(完整)相似三角形常见题型解法归纳,推荐文档

合集下载

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。

〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳

完整版)相似三角形题型归纳1、在平行四边形ABCD中,点E为对角线AC上的一点,且AE∶EC=1∶3.将BE延长至与CD的延长线交于点G,与AD交于点F。

证明BF∶FG=1∶2.2、在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC的中点,E为AC上的一点。

点G在BE上,连接DG并延长至交AE于点F,且∠FGE=45°。

证明:(1)BD·BC=BG·BE;(2)AG⊥BE;(3)若E为AC的中点,则EF∶FD=1∶2.3、在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E。

证明:(1)△ABF∽△COE;(2)当O为AC的中点时,求△ABC的面积;(3)当O为AC边中点时,求△ABC的面积。

4、在平行四边形ABCD和平行四边形ACED中,点R为DE的中点,BR分别交AC、CD于点P、Q。

写出各对相似三角形(相似比为1除外),并求出BP∶PQ∶QR的值。

5、在△ABC中,AD平分∠BAC,EM为AD的中垂线,交BC延长线于点E。

证明DE=BE·CE。

6、过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和E。

证明AE∶ED=2AF∶FB。

7、在Rt△ABC中,CD为斜边AB上的高,点M在CD 上,DH⊥BM且与AC的延长线交于点E。

证明:(1)△AED∽△CBM;(2)DE=DM。

8、在△ABC中,BD、CE分别是两边上的高,过D作DG⊥BC于点G,分别交CE及BA的延长线于点F、H。

证明:(1)DG=BG·CG;(2)BG·CG=GF·GH。

9、在平行四边形ABCD中,点P为对角线AC上的一点。

过P的直线与AD、BC、CD的延长线、AB的延长线分别相交于点E、F、G、H。

证明:AG∶GB=CP∶PD。

1、求证:如图,已知平行四边形ABCD中,点P在AC上,点Q在BC上,且AP=CQ。

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全(非常全面,经典)

相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A字型、反A字型(斜A字型)B(平行)B(不平行)(二)8字型、反8字型BCBC(蝴蝶型)(平行)(不平行)(三)母子型B(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:EG EF BE ⋅=2.ACDEB相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 90GMF EHDCBA5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DCB上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当△BEP与△ABC相似时,求△BEP的面积.双垂型1、如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高求证:(1)△ABD∽△ACE;(2)△ADE∽△ABC;(3)BC=2ED2、如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高,△ABC和△BDE的面积分别是27和3,DE=62,求:点B到直线AC的距离。

(完整版)相似三角形模型分析大全(精).doc

(完整版)相似三角形模型分析大全(精).doc

(完整版)相似三角形模型分析大全(精).doc第一部分相似三角形知识要点大全知识点 1. .相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变.解:是相似图形。

因为它们的形状相同,大小不一定相同.例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________( 填序号 ) .解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点 2.比例线段对于四条线段 a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.bd解读:( 1)四条线段 a,b,c,d成比例,记作a c(或 a:b=c:d ),不能写成其他形式,即比例线段b d有顺序性.( 2)在比例式a c(或 a:b=c:d )中,比例的项为 a,b,c,d,其中 a,d 为比例外项, b,c 为比例内项, dbd是第四比例项.( 3)如果比例内项是相同的线段,即a bb或 a:b=b:c ,那么线段 b 叫做线段和的比例中项。

c(4) 通常四条线段a,b,c,d 的单位应一致,但有时为了计算方便,a 和b 统一为一个单位,c 和d 统一为另一个单位也可以,因为整体表示两个比相等.例 3.已知线段 a=2cm, b=6mm, 求 a. b分析:求a即求与长度的比,与的单位不同,先统一单位,再求比.b例 4.已知 a,b,c,d成比例,且 a=6cm,b=3dm,d= 3dm ,求 c 的长度.2分析:由 a,b,c,d成比例,写出比例式a:b=c:d ,再把所给各线段a,b,,d统一单位后代入求c .知识点 3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例 5.若四边形 ABCD 的四边长分别是 4, 6,8, 10,与四边形 ABCD 相似的四边形 A 1B 1C 1D 1 的最大边长为 30,则四边形 A 1B 1C 1D 1 的最小边长是多少?分析:四边形 ABCD 与四边形 A 1B 1C 1D 1 相似,且它们的相似比为对应的最大边长的比,即为1,再根据相似3多边形对应边成比例的性质,利用方程思想求出最小边的长.知识点 4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:( 1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;( 4)相似用“∽”表示,读作“相似于” ;( 5)相似三角形的对应边之比叫做相似比.注意:①相似比是有顺序的,比如△ABC ∽△ A 1B 1C 1,相似比为 k, 若△ A 1B 1C 1∽△ABC ,则相似比为1。

相似三角形知识点归纳(全)精选全文完整版

相似三角形知识点归纳(全)精选全文完整版

可编辑修改精选全文完整版《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质E BD DB C(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

史上最全!!!!相似三角形难题精选

史上最全!!!!相似三角形难题精选

相似三角形难题精选模块一:相似三角形中的动点问题如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC 向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.(1)①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,△BME与△CNE相似?如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm 的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,请说明理由.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t<6)。

相似三角形经典题型

相似三角形经典题型

相似三角形经典题型一、相似三角形的判定定理相关题型1. 题目已知在△ABC和△A'B'C'中,∠A = 50°,AB = 3cm,AC = 4cm,∠A'= 50°,A'B'= 6cm,A'C' = 8cm。

判断这两个三角形是否相似。

解析根据相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

在△ABC和△A'B'C'中,(AB)/(A'B')=(3)/(6)=(1)/(2),(AC)/(A'C')=(4)/(8)=(1)/(2),且∠A = ∠A' = 50°。

所以△ABC∽△A'B'C'。

2. 题目如图,在四边形ABCD中,∠B = ∠ACD,AB = 6,BC = 4,AC = 5,CD=(7)/(2),求AD的长。

解析因为∠B = ∠ACD,且(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AC)/(AD)未知。

又因为(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),不满足三边对应成比例。

但是由∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),可以尝试证明△ABC和△ACD相似。

因为∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),这里我们重新计算(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)是错误的,应该是(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(BC)/(CD)所以△ABC∽△DCA。

相似三角形知识点整理精选全文完整版

相似三角形知识点整理精选全文完整版

可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

相似三角形题型归纳

相似三角形题型归纳

相似三角形题型归纳1. 什么是相似三角形相似三角形是指具有相似形状的三角形,它们的对应角相等,对应边成比例。

在解决相似三角形问题时,常用比例关系来推导解题思路。

2. 相似三角形的性质相似三角形有以下几个重要的性质:2.1 角对应相等性质如果两个三角形的两个内角对应相等,则这两个三角形相似。

2.2 边对应成比例性质如果两个三角形的两个边分别成比例,则这两个三角形相似。

2.3 AA相似性质如果两个三角形的两个角分别相等,则这两个三角形相似。

3. 相似三角形的题型分类相似三角形题型可以分为以下几类:3.1 判断相似这类题目给出了两个或多个三角形,要求判断它们是否相似。

解决这类题目时,可以通过比较角度或边长的比例来进行判断。

3.2 求比例这类题目已知两个或多个相似三角形的某几条边的长度,要求求出其余边的长度比。

3.3 计算面积这类题目已知两个相似三角形的边长比例,要求计算它们的面积比。

3.4 整体应用这类题目将相似三角形与其它几何概念结合起来,要求多层次的计算与推理。

4. 相似三角形题型解法示例4.1 判断相似问题:已知三角形ABC与三角形DEF的两个内角分别相等,是否可以得出它们相似?解答:根据相似三角形的角对应相等性质,当两个三角形的两个内角分别相等时,可以得出它们相似。

