高速光电耦合器6N137原理与应用
6n137讲解
6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3 输入,脚2接高电平。
真值表功能(正逻辑)绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性 (TA= -40℃ to +85℃ VCC= 5V IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to +85℃除非另有说明)隔离特性(Ta= -40 ℃至+85 ℃,除非另有说明. ):测试电路和波形 tPLH tPHL tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250μA,光敏管不导通;发光二极管正向压降1.2-1.7V(典型1.4V),正向电流6.3-15mA,光敏管导通。
若以B方法连接,TTL电平输入,Vcc为5V时,RF可选500Ω左右。
如果不加限流电阻或阻值很小,6N137仍能工作,但发光二极管导通电流很大对Vcc1有较大冲击,尤其是数字波形较陡时,上升、下降沿的频谱很宽,会造成相当大的尖峰脉冲噪声,而通常印刷电路板的分布电感会使地线吸收不了这种噪声,其峰-峰值可达100mV以上,足以使模拟电路产生自激。
6N137光电隔离器原理及典型用法
6N137光电隔离器原理及典型用法6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流一电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阂值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
图1 6N137结构原理图图2 6N137使用方法6N137简单的结构原理原理如图2A所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输。
若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
6N137真值表输入使能输出H H LL H HH L HL L H隔离器使用方法如图2B所示,假设输入端属于模块Ⅰ,输出端属于模块Ⅱ。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF限流电阻。
发光二极管正向电流0-250μA ,光敏管不导通;光二极管正向压降注12-1.7V,正向电流6.5-15mA,光敏管导通。
若以B方法联结,TTL电平输入,VCc1为5V时,RF可选500欧姆左右。
如果不加限流电阻或阻值很小,6N137仍能工作,但发光二极管导通电流很大,对VCC1有较大冲击,尤其是数字波形较陡时,上升、下降沿的频谱很宽,会造成相当大的尖峰脉冲噪声,而通常印刷电路板的分布电感会使地线吸收不了这种噪声,其峰-峰值可达100mV以上,足以使模拟电路产生自激,A/D 不能正常工作。
所以在可能的情况下,RF应尽量取大。
输出端由模块Ⅱ供电,VcC2=4.6-5.5V。
VOC2(脚8)和地(脚5)之间必须接一个0.1μF高频特性良好的电容,如瓷介质或钮电容,而且应尽量放在脚5和脚8附近。
这个电容可以吸收电源线上纹波,又可以减小光电隔离器接受端开关工作时对电源的冲击。
6N137中文详解详解
6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。
特性:①转换速率高达10MBit/s;②摆率高达10kV/us;③扇出系数为8;④逻辑电平输出;⑤集电极开路输出;工作参数:最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C典型应用:高速数字开关,马达控制系统和A/D转换等6N137光耦合器的内部结构、管脚如图1所示。
6N137光耦合器的真值如表1所示:6N137光耦合器的真值表输入使能输出H H LL H HH L HL L HH NC LHNC L需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。
在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。
6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。
6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
6N137资料及应用实例
6N137资料及应用实例6N137是由一个850 nm波长AlGaAs LED和一个集成检测器组成,并用于单通道的一款高速光耦合器,其集成检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。
6N137特性:①转换速率高达10MBit/s; ②摆率高达10kV/us; ③扇出系数为8; ④逻辑电平输出; ⑤集电极开路输出;6N137工作参数:最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C 典型应用:高速数字开关,马达控制系统和A/D转换等6N137光耦合器的内部结构、管脚如图1所示,真值如表1所示:二6N137应用实例信号采集系统通常是包含有模拟电路和数字电路,并且其中模数变换是不可缺少的。
