM=CE ×BN,证出BM=BN,即可得出BG平分∠AGC.【迁移拓展】作AP⊥BC于P,EQ⊥BC于Q,由平行四边形的性质得出∠ABP=60°,得出∠BAP=30°,设AB=4x,则BC=3x,由直角三角形的性质得出BP=AB=2x,BQ=BE,AP=BP=2x,由已知得出BE=2x,BF=2x,得出BQ=x,EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理求出AF==2x,CE==x,连接DF、DE,由三角形的面积关系得出AF×DG=CE×DH,即可得出结果.【解答】【问题情境】证明:作EF⊥BC于F,如图1所示:则S△BCE=BC×EF,S平行四边形ABCD=BC×EF,∴.【探究应用1】解:连接OH,如图2所示:∵⊙O与BC边相切于点H,∴OH⊥BC,OH=AD=3,∴平行四边形ABCD的面积=AD×OH=6×3=18,∵AD是⊙O的直径,∴∠AMD=90°,∴AM⊥BD,∴△ABD的面积=BD×AM=平行四边形的面积=9,即xy=9,∴y与x之间的函数关系式y=;【探究应用2】证明:作BM⊥AF于M,BN⊥CE于N,如图3所示:同图1得:△ABF的面积=△BCE的面积=平行四边形ABCD的面积,∴AF×BM=CE×BN,∵AF=CE,∴BM=BN,∴BG平分∠AGC.【迁移拓展】解:作AP⊥BC于P,EQ⊥BC于Q,如图4所示:∵平行四边形ABCD中,AB:BC=4:3,∠ABC=120°,∴∠ABP=60°,∴∠BAP=30°,设AB=4x,则BC=3x,∴BP=AB=2x,BQ=BE,AP=BP=2x,∵E是AB的中点,F在BC上,且BF:FC=2:1,∴BE=2x,BF=2x,∴BQ=x,∴EQ=x,PF=4x,QF=3x,QC=4x,由勾股定理得:AF==2x,CE==x,连接DF、DE,则△CDE的面积=△ADF的面积=平行四边形ABCD 的面积,∴AF×DG=CE×DH,∴DG:DH=CE:AF=x:2x=:2.【点评】本题是圆的综合题目,考查了圆周角定理、平行四边形的性质、三角形面积公式、含30°角的直角三角形的性质、勾股定理、角平分线的判定等知识;本题综合性强,需要添加辅助线,熟练掌握平行四边形的性质和勾股定理是解题的关键.。
2019年江苏省连云港市中考数学模拟试卷 (解析版)
2019年中考数学模拟试卷一、选择题(共8题)1.﹣的倒数是()A.2B.C.﹣2D.﹣2.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a5C.a9÷a3=a3D.(a3)2=a5 3.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.2.5×10﹣74.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10πcm2B.10cm2C.20cm2D.20πcm25.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.如图,∠AOB=60°,点P在边OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM的值为()A.3B.4C.5D.67.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交弦BC于点E,CD =4,DE=2,则AE的长为()A.2B.4C.6D.88.如图,P为等边三角形ABC内的一点.且P到三个顶点A、B、C的距离分别为3、4、5,则△PAB的面积为()A.10B.8C.6D.3二、填空题(共有8小题)9.若式子有意义,则x的取值范围是.10.分解因式:3x2﹣6xy+3y2=.11.如图,△DEF和△ABC是位似图形,点O是位似中心,点D、E、F分别是OA、OB、OC的中点,若△DEF的面积是2,则△ABC的面积是.12.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是.13.有一组数据:1,0,2,﹣1,﹣2,则这组数据的方差是.14.将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是.15.如图,在正方形ABCD中,E,F分别是边BC、CD上的点,∠EAF=45°,△ECF 的周长为6,则正方形ABCD的边长为.16.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为.(用含α的式子表示)三、解答题:(本题共11小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:()﹣1﹣|﹣2|﹣2sin60°+(π﹣2019)0.18.先化简,再求值:,其中a=.19.解不等式组.20.为了解某学校兴趣小组活动情况,随机抽取了部分同学进行调查,按A:艺术,B:科技,C:体育,D:其他四个项目进行统计,绘制了两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人:在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若全校有2000人,请你估算一下全校喜欢艺术类学生的人数有多少?21.五一放假期间,甲、乙、丙三位同学到某影城看电影,影城有A、B两部不同电影,甲、乙、丙3人分别从中任选一部观看,每部被选中的可能性相同.(1)甲同学选择“A部电影”的概率为;(直接填空)(2)用画树状图的方法求甲、乙、丙3人选择同一部电影的概率.22.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.23.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)24.