4.2 求比例问题:已知三角形ABC与三角形DEF相似,且AB:DE =3:2,AC:DF = 5:4,求BC:EF的比例。

解答:根据相似三角形的边对应成比例性质,可以得到AC:DF = BC:EF。

又已知AC:DF = 5:4,代入BC:EF,得到BC:EF = 5:4。

4.3 计算面积问题:已知三角形ABC的面积为6平方单位,三角形DEF与三角形ABC相似,且AB:DE = 2:1,AC:DF = 3:2,求三角形DEF的面积。

解答:根据相似三角形的边对应成比例性质,可以得到AB2:DE2 = AC2:DF2。

又已知AB:DE = 2:1,代入AC:DF = 3:2,得到AB2:DE2 = 4:1,即AB:DE = 2:1。

相似三角形知识点归纳

相似三角形知识点归纳

相似三角形知识点归纳1.相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形是相似的。

记作△ABC∽△DEF。

2.相似三角形的判定条件:(1)AA相似判定法:如果两个三角形的两个角相等,则这两个三角形是相似的。

(2)SAS相似判定法:如果两个三角形的对应两边成比例并且夹角相等,则这两个三角形是相似的。

(3)SSS相似判定法:如果两个三角形的对应三条边成比例,则这两个三角形是相似的。

3.相似三角形的性质:(1)对应边成比例:在相似三角形中,对应边的长度之比相等。

即AB/DE=BC/EF=AC/DF。

(2)对应角相等:在相似三角形中,对应角的度数相等。

即∠A=∠D,∠B=∠E,∠C=∠F。

(3) 对应角的正弦值成比例:在相似三角形中,如果一个角和其对边的正弦值成比例,则另一个角和其对边的正弦值也成比例。

即sin∠A/sin∠D = sin∠B/sin∠E = sin∠C/sin∠F。

(4)图形相似:除了三角形外,相似三角形所在的图形也是相似的。

4.角平分线的性质:(1)在相似三角形中,角平分线之间的关系相等。

即角平分线所分的两个角对应的另外两个角也是相等的。

(2)在相似三角形中,角平分线和对应边长成比例。

即角平分线与对应边所分出的线段之比相等。

5.高度的性质:(1)在相似三角形中,高度之间的关系成比例。

即两个相似三角形的高度之比等于对应边长之比。

(2)在相似三角形中,高度与底边成比例。

即两个相似三角形的高度和底边之比等于对应边长之比。

6.面积的性质:(1)在相似三角形中,面积之间的关系成比例。

即两个相似三角形的面积之比等于对应边长之比的平方。

(2)在相似三角形中,面积与任意一边平方成比例。

即两个相似三角形的面积和任意一边的平方之比等于对应边长之比。

7.相似三角形的应用:(1)根据相似三角形的性质,可以通过测量一个三角形和两条边的比例,计算出另一个三角形的边长和面积。

(2)在地图上,可以利用相似三角形的性质,测量无法直接测量的远距离。

相似三角形解题方法与技巧

相似三角形解题方法与技巧

相似三角形解题方法与技巧相似三角形解题方法与技巧一、相似三角形的判定:(比照全等三角形)例1:如图,在△ABC 中,D 是AB 上任意一点,DF‖BC,延长BC 到点E 使CE=BC ,连结DE 叫AC 于点G ,求证 : AD AB =DG GE例2:如图,等腰△ABC 中,AB=AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F .求证:BE 2=EF ?EG .例3:如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A B C D例4:在正方形ABCD 中,E 是AB 的中点,AF=14AD.求证:(1)△FAE ∽△EBC(2)FE ⊥EC二、常见的相似三角形的类型:(1)平行线型(2)相交线型(3)旋转型(4)母子型(5)K 形图解决相似三角形问题,关键是要善于从复杂的图形中分解出(构造出)上述基本图形.例:观察能力训练:指出下列图形中的相似三角形。

三、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例.(2)相似三角形中对应三线之比等于相似比.(3)相似三角形的周长的比等于相似比.(4)相似三角形面积之比等于相似比的平方.B CBCAD EA B C例:在△ABC 中,点D 、E 、F 分别在AB,AC,BC 上,DE//BC,EF//AB,若△ADE 与△CEF 面积分别为9和4,求四边形DEFB 的面积。

四、如何确定对应边与对应角(1)对应角所对的边是对应边,两对应角所夹的边是对应边;(2)对应边所对的角是对应角,两对应边所夹的角是对应角;(3)公共角是对应角,其对边是对应边;(4)对顶角是对应角,其对边是对应边;(5)最长(短)边对应最长(短)边,最大(小)角对应最大(小)角。

相似三角形解题方法与技巧◆判定两个三角形相似的证题思路1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单;2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例;3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角两角对应相等,两三角形相似找夹边对应成比例两边对应成比例且夹角相等,两三角形相似找夹角相等两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例三边对应成比例,两三角形相似找一个直角斜边、直角边对应成比例,两个直角三角形相似找另一角两角对应相等,两三角形相似找两边对应成比例判定定理1或判定定理4找顶角对应相等判定定理1找底角对应相等判定定理1找底和腰对应成比例判定定理3e)相似形的传递性:若△1∽△2,△2∽△3,则△1∽△3a)已知一对等角 b)己知两边对应成比例c)己知一个直角 d)有等腰关系◆证明线段成比例一、“三点定形法”寻找相似三角形例1、已知:如图,ΔABC 中, CE ⊥AB,BF ⊥AC. 求证:BAAC AF AE例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB吗?说明理由。

初中数学相似三角形知识点、常见结论、解题技巧

初中数学相似三角形知识点、常见结论、解题技巧

初中数学相似三角形知识点、常见结论、解题技巧一、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

二、相似三角形的基本定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成一个类似于原三角形的三角形。

三、三角形相似的判定1、三角形相似的判定方法①、定义法:对应角相等,对应边成比例的两个三角形相似②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2、直角三角形相似的判定方法①、以上各种判定方法均适用②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

相似常见类型二、相似常见结论1若DE//AB,则DG/AF=GE/BF2若AD平分∠BAC,则AB/AC=BD/CD3若四边形ABCD是平行四边形,则AE⊃2;=EF·FG4若∠DAC=∠DBC,则△ADE~△BCE ,可推导出△AEB~△DEC即上下相似可得左右相似同理,左右相似可得上下相似相似三角形常见解题技巧1、三角形叉叉图这类题目经常考察寻找线段的比例或长度。

图中四对线段比AE/ED、AF/BF、CD/BD、CE/EF,知二求二。

常用辅助线做法:过点作三角形边的平行线遵循原则:所做辅助线不能破坏原有线段比例2、三角形的可解性一个三角形,必然有三角形、三边、三高、周长、面积等十一个量。

(完整版)相似三角形知识点及典型例题,推荐文档

(完整版)相似三角形知识点及典型例题,推荐文档

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

(6)判定直角三角形相似的方法:①以上各种判定均适用。

②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC, (2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。

注:由上述射影定理还可以证明勾股定理。

即(AB)2+(AC)2=(BC)2。

典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC ,∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CEEF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。

