专题12 概率与统计-三年高考(2014-2016)数学(理)试题分项版解析(原卷版)

合集下载

三年高考(2014-2016)数学(理)真题分项版解析_专题06数列

三年高考(2014-2016)数学(理)真题分项版解析_专题06数列

三年高考(2014-2016)数学(理)试题分项版解析第六章 数列一、选择题1. 【2014高考理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.考点:等比数列的性质,充分条件与必要条件的判定,容易题.【名师点睛】本题考查充要条件,本题属于基础题,充要条件问题主要命题方法有两种,一种为判断条件是结论的什么条件?第二种是寻求结论成立的某种条件是什么?近几年高考充要条件命题以选填题为主,表面看很简单。

但由于载体素材丰富,几何、代数、三角可以随意选材,所以涉及知识较多,需要扎实的基本功,本题以数列有关知识为载体,考查了数列的有关知识和充要条件.2. 【2015高考,理6】设{}n a 是等差数列. 下列结论中正确的是()A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a --> 【答案】C考点定位:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.【名师点睛】本题考查等差数列的通项公式和比较法,本题属于基础题,由于前两个选项无法使用公式直接做出判断,因此学生可以利用举反例的方法进行排除,这需要学生不能死套公式,要灵活应对,作差法是比较大小常规方法,对判断第三个选择只很有效.3.【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( )(A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算【名师点睛】我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.4. 【2016高考理数】如图,点列{A n},{B n}分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列D .2{}nd 是等差数列 【答案】A 【解析】考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.5. 【2016年高考理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) ( A )2018年(B )2019年(C )2020年(D )2021年 【答案】B 【解析】试题分析:设第n 年的研发投资资金为n a ,1130a =,则1130 1.12n n a -=⨯,由题意,需1130 1.12200n n a -=⨯≥,解得5n ≥,故从2019年该公司全年的投入的研发资金超过200万,选B.考点:等比数列的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论.6. 【2015高考,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <> 【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a d a d a 35)7)(2()3(11121-=⇒++=+,∴d d a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.【考点定位】1.等差数列的通项公式及其前n 项和;2.等比数列的概念【名师点睛】本题主要考查了等差数列的通项公式,等比数列的概念等知识点,同时考查了学生的运算求解能力,属于容易题,将1a d ,4dS 表示为只与公差d 有关的表达式,即可求解,在解题过程中要注意等等差数列与等比数列概念以及相关公式的灵活运用.7.【2014高考理第2题】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D 【解析】试题分析:因为数列{}n a 为等比数列,设其公比为q ,则()22852391116a a a q a q a q a ⋅=⋅⋅⋅=⋅= 所以,369,,a a a 一定成等比数列,故选D.考点:1、等比数列的概念与通项公式;2、等比中项.【名师点睛】本题考查了等比数列的概念与通项公式,等比数列的性质,本题属于基础题,利用下标和相等的两项的积相等更能快速作答.8. 【2015高考,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =()A 、-1B 、0C 、1D 、6【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B .【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质. 【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题.9.【2014,理3】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 【解析】试题分析:假设公差为d ,依题意可得1323212,22d d ⨯+⨯⨯=∴=.所以62(61)212a =+-⨯=.故选C.考点:等差数列的性质.【名师点睛】本题主要考查等差数列的通项公式及简单的计算问题,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.10.【2015高考,理8】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【答案】D【考点定位】等差中项和等比中项.【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.11. 【2014理8】设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >【答案】C 【解析】试题分析:因为{}n a 是等差数列,则2(1)1111(1)22a a a a n dnna a n d +-=+-∴=,又由于1{2}n a a 为递减数列,所以1-01111221202a a na da a n a d +=>=∴<,故选C .考点:1.等差数列的概念;2.递减数列.【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差数列的通项,利用1{2}na a 是递减数列,确定得到1-011122122a a na da a n +=>=,得到结论.本题是一道基础题.在考查等差数列等基础知识的同时,考查考生的计算能力.12. 【2015课标2理4】已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++=( )A .21B .42C .63D .84 【答案】B【解析】设等比数列公比为q ,则2411121a a q a q ++=,又因为13a =,所以4260q q +-=,解得22q =,所以2357135()42a a a a a a q ++=++=,故选B .【考点定位】等比数列通项公式和性质.【名师点睛】本题考查等比数列的通项公式和性质,通过求等比数列的基本量,利用通项公式求解,若注意到项的序号之间的关系,则可减少运算量,属于基础题.二、填空题1. 【2016高考理数】设数列{a n}的前n 项和为S n.若S 2=4,an +1=2S n +1,n ∈N *,则a 1=,S 5=.【答案】1121 【解析】试题分析:1221124,211,3a a a a a a +==+⇒==,再由111121,21(2)23(2)n n n n n n n n n a S a S n a a a a a n +-++=+=+≥⇒-=⇒=≥,又213a a =,所以515133(1),S 121.13n n a a n +-=≥==-考点:1、等比数列的定义;2、等比数列的前n 项和.【易错点睛】由121n n a S +=+转化为13n n a a +=的过程中,一定要检验当1n =时是否满足13n n a a +=,否则很容易出现错误.2. 【2014高考理第12题】若等差数列{}n a 满足7897100,0a a a a a ++>+<,则当n =时,{}n a 的前n 项和最大.【答案】8考点:等差数列的性质,前n 项和的最值,容易题.【名师点睛】本题考查等差数列的性质及等差数列的通项公式及前n 项和公式,本题属于基础题,由于题目提供a 7+a 8+a 9>0,a 7+a 10<0,推出890,0a a ><,从而说明数列{a n }的前8项和最大.这个题目命题角度新颖,不需死套公式,重视对知识的理解和对知识本质的考查.3.【2016年高考理数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.【答案】6【解析】试题分析:∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-,∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.考点:等差数列基本性质.【名师点睛】在等差数列五个基本量1a ,d ,n ,n a ,n S 中,已知其中三个量,可以根据已知条件结合等差数列的通项公式、前n 项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换及方程思想的应用.4. 【2014高考卷.理.13】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=.【答案】50.