从信号通路来说,AD变换之前是模拟电路,变换之后是数字电路。
模拟电路和AD变换电路决定了系统的信噪比,而这是评价采集系统优劣的关键参数。
为了提高信噪比通常要想办法抑制系统中噪声对模拟和AD电路的干扰。
在各种噪声当中由数字电路产生并串入模拟及AD电路的噪声普遍存在且较难克服。
数字电平上下跳变时集成电路耗电发生突变引起电源产生毛刺通常对开关电源影响比线性电源大因为开关电源在开关周期内不能响应电流突变而仅由电容提供电流的变化部分。
一般数字电路越复杂数据速率越高累积的电流跳变越强烈高频分量越丰富。
而普通印刷电路的分布电感较大使地线不能完全吸收逻辑电平跳变产生的电流高频分量产生电压的毛刺而这种毛刺进入地线后就不能靠旁路电容吸收了而且会通过共同的地线或穿过变压器干扰模拟电路和AD转换器其幅度可高达几百毫伏足以使AD工作不正常。
6N137中文资料
6N137中文资料概述6N137是一款具有高输出截止速度和高电流传输能力的光耦合器。
其内部结构包括一个红外发光二极管和一个高速光敏二极管。
6N137的主要特点是具有高速响应、低功耗、免磁屏蔽、高隔离电压和长寿命等优点。
这些特点使得6N137广泛应用于各种测量、控制、通信等领域。
功能特点•具有高达10 Mbps的数据传输速度。
•高达1 mA的输出电流。
•高达10 kV的隔离电压。
•通过红外光传输信号,具有免磁屏蔽的优点。
•宽工作温度范围,可在-40℃至+100℃的温度下正常工作。
•长寿命,可达10万小时以上。
引脚功能6N137一共有8个引脚,其中1号和2号为光敏输入端口,3号为非常重要的共阳极输出端口,其余引脚作为电源与反馈引脚。
下图为6N137的引脚示意图:1. Anode (A)2. Anode (A)3. Cathode (-), Output (O)4. Ground5. Vcc (+)6. Feedback7. NC (Not Connected)8. NC (Not Connected)应用场景由于6N137具有高速响应、低功耗、高隔离电压和长寿命等优点,因此其应用范围非常广泛,以下是其常见应用场景:工业控制6N137可以作为输出接口,用于将PLC(可编程逻辑控制器)隔离。
由于工业控制设备需要承受更高的工作环境和噪声,所以6N137高隔离能力和免磁屏蔽的特点可以保证其信号的可靠性。
数字信号传输由于6N137具有高达10 Mbps的数据传输速度,可用于数字信号隔离与传输,广泛应用于数码显示、传感器接口电路等。
模拟信号隔离6N137也可用于模拟信号隔离,将输入信号隔离后,输出的信号不会受到过渡现象的干扰,保证输出的准确性。
其他领域6N137还可以应用于电力系统、通讯系统中,作为隔离器和信号放大器,以提高系统的稳定性和准确性。
总结以上就是6N137中文资料的介绍,6N137是一款性能稳定、速度快、隔离电压高、寿命长的光耦合器,被广泛应用于控制、测量、通信和电力等领域。
6n137 中文资料 应用电路 pdf 6n137 封装图 6n137 管脚说明
找电源工作上-----------------电源英才网6n137 中文资料应用电路 pdf 6n137 封装图 6n137 管脚说明 6n137中文资料应用电路 pdf 6n137 封装图 6n137 管脚说明用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3 输入,脚2接高电平。
真值表功能(正逻辑)Inp ut 输入Enable 使能Output输出H H LL H HH L HL L HH NC LL NC H绝对最大额定值(Ta= 25 ℃除非另有说明):Symbol符号Parameter 参数Value 数值Units单位TSTGStorage Temperature 贮藏温度-55 to +125℃TOPROperating Temperature 操作温度-40 to +85℃TSO L Lead Solder Temperature 焊料温度260 for 10sec℃EMITTER 发送端IF DC/Average Forward 直流/平均正向单通道50mA Input Current 输入电流双通道(每通道)30VE Enable Input Voltage Not to Exceed VCC by morethan 500mV单通道 5.5VVR Reverse Input Voltage 反向输入电压每个通道 5.0VPI Power Dissipation 功耗单通道100mW 双通道(每通道)45DETECTOR 接收端VCC(1minutemax)Supply Voltage 电源电压7.0VIO Output Current 输出电流单通道50mA 双通道(每通道)50VO Output Voltage 输出电压每个通道7.0VPO Collector Output 集电极输出单通道85mW Power Dissipation 功耗双通道(每通道)60建议操作条件:Symbol符号Parameter 参数最小最大Units单位IFL Input Current Low Level 输入电流,低电平025μAIFH Input Current High Level 输入电流,高电平*6.315mAVCC Supply Voltage Output 供电电压,输出 4.55.5VVEL Enable Voltage Low Level 使能电压,低电平00.8VVEH Enable Voltage High Level 使能电压,高电平 2.0VCCVTA工作温度范围-40+85℃N