如图,在平面直角坐标系中,直线y=x与反比例函数y=的图象交于A,B两点(点A在点B左侧)已知A点的纵坐标是2.(1)求反比例函数的表达式;(2)点A上方的双曲线上有一点C.如果△ABC的面积为30,直线BC的函数表达式.25.如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).26.(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.27.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C点,直线BD 交抛物线于点D,并且D(2,﹣3),tan∠DBA=(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第二象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.参考答案一、选择题(本大题有8小题,每小题3分,共24分.每小题只有一个选项是正确的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.﹣的倒数是()A.2B.C.﹣2D.﹣【分析】利用倒数的定义计算即可得到结果.解:﹣的倒数是﹣2,故选:C.2.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a5C.a9÷a3=a3D.(a3)2=a5【分析】根据同底数幂的乘除法,底数不变指数相加减,合并同类项法则,幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解:A、a2﹣a,不能合并,故本选项错误;B、a2•a3=a5,故本选项正确;C、a9÷a3=a6,故本选项错误;D、应为(a3)2=a6,故本选项错误.故选:B.3.PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.2.5×10﹣7【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000 002 5=2.5×10﹣6;故选:C.4.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为()A.10πcm2B.10cm2C.20cm2D.20πcm2【分析】圆锥的侧面积=底面周长×母线长÷2.解:底面圆的半径为2cm,则底面周长=4π,侧面面积=×4π×5=10πcm2.故选:A.5.估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用2<<3,进而得出答案.解:∵2<<3,∴3<+1<4,故选:B.6.如图,∠AOB=60°,点P在边OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM的值为()A.3B.4C.5D.6【分析】过P作PC垂直于MN,由等腰三角形三线合一性质得到MC=CN,求出MC 的长,在直角三角形OPC中,利用30度角所对的直角边等于斜边的一半求出OC的长,由OC﹣MC求出OM的长即可.解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则OM=OC﹣MC=4﹣1=3,故选:A.7.如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交弦BC于点E,CD =4,DE=2,则AE的长为()A.2B.4C.6D.8【分析】根据角平分线的定义得到∠CAD=∠BAD,根据圆周角定理得到∠DCB=∠BAD,证明△DCE∽△DAC,根据相似三角形的性质求出AD,结合图形计算,得到答案.解:∵AD平分∠BAC,∴∠CAD=∠BAD,由圆周角定理得,∠DCB=∠BAD,∴∠CAD=∠DCB,又∠D=∠D,∴△DCE∽△DAC,∴=,即=,解得,AD=8,∴AE=AD﹣DE=8﹣2=6,故选:C.8.如图,P为等边三角形ABC内的一点.且P到三个顶点A、B、C的距离分别为3、4、5,则△PAB的面积为()A.10B.8C.6D.3【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF的长,根据三角形的面积公式即可得到结论.解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,∴△PAB的面积=PB•AF=4×=3,故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需要写解答过程,请把答案直接填写在答题卡相应位置上)9.若式子有意义,则x的取值范围是x≤.【分析】根据二次根式有意义,被开方数大于等于0,列不等式求解.解:根据题意,得3﹣2x≥0,解得x≤.10.分解因式:3x2﹣6xy+3y2=3(x﹣y)2.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.11.如图,△DEF和△ABC是位似图形,点O是位似中心,点D、E、F分别是OA、OB、OC的中点,若△DEF的面积是2,则△ABC的面积是8.【分析】首先确定相似比,然后确定面积的比,根据一个三角形的面积求得另一个三角形的面积即可.解:∵点D,E,F分别是OA,OB,OC的中点,∴=,∴△DEF与△ABC的相似比是1:2,∴=()2,即=,解得:S△ABC=8,故答案为:8.12.若关于x的一元二次方程x2+4x+k﹣1=0有实数根,则k的取值范围是k≤5.【分析】根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.