【解析】由题意知51011912101122a a a a a a e +==,所以51011a a e =,因此()()()()()101055012201202191011101110a a a a a a a a a a a e e ⋅⋅⋅=⋅⋅⋅⋅===对,因此()1250122020ln ln ln ln ln 50a a a a a a e ⋅⋅⋅+=++==.【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题. 【名师点晴】本题主要考查的是等比数列的性质和对数的基本运算,属于中等偏难题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的性质和对数的基本运算,即等比数列{}n a 中,若m n p q +=+(m 、n 、p 、q *∈N ),则m n p q a a a a =,()log log log a a a MN =M +N (0a >,1a ≠,0M >,0N >).5. 【2015高考,理10】在等差数列中,若,则=.【答案】. 【解析】因为是等差数列,所以,即,所以,故应填入.【考点定位】等差数列的性质.【名师点睛】本题主要考查等差数列性质及其简单运算和运算求解能力,属于容易题,解答{}n a 2576543=++++a a a a a 82a a +10{}n a 37462852a a a a a a a +=+=+=345675525a a a a a a ++++==55a =285210a a a +==10此题关键在于熟记,及其熟练运用.6.【2016高考新课标1卷】设等比数列{}na满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.【答案】64考点:等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.7.【2016高考卷】已知{}na是等差数列,{S}n是其前n项和.若21253,S=10a a+=-,则9a 的值是▲ .【答案】20.【解析】由510S=得32a=,因此2922(2d)33,23620.d d a-+-=-⇒==+⨯=考点:等差数列性质【名师点睛】本题考查等差数列基本量,对于特殊数列,一般采取待定系数法,即列出关于首项及公差的两个独立条件即可.为使问题易于解决,往往要利用等差数列相关性质,如*1()(),(1,)22n m tnn a a n a aS m t n m t n N++==+=+∈、、及等差数列广义通项公式().n ma a n m d=+-8.【2014,理7】在各项均为正数的等比数列{}na中,若21a=,8642a a a=+,则6a的值是.【答案】4.【解析】设公比为q,因为21a=,则由8642a a a=+得6422q q a=+,4220q q--=,()*,,,m n p qa a a a m n p q N m n p q+=+∈+=+且()*2,,2m n pa a a m n p N m n p+=∈+=且解得22q =,所以4624a a q ==.【考点定位】等比数列的通项公式.【名师点晴】在解有关等差数列的问题时可以考虑化归为1a 和d 等基本量,通过建立方程(组)获得解.即等差数列的通项公式1(1)n a a n d =+-及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1,,,,n n a d n a S ,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量1a 、d ,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.9. 【2015高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 【考点定位】数列通项,裂项求和【名师点晴】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,注意:有的问题也可利用构造法,即通过对递推式的等价变形,转化为特殊数列求通项.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.10. 【2015高考,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为. 【答案】5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.【考点定位】等差中项.【名师点晴】本题主要考查的是等差中项,属于容易题.解题时一定要抓住重要字眼“中位数”和“等差数列”,否则很容易出现错误.解本题需要掌握的知识点是等差中项的概念,即若a ,A ,b 成等差数列,则A 称为a 与b 的等差中项,即2a b A =+.11.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 【答案】1n-【考点定位】等差数列和递推关系.【名师点睛】本题考查数列递推式和等差数列通项公式,要搞清楚项n a 与n S 的关系,从而转化为1n S +与n S 的递推式,并根据等差数列的定义判断1n S ⎧⎫⎨⎬⎩⎭是等差数列,属于中档题. 12. 【2014,理12】数列{}n a 是等差数列,若1351,3,5a a a +++构成公比为q 的等比数列,则q =________. 【答案】1. 【解析】试题分析:∵1351,3,5a a a +++成等比,∴2111(1)[14(1)][12(1)]a a d a d ++++=+++,令11,1a x d y +=+=,则2(4)(2)x x y x y +=+,即222444x xy x xy y +=++,∴0y=,即10d +=,∴1q =.考点:1.等差,等比数列的性质.【名师点睛】对于等差数列与等比数列综合考查的问题,要做到:①熟练掌握等差或等比数列的性质,尤其是m n p q +=+,则m n p q a a a a +=+(等差数列),m n p q a a a a ⋅=⋅(等比数列);②注意在平时提高自己的运算求解能力,尤其是换元法在计算题中的应用;③要熟练掌握数列中相关的通项公式,前n 项和公式等.13. 【2015高考,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于. 【答案】21n-【考点定位】1.等比数列的性质;2.等比数列的前n 项和公式.【名师点睛】对于等差数列与等比数列综合考查的问题,要做到:①熟练掌握等差或等比数列的性质,尤其是m n p q +=+,则m n p q a a a a +=+(等差数列),m n p q a a a a ⋅=⋅(等比数列);②注意题目给定的限制条件,如本题中“递增”,说明1q >;③要熟练掌握数列中相关的通项公式,前n 项和公式等.14. 【2014,理11】设na 是首项为1a ,公差为1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a 的值为__________.【答案】12-. 【解析】试题分析:依题意得2214S S S ,∴21112146a a a ,解得112a . 考点:1.等差数列、等比数列的通项公式;2.等比数列的前n 项和公式.【名师点睛】本题考查等差数列的通项公式和前n 项和公式,本题属于基础题,利用等差数列的前n 项和公式表示出,,,421S S S 然后依据,,,421S S S 成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n 项和公式通过列方程或方程组就可以解出.15. 【2015理14】设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a =. 【答案】13-n .【解析】试题分析:∵13S ,22S ,3S 成等差数列,∴333)(2223321121=⇒=⇒+++=+⨯q a a a a a a a a , 又∵等比数列}{n a ,∴1113--==n n n q a a . 【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.三、解答题 1.【2016高考新课标2理数】n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,;(Ⅱ)求数列{}n b 的前1 000项和.【答案】(Ⅰ)10b =,111b =,1012b =;(Ⅱ)1893. 【解析】试题分析:(Ⅰ)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过x 的最大整数,求111101b b b ,,;(Ⅱ)对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和.试题解析:(Ⅰ)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ======(Ⅱ)因为0,110,1,10100,2,1001000,3,1000.n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893.⨯+⨯+⨯= 考点:等差数列的的性质,前n 项和公式,对数的运算.【名师点睛】解答新颖性的数学题,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点.于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }≥2. 故d m -1=A m -1-B m -1≤2-2=0,与d m -1=1矛盾.所以对于任意n ≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n ≥1,a n ≤2=a 1, 所以A n =2.故B n =A n -d n =2-1=1.因此对于任意正整数n ,存在m 满足m >n ,且a m =1,即数列{a n }有无穷多项为1. 考点定位:本题考查新定义信息题,考查学生对新定义的理解能力和使用能力。