Fan Out (TTL load)扇出期( TTL负载)8电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:Symbol 符号Parameter 参数测试条件最小典型最大单位VF Input Forward Voltage输入正向电压IF = 10mA1.8VTA=25℃1.41.75BVR Input Reverse BreakdownVoltage 输入反向击穿电压IR = 10μA 5.0VCIN Input Capacitance 输入电容VF = 0 f = 1MHz6pFΔV F / Input Diode TemperatureCoefficient 输入二极管温IF = 10mA-1mV/ΔT A 度系数.4℃DETECTOR 接收端ICC H High Level Supply Current高电源电流VCC = 5.5V IF= 0mA VE =0.5V单通道71mA双通道115ICC L Low Level Supply Current低电平电源电流单通道VCC=5.5V IF =10mA913mA双通道VE = 0.5V1421IEL Low Level Enable Current低电平使能电流VCC = 5.5V VE = 0.5V-.8-1.6mAIEH High Level Enable Current高电平使能电流VCC = 5.5V VE = 2.0V-.6-1.6mAVEH High Level Enable Voltage高电平使能电压VCC = 5.5V IF = 10mA 2.0VVEL Low Level Enable Voltage低电平使能电压VCC = 5.5V IF = 10mA(3).8V开关特性 (TA= -40℃ to +85℃ VCC= 5V IF= 7.5mA 除非另有说明):Symbol 符号AC Characteristics交流特性测试条件最小典型最大单位TP HH Propagation DelayTime to Output HIGHLevel传递延迟时间到高电平输出RL=350ΩCL=15pF(4)(Fig.12)TA=25℃204575ns10TP HL Propagation DelayTime to Output LOWLevel传递延迟时间到低电平输出TA = 25℃(5)254575nsRL = 350Ω CL = 15pF (Fig. 12)10|T PH Pulse WidthDistortion 脉宽失(RL = 350Ω CL = 15pF (Fig. 12)335nsLTPLH|真tr Output Rise Time(10–90%)输出上升时间( 10-90 % )RL = 350Ω CL = 15pF(6)(Fig. 12)50nstf Output Rise Time(90–10%)输出上升时间( 90-10 % )RL = 350Ω CL = 15pF(7)(Fig. 12)12nstE LH Enable PropagationDelay Time toOutput HIGH Level允许传播延迟时间到高电平输出IF = 7.5mA VEH = 3.5V RL = 350Ω CL =15pF(8)(Fig. 13)20nstE HL Enable PropagationDelay Time toOutput LOW Level 允许传播延迟时间到低电平输出IF = 7.5mA VEH = 3.5V RL = 350Ω CL =15pF(9)(Fig. 13)20ns|C MH |Common ModeTransient Immunity(at Output HIGHLevel) 共模瞬态抑制比(输出高电平)TA=25℃|VCM| =50V(Peak) IF=0mA VOH(Min.)= 2.0V RL =350Ω(10)(Fig.14)6n137HCPL26301000V/μsHCPL2601 HCPL263150001000|VCM| = 400V HCPL261110001500V/μs|C ML |Common ModeTransient Immunity(at Output LOWLevel) 共模瞬态抑制比(输出低电平)RL = 350Ω IF =7.5mA VOL (Max.)=0.8V TA = 25℃(11)(Fig. 14)6n137HCPL26301000HCPL2601 HCPL263150001000|VCM| = 400V HCPL261110001500电气特性(续)转移特性(TA = -40 to +85℃ 除非另有说明)Sy DC Characteristics 直流特测试条件最小典型最大Umb ol 符号性nit单位IO H HIGH Level Output Current高输出电流VCC = 5.5V VO =5.5V IF = 250μAVE = 2.0V(2)100μAVO L LOW Level Output Current 低电平输出电流VCC = 5.5V IF =5mA VE = 2.0V ICL= 13mA(2).350.6VIF T Input Threshold Current 输入阈值电流VCC = 5.5V VO =0.6V VE = 2.0VIOL = 13mA35mA隔离特性(Ta= -40 ℃至+85 ℃ ,除非另有说明. ):Symbo l 符号Characteristics 特性测试条件最小典型最大Unit单位II -O Input-Output Insulation LeakageCurrent 输入输出绝缘泄漏电流相对湿度 = 45%TA = 25℃ t = 5sVI-O = 3000VDC(12)1.