相似三角形中考考点归纳与典型例题

相似三角形中考考点归纳与典型例题

相似三角形中考考点归纳与典型例题相似三角形是初中数学中常出现的重要概念,它是几何学中研究两个三角形之间形状关系的一个重要内容。

掌握相似三角形的性质和应用是解决几何问题的基础。

相似三角形的重要性质:1. 定义:如果两个三角形的对应角相等,对应边成比例,则它们是相似三角形。

记作ΔABC ~ ΔDEF。

其中A、B、C是ΔABC的顶点,D、E、F是ΔDEF的顶点。

2. 判定定理:(1) AA相似定理:如果两个三角形的两个对应角相等,则它们是相似的。

(2) AAA相似定理:如果两个三角形的三个对应角相等,则它们是相似的。

3. 边比例关系:相似三角形的对应边成比例。

即对于ΔABC ~ΔDEF,有AB/DE = BC/EF = AC/DF。

4. 高比例关系:相似三角形的高线成比例。

即对于ΔABC ~ΔDEF,有h1/h2 = AB/DE = BC/EF = AC/DF。

5. 相似三角形的性质:(1) 对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。

(2) 对应边成比例,即AB/DE = BC/EF = AC/DF。

(3) 相似三角形的顶角相等,边比例相等,它们的面积比例也相等。

(4) 相似三角形的高线间成比例。

相似三角形的典型例题:例题1:如图,在直角三角形ABC中,∠B = 90°,BM是AC的中线,求比值AB/BC。

解:由与直角三角形的垂直关系可知∠A = ∠CBM,∠C = ∠ABM。

所以∠ABC ~ ∠CBM。

根据相似三角形的性质可得AB/BC = CB/BM = 2/1,即AB/BC = 2。

例题2:如图,上底AE = 4cm,下底BC = 8cm,连结CD,且CD = AE,点F是AE的中点,连接BF,求比值∠AFB/∠ACD。

解:由AE = CD可得∠A = ∠C。

又由BF = FE可得∠B = ∠AFE。

所以∠AFB ~ ∠ACD。

根据相似三角形的性质可得∠AFB/∠ACD = AB/AD= BC/CD = 2。

(完整)相似三角形常见题型解法归纳,推荐文档

(完整)相似三角形常见题型解法归纳,推荐文档

A 字形,A’形,8字形,蝴蝶形,双垂直,旋转形双垂直结论:射影定理:角边是这条直角边在斜边上的射影和斜边的比例中项⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD•BD ⑵△ACD∽△ABC→AC:AB=AD:AC →AC 2=AD•AB ⑶△CDB∽△ABC→BC:AC=BD:BC →BC 2=BD•AB结论:⑵÷⑶得AC 2:BC 2=AD:BD结论:面积法得AB•CD=AC•BC→比例式 证明等积式(比例式)策略1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形 三点定形法2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略:遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。

彼相似,我角等,两边成比边代换。

(3)等比代换:若是四条线段,欲证,可先证得(是两条线段)然d c b a ,,,dc b a =fe b a =fe ,后证,这里把叫做中间比。

dc f e =fe ①∠ABC =∠ADE .求证:AB ·AE =AC ·AD②△ABC 中,AB=AC ,△DEF 是等边三角形,求证:BD•CN=BM•CE .③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。

求证:BP •PC=BM•CN☞有射影,或平行,等比传递我看行斜边上面作高线,比例中项一大片①在Rt△ABC 中,∠BAC=90°,AD⊥BC 于D ,E 为AC 的中点,求证:AB•AF=AC•DF②ABCD③梯形ABCD 中,AD//BC ,作BE//CD,求证:OC 2=OA.OE☞四共线,看条件,其中一条可转换;①Rt △ABC 中四边形DEFG 为正方形。

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。

它们的对应角度相等,对应边长成比例。

以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。

2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。

b. 对应边成比例:两个相似三角形的对应边的比值相等。

3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。

b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。

二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。

如果两个三角形是相似的,则对应边的比值相等。

以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。

则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。

例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。

解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。

例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。

若AB= 10cm,BC = 15cm,求AD的长度。

解析:由于ABCD是平行四边形,所以∠B = ∠D。

根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。

(word完整版)相似三角形动点问题题型

(word完整版)相似三角形动点问题题型

动点问题 题型方法归纳动态几何特点—---问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨. 一、三角形边上动点1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;t s.问当t (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位(3)若OC OB的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.Array注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ的面积最小。