专题16 选修部分-三年高考(2014-2016)数学(理)试题分项版解析(原卷版) 缺答案

专题16 选修部分-三年高考(2014-2016)数学(理)试题分项版解析(原卷版) 缺答案

三年高考(2014—2016)数学(理)试题分项版解析第十六章 选修部分一、选择题1。

【2014,安徽理4】以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C的极坐标方程是θρcos 4=,则直线l被圆C截得的弦长为( )A .14B .142C .2D .222。

【2014高考北京理第3题】曲线1cos 2sin x y θθ=-+⎧⎨=+⎩,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上3。

【2014湖北卷10】已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=,若R ∈∀x ,)()1(x f x f ≤-,则实数a 的取值范围为( )A.]61,61[- B.]66,66[-C. ]31,31[- D 。

]33,33[-二、填空题1。

【2015高考安徽,理12】在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 。

2。

【2014高考广东卷.理.14】 (坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sincos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,则曲线1C 和2C 交点的直角坐标为_________。

3。

【2014高考广东卷.理。

15】 (几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且AE EB 2=,AC 与DE 交于点F ,则=∆∆的面积的面积AEF CDF.图3FEDCBA4。

【2016年高考北京理数】在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于A ,B 两点,则||AB =______。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考(2014-2016)数学(理)真题分项版解析—— 专题11 排列组合、二项式定理