*μAVI S O Withstand Insulation Test Voltage 经受绝缘测试电压)RH < 50% TA =25℃ II-O ≤2μA t = 1min.(12)2500VRMSRI -O Resistance (Input to Output)电阻(输入输出VI-O =500V(12)1012ΩCI -O Capacitance (Input to Output)电容(输入输出)f = 1MHz(12)0.6pF找电源工作上-----------------电源英才网测试电路和波形 tPLH tPHL tr and tf测试电路tEHL和tELH找电源工作上-----------------电源英才网测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
6N137应用电路
6N137应用电路6N137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
真值表功能(正逻辑)绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性 (TA= -40℃ to +85℃, VCC= 5V, IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to +85℃ 除非另有说明)隔离特性(Ta= -40 ℃至+85 ℃ ,除非另有说明. ):测试电路和波形 tPLH, tPHL, tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250μA,光敏管不导通;发光二极管正向压降1.2-1.7V(典型1.4V),正向电流6.3-15mA,光敏管导通。
若以B方法连接,TTL电平输入,Vcc为5V时,RF可选500Ω左右。
如果不加限流电阻或阻值很小,6N137仍能工作,但发光二极管导通电流很大对Vcc1有较大冲击,尤其是数字波形较陡时,上升、下降沿的频谱很宽,会造成相当大的尖峰脉冲噪声,而通常印刷电路板的分布电感会使地线吸收不了这种噪声,其峰-峰值可达100mV以上,足以使模拟电路产生自激。
6N137中文资料
6n137 中文资料应用电路pdf 6n137 封装图6n137 管脚说明<P6n137中文资料应用电路pdf 6n137 封装图6n137 管脚说明用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道:6N137 ,HCPL2601 ,HCPL2611双通道:HCPL2630 ,HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3 输入,脚2接高电平。
真值表功能(正逻辑)绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性(TA= -40℃to +85℃VCC= 5V IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to +85℃除非另有说明)隔离特性(Ta= -40 ℃至+85 ℃,除非另有说明. ):测试电路和波形tPLH tPHL tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250μA,光敏管不导通;发光二极管正向压降1.2-1.7V(典型1.4V),正向电流6.3-15mA,光敏管导通。
6n137_中文资料
6n137 中文资料 应用电路 pdf 6n137 封装图6n137 管脚说明<P6n137中文资料 应用电路 pdf 6n137 封装图 6n137 管脚说明用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后 导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当 输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3 输入,脚2接高电平。
真值表 功能(正逻辑)Input 输入Enable使能Output输出H H LL H HH L HL L HH NC LL NC H绝对最大额定值(Ta= 25 ℃除非另有说明):Symbol符号 Parameter 参数 Value 数值Units单位TSTG Storage Temperature 贮藏温度-55 to +125 ℃ TOPR Operating Temperature 操作温度-40 to +85 ℃ TSOL Lead Solder Temperature 焊料温度260 for 10 sec ℃ EMITTER 发送端DC/Average Forward 直流/平均正向单通道50IFInput Current 输入电流双通道(每通道)30mAVE Enable Input Voltage Not to Exceed VCC by more than500mV单通道 5.5 VVR Reverse Input Voltage 反向输入电压每个通道 5.0 V单通道100PI Power Dissipation 功耗双通道(每通道)45mW DETECTOR 