解:∵关于x的一元二次方程x2+4x+k﹣1=0有实数根,∴△=42﹣4(k﹣1)≥0,解得:k≤5.故答案为:k≤5.13.有一组数据:1,0,2,﹣1,﹣2,则这组数据的方差是2.【分析】先求出这组数据的平均数,再代入方差公式进行计算即可.解:这组数据的平均数是(1+0+2﹣1﹣2)=0,则这组数据的方差S2=[(1﹣0)2+(0﹣0)2+(2﹣0)2+(﹣1﹣0)2+(﹣2﹣0)2]=2;故答案为:2.14.将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2.【分析】抛物线平移不改变a的值.解:原抛物线的顶点为(0,0),向右平移1个单位,在向上平移2个单位后,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x ﹣1)2+2.故所得图象的函数表达式是:y=(x﹣1)2+2.15.如图,在正方形ABCD中,E,F分别是边BC、CD上的点,∠EAF=45°,△ECF 的周长为6,则正方形ABCD的边长为3.【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△F'AE,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=6,得出正方形边长即可.解:∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∠FAF'=90°,∴DF=BF′,∠DAF=∠BAF′,AF=AF',∴∠EAF′=45°,在△FAE和△F'AE中,∵,∴△FAE≌△F'AE(SAS),∴EF=EF′,∵△ECF的周长为6,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=6,∴2BC=6,∴BC=3.故答案为:3.16.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为﹣4tanα.(用含α的式子表示)【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D 的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA 的正切值列式整理即可得解.解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(﹣3,0),∴D(﹣a﹣3,),∴﹣=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故答案为﹣4tanα.三、解答题:(本题共11小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算:()﹣1﹣|﹣2|﹣2sin60°+(π﹣2019)0.【分析】直接利用负指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简得出答案.解:原式=3﹣(2﹣)﹣2×+1=3﹣2+﹣+1=2.18.先化简,再求值:,其中a=.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.解:原式=,=,=.当a=时,原式=.19.解不等式组.【分析】先求出两个不等式的解集,再求其公共解.解:解不等式①得x>2,解不等式②得x<4,原不等式组的解集是2<x<4.20.为了解某学校兴趣小组活动情况,随机抽取了部分同学进行调查,按A:艺术,B:科技,C:体育,D:其他四个项目进行统计,绘制了两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有100人:在扇形统计图中“D”选项所占的百分比为10%;(2)扇形统计图中,“B”选项所对应扇形圆心角为72度;(3)请补全条形统计图;(4)若全校有2000人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)条形统计图中可得C组的人数为50人,扇形统计图中可得这些人占整体的50%,可求调查人数;D组所占百分比即为D组人数占调查人数的百分比;(2)计算出A组的人数,补全条形统计图;(3)样本估计总体,样本中喜欢艺术占20%,于是总体中喜欢艺术也占20%,即可求出相应的人数.解:(1)50÷50%=100人,10÷100=10%故答案为:100,10%.(2)360°×20%=72°,故答案为:72.(3)100﹣20﹣50﹣10=20人,补全条形统计图如图所示:(4)2000×=400人答:全校有2000人中喜欢艺术类学生的人数大约有400人.21.五一放假期间,甲、乙、丙三位同学到某影城看电影,影城有A、B两部不同电影,甲、乙、丙3人分别从中任选一部观看,每部被选中的可能性相同.(1)甲同学选择“A部电影”的概率为;(直接填空)(2)用画树状图的方法求甲、乙、丙3人选择同一部电影的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出甲、乙、丙3人选择同1部电影的结果数,然后利用概率公式求解.解:(1)甲选择A部电影的概率=,故答案为:;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.22.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【分析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.23.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)【分析】(1)设甲种材料每千克x元,乙种材料每千克y元,根据题意列出方程,解方程即可;(2)设生产B产品a件,生产A产品(60﹣a)件.