三年高考(2014-2016)数学(理)试题分项版解析第十一章排列、组合、二项式定理一、选择题1.【2016高考新课标2理数】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()(A)24 (B)18 (C)12 (D)9【答案】B【解析】试题分析:由题意,小明从街道的E处出发到F处最短有24C条路,再从F处到G处最短共有13C条路,则小明到老年公寓可以选择的最短路径条数为214318C C⋅=条,故选B.考点:计数原理、组合.【名师点睛】分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.2.【2016年高考四川理数】设i为虚数单位,则6()x i+的展开式中含x 4的项为(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4 【答案】A考点:二项展开式,复数的运算.【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.二项式6()x i +的展开式可以改为6()i x +,则其通项为66r r r C i x -,即含4x 的项为46444615C i x x -=-.3. 【2014高考广东卷.理.8】设集合(){}{}12345,,,,1,0,1,1,2,3,4,5iA x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A .60B .90C .120D .130 【答案】D【考点定位】本题考查分类计数原理,属于拔高题【名师点晴】本题主要考查的是分类计数原理,属于难题.解题时一定要注意选出的元素是否与顺序有关,否则很容易出现错误.利用排列组合计数时,关键是正确进行分类和分步,分类时要做到不重不漏,防止出现错误.4. 【 2014湖南4】5122x y ⎛⎫- ⎪⎝⎭的展开式中32y x 的系数是( ) A.20- B.5- C.5 D.20 【答案】A【解析】根据二项式定理可得第1n +项展开式为()55122nnn C x y -⎛⎫- ⎪⎝⎭,则2n =时,()()2532351*********nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,所以23x y 的系数为20-,故选A.【考点定位】二项式定理【名师点睛】本题主要考查的是二项式定理,属于容易题,解本题需要掌握的知识点是二项式定理,即二项式()n a b +的展开式的通项是1C k n k kk n ab -+T =,然后令n 选取恰当的值得到结果.5. 【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5中之一,其他位置共有随便排共44A 种可能,所以其中奇数的个数为44372A =,故选D. 考点:排列、组合【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置..6. 【2015高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( )A .4B .5C .6D .7 【答案】C【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =.7. 【2016高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共 有( )(A )18个 (B )16个 (C )14个 (D )12个 【答案】C 【解析】试题分析:由题意,得必有10a =,81a =,则具体的排法列表如下:【方法点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.8.【2014四川,理2】在6+的展开式中,含3x项的系数为()x x(1)A.30B.20C.15D.10【答案】C【解析】试题分析:623456+=++++++,所以含3x项的x x x x x x x x x(1)(161520156)系数为15.选C【考点定位】二项式定理.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.10.【2014四川,理6】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【答案】B【解析】试题分析:最左端排甲,有5!120⨯=种=种排法;最左端排乙,有44!96排法,共有12096216+=种排法.选B.【考点定位】排列组合.【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.11.【2015高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()(A)144个(B)120个(C)96个(D)72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.12.【2015高考新课标1,理10】25x y的系数++的展开式中,52x x y()为( )(A)10 (B)20 (C)30 (D)60 【答案】C【解析】在25++的5个因式中,2个取因式中2x剩余的3个因式()x x y中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C. 【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.14. 【2014年.浙江卷.理5】在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 210 答案:C 解析:由题意可得()()()()3211236646443,02,11,20,32060364120f f f f C C C C C C ++=+++=+++=,故选C考点:二项式系数.【名师点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.求二项展开式中的项的方法:求二项展开式的特定项问题,实质是考查通项1k n k k k n T C a b -+=的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程;(3)有理项:令通项中“变元”的幂指数为整数建立方程.特定项的系数问题及相关参数值的求解等都可依据上述方法求解.15.【2014高考重庆理第9题】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168 【答案】B考点:1、分类加法计数原理;2、排列.【名师点睛】本题考查了综合应用排列与组合知识解决实际的计数问题,属于中档题目,根据条件将分类,然后用分类计数原获得结果. 16. 【2014湖北卷2】若二项式7)2(xa x +的展开式中31x的系数是84,则实数=a ( )A.2B. 54C. 1D. 42 【答案】C 【解析】试题分析:因为r r r r r r r x a C xax C 2777772)()2(+---⋅⋅⋅=⋅⋅,令327-=+-r ,得2=r ,所以84227227=⋅⋅-a C ,解得1=a ,故选C.考点:二项式定理的通项公式,容易题.