接收端VCC (1minutemax)Supply Voltage 电源电压7.0 V单通道50IO Output Current 输出电流双通道(每通道)50mA VO Output Voltage 输出电压每个通道7.0 VCollector Output 集电极输出单通道85POPower Dissipation 功耗双通道(每通道) 60mW 建议操作条件:Symbol符号 Parameter 参数最 小最大 Units 单位IFL Input Current Low Level 输入电流,低电平 0 250 μA IFH Input Current High Level 输入电流,高电平 *6.3 15 mA VCC Supply Voltage Output 供电电压,输出 4.5 5.5 V VEL Enable Voltage Low Level 使能电压,低电平 0 0.8 V VEH Enable Voltage High Level 使能电压,高电平 2.0 VCC V TA 工作温度范围-40 +85 ℃ NFan Out (TTL load)扇出期( TTL 负载)8电学特性(Ta=0至70 ,除非另有规定) 单独的组件特征:Symbol 符号 Parameter 参数 测试条件最小 典型 最大 单位1.8VFInput Forward Voltage 输入正向电压 IF = 10mA TA=25℃1.4 1.75 VBVR Input Reverse Breakdown Voltage 输入反向击穿电压IR = 10μA 5.0VCIN Input Capacitance 输入电容 VF = 0 f = 1MHz60 pF ΔVF / ΔTA Input Diode Temperature Coefficient输入二极管温度系数 IF = 10mA-1.4mV/℃DETECTOR 接收端 单通道 7 10 ICCHHigh Level Supply Current 高电源电流VCC = 5.5V IF = 0mA VE = 0.5V双通道 10 15 mA单通道 VCC=5.5V IF = 10mA 9 13 ICCLLow Level Supply Current 低电平电源电流双通道VE = 0.5V14 21mAIEL Low Level Enable Current 低电平使能电流VCC = 5.5V VE = 0.5V -0.8 -1.6 mAIEH High Level Enable Current 高电平使能电流VCC = 5.5V VE = 2.0V -0.6 -1.6 mAVEH High Level Enable Voltage 高电平使能电压VCC = 5.5V IF = 10mA 2.0 VVEL Low Level Enable Voltage 低电平使能电压VCC = 5.5V IF = 10mA(3) 0.8 V开关特性 (TA= -40℃ to +85℃ VCC= 5V IF= 7.5mA 除非另有说明):Symbol符号AC Characteristics 交流特性测试条件 最小 典型最大 单位 TA=25℃ 20 45 75 TPHHPropagation Delay Timeto Output HIGH Level 传递延迟时间到高电平输出RL=350ΩCL=15pF(4)(Fig.12)100nsTA = 25℃(5) 25 45 75 TPHLPropagation Delay Time to Output LOW Level 传递延迟时间到低电平输出RL = 350Ω CL = 15pF (Fig. 12)100ns |TPHLTPLH| Pulse Width Distortion脉宽失真(RL = 350Ω CL = 15pF (Fig. 12)3 35 nstrOutput Rise Time (10–90%)输出上升时间( 10-90 % ) RL = 350Ω CL = 15pF(6)(Fig. 12) 50 nstfOutput Rise Time (90–10%)输出上升时间( 90-10 % ) RL = 350Ω CL = 15pF(7)(Fig. 12) 12 nstELHEnable PropagationDelay Time to Output HIGH Level 允许传播延迟时间到高电平输出 IF= 7.5mA VEH = 3.5V RL = 350Ω CL = 15pF(8)(Fig. 13)20 nstEHLEnable PropagationDelay Time to Output LOW Level 允许传播延迟时间到低电平输出IF = 7.5mA VEH = 3.5V RL = 350Ω CL = 15pF(9)(Fig.13)20 ns6n137HCPL263010000TA=25℃|VCM| =50V (Peak)IF=0mA VOH (Min.)= 2.0V RL = 350Ω(10)(Fig. 14) HCPL2601HCPL26315000 10000 V/μs |CMH|Common Mode Transient Immunity (at Output HIGH Level) 共模瞬态抑制比(输出高电平)|VCM| = 400VHCPL261110000 150006n137HCPL263010000RL = 350Ω IF = 7.5mA VOL(Max.)