根据题意得出一元一次不等式组,解不等式组即可得出结果;(3)设生产成本为W元,根据题意得出W是a的一次函数,即可得出结果.解:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:,解得:;答:甲种材料每千克25元,乙种材料每千克35元.(2)设生产B产品a件,生产A产品(60﹣a)件.依题意得:解得:38≤a≤40;∵a的值为非负整数,∴a=38、39、40;答:共有如下三种方案:方案1、A产品22个,B产品38个,方案2、A产品21个,B产品39个,方案1、A产品20个,B产品40个;(3)生产A产品22件,B产品38件成本最低.理由如下:设生产成本为W元,则W与a的关系式为:W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,即W是a的一次函数,∵k=55>0∴W随a增大而增大∴当a=38时,总成本最低;即生产A产品22件,B产品38件成本最低.24.如图,在平面直角坐标系中,直线y=x与反比例函数y=的图象交于A,B两点(点A在点B左侧)已知A点的纵坐标是2.(1)求反比例函数的表达式;(2)点A上方的双曲线上有一点C.如果△ABC的面积为30,直线BC的函数表达式.【分析】(1)直线l1:y=﹣x经过点A,且A点的纵坐标是2,可得A(﹣4,2),代入反比例函数解析式可得k的值;(2)根据中心对称求得B的坐标,过C作CD⊥x轴于D,交AB于E,求得E点的坐标,进而求得CE,然后根据两个三角形面积的和等于△ABC的面积,列出方程,解方程求得C的坐标,然后根据待定系数法求得即可.解:(1)直线l1:y=﹣x经过点A,且A点的纵坐标是2,∴令y=2,则x=﹣4,即A(﹣4,2),∵反比例函数y=的图象经过A点,∴k=﹣4×2=﹣8,∴反比例函数的表达式为y=﹣;(2)作CD⊥x轴于D,交AB于E,∵直线y=﹣x和双曲线y=﹣是中心对称图象,A(﹣4,2),∴B(4,﹣2),设C(m,﹣),把x=m代入y=x得y=﹣m,∴D(m,0),E(m,﹣m),∴CE=﹣+m,∴(﹣+m)×(m+4)+(﹣+m)×(4﹣m)=30,整理得:﹣+m=15,解得m=﹣1或m=16(舍去),∴C(﹣1,8),设直线BC的解析式为y=ax+b,∴,解得,∴直线BC的解析式为y=﹣2x+6.25.如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).【分析】延长BD,AC交于点E,过点D作DF⊥AE于点F.构建直角△DEF和直角△CDF.通过解这两个直角三角形求得相关线段的长度即可.解:延长BD,AC交于点E,过点D作DF⊥AE于点F.∵i=tan∠DCF==,∴∠DCF=30°.又∵∠DAC=15°,∴∠ADC=15°.∴CD=AC=10.在Rt△DCF中,DF=CD•sin30°=10×=5(米),CF=CD•cos30°=10×=5,∠CDF=60°.∴∠BDF=45°+15°+60°=120°,∴∠E=120°﹣90°=30°,在Rt△DFE中,EF===5∴AE=10+5+5=10+10.在Rt△BAE中,BA=AE•tan E=(10+10)×=10+≈16(米).答:旗杆AB的高度约为16米.26.(1)问题发现:如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为50°.(2)类比探究:如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,CD=2OD,AB=2OB,连接AC交BD的延长线于点M.请求出的值及∠AMB的度数,并说明理由;(3)拓展延伸:在(2)的条件下,将△OCD绕点O在平面内旋转,AC、BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)问题发现:①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=50°;(2)类比探究:得出∠OCD=∠OAB=30°,根据两边的比相等且夹角相等可得△AOC ∽△BOD,则,由相似三角形的性质得∠AMB的度数;(3)拓展延伸:正确画图形,当点C与点M重合时,有两种情况:同(2)可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.解:(1)问题发现①如图1,∵∠AOB=∠COD=50°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=50°,∴∠OAB+∠ABO=130°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣130°=50°,故答案为:①1;②50°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DOC=90°,CD=2DO,∴∠DCO=30°,∴=tan30°=,同理得:=tan30°=,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图1,同(2)得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴,整理得:x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,∴x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图2,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,∴+(x+2)2=,整理得x2+x﹣6=0,∴(x+3)(x﹣2)=0,∴x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.27.