【名师点睛】本题考查了二项式定理的运用,其解题的关键是根据已知建立方程关系,属容易题.充分体现了方程思想在数学解题中的应用,能较好的考查学生对教材中的基本概念、基本规律和基本操作的识记能力和运算能力.17. 【2015高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A.122 B .112 C.102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n ,所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯.【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n nn n nn C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n nC C C . 18. 【2014辽宁理6】把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为( )A .144B .120C .72D .24 【答案】C考点:排列组合.【名师点睛】本题考查简单排列组合应用问题.从近几年高考对这部分内容的考查看,基本是排列与组合相结合,多可以结合图表分析解题途径.本题首先将座位编号,分析任何两人都不相邻的情况,再安排人员就坐,现实背景熟悉,分析形象直观,易于理解.本题是一道基础题,考查排列组合基础知识,同时考查考生的计算能力及分析问题解决问题的能力.19. 【2015湖南理2】已知5的展开式中含32x 的项的系数为30,则a =( )B. C.6 D-6 【答案】D. 【解析】试题分析:r rrrr xa C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握n b a )(+的二项展开式的通项第1+r 项为r r n r n r b a C T -+=1,即可建立关于a 的方程,从而求解. 二、填空题1. 【2016年高考北京理数】在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答) 【答案】60. 【解析】试题分析:根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=,故填:60.考点:二项式定理.【名师点睛】1.所谓二项展开式的特定项,是指展开式中的某一项,如第n 项、常数项、有理项、字母指数为某些特殊值的项.求解时,先准确写出通项r r n r n r b a C T -+=1,再把系数与字母分离出来(注意符号),根据题目中所指定的字母的指数所具有的特征,列出方程或不等式来求解即可;2、求有理项时要注意运用整除的性质,同时应注意结合n 的范围分析.2. 【2016高考新课标1卷】5(2)x +的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10考点:二项式定理3. 【2016高考天津理数】281()x x-的展开式中x 2的系数为__________.(用数字作答)【答案】56- 【解析】试题分析:展开式通项为281631881()()(1)r r r r r r r T C x C x x--+=-=-,令1637r -=,3r =,所以7x 的338(1)56C -=-.故答案为56-. 考点:二项式定理【名师点睛】1.求特定项系数问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.4. 【2016高考山东理数】若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 【解析】试题分析:因为5102552155()r rrr r rr T Cax C a x ---+==,所以由510522r r -=⇒=,因此252580 2.C a a -=-⇒=- 考点:二项式定理【名师点睛】本题是二项式定理问题中的常见题型,二项展开式的通项公式,往往是考试的重点.本题难度不大,易于得分.能较好的考查考生的基本运算能力等.5.【2015高考天津,理12】在614xx⎛⎫-⎪⎝⎭的展开式中,2x的系数为 .【答案】1516【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r=时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.6. 【2013高考北京理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________.【答案】96【解析】试题分析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343C A=96(种).考点:排列组合.名师点睛:本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,本题为先选后排问题,从4人中挑一人得到连号参观券,其余可以全排列,而得连号有四种可能情况发生,解决这样的问题需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.7. 【2014高考北京理第13题】把5件不同产品摆成一排,若产品A 与产品B 相邻, 且产品A 与产品C 不相邻,则不同的摆法有 种. 【答案】36考点:排列组合,容易题.【名师点睛】本题考查排列、组合及计数原理有关问题,本题属于中等难度问题,高考每年都会考查这个问题,题目或简或难,由于命题可以很灵活,可以考查简单的计数,也可以考查具体的排列组合基本方法如:相邻问题捆绑法、不邻插空法、分排问题直排法、有序问题用除法、隔板法等,需要学生不但要有扎实的基本功,还要有分析问题和解决问题的能力.8. 【2015高考北京,理9】在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.9. 【2014高考广东卷.理.11】从0.1.2.3.4.5.6.7.8.9中任取七个不同的数,则这七个数的中位数是6的概率为 . 【答案】16.【解析】上述十个数中比6小的数有6个,比6大的数有3个,要使得所选的七个数的中位数为6,则应该在比6大的数中选择3个,在比6大的数中也选择3个,因此所求事件的概率为336371016C C P C ==.【考点定位】本题考查排列组合与古典概型的概率计算,属于能力题. 【名师点晴】本题主要考查的是排列组合和古典概型,属于中等题.解题时要抓住重要字眼“中位数是6”,否则很容易出现错误.用排列组合列举基本事件一定要做到不重不漏,防止出现错误.解本题需要掌握的知识点是古典概型概率公式,即()A P A =包含的基本事件的个数基本事件的总数.10. 【2015高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r r r n T C a b n N n r N -+=∈≥∈且.11. 【2015高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题. 12.【2014山东.理14】 若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 . 