= 0.8V TA = 25℃(11) (Fig. 14) HCPL2601HCPL26315000 10000 |CML|Common Mode Transient Immunity (at Output LOW Level) 共模瞬态抑制比(输出低电平)|VCM| = 400VHCPL261110000 15000V/μs电气特性(续) 转移特性(TA = -40 to +85℃ 除非另有说明)Symbol符号 DC Characteristics 直流特性测试条件最小 典型 最大Unit 单位IOH HIGH Level Output Current 高输出电流VCC = 5.5V VO = 5.5V IF =250μA VE = 2.0V(2)100 μAVOL LOW Level Output Current 低电平输出电流 VCC = 5.5V IF = 5mA VE = 2.0V ICL = 13mA(2).35 0.6 VIFT Input Threshold Current 输入阈值电流VCC = 5.5V VO = 0.6V VE =2.0V IOL = 13mA3 5 mA隔离特性 (Ta= -40 ℃至+85 ℃ ,除非另有说明. ):Symbol符号Characteristics 特性 测试条件最小 典型最大 Unit单位II-OInput-Output Insulation Leakage Current 输入输出绝缘泄漏电流 相对湿度 = 45% TA = 25℃ t= 5s VI-O = 3000 VDC(12) 1.0* μAVISOWithstand Insulation Test Voltage 经受绝缘测试电压) RH < 50% TA = 25℃ II-O ≤2μA t = 1 min.(12)2500VRMS RI-O Resistance (Input to Output)电阻(输入输出 VI-O = 500V(12) 1012 Ω CI-O Capacitance (Input to Output)电容(输入输出) f = 1MHz(12)0.6 pF测试电路和波形 tPLH tPHL tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
6N137原理及典型用法
6N137原理及典型用法6N137的工作原理是基于光电效应。
内部结构包括发射器和接收器。
发射器由一个红外光二极管组成,输入电流流过发射二极管,发射出的光被耦合到接收侧的光敏二极管中。
当输入信号高电平时,电流通过发射二极管,照射到光敏二极管上,光敏二极管产生电压信号,形成输出信号;当输入信号低电平时,电流不流过发射二极管,光敏二极管不产生电压信号,形成低电平输出。
通过光耦合的方式,输入信号和输出信号隔离开来,从而实现高精度的信号隔离。
1.数据传输:6N137具有高速传输能力,能够支持高速数据传输,广泛应用于串行通信接口,比如RS232、RS485、RS422等。
它可用作信号转换器,将逻辑电平信号转换为光信号,并通过光纤传输,实现高速、长距离的数据传输,降低了传输中的非线性、电磁干扰等问题。
2.电力电子控制:在电力电子控制中,需要将低电平信号与高电压回路隔离开来,以确保安全性和稳定性。
6N137能够提供高隔离性能,能够隔离高达2500Vrms的电压,在电力电子控制中被广泛应用于隔离输入和输出信号,如电压检测、电流检测、电压采样等。
3.工业自动化:在工业自动化中,需要将控制信号从主控制器发送到执行器,并需要将执行器的状态信号反馈给主控制器。
6N137可以作为信号隔离器,将主控制器和执行器之间的信号隔离开来,避免传递干扰、电压浮动等问题,提高系统的稳定性和可靠性。
4.计算机网络:6N137能够提供高传输速率和隔离性能,广泛应用于计算机网络中。
它可用于隔离局域网之间的信号传输,确保信息的安全和可靠性。
同时,6N137还可用于隔离调制解调器、交换机等设备之间的信号传输。
需要注意的是,虽然6N137具有高隔离性能,但在实际应用中仍需要根据具体情况采取额外的保护措施,如使用熔断器、过压保护装置等,以确保设备和系统的安全运行。
总之,6N137作为一种高速带隔离器,以其高速传输能力和高隔离性能在众多领域中发挥作用,实现信号的隔离和传输,提高系统的稳定性和可靠性。
6N137中文详解详解
6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。
特性:①转换速率高达10MBit/s;②摆率高达10kV/us;③扇出系数为8;④逻辑电平输出;⑤集电极开路输出;工作参数:最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C 典型应用:高速数字开关,马达控制系统和A/D转换等6N137光耦合器的内部结构、管脚如图1所示。
6N137光耦合器的真值如表1所示:6N137光耦合器的真值表输入使能输出H H LL H HH L HL L HH NC LL NC H需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。
在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。
6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。
6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
6N137光耦中文资料.docx