相似三角形题型归纳总结非常全面

相似三角形题型归纳总结非常全面

相似三角形题型归纳总结非常全面(总20页)相似三角形题型归纳一、比例的性质:二、成比例线段的概念: 1.比例的项:在比例式::a b c d =(即a cb d =)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足b ac 2=.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=⋅),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB =≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)三、平行线分线段成比例定理 1.平行线分线段成比例定理A两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则AB DE BC EF =,AB DE AC DF =,BC EFAC DF=.AD BE CF1l 2l3lA D BEC F 1l 2l 3l【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为=上上下下,=上上全全,=下下全全.2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EFAE AF EB FC =AE AF AB AC =BE CFAB AC=A B C EFFECBAAE AF EB FC =AE AFAB AC=BE CFAB AC='//EF BC 'F 'F △ABC '''△A B C '''△∽△ABC A B C ∽∽B A'A C'B 'C∽△△ABC A B C '''A A '∠=∠,B BC C ''∠=∠∠=∠,∽△△ABC A B C '''AB BC ACk A B B C A C===''''''k △ABC △A B C '''AM AH 、AD △ABC BC A M ''A H ''A D ''△A B C '''B C ''AB BC AC AM AH ADk A B B C A C A M A H A D ======'''''''''''' △ABC △A B C '''AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++△ABC △A B C '''△△ABC A B C BC AHS BC AH k S B C A H B C A H 2'''1⋅⋅2==⋅=1''''''''⋅⋅2'A A ∠=∠'B B ∠=∠△∽△ABC A B C '''AB BC ACA B B C A C ==''''''△∽△ABC A B C '''AB ACA B A C ='''''A A ∠=∠△∽△ABC ABC '''BA DEC∥△∽△AD AE DEDE BC ADE ABC AB AC BC⇔⇔==ADC BO∥△∽△AB OA OBAB CD AOB COD CD OC OD⇔⇔==△ABC △∽△ADG ABC DG ANBC AM =BAC ∠=90︒△∽△∽△∽△ADG EBD FGC ABCNM GF E DCB AGF E D CB AG EDCBAGFEDC BA G FEDCB ADEFCBA GAH DFBECAGDF BEC::::x y z =135x y z x y z +3--3+x y z 234==x y z x y-+3=3-a b c2=3=4abc ≠0a bc b+-2x k =y k =3z k=5x y z k k k x y z k k k +3-+9-55==--3+-9-53113-2:2:3x y =53x y y +=13y x y -=123x y =1314x y +=+23a c e b d f ===a c b d ++2323a c e b d f -+-+b c a c a b a b c a b c +-+-+-==()()()a b b c a c abc+++11x y ≠23a cb d +=+232233a c e b d f -+=-+0a b c ++≠()()()b c a c a b a b c b c a c a b a b c a b c a b c+-+-+-+-++-++-====1++2,2,2b c a a c b a b c +=+=+=()()()a b b c a c abc +++=80a b c ++=()()()()()()a b b c a c c a b abc abc +++-⋅-⋅-==-11-∥∥l l l 123AB DE BC EF=∥∥AD BE CF AB =4AC =10DE =5DF =∥∥l l l 123AB =3BC =5DF =12_______DE =______EF = AD BE CF l 12l 3l A D B E C FAD BE CF l 12l l 3△△ABE CBES AB BC S =∴∥AD BE∵∥BE CF △△ABE DEB S S =∴△△CBE FEB S S =△△△△ABE EDB CBE EFB S S AB DE BC S S EF ===∴25292152∥∥l l l 123.cm AG =06.cm BG =12.cm CD =15CH =△ABCAD BD 2=3AE =3AC =AC =3BD =3CD =2CE =A CH GDBl 1l 2l 3B ADECA B C152∠ADC =90︒∥AD BC ∠∠DFC AEB =△∽△ADF CAE AD =8DC =6∥AD BC∠∠DAF ACE =∠∠DFC AEB =DFA AEC ∠=∠△∽△ADF CAE AD =8DC =6AC =10AF =5△∽△ADF CAE AD AF CA CE =CE 85=10CE 25=4BC 25=2125123⎛⎫=⨯+8⨯6= ⎪222⎝⎭△ABC △DEF 90A ∠=︒90F ∠=︒5AC =13BC =10DF =26EF =85C ∠=︒85E ∠=︒AC DEBC DF=1AB = 1.5AC =2BC =8EF =10DE =16FD =46A ∠=︒80B ∠=︒45E ∠=︒80F ∠=︒△ABC AD AC =DE BC ⊥△∽△ABC FCD △ABC BD CE BC 21⋅=2AD BECF l 12l 3l F EDCB A△∽△ACE DBAAEF DAD B CE AD AC =∵FDC ACB ∠=∠∴DE ∵EB EC =∴ABC FCD ∠=∠△∽△ABC FCD ∴(3)由等腰直角三角形得到BC =条件变为BD CE AB AB AC 2221⋅=⋅2==2,条件变为比例形式:BD BAAC CE=,由于DBA ACE ∠=180︒-45︒=∠,∴△∽△ACE DBA .题型一 “A ”字和“8”字模型例题1 (1)如图4-1,已知□ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若BE =5,EF =2,则FG 的长为____________.(2)如图4-2,已知在□ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP:PQ:QC =____________.G BAF DC EC AD B PQ图4-1 图4-2解析:(1)∵四边形ABCD 为平行四边形,∴//AD BC∴△∽△AEF CEB ,△∽△GFD GBC ,∴AF EF CB EB 2==5,∴DF AD AF CB CB -3==5∴FG DF BG CB 3==5,即FG FG 3=+75.得.FG =105. (2)由DC ∥AB ,得AP AM PC AB 1==3,AP AC 1=4,同理AQ AC 2=5,PQ AC 2=51-4AC =AC 320,QC =AC 35,故1::::::4AP PQ QC 33==5312205.巩固1: (1)如图4-1,在ABC △中,M 、E 把AC 边三等分,MN//EF//BC ,MN 、EF 把ABC △分成三部分,则自上而下部分的面积比为 .(2)如图4-2,AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且1AB =,3CD =,则:EF CD 的值为__________.(3)如图4-3,已知在平行四边形ABCD 中,M 为AB 的中点,DM ,DB 分别交AC 于P ,Q 两点,则::AP PQ QC =___________.NM FE C BAAB CEF DA CB QPD图4-1 图4-2 图4-3解析:(1)1:3:5;(2)14;(3)AQ CQ AC 1==2∵,又AP AM PC CD 1==2,AP AC 1=3∴PQ AC AC 111⎛⎫=1--= ⎪236⎝⎭∴,::::AP PQ QC =213∴.题型二 与内接矩形有关的相似问题例题2 (1)如图5-1,△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,BC =15,BC 边上的高AD =10,求正方形EFGH S .(2)如图5-2,已知△ABC 中,四边形DEGF 为正方形,D ,E 在线段AC ,BC 上,F ,G 在AB 上,如果ADF CDE S S ∆∆==1,BEG S ∆=3,求△ABC 的面积.HAB C D E FGACDEGB图5-1 图5-2解析:(1)设正方形EFGH 的边长为x ,AD 、HG 的交点为M ,则有AM HG AD BC =,即x x10-=1015,解得,x =6,故EFGH S 2=6=36正方形(2)设正方形边长为x ,则AF x 2=,CI x 2=,BG x6=. 由△∽△CDE CAB ,得CI DE CH AB =,∴xxx x x x2=28++,解得x =2, ∴AB =6,CH =3,∴ABC S AB CH ∆1=⋅=92巩固2:如图,已知ABC △中,AC =3,BC =4,C ∠=90︒,四边形DEGF 为正方形,其中D 、E 在边AC 、BC 上,F 、G 在AB 上,求正方形的边长.GF EDC B A H IDC EGF AB解析:法一:由勾股定理可求得AB =5,由AB CH AC BC ⋅=⋅可得.CH =24.