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C点,直线BD 交抛物线于点D,并且D(2,﹣3),tan∠DBA=(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第二象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.【分析】(1)过点D作DE⊥x轴,垂足为E,由点D的坐标结合tan∠DBA=可求出点B的坐标,根据点B,D的坐标,利用待定系数法即可求出抛物线的解析式;(2)过点M作MF⊥x轴,垂足为F,利用二次函数图象上点的坐标特征可求出A,C 的坐标,设点M的坐标为(m,﹣m2﹣m+2)(﹣4<m<0),则点F的坐标为(m,0),由S四边形BMCA=S△BMF+S梯形FMCO+S△OCA可得出S四边形BMCA关于m的函数关系式,再利用二次函数的性质即可求出四边形BMCA面积的最大值;(3)连接BC,易证△BOC∽△COA,进而可得出BC⊥AC,由点A,B,C的坐标,利用待定系数法可求出直线BC,AC的解析式,设点Q的坐标为(﹣2,n),由平行线的性质可得出过点Q且垂直AC的直线的解析式为y=x+n+1,联立该直线与AC的解析式成方程组,通过解方程组可求出交点的坐标,再由该点到点Q的距离等于线段OQ的长度可得出关于n的一元二次方程,解之即可得出结论.解:(1)过点D作DE⊥x轴,垂足为E,如图1所示.∵点D的坐标为(2,﹣3),∴OE=2,DE=3.∵tan∠DBA=,∴BE=2DE=6,∴OB=BE﹣OE=4,∴点B的坐标为(﹣4,0).将B(﹣4,0),D(2,﹣3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2.(2)过点M作MF⊥x轴,垂足为F,如图2所示.当y=0时,﹣x2﹣x+2=0,解得:x1=﹣4,x2=1,∴点A的坐标为(1,0);当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设点M的坐标为(m,﹣m2﹣m+2)(﹣4<m<0),则点F的坐标为(m,0),∴BF=4+m,OF=﹣m,MF=﹣m2﹣m+2,OC=2,OA=1,∴S四边形BMCA=S△BMF+S梯形FMCO+S△OCA,=BF•MF+(MF+OC)•OF+OA•OC,=×(4+m)×(﹣m2﹣m+2)+×(﹣m2﹣m+2+2)×(﹣m)+×1×2,=﹣m2﹣4m+5,=﹣(m+2)2+9.∵﹣1<0,∴当m=﹣2时,S四边形BMCA取得最大值,最大值为9.(3)连接BC,如图3所示.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(﹣4,0),点C的坐标为(0,2),点A的坐标为(1,0),∴直线BC的解析式为y=x+2,直线AC的解析式为y=﹣2x+2(可利用待定系数法求出).设点Q的坐标为(﹣2,n),则过点Q且垂直AC的直线的解析式为y=x+n+1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(﹣2﹣0)2+(n﹣0)2=[﹣(﹣2)]2+(﹣n)2,整理,得:n2+3n﹣4=0,解得:n1=1,n2=﹣4,∴点Q的坐标为(﹣2,1)或(﹣2,﹣4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q的坐标为(﹣2,1)或(﹣2,﹣4).。
2019年江苏省连云港市中考数学名校模拟试卷附解析
2019年江苏省连云港市中考数学名校模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.平行投影中的光线是( )A .平行的B .聚成一点的C .不平行的D .向四面发散的 A2.如图,△ABC 和△DEF 是位似图形,且位似比为 2:3,则EF BC 等于( ) A . 12 B .13 C . 14 D .233.对于抛物线21(5)33y x =−−+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)−,D .开口向上,顶点坐标(53)−, 4.下列函数中,当 x>0 时,y 随x 的增大而减小的是( ) A .y x = B .1y x = C .1y x =− D .21y x =−5.下列说法中,不正确...的是( ) A .有三个角是直角的四边形是矩形B .对角线相等的四边形是矩形C .对角线互相垂直的矩形是正方形D .对角线互相垂直的平行四边形是菱形6.一个正方形的对角线长为2 cm ,则它的面积是( )A .2 cm 2 8.4 cm 2C .6 cm 2D .8 cm 2 7.如果点M 在直线1y x =−上,则点M 的坐标可以是( )A .(-1,O )B .(0,1)C .(1,0)D .(1,-1) 8.下列各组所述的几何图形中,一定全等的是( )A .有一个角是45°的两个等腰三角形B .两个等边三角形C .腰长相等的两个等腰直角三角形D .各有一个角是40°,腰长都为5cm 的两个等腰三角形9.如图,AD ,BE 都是△ABC 的高,则与∠CBE 一定相等的角是( )A .∠ABEB .∠BADC .∠DACD .以上都不是10.下列从左到右的变形是因式分解的是( )A .22()()x a x a x a −+=−B .24414(1)1a a a a ++=++C .224(2)(2)x y x y x y −=−+D .3(1)(1)(1)(3)x y x z x y z −−−=−− 11.下列关于作图的语句中正确的是( )A .画直线AB =10厘米B .画射线OB =10厘米C .