【答案】2【名师点睛】本题考查二项式定理及其通项公式、基本不等式.从近几年高考对二项式定理的考查看,基本是以通项公式为解题的突破口,本题对有理指数幂的运算要求较高,容易出现计算不准而使解答陷入误区.本题是一道小综合题,重点考查二项式定理及其通项公式、基本不等式等基础知识,同时考查考生的计算能力及分析问题解决问题的能力.13.【2014新课标,理13】 ()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案) 【答案】12【解析】因为10110r r rr T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的通项公式,属于基础题,利用通项公式写出特定项的系数,是二项式题目的最常见题目. 14.【2015高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.15. 【2015高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.16. 【2016高考上海理数】在nx x ⎪⎭⎫⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________. 【答案】112 【解析】 试题分析:因为二项式所有项的二项系数之和为n 2,所以n 2256=,所以n 8=,二项式展开式的通项为84r r 8rr r r 33r 1882T C ()(2)C x x --+=-=-,令84r 033-=,得r 2=,所以3T 112=.考点:1.二项式定理;2.二项展开式的系数.【名师点睛】根据二项式展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项式展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.17. 【2014课标Ⅰ,理13】()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)【答案】20-【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理的应用,考查考生的记忆能力和计算能力.18.【2014年.浙江卷.理14】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).答案:60解析:不同的获奖分两种,一是有一人获两张将卷,一人获一张,共有223436C A=,二是有三人各获得一张,共有3424A=,因此不同的获奖情况有60种考点:排列组合.【名师点睛】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法;解决排列问题的主要方法(1)“在”与“不在”的有限制条件的排列问题,既可以从元素入手,也可以从位置入手,原则是谁“特殊”谁优先.不管是从元素考虑还是从位置考虑,都要贯彻到底,不能既考虑元素又考虑位置.(2)解决相邻问题的方法是“捆绑法”,即把相邻元素看做一个整体和其他元素一起排列,同时要注意捆绑元素的内部排列.(3)解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中.(4)对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列.(5)若某些问题从正面考虑比较复杂,可从其反面入手,即采用“间接法”.两类组合问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.19. 【2015高考重庆,理12】53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答). 【答案】52【解析】二项展开式通项为7153521551()()2kkkkk k k T C x C x --+==,令71582k -=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指k n C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别.20. 【2014,安徽理13】设n a ,0≠是大于1的自然数,na x ⎪⎭⎫⎝⎛+1的展开式为n n x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .【答案】3考点:1.二项展开式的应用.【名师点睛】二项式常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.本题要结合图形给定的条件与二项式展开中各项的表示. 21.【2015高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x+展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.22.【2015高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80. 【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度. 23.【2016高考江苏卷】(本小题满分10分)(1)求3467–47C C 的值;(2)设m ,n ∈N *,n ≥m ,求证:(m +1)C m m +(m +2)+1C m m +(m +3)+2C m m +…+n –1C mn +(n +1)C m n =(m +1)+2+2C m n .【答案】(1)0(2)详见解析试题解析:解:(1)3467654765474740.3214321C C ⨯⨯⨯⨯⨯-=⨯-⨯=⨯⨯⨯⨯⨯(2)当n m =时,结论显然成立,当n m >时11(1)!(1)!(1)(1)(1),1,2,,.!()!(1)![(k 1)(m 1)]!m m k k k k k k C m m C k m m n m k m m +++⋅++==+=+=++-++-+又因为122112,m m m k k k C C C +++++++=所以2221(1)(1)(),k m 1,m+2,n.m m m k k k k C m C C +++++=+-=+,因此12122222222232432122(1)(2)(3)(n 1)(1)[(2)(3)(n 1)](1)(1)[()()()](1)m m mmm m m nm m mmm m m n m m m m m m m m m m m m n n m n m C m C m C C m C m C m C C m Cm CCCCCCm C +++++++++++++++++++++++++++=+++++++=+++-+-+-=+考点:组合数及其性质【名师点睛】本题从性质上考查组合数性质,从方法上考查利用数学归纳法解决与自然数有关命题,从思想上考查运用算两次解决二项式有关模型. 组合数性质不仅有课本上介绍的111m m m k k k C C C ++++=、=m k m k k C C -,更有11k k n n kC nC --=,现在又有11(1)(m 1),(,1,,)m m k k k C C k m m n +++=+=+,这些性质不需记忆,但需会推导,更需会应用.。