由CDE CAB △∽△可得DE CI AB CH =,设正方形的边长为x ,则..x x 24-=524,解得x 60=37. 法二:设CE k =4,则DE k =5,∴GE k =5,BE k 25=3. ∴CE BE +=4,即k k 254+=43,解得k 12=37,∴DE k 60=5=37.题型三 “A 字和“8”字模型的构造GFED CBA H MACDEG BIHHPED CB A例题3 如图,ABC △中,D 为BC 边的中点,延长AD 至E ,延长AB 交CE 的延长线于P .若AD DE =2,求证:3AP AB =.解析:如图,过点D 作PC 的平行线,交AB 于点H . ∵HD PC ∥,AH ADAD DE AH PH PH DE=2⇒==2⇒=2, HD PC ∥,BH BDBD CD BH PH PH CD=⇒==1⇒=, ∴AP AH PH PH =+=3,AH BH AB PH BH =+=2=2, ∴AB BH PH ==,∴AP PH AB =3=3. 还可用如下辅助线来证此题:A BCD EKPABCDEK P PKED CBA巩固3: 如图,已知线段AB ∥CD ,AD 与BC 相交于点K ,E 是线段AD 上一动点.(1)若BK KC 5=2,求CDAB的值; (2)连接BE ,若BE 平分∠ABC ,则当AE AD 1=2时,猜想线段AB 、BC 、CD 三者之间有怎样等量关系?请写出你的结论并予以证明.再探究:当AE AD n1=()n >2,而其余条件不变时,线段AB 、BC 、CD 三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.解析:(1)∵BK KC 5=2,∴CK BK 2=5,又∵CD ∥AB ,∴KCD KBA △∽△,∴CD CK AB BK 2==5(2)当BE 平分ABC ∠,AE AD 1=2时,AB BC CD =+;证明:取BD 的中点为F ,连接EF 交BC 于G 点,由中位线定理,得EF//AB//CD , ∴G 为BC 的中点,GEB EBA ∠=∠,又∵EBA GBE ∠=∠,∴GEB GBE ∠=∠,∴EG BG BC 1==2, 而GF CD 1=2,EF AB 1=2,EF EG GF =+,即:AB BC CD 111=+222;AB BC CD ∴=+;当AE AD n1=(n >2)时,(1)BC CD n AB +=-. 题型四 斜“A ”和斜“8”模型ABDECC DEKBA例题4 如图,在ABC △中,AD BC ⊥于D ,CE AB ⊥于E ,ABC △的面积是BDE △面积的4倍,6AC =,求DE 的长.解析:∵AD BC ⊥,CE AB ⊥,ABD CBE ∠=∠, ∴ABD CBE △∽△, ∴BE BCBD AB =,∵EBD CBA ∠=∠,∴BED BCA △∽△,∴11322DEDE AC AC===⇒==.巩固4: (1)如图,ABC △是等边三角形,点D ,E 分别在BC ,AC 上,且BD CE =,AD 与BE 相交于点F .求证:①BD AD DF 2=⋅;②AF AD AE AC ⋅=⋅;③BF BE BD BC ⋅=⋅.(2)如图,四边形ABCD 是菱形,AF AD ⊥交BD 于E ,交BC 于F .求证:AD DE DB 21=⋅2.FECDBAA DEF C解析:(1)∵等边ABC △,∴AB BC =,ABC ACB BAC ∠=∠=∠=60︒ ∵BD CE = ∴ABD BCE △≌△.∴BAD CBE ∠=∠,∴BFD BAD ABE CBE ABE ABC ∠=∠+∠=∠+∠=∠ ∴ABD BFD △∽△ ∴BD DFAD BD=,∴BD AD DF 2=⋅. ②证明AFE ACD △∽△即可. ③证明BFD BCE △∽△即可. (2)方法一:取DE 中点M ,连接AM , ∵AF AD ⊥,M 为DE 中点∴MA MD DE 1==2,∴∠1=∠2,又∵AB AC =,∴∠2=∠3,∴∠1=∠3,∴DAM DBA △∽△,∴DA DM DB 2=⋅,∴AD DE DB 21=⋅2. 方法二:取BD 中点N ,连接AN .由等腰三角形的性质可知:AN BD ⊥, 又∵EAD ∠=90︒,∴AND EAD △∽△,∴AD DN DE 2=⋅, 又∵DN BD 1=2,∴AD DE BD 21=⋅2. 总结:考查斜“A ”和斜“8”常见结论,看到比例乘积想到斜“A ”和斜“8”,也要会找 巩固5:在等边ABC △中,点D 为AC 上一点,连结BD ,直线l 与AB ,BD ,BC 分别相交于点E 、P 、F ,且BPF ∠=60︒.(1)如图8-1,写出图中所有与BPF △相似的三角形,并选择其中一对给予证明.ADEF CM123ED CAB(2)若直线l 向右平移到图8-2、图8-3的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不证明),若不成立,请说明理由.(3)探究:如图8-1,当BD 满足什么条件时(其它条件不变),PF PE 1=2请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)图3图2图1l P F E D C B A F P E D C B A lFPEDC BA 图3图2l PFEDCBAlFP EDC BA 图3l P F E D CB A图8-1 图8-2 图8-3 解析:(1)BPF EBF △∽△与BPF BCD △∽△,以BPF EBF △∽△为例,证明如下: ∵BPF EBF ∠=∠=60,BFP BFE ∠=∠,∴BPF EBF △∽△. (2)均成立,均为BPF EBF △∽△,BPF BCD △∽△.(3)BD 平分ABC ∠时,PF PE 1=2.证明:∵BD 平分ABC ∠,∴ABP PBF ∠=∠=30∵BPF ∠=60,∴BFP ∠=90,∴PF PB 1=2,又BEF ABP ∠=60-30=30=∠,∴BP EP =,∴PF PE 1=2.题型五 射影定理例题5 如图,已知AD 、CF 是ABC △的两条高,EF AC ⊥与E ,交CB 延长线于G ,交AD 于H ,求证:EF EH EG 2=⋅.解析:∵CF AB ⊥,EF AC ⊥,∴EF AE CE 2=⋅, 又由AD BC ⊥可知,AEH CEG ∠=∠=90︒,EAH EGC ∠=∠,∴AEH GEC △∽△,∴EH EAEC EG=, ∴EH EG EA EC ⋅=⋅,∴EF EH EG 2=⋅. 巩固6:(1)如图9-1,在ABC △中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC⊥于F .求证:CEF CBA △∽△.(2)如图9-2,在Rt ABC △中,AD 是斜边BC 上的高,DE AC ⊥于E ,DF AB ⊥于F ,求证:AB FB FD AC EC ED44⋅=⋅.CAEFDBBAEDC F图9-1 图9-2GHFED CB A解析:(1)分别在ADC △与CDB △中由射影定理得到:2CD CE CA =⋅,2CD CF CB =⋅, CE CA CF CB ⋅=⋅∴,即CE CFCB CA=,ECF BCA ∠=∠∵,ECF BCA ∴△∽△. (2)由射影定理可以依次得到422422AB BD BC BF ABAC DC BC EC AC⋅⋅==⋅⋅, 于是仅需证明AB FDAC ED=, 由于BDA ADC △∽△,DF DE 、分别是AB 与AC 上的高,所以有AB DFAC DE=,得证. 题型六 三垂直模型例题6 如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=,且DM 交AC 于F ,ME 交BC 于G .(1)求证:AMF BGM △∽△.(2)连接FG ,如果45α=︒,42AB =,3AF =,求FG 的长.解析:(1)由题意得,DME A B α∠=∠=∠=, ∴180AMF BMG α∠+∠=︒-,180AMF AFM α∠+∠=︒-,∴BMG AFM ∠=∠, 又E A B α∠=∠=∠=,∴△AMF ∽△BGM .(2)∵AMF BGM △∽△,∴AM AF BG BM =∴,∵M 为AB 的中点,∴12AM BM AB ==∴, ∵42AB =,3AF =,∴83BG =∴, ∵45α=︒∵,∴90ACB ∠=︒∴,4AC BC ==,∴1CF AC AF =-=∴,43CG BC BG =-=, ∴2253FG CF CG =+=.巩固7: (1)如图10-1,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为____________.(2)如图10-2,在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,使得B 点落在D 点的位置,且AD 交y 轴于点E ,则D 点坐标为___________.GFE DCB ABy D E OAxC图10-1 图10-2解析:(1)ABE ECF FDG △∽△∽△,2AB AEFD FG==, ∴2AB DF =,∴2AB CF =,1AB AE BEEC EF CF===, ∴AB CE =,BE CF =,∴2CE CF =, 又∵4EF =,∴855CE =,455CF =1255BC ,855AB , EDCG FBM A∴矩形ABCD的周长为(2)过D 点做DF x ⊥轴于F 点,BC 与FD 的延长线交于G 点 则CGD DFA △∽△,∴13CG GD CD DF AF AD ===, 设CG x =,则3DF x =,1AF x =+,33GD x =-, 由于3AF GD =,列得方程:()1333x x +=-, 解得45x =,故45CG =,125DF =, 求得D 点坐标为41255⎛⎫- ⎪⎝⎭,.