6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AIGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd) ,5mA的极小输入电流。
特性:①转换速率高达10MBit/s;②摆率高达10kV/us;③扇出系数为8;④逻辑电平输岀;⑤集电极开路输岀;工作参数:最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v最大允许高电平电压:Vcc最大电源电压、输出:5.5V扇出(TTL负载):8个(最多)工作温度范围:-40 °C to +85 °C典型应用:高速数字开关,马达控制系统和A/D转换等6N137光耦合器的内部结构、管脚如图1所示。
• 艱梦内容管翟系薮^EDECM ON6N137光耦合器的真值如表1所示:需要注意的是,在6N137光耦合器的电源管脚旁应有一个O.luF的去耦电容。
在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。
6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚V输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。
高速光耦6N137/HCPL2601 ,HCPL2611,HCPL2630,HCPL2631 中文资料原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
6N137应用电路
高速光耦6N137应用电电路6N137应用电电路相关6N137的资料请参考:6N137光电耦合器中文资料一、6N137原理及典型用法6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
简单的原理如图2所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
6N137真值表输入使能输出H H L数字电路彻底隔离,电路如图3所示。
电源部分由隔离变压器隔离,减少电网中的噪声影响,数字电源和模拟电源不共地,由于模拟电路一般只有±15V,而AD转换器还需要+5V电源,为使数字电路与模拟电路真正隔离,+5V电源由+15V模拟电源经DC-DC变换器得到。
模拟电路以及AD转换电路与数字电路的信号联系都通过6N137。
逐次比较型AD并行输出12位数据,每一路信号经缓存器后送入6N1 37的脚3,进行同相逻辑传输至数字电路,输入端限流电阻选用470Ω,输出端上拉电阻选用47kΩ,输出端电源和地间(即6N137的脚8与脚5间)接0.1uF瓷片电容,作为旁路电容以减少对电源的干扰,6N137的使能端接选通信号,使6N137在数据有效时才工作,减少工作电流。
模拟电路和AD转换所需的各路控制信号也通过6N137接收,接法同上,在时序设计中要特别注意6N137约有50ns的延时,与未采用光电隔离器的数据采集电路相比,系统信噪比提高了一倍以上,满足了系统设计要求。
6N137中文详解
6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。
特性:①转换速率高达10MBit/s;②摆率高达10kV/us;③扇出系数为8;④逻辑电平输出;⑤集电极开路输出;工作参数:最大输入电流,低电平:250uA 最大输入电流,高电平:15mA 最大允许低电平电压(输出高):0.8v 最大允许高电平电压:Vcc 最大电源电压、输出:5.5V 扇出(TTL负载):8个(最多) 工作温度范围:-40°C to +85°C 典型应用:高速数字开关,马达控制系统和A/D转换等6N137光耦合器的内部结构、管脚如图1所示。
6N137光耦合器的真值如表1所示:6N137光耦合器的真值表输入使能输出H H LL H HH L HL L HH NC LL NC H需要注意的是,在6N137光耦合器的电源管脚旁应有—个0.1uF的去耦电容。
在选择电容类型时,应尽量选择高频特性好的电容器,如陶瓷电容或钽电容,并且尽量靠近6N137光耦合器的电源管脚;另外,输入使能管脚在芯片内部已有上拉电阻,无需再外接上拉电阻。
6N137光耦合器的使用需要注意两点:第一是6N137光耦合器的第6脚Vo输出电路属于集电极开路电路,必须上拉一个电阻;第二是6N137光耦合器的第2脚和第3脚之间是一个LED,必须串接一个限流电阻。
6n137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
6N137应用电路
6N137应用电路作用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器6N137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道: 6N137 , HCPL2601 , HCPL2611双通道: HCPL2630 , HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
真值表功能(正逻辑)绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性 (TA= -40℃ to +85℃, VCC= 5V, IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to +85℃ 除非另有说明)隔离特性(Ta= -40 ℃至+85 ℃ ,除非另有说明. ):测试电路和波形 tPLH, tPHL, tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250μA,光敏管不导通;发光二极管正向压降1.2-1.7V(典型1.4V),正向电流6.3-15mA,光敏管导通。