三年高考(2014-2016)数学(文)试题分项版解析 专题06 数列解析版

三年高考(2014-2016)数学(文)试题分项版解析 专题06 数列解析版

三年高考(2014-2016)数学(文)试题分项版解析第六章 数列一、选择题1.【2014全国2,文5】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - 【答案】A【考点定位】1.等差数列;2.等比数列.【名师点睛】本题主要考查了等差数列的通项公式,等比中项的概念,等差数列的前n 项和公式,本题属于基础题,解决本题的关健在于熟练掌握相应的公式.2. 【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列【答案】A 【解析】考点:新定义题、三角形面积公式.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.3.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.4. 【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B 【解析】试题分析:设等差数列{}n a 的公差为d ,由题设知,12610a d +=,所以,110216a d -== 所以,716268a a d =+=+=.故选B.考点:等差数列通项公式.【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答.5. 【2014天津,文5】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 【答案】D 【解析】试题分析:因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(4.2a a a a -==--6),选D.考点:等比数列【名师点睛】本题考查等差数列的通项公式和前n 项和公式,本题属于基础题,利用等差数列的前n 项和公式表示出,,,421S S S 然后依据,,,421S S S 成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n 项和公式通过列方程或方程组就可以解出.6. 【2014辽宁文9】设等差数列{}n a 的公差为d ,若数列1{2}na a 为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d > 【答案】C 【解析】试题分析:由已知得,11122nn a a a a -<,即111212n n a a a a -<,1n 1(a )21n a a --<,又n 1a n a d --=,故121a d <,从而10a d <,选C .【考点定位】1、等差数列的定义;2、数列的单调性.【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差数列的通项,利用1{2}na a 是递减数列,确定得到111212nn a a a a -<,得到结论.本题是一道基础题.在考查等差数列等基础知识的同时,考查考生的计算能力.7. 【2015新课标2文5】设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )A .5B .7C .9D .11 【答案】A 【解析】试题解析:由13533331a a a a a ++==⇒=,所有()15535552a a S a +===.故选A. 【考点定位】本题主要考查等差数列的性质及前n 项和公式的应用.【名师点睛】本题解答过程中用到了的等差数列的一个基本性质即等差中项的性质,利用此性质可得1532.a a a +=高考中数列客观题大多具有小、巧、活的特点,在解答时要注意数列相关性质的应用,尽量避免小题大做.8. 【2015新课标2文9】已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C.【考点定位】本题主要考查等比数列性质及基本运算. 【名师点睛】解决本题的关键是利用等比数列性质211n n n a a a -+= 得到一个关于4a 的一元二次方程,再通过解方程求4a 的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.二、填空题1.【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.【答案】4 【解析】试题分析:当1n =时,12a =或13a =;当2n 时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k 时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =. 考点:数列的求和.【名师点睛】从研究n S 与n a 的关系入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.2.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = .【答案】1【解析】因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 【考点定位】等比中项.【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =.3. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= . 【答案】5.【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题. 【名师点晴】本题主要考查的是等比数列的性质和对数的基本运算,属于中等偏难题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的性质和对数的基本运算,即等比数列{}n a 中,若m n p q +=+(m 、n 、p 、q *∈N ),则m n p q a a a a =,()log log log a a a MN =M +N (0a >,1a ≠,0M >,0N >).4. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =;若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =;故答案为5【考点定位】等差数列的性质.【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.然后利用等差数列性质m n p q m n p q a a a a +=+⇒+=+.2.本题属于基础题,注意运算的准确性.5.【2014全国2,文16】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 【答案】12. 【考点定位】数列的概念.【名师点睛】本题考查了数列的概念,递推数列,属于中档题目,根据已知条件,逐步试算即可求出结果,注意计算的准确性即可.6. 【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算.7.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 【考点定位】1.等差数列的定义和通项公式;2.等比中项.【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.8. 【2014,安徽文12】如图,在等腰直角三角形ABC 中,斜边22BC =,过点A 作BC的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.【答案】1 4.【解析】试题分析:由题意,12BA a==,32121tan42nna aaa a aπ-=====,所以{}na是以首项12a=,公比2q=的等比数列,则667112(24a a q=⋅=⋅=.考点:1.等比数列通项公式.【名师点睛】此题是以平面几何为依托,考查数列通项公式和性质的知识交汇性问题,是高考今后的方向,主体知识是等差数列及其性质,都是基本点,因而提醒考生在今后复习中基础知识一定要狠抓不放.要求等比数列通项,必须求出首项和公比.9.【2015高考安徽,文13】已知数列}{na中,11=a,211+=-nnaa(2≥n),则数列}{na的前9项和等于.