巩固8: 如图11-1,ABC △和DEF △是两个全等的等腰直角三角形,90BAC EDF ∠=∠=︒,DEF △的顶点E 与ABC △的斜边BC 的中点重合.将DEF △绕点E旋转到如图11-2,线段DE 与线段AB 相交于点P ,线段EF 与线段CA 的延长线相交于点Q .(1)求证:BPE CEQ △∽△.(2)已知BP a =,92CQ a =,求P 、Q 两点间的距离(用含a 的代数式表示).DFA PQEDFAP Q图11-1 图11-2解析:(1)∵ABC △和DEF △是两个全等的等腰直角三角形,∴45B C DEF ∠=∠=∠=︒,∴135BEP CEQ ∠+∠=︒,135CQE CEQ ∠+∠=︒,∴BEP CQE ∠=∠, 又∵45B C ∠=∠=︒,∴BPE CEQ △∽△. (2)连接PQ ,∵BPE CEQ △∽△,∴BP BECE CQ =, ∵BP a =,92CQ a =,BE CE =,∴BE CE ==,∴BC =,∴3AB AC a ==,∴32AQ a =,2PAa =,在Rt APQ △中,52PQ a =.题型七 三平行模型例题7 已知:如图,在梯形ABCD 中,AB//CD ,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F .(1)求证:EF//CD ;(2)若AB a =,CD b =,求EF 的长.解析:(1)∵AB CD ∥,∴ME AMED CD=,MF BMFC CD=,BDFAPQCFEMDCBA∵AM BM =,∴AM BM CD CD =(中间过渡量),∴ME MFEF CD ED FC=⇒∥. (2)∵AM EF CD ∥∥,∴111EF AM CD =+,∴2abEF a b=+. 巩固9: 如图所示,在ABC △中,120BAC ∠=︒,AD 平分BAC ∠交BC 于点D .求证:111AD AB AC=+.ABDCABCEF解析:分别过B 、C 两点做AD 的平行线,分别交CA 、BA 的延长线于E 、F 两点. 由于EB//AD//FC ,有111AD BE FC=+;由于60EBA BAD ∠=∠=︒,18060EAB BAC ∠=︒-∠=︒所以EAB △为正三角形,同理FAC △亦为正三角形.BE AB =∴,FC AC =.故111AD AB AC=+. 题型八 角平分线定理例题8 在ABC △中,B ∠的平分线交AC 于D ,C ∠的平分线交AB 于E ,且BE CD =.求证:AB AC =.解析:由角平分线定理得到AB AD BC DC =,AC AEBC BE=, ∵BE CD =∵,∴AD DC BE AE AB BC BC AC===∴ 即AD AEAB AC=,∴AD AC CD =-∴,AE AB BE =- ∴()()AC AC CD AB AB CD -=-,整理得到()()0AC AB AC AB CD -+-= 明显0AC AB CD +-≠,故AC AB =.巩固10:(1)如图13-1,在ABC △中,C ∠=90︒,CA =3,CB =4,且CD 是C ∠的平分线.则AD 的长为__________.(2)如图13-2,I 是ABC △内角平分线的交点,AI 交对应边于D 点,求证:AI AB ACID BC+=.CADBIAD B C 图13-1 图13-2解析:(1)由角平分线定理34AD ACDB BC ==,由于5AB =,31577AD AB ==∴ B CAED(2)由角平分线定理得到AI AB ACID BD CD==,由等比性质得到:AI AB AC AB AC ID BD CD BC++==+. 巩固11: 若AP PB =,2APB ACB ∠=∠,AC 与PB 相交于点D ,且4PB =,3PD =.求AD DC ⋅的值.P DCBAEA BCDP解析:过P 点做APB ∠的角平分线PE ,交AD 于E 点. ∵EPD APE C ∠=∠=∠∵,且PDE CDB ∠=∠,∴PDE CDB ∴△∽△,∴3ED DC PD DB ⋅=⋅=∴,又由于PE 是角平分线,∴PA AE PD ED =∴,∵4PA PB ==∵,∴43AE ED =∴,∴73AD ED =∴, 773AD DC ED DC ⋅=⋅=∴. 题型九 线束模型例题9 如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =. 法一:如下左图,过D 作DG BC ∥交AC 于G ,交AM 、AN 于P 、Q , 由线束定理可知DP PQ QG ==,∵DF AC ∥,∴DE DP AG PG 1==2,DF DQ AG QG ==2, ∴DE DF 1=4,∴EF DE =3.过E 点或F 点作BC 的平行线也可得到类似的证法. 法二:如下右图,过M 作PQ DF ∥,交AB 于P , 交AF 延长线于Q ,则有AC DF PQ ∥∥, ∴PM BM AC BC 1==3,QM MNAC NC==1, ∴PM QM 1=3,由线束定理可知DE PM EF QM 1==3, 即EF DE =3.过B 点或N 点作DF 的平行线也可得到类似的证法.QPABCMN DEFQP GABCMNDEFFED NMCBA巩固12: (1)如图15-1,AB ∥CD ,AD 与BC 交于点P ,过P 点的直线与AB 、CD 分别交于E ,F .求证:AE DFBE CF=. (2)如图15-2,AB ∥CD ,AD 与BC 交于点P ,连接CA 、DB 并延长相交于O ,连接OP 并延长交CD 于M ,求证:点M 为CD 的中点.(3)如图15-3,在图15-2中,若点G 从D 点向左移动(不与C 点重合),AG 与BC 交于点P ,连OP 并延长交CD 于M ,直接写出MC 、MG 、MD 之间的关系式.AC FDE B POABCM D POAB CM D P G图15-1 图15-2 图15-3解析:(1)证明:如图1,∵AB //CD ,AD 与BC 交于点P , ∴AEP DFP △∽△,BFP CFP △∽△, ∴AE EP DF FP =,BE EP CF FP =,∴AE BE DF CF =,∴AE DFBE CF=; (2)证明:如图2,设OM 交AB 于点N .∵AB //CD ,∴AON COM △∽△,BON DOM △∽△,AOB COD △∽△, ∴OA AN OC CM =,OB BN OD DM =,OA OB OC OD =,∴AN BNCM DM=①, ∵ANP DMP △∽△,BNP CMP △∽△,APB DPC △∽△, ∴AN AP DM DP =,DN BP CM CP =,AP BP DP CP =,∴AN BNDM CM=②, ①÷②,DM CMCM DM=,∴CM =DM ,即点M 为CD 的中点; (3)解:MC 2=MG ?MD ,理由如下:如图3,设OM 交AB 于点N . ∵AB //CD ,∴MCP NBP △∽△,NAP MGP △∽△,∴MC MP NB NP =①,NA NPMG MP=②, ①×②,得MC NA MP NP NB MG NP MP ⨯=⨯=1,∴MC NB MG NA=. ∵AON COM △∽△,BON DOM △∽△,∴NA ON MC OM =,NB ONMD OM=, ∴NA NB MC MD =,∴MD NB MC NA =,∴MC MDMG MC=,∴MC MG MD 2=⋅. 题型十 相似综合例题10 如图,点A 的坐标为(2,2),点C 是线段OA 上的一个动点(不与O 、A 两点重合),过点C 作CDx 轴,垂足为D ,以CD 为边在右侧作正方形CDEF .连接AF 并延长交x 轴的正半轴于点B ,连接OF .若以B 、E 、F 为顶点的三角形与OFE △相似,则点B 的坐标是 .解析:要使BEF △与OFE △相似, ∵FEO FEB ∠=∠=90︒ ∴只要OE EF EB EF =或OE EF EF EB =,即BE t =2或EB t 1=2. ② 当BE t =2时,BO t =4, ∴t t t2=42-,∴t =0(舍去)或t 3=2,∴(,)B 60.②当EB t 1=2时,(i)当B 在E 的左侧时,OB OE EB t 3=-=2,∴t t t 23=2-2,∴t =0(舍去)或t 2=3,∴(,)B 10. (ii )当B 在E 的右侧时,OB OE EB t 5=+=2,∴t t t 25=2-2,∴t =0(舍去)或t 6=5,∴(,)B 30.巩固13:如图,Rt ABC △中,ACB ∠=90︒,CD AB ⊥于D ,过点D 作DE BC ⊥,BDE △边DE 上的中线BF 延长线交AC 于点G .(1)求证:AD BD CE CB ⋅=⋅;(2)若AG FG =,求:BF GF ; (3)在(2)的条件下,若BC =62BD 的长度.A F ECDGAF ECDGP解析:(1)证明:∵CD AB ⊥,∴BCD △是直角三角形.∵DE BC ⊥,∴CD CE CB 2=⋅.∵ABC △是直角三角形,CD AB ⊥,∴CD AD BD 2=⋅,∴AD BD CE CB ⋅=⋅; (2)解:过G 作GP DF ⊥交DF 于P ,连结DG ,∵AC BC ⊥,DE BC ⊥,GF DE ⊥,∴四边形CEPG 是矩形,∴CG EP = 在Rt ADC △中,∵G 是边AC 中点,∴AG DG CG ==. 又∵AG FG =,∴DG FG =,∴GFD △是等腰三角形.∴GP 是FD 的中线,DP FP =,即FP DF EF 1=1=22.∵CG EP =,FP EF =12,∴::PF CG =13,∴::PF FG =13.∵PFG EFB CGB △△△∽∽,∴::::CG BG EF BF PF GF ===13, ∴::FG BG =13,::BF GF =21;(3)解:∵BC =62:::CE BE GF BF ==12,∴CE =22,BE =42 ∵::EF BF =13,设EF x =,则BF x =3,∴()x x 222+2=9,解得x =2,∴BF =6,GF =3,AC =6, ∴()AB AC BC 2222+6+6263BD =43。