若以B方法连接,TTL电平输入,Vcc为5V时,RF可选500Ω左右。
6n137应用电路
6n137应用电路时间:2009-07-26 11:25:44 来源:资料室作者:中文资料作用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631是高速光电耦合器6N137的内部结构原理如下图所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
型号:单通道:6N137 ,HCPL2601 ,HCPL2611双通道:HCPL2630 ,HCPL2631高速10MBit / s的逻辑门光电引脚图原理如上图所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。
绝对最大额定值(Ta= 25 ℃除非另有说明):建议操作条件:电学特性(Ta=0至70 ,除非另有规定)单独的组件特征:开关特性(TA= -40℃to +85℃, VCC= 5V, IF= 7.5mA 除非另有说明):电气特性(续)转移特性(TA = -40 to +85℃除非另有说明)测试电路和波形tPLH, tPHL, tr and tf测试电路tEHL和tELH测试电路的共模瞬态抗扰度光藕隔离器6N137典型应用如图1所示,假设输入端属于模块I,输出端属于模块II。
输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF为限流电阻。
发光二极管正向电流0-250μA,光敏管不导通;发光二极管正向压降1.2-1.7V(典型1.4V),正向电流6.3-15mA,光敏管导通。
若以B方法连接,TTL电平输入,Vcc为5V时,RF可选500Ω左右。
6N137应用电路
Level) 共模瞬态抑制
比(输出高电平)
|VCM| = 400V
6N137, HCPL2630 HCPL2601, HCPL2631 HCPL2611
Common Mode Transient Immunity
6N137,
RL = 350Ω, IF = 7.5mA, VOL
HCPL2630
(Max.)= 0.8V, TA = 25℃(11) (Fig.
作用:6N137/HCPL2601,HCPL2611,HCPL2630,HCPL2631 是高速光电耦合器
6N137 的内部结构原理如下图所示,信号从脚 2 和脚 3 输入,发光二极管发光,经片内光通道传 到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与 门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器 输 出低电平。当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极 开路的,可针对接收电路加上拉电阻或电压调整电路。 型号: 单通道: 6N137 , HCPL2601 , HCPL2611 双通道: HCPL2630 , HCPL2631 高速 10MBit / s 的逻辑门光电
VF = 0, f = 1MHz
60
pF
ΔVF / Input Diode Temperature ΔTA Coefficient 输入二极管温度系数
IF = 10mA
-1.4
mV/℃
DETECTOR 接收端
High Level Supply Current 高电源电 VCC = 5.5V, IF = 单通道
|TPHL Pulse Width (RL = 350Ω, CL = 15pF (Fig. 12) Distortion 脉宽失真
高速光电耦合器工作原理及应用领域
高速光电耦合器工作原理及应用领域
什么是高速光电耦合器
和光电耦合器一样,它将发光二极管和光敏三极管组装在一起并利用光信号来传递信息,实现电路信号的电-光-电的传输(光电耦合电路),这样的目的是为了电路的输入与电气上处于完全隔离的状态,实现输入输出部分的电气隔离,提高其抗干扰能力和可靠性及稳定性,这种信息传递方式优于所有采用变压器和继电器作隔离来进行信号传递的一般解决方案,但是它的优势在于高速,也就是信号的传输速度快,在对信号的传输有速度要求的设计中是很常用的。
我们用6N137 来具体说明,其他的产品可以依次类推,详细参考产品手册即可,其内部有一个850 nm 波长AlGaAs LED 和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。
其工作原理是信号从脚2 和脚3 输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。
当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。
(1)特点和优点
它具有可单向传递信息、通频带宽、寄生反馈小、消噪能力强、抗电磁干扰性能好等特点,因而无论在数字电路还是在模拟电路中均得到了越来越广泛的应用,并且还具有有体积小、耦合密切、驱动功率小、动作速度快、工作温度范围宽等优点,随着半导体器件的发展,各种性能参数将得到提升。