已知A 、B 、C 三点,过这三点画一条直线D .过直线AB 外一点画一条直线和直线AB 平行12.对于如图中的两个统计图,下列说法中错误的是( )A .一中的女生比例比二中的女生比例高B .一中的男生比例比二中的女生比例低C .二中的男生比例比一中的女生比例高D .一中的男生比例比二中的男生比例低13.若x 表示一个两位数,y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的右边..,你认为下列表达式中哪一个是正确的( ) A .yx B .x+y C .100x+y D .100y+x二、填空题14.如图,半径为5的⊙P 与y 轴交于点M (0,-4),N (0,-10),函数(0)k y x x=<的图像经过点P ,则k = .解答题15.已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大. 你认为符合要求的函数的解析式可以是: (写出一个即可). 16.已知直角梯形的一腰长为10㎝,这条腰与底所成的角为30°,那么另一腰的长是_________cm..17.下图是由一些相同的小正方体构成的几何体的三视图,则这个几何体共有小正方体 个.18.如图,ABC ∆中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= .19.在Rt △ABC 中,∠C=90°,∠A=37°,∠B= .20.写出一个以23x y =⎧⎨=⎩为解的二元一次方程组 .21.( )2=16;( )3=64.22.如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为_________米.三、解答题23.如图,在学校的操场上,有一株大树和一根旗杆.(1)请根据树在阳光照射下的影子,画出旗杆的影子(用线段表示);(2)若此时大树的影长 6m ,旗杆高 4m ,影长5m ,求大树的高度.24.已知抛物线22(1)4y m x mx m =−++−图象过原点,开口向上.(1)求m 的值,并写出解析式;(2)求顶点坐标及对称轴;(3)当x 为何值时,y 是最值?是多少?25.如图,在四边形ABCD 中,E ,F ,G 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年连云港市中考数学模拟试题与答案(试卷满分150分,考试用时120分钟)第一部分 选择题(共40分)一、选择题(本大题10小题,每小题4分,共40分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-12的倒数等于A .-2 B.12 C .-12D .22. 某桑蚕丝的直径约为0.000016米,将0.000016用科学计数法表示是A .41.610-⨯B .51.610-⨯C .71.610-⨯D .41610-⨯3.二次函数7)2(2+-=x y 的顶点坐标是A .(﹣2,7)B .(2,7)C .(﹣2,﹣7)D .(2,﹣7)4.已知一组数据:3,4,6,7,8,8,下列说法正确的是 A .众数是2 B .众数是8C .中位数是6D .中位数是75. 关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0, 则a 的值为 A .1 B .-1 C .1或-1 D .126.在方程组中,若未知数x ,y 满足x+y >0,则m 的取值范围在数轴上的表示应是如图所示的 A .B .C .D .7.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是 A .平均数 B .方差 C .中位数 D .众数8. 如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A ,B 两点,若S △AOB =2,则 k 2-k 1的值是A. 1B. 2C. 4D. 89. 下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大.10. 下列关于函数2610y x x =-+的四个命题: ①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值; ③若3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个; ④若函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,则a b <. 其中真命题的序号是 A .①B .②C .③D .④第二部分(非选择题 共110分)二、填空题(本大题6小题,每小4分,共24分) 11.因式分解:2x 2-18=______.12. 正n 边形的一个外角为45°,则n = .13.为迎接五月份中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天训练时的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,年份温度/℃5040302010-20-10o201620152014201320122011-15.2-9.2-11.2-14.1-13.7-11.637.838.941.138.23835.9北京市2011-2016年气温变化情况最高气温最低气温那么这组数据的方差是________.14.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数为 个.15.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为 3米,某一高楼的影长为20米,那么高楼的实际高度是 米.16.