专题22 相似三角形(归纳与讲解)(解析版)

专题22 相似三角形(归纳与讲解)(解析版)

专题22 相似三角形【专题目录】技巧1:巧用“基本图形”探索相似条件 技巧2:巧作平行线构造相似三角形 技巧3:证比例式或等积式的技巧 (1)基本性质:a b =cd ad =bc ; (2)合比性质:a b =cda +b b =c +dd;技巧1:巧用“基本图形”探索相似条件2.相交线型.3.子母型.4.旋转型.12与3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DF AF.【类型】四、旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ; (2)AD AE =BD CE.参考答案1.(1)证明:∵ED∥BC,∵ED ∥BC,∴∠DE B =∠EBC.h△BDE表示△BDE中DE边上的高,∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BO E=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE=∠DCO+∠DEO,∠ABC=∠EBO+∠CBO,所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠A DB=90°.又∵∠CBA =∠ABD(公共角), ∴△ABC ∽△DBA. ∴AB AC =DBDA,∠BAD =∠C. ∵AD ⊥BC 于点D ,E 为AC 的中点, ∴DE =EC.∴∠BDF =∠CDE =∠C. ∴∠BDF =∠BAD. 又∵∠F =∠F , ∴△DBF ∽△ADF. ∴DB AD =DF AF .∴AB AC =DF AF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,D E ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE·AB =AF·AC.可由两组“射影图”得AE·AB =AD 2,AF·AC =AD 2,∴AE·AB =AF·AC. 4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC.又∵∠ADE =∠ABC ,∴△ADE ∽△ABC. (2)∵△ADE ∽△ABC ,∴AD AE =ABAC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC.∴AD AE =BDCE .技巧2:巧作平行线构造相似三角形【类型】一、巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.【类型】二、过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BF AF =32,取CF 的中点D ,连接AD并延长交BC 于点E ,求BEEC的值.【类型】三、过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BDEC.【类型】四、过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.参考答案1.解:如图,连接DF ,∵E ,F 是边BC 上的两个三等分点,∴BE =EF =FC.∵D 是AC 的中点,∴AD =CD. ∴DF 是△ACE 的中位线. ∴DF ∥AE ,且DF =12AE.∴DF ∥PE. ∴∠BEP =∠BFD. 又∵∠EBP 为公共角,∴△BEP ∽△BFD.∴BE BF =BPBD.∵BF =2BE ,∴BD =2BP.∴BP =PD.∴DF =2PE. ∵DF ∥AE ,∴∠APQ =∠FDQ ,∠PAQ =∠DFQ. ∴△APQ ∽△FDQ.∴PQ QD =APDF .设PE =a ,则DF =2a ,AP =3a. ∴PQ QD =AP DF =3 2.∴BP PQ QD =53 2.2.解:如图,过点C 作CG ∥AB 交AE 的延长线于点G.∵CG ∥AB ,∴∠DAF =∠G. 又∵D 为C F 的中点,∴CD =DF.在△ADF 和△GDC 中,⎩⎪⎨⎪⎧∠DAF =∠G ,∠ADF =∠CDG ,DF =CD ,∴△ADF ≌△GDC(AAS ).∴AF =CG. ∵BF AF =32,∴AB AF =52.∵AB ∥CG ,∴∠CGE =∠BAE ,∠BCE =∠ABE. ∴△ABE ∽△GCE. ∴BE EC =AB CG =AB AF =52.3.证明:如图,过点C 作CF ∥AB 交DP 于点F ,∴∠PFC =∠PDB ,∠PCF =∠PBD. ∴△PCF ∽△PBD.∴BP CP =BDCF.∵AD ∥CF ,∴∠ADE =∠EFC. ∵AD =AE ,∴∠ADE =∠AED.∵∠AED =∠CEP ,∴∠EFC =∠CEP.∴EC =CF. ∴BP CP =BD EC. 4.证明:(方法一)如图①,过点C 作CF ∥A B ,交DE 于点F ,又∵∠AME =∠CM F , ∴AE BE =CD BD =13,即BD =3CD. 又∵BD =BC +CD , ∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF ∥DE ,交AB 于点F , ∴AE AF =AM AC. 又∵点M 为AC 边的中点, ∴AC =2AM. ∴2AE =AF.∴AE =EF. ∴BC =2CD.由EF ∥CD ,易证得△EFM ∽△DCM , EF MF∴EF =12CD.∴BC =2CD.(第4题④)(方法四)如图④,过点A 作AF ∥BD ,交DE 的延长线于点F , ∴∠F =∠D ,∠FAE =∠B. ∴△AEF ∽△BED. ∴AE BE =AF BD . ∵AE =14AB ,=1BE.=1BD.12.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F.求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E.求证:AM2=MD·ME.【类型】三、构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.【类型】四、等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.【类型】五、两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F.求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:1011BP12.如图,已知AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB·PC.参考答案12而解决问题.3.证明:∵四边形ABCD 是平行四边形,∴A E ∥D C ,∠A =∠C. ∴∠CDF =∠E.∴△FCD ∽△DAE.∴DC AE =CFAD .4.证明:∵DM ⊥BC ,∠BAC =90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM.∴∠B=∠BAM.∴∠BAM=∠D.即∠EAM=∠D.56.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠EDB=180°,∠ACB+∠FED=180°.∴∠FED=∠EDB.又∵∠EDF=∠DBE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE.即DE2=DB·EF.又由△DEF∽△BDE,得∠GED=∠EFD.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DG DE =DEDF .即DE 2=DG·DF. ∴DG·DF =DB·EF.7.证明:∴BG∴AP ,PE∴AB ,∴∴AEP =∴DEB =∴AGB =90°. ∴∴P +∴PAB =90°, ∴PAB +∴AB G =90°.89.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D.∵AM ⊥BC ,AN ⊥CD , ∴∠AMB =∠AND =90°. ∴△AMB ∽△AND.(2)由△AMB ∽△AND 得AM AN =AB AD ,∠BAM =∠DAN.又AD =BC ,∴AM AN =ABBC .∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN. ∴△AMN ∽△BAC.∴AM AB =MN AC .10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°. 又∵∠BAD =∠DAE ,1112.证明:如图,连接PA ,∵EP 是AD 的垂直平分线, ∴PA =PD.∴∠PD A =∠PAD.∴∠B +∠BAD =∠DAC +∠CAP. 又∵AD 平分∠BAC ,∴∠BAD =∠DAC.∴∠B =∠CAP. 又∵∠APC =∠BPA , ∴△PAC ∽△PBA.∴PA PB =PCPA .A 3243A .6B .7C .8D .9【答案】C【提示】根据平行线分线段成比例定理,由DE∴BC 得AD AEDB EC=,然后利用比例性质求EC 和AE的值即可【详解】∴//DE BC , ∴AD AE DB EC =,即932AE=, ∴6AE =,∴628AC AE EC =+=+=. 故选C .例(A AB ACAB BCA B C D 例4、如图,在ABC ∆中,D 、E 分别是AB 和AC 的中点,15BCED S =四边形,则ABC S ∆=( )A.30B.25C.22.5D.20【答案】D:S∆例得mA【解析】∴∴ABE=∴DCE, ∴AEB=∴CED,∴∴ABE∴∴DCE,∴AB BE CD CE=.∴BE=90m,EC=45m,CD=60m,∴()906012045AB m ⨯== 故选A.【物高问题】【题型】六、位似图形的概念与性质例6、如图,∴ABC 与∴DEF 位似,点O 为位似中心.已知OA ∴OD =1∴2,则∴ABC 与∴DEF 的面积比为( )A 8A .20cmB .10cmC .8cmD .3.2cm【答案】A【提示】根据对应边的比等于相似比列式进行计算即可得解. 【详解】解:设投影三角尺的对应边长为xcm , ∴三角尺与投影三角尺相似, ∴8:x =2:5, 12BD ADE 与ABC 的周长之比为(A ABC ADE ∽,相似三角形的对应边成∴∴∴ABC ADE ∽, ∴∴AD :AB =1:3, ∴13ADE ABC C C ∆∆=::, 即ADE 与ABC 的周长比为1:3. 故选:D .【点睛】题目主要考查相似三角形的判定与性质,平行线的性质,熟练掌握相似三角形的判定定理及其性质是解题关键.2.如图,在ABC 中,高BD 、CE 相交于点.F 图中与AEC △一定相似的三角形有( )A ADB ,△∴FEB ,△A ∠=∠∴ADB , ABD =∠,又90AEC BEC =∠=∴FEB ,ACE =∠,∴FDC △,【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.3ABC 中,D 、A ∴∴ADE ∴∴ABC ,∴∴ADE 与∴ABC 的周长之比为1:2,∴∴ADE 与∴ABC 的面积之比为1:4,即14.故选:B .【点睛】此题考查的是相似三角形的性质,三角形中位线定理,掌握相似三角形的周长之比等于相似比,面积比等于相似比的平方是解决此题关键.4.如图,D 是ABC 的边BC 上的一点,那么下列四个条件中,不能够判定∴ABC 与∴DBA 相似的是( )ABC ∴DBA ,故选项ABC ∴DBA ,故选项B 不符合题意;ACB 与BAD ∠是否相等,所以无法判定两三角形相似,故选项B B ∠=∠,ABC ∴DBA ,故选项【点睛】本题考查相似三角形的判定定理,熟练掌握相关定理是解题的关键.ABC ∴A B C ''',是它们的对应角平分线,若的面积比是( )3 B .C .3【答案】B【分析】根据相似三角形的性质:【详解】ABC ∴A B C ''',AD 和A D ''是它们的对应角平分线,8AD =,12A D ''=,∴两三角形的相似比为: :8:122:3AD A D '==',则ABC 与'''A B C 的面积比是:4:9. 故选:B【点睛】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.二、填空题6.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高为1.5m,测得AB =3m,AC=10m,则建筑物CD的高是_____m.7.如图所示,要使ABC ADE~,需要添加一个条件∠=∠【答案】ADE B【分析】根据已有条件,加上一对角相等就可以证明ABC与ADE相似,依据是:两角对应相等的两个三角形相似.【详解】解:添加ADE B∠=∠,A A∠=∠ABC ADE∴~故答案为:ADE B∠=∠.【点睛】本题主要考查了三角形相似的判定方法,牢记三角形相似的判定方法是做出本题的关键.8(1)(2)(2)(((2)解:∴∴ADE∴∴ABC,∴AD DEAB BC=,243BC=,∴BC=6.【点睛】本题考查了三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.相似三角形(提升测评)一、单选题1.如图,在菱形ABCD 中,点E 在AD 边上,EF ∴CD ,交对角线BD 于点F ,则下列结论中错误的是( )DE DFEF DFEF DFEF DF【点睛】此题考查平行四边形的性质、相似三角形的判定与性质以及平行线分线段成比例定理;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.2.如图1为一张正三角形纸片ABC ,其中D 点在AB 上,E 点在BC 上.今以DE 为折线将B 点往右折后,BD 、BE 分别与AC 相交于F 点、G 点,如图2所示.若10AD =,16AF =,14DF =,8BF =,则CG 的长度为多少?( )A.7B.8C.9D.10,解:∴3A.B.4C D.2【答案】B【分析】先过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,构造相似三角形,再利用相似三角形的性质列出比例式,计算求解即可.【详解】解:过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,则90ACO ODB ∠=∠=︒,90B BOD ∠+∠=︒,A 的坐标是AC =1,122DB=,即:B 的纵坐标是故选:B . 4的A .AD AFBD EF= B .AF DFAE EB= C .=AD AEAB ACD .CAF FE DEB = 【答案】D∥找到对应线段成比例或相似三角形对应线段的比相等,判断即可.【分析】根据DF BE∥,DE BC【详解】解:DF BE∥,AD AF∴=,BD EF故A选项比例式正确,不符合题意;DF BE∥,∴△∽△,ADF ABE5【答案】9x,根据同时同地物高与影长成正比列出比例式求出x,然后加【分析】设地面影长对应的树高为m上墙上的影长CD即为树的高度.x,【详解】解:设地面影长对应的树高为m由题意得,140.5x =, 解得8x =,墙上的影子CD 长为1m , ∴树的高度为()819m +=.故答案为:9.【点睛】本题考查利用投影求物高.熟练掌握同时同地物高与影长成正比是解题的关键.616AD BC ,FCG ,2, CFG 的面积之比AD BC ,:(2)2:5x a a x ∴+-=,67x a ∴=,68,77AE a EG a ∴==, :3:4AE EG =,∴DEG ∆与ADE ∆的面积之比是4:3,∴DEG ∆与CFG ∆的面积之比是16:7.故答案为:16:7.【点睛】此题考查了相似三角形的判定与性质,熟练掌握并运用:相似三角形对应边成比例、相似三角形的面积比等于相似比的平方等性质,是解此题的关键.三、解答题7,H(1)(2)(2),证出ADK FGK ,得出比例式求出()由正方形的性质求出出AM =4,FM =2,∴AMF 12CH AF =,根据勾股定理求出()解:∴四边形ABCD 和四边形CEFG 是正方形,∴AD =CD =BC =1,CG =FG =CE =3,,AD BC GF BE ∥∥,∴G =90°,∴DG =CG -CD =2,AD GF ∥,∴ADK FGK ,∴DK :GK =AD :GF =1:3,∴3342GK DG ==,∴312tan32GKGFKFG∠===;(2)解:∴正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∴E=90°,延长AD交EF于M,连接AC、CF,如图所示:则∴∴∴在∴8.如图所示,BEF的顶点AF,满足((CEB , BCE ∠∴=,ABCD 是矩形,∴BC DAB ∠,ACB =∠,BCE ACB ∠∠+=∴即∴90FAD DAC ∠∠∴+=︒,90DAB ∠=︒,90BAC DAC ∠∠∴+=︒,FAD BAC ∠∠∴=,在Rt ABC 中,tanBCBACAB∠===,30BAC∴∠=︒,30FAD∠∴=︒;(2)由(1)得9030ABC BAC∠∠=︒=︒,,CEB,ABCE,313,3,FAE中,【点睛】本题主要考查相似三角形的性质,矩形的性质,解直角三角形,解答的关键是结合图形及相应的性质求得∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 字形,A’形,8字形,蝴蝶形,双垂直,旋转形
双垂直结论:射影定理:
角边是这条直角边在斜边上的射影和斜边的比例中项⑴△ACD∽△CDB→AD:CD=CD:BD
→CD 2=AD•BD ⑵△ACD∽△ABC→AC:AB=AD:AC →AC 2=AD•AB ⑶△CDB∽△ABC→BC:AC=BD:BC →BC 2=BD•AB
结论:⑵÷⑶得AC 2:BC 2=AD:BD
结论:面积法得AB•CD=AC•BC→比例式 证明等积式(比例式)策略
1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形 三点定形法
2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件
相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略:
遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。

彼相似,我角等,两边成比边代换。

(3)等比代换:若是四条线段,欲证
,可先证得
(是两条线段)然
d c b a ,,,d
c b a =f
e b a =f
e ,后证
,这里把
叫做中间比。

d
c f e =f
e ①∠ABC =∠ADE .求证:AB ·AE =AC ·AD
②△ABC 中,AB=AC ,△DEF 是等边三角形,求证:BD•CN=BM•CE .
③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。

求证:BP •PC=BM•CN
☞有射影,或平行,等比传递我看行斜边上面作高线,比例中项一大片
①在Rt△ABC 中,∠BAC=90°,AD⊥BC 于D ,E 为AC 的中点,求证:AB•AF=AC•DF

ABCD
③梯形ABCD 中,
AD//BC ,作BE//CD,求证:OC 2=OA.OE
☞四共线,看条件,其中一条可转换;
①Rt △ABC 中四边形DEFG 为正方形。

求证:EF 2=BE•FC
②△ABC 中,AB=AC ,AD 是BC 边上的中线,CF ∥BA , 求证:BP 2=PE·PF 。

③AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于
E ,交AB 于
F.
求证: DE 2=BE ·CE.
☞两共线,上下比,过端平行条件边。

①AD 是△ABC 的角平分线.求证:AB:AC=BD:CD.
②在△ABC 中,AB=AC , 求证:DF:FE=BD:CE.
③在△ABC 中,AB >AC ,D 为AB 上一点,E 为AC 上一点,AD=AE ,直线DE 和BC 的延长线交于点P ,求证:BP:CP=BD:CE.
④在△ABC 中,BF 交AD 于E.
(1)若AE:ED=2:3,BD:DC=3:2,求AF:FC ;(2)若AF:FC=2:7,BD:DC=4:3,求AE:ED.
(3)BD:CD=2:3,AE:ED=3:4 求
⑤在△ABC 中,D
、E 分别为BC 的三等分点,AC 边上的中线BM 交AD 于P ,交AE 于Q ,若BM=10cm ,试求BP 、PQ 、QM 的长.
⑥△ABC 中,AC=BC ,F 为底边AB 上的一点,(m 、 n >0),取CF 的中点D ,
连结AD 并延长交BC 于E.(1)
的值.(2)如果BE=2EC ,那么CF 所在直线与边AB
有怎样的位置关系?证明你的结论;(3)E 点能否为BC 中点?如果能,求出相应的的
值;如果不能,证明你的结论。

☞彼相似,我条件,创造边角再相似
①AE 2=AD ·AB ,且∠ABE =∠BCE ,试说明△EBC ∽△
DEB
ABC 外作④D、E 分别在△ABC 的AC 、AB 边上,且AE•AB=AD•AC ,BD 、CE 交于点O.求证:△BOE∽△COD.。

相关文档
最新文档