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.E DCB A三、解答题(本大题 共8个小题,满分86分) 17.(本小题满分9分)计算: +(﹣)-1﹣2sin 60°﹣(π﹣2018)0+|1﹣|.18.(本小题满分9分)先化简,再求值:1112122-÷-++-x xx x x ,其中5=x . 19.(本小题满分10分)如图,△ABC 是等腰三角形,AB =BC ,点D 为BC 的中点. (1)用圆规和没有刻度的直尺作图,并保留作图痕迹: ①过点B 作AC 的平行线BP ;②过点D 作BP 的垂线,分别交AC ,BP ,BQ 于点E ,F ,G ; (2)在(1)所作的图中,连结BE ,CF.求证:四边形BFCE 是平行四边形.20. (本小题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2. (1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.21.(本小题满分10分)如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .22.(本小题满分10分)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为 1.2 米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)23.(本小题满分14分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上. 对角线EG 、FP 相交于点O . (1)若AP =3,求AE 的长;(2)连接AC ,判断点O 是否在AC 上,并说明理由;(3)在点P 从点A 到点B 的运动过程中,正方形PEFG 也随之运动,求DE 的最小值.24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线2(1)y a x k =-+经过点B 、C ,并与x 轴交于另一点A .(1)求此抛物线及直线AC 的函数表达式;(2)垂直于y 轴的直线l 与抛物线交于点P (1x ,1y ),Q (2x ,2y ),与直线BC 交于点N (3x ,3y ),若3x <1x <2x ,结合函数的图象,求123x x x ++的取值范围;(3)经过点D (0,1)的直线m 与射线AC 、射线OB 分别交于点M 、N .当直线m 绕点D 旋转时,2AN是否为定值,若是,求出这个值,若不是,说明理由.第24题图 备用图参考答案第一部分 选择题(共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A2.B3.B4.B5.B6.A7.B8.C9.C 10.C第二部分(非选择题 共120分)二、填空题(本大题6小题,每小题3分,共18分)11. 2(x+3)(x-3) 12. 8 13. 78 14.(4n ﹣3) 15. 12 16. 2三、解答题(本大题 共9个小题,满分102分) 17.解:原式=2﹣2﹣2×﹣1+﹣1…………6分=﹣2.…………9分18.解:原式xx x x x 1)1)(1()1(12-⋅-++-=---------------------------------------3分xx 11+-=---------------------------------------------------5分 x1-=,----------------------------------------------------6分 当5=x 时,原式55511-=-=-=x .--------------------------9分 19.(1)如图1:图1 图2(2)证明:如图2:∵BP∥AC,∴∠ACB =∠PBC,在△ECD 和△FBD 中,⎩⎪⎨⎪⎧∠ACB =∠PBC,CD =BD ,∠CDE =∠BDF,∴△ECD ≌△FBD , ∴CE =BF ,∴四边形ECFB 是平行四边形.20.解:(1)∵(k +1)x 2-2(k -1)x +k =0有两个实数根∴Δ≥0且k +1≠0 ………………………………1分 即[-2(k -1)]2-4k (k +1)≥0 k ≤31………………………………2分 又k +1≠0,∴k ≠-1 …………………………3分 ∴k ≤31且k ≠-1…………………………………4分 (2)x 1+x 2=1)1(2+-k k ,x 1·x 2=1+k k……………………6分 ∵x 1+x 2=x 1·x 2+2 即1)1(2+-k k =1+k k +2 解得,k =-4 ………………………………8分 21.解:(1)2.7 ………………………… 4分(2)……………………… 8分(3)6.8 ……………………… 12分22. 过点A 作OB 的垂线AE ,垂足是 E ,Rt △AEO ,AO =1.2,∠AOE =40° ∵sin40°=OAAE, ∴AE = OA sin40°≈0.64×1.2=0.768<0.8 (8分) ∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,∴车门不会碰到墙. (10分)23.(14分)(1)∵四边形ABCD 、四边形PEFG 是正方形,∴∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC ,∴△APE ∽△BCP(3分),∴,即,解得:AE=;(3分)(2)点O 在AC 上(1分).理由:过点O 分别作AD 、AB 的垂线,垂足分别为M 、N,证得OM=ON ,(1分),证得点O 在∠BAD 的平分线上(1分),证得AC 是∠BAD 的平分线,所以,点O 在AC 上。