【答案】27【解析】∵2≥n时,21,21121+=+=-aaaann且∴{}1aan是以为首项,21为公差的等差数列∴2718921289199=+=⨯⨯+⨯=S【考点定位】本题主要考查等差数列的定义、通项公式和前n项和公式的应用.【名师点睛】能够从递推公式判断数列的类型或采用和种方法是解决本题的关键,这需要考生平时多加积累,同时本题还考查了等差数列的基本公式的应用,考查了考生的基本运算能力.10.【2014上海,文10】设无穷等比数列{na}的公比为q,若)(lim431++=∞→aaan,则q= .【解析】由题意334lim()1nnaa a aq→∞+++=-,即2111a qaq=-,∵10,1a q≠<,∴12q -+=. 【考点】无穷递缩等比数列的和.【名师点睛】无穷递缩等比数列的和为11a q -,其中10,1a q ≠<,等比数列是前提条件.前n 项和等比数列和与无穷递缩等比数列的和的关系为极限关系:lim n n S S→∞=11. 【2015高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=. 【考点定位】等差中项和等比中项.【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.三、解答题 1. 【2014高考北京文第15题】(本小题共13分) 已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n b 的前n 项和. 【答案】(1)3(1,2,)n a n n ==,132(1,2,)n n b n n -=+=;(2)3(1)212nn n ++-(2)由(1)知,132(1,2,)n n b n n -=+=,数列{}3n 的前n 项和为3(1)2n n +,数列{}12n -的前n 项和为1212112n n -⨯=--, 所以数列{}n b 的前n 项和为3(1)212n n n ++-. 考点:本小题主要考查等差数列、等比数列、数列求和等基础知识,考查同学们的运算求解能力,考查分析问题与解决问题的能力,考查函数与方程思想、化归与转化思想.数列是高考的热点问题之一,熟练基础知识是解答好本类题目的关键.2. 【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和. 【答案】(I )31n a n =-(II )131.223n --⨯ 【解析】考点:等差数列与等比数列【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.3. 【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等. 【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;(II )先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.试题解析:(Ⅰ)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q -=.4. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122n n n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式. 【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题.本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:1n na q a +=(常数),等比数列的通项公式:11n n a a q -=,等差数列的通项公式:()11n a a n d =+-.5. 【2014高考广东卷.文.19】(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈.(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.【答案】(1)12a =;(2)2n a n =;(3)详见解析.【解析】(1)令1n =得:()2111320S S ---⨯=,即21160S S +-=,()()11320S S ∴+-=,10S >,12S ∴=,即12a =;(2)由()()22233n n S n n S n n -+--+,得()()230n n S S n n ⎡⎤+-+=⎣⎦,()0n a n N *>∈,0n S ∴>,从而30n S +>,2n S n n ∴=+,所以当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦,又1221a ==⨯,()2n a n n N *∴=∈;(3)当k N *∈时,22313221644k k k k k k ⎛⎫⎛⎫+>+-=-+ ⎪⎪⎝⎭⎝⎭, ()()111111113122144244k k a a k k k k k k ∴==⋅<⋅++⎛⎫⎛⎫⎛⎫⋅+-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ()()11111111144114444k k k k ⎡⎤⎢⎥=⋅=⋅-⎢⎥⎛⎫⎡⎤⎢⎥-+--⋅+- ⎪⎢⎥⎣⎦⎝⎭⎣⎦ ()()()1122111111n n a a a a a a ∴++++++()1111111111111412231444444n n ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪<⋅-+-++-⎢⎥ ⎪ ⎪⎢⎥ ⎪ ⎪-----+-⎢⎥⎝⎭⎝⎭⎣⎦()11111111434331144n n ⎡⎤⎢⎥=-=-<⎢⎥+⎢⎥-+-⎣⎦. 证法二:当1n =时,()11111112363a a ==<+⨯成立,当2n ≥时,()()()()1111111221212122121n n a a n n n n n n ⎛⎫=<=- ⎪++-+-+⎝⎭,则()()()()11223311111111n n a a a a a a a a ++++++++1111111111623525722121n n ⎛⎫⎛⎫⎛⎫<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111111623213633n n ⎛⎫=+-=-< ⎪++⎝⎭. 【考点定位】本题以二次方程的形式以及n S 与n a 的关系考查数列通项的求解,以及利用放缩法证明数列不等式的综合问题,考查学生的计算能力与逻辑推理能力,属于中等偏难题. 【名师点晴】本题主要考查的是数列的通项公式和利用放缩法证明数列不等式,属于难题.本题通过将n S 的递推关系式进行因式分解,得到n S 与n 的关系式,利用()()1112n nn S n a S S n -=⎧⎪=⎨-≥⎪⎩可得数列{}n a 通项公式,再根据式子的特点进行裂项相消法,即可证明.解题时一定要注意公式的条件“2n ≥”,否则很容易出现错误.6. 【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 题目已知数列{n a }是等差数列,根据通项公式列出关于1a ,d 的方程,解方程求得1a ,d ,从而求得n a ;(Ⅱ)根据条件[]x 表示不超过x 的最大整数,求n b ,需要对n =分类讨论,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得121,5a d ==,所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦,当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=;当n =6,7,8时,2334,35n n b +≤<=; 当n =9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等差数列的性质 ,数列的求和. 【名师点睛】求解本题会出现以下错误:①对“[]x 表示不超过x 的最大整数”理解出错;7.【 2014湖南文16】已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-试题解析:(1)当1n =时,111a S ==;当2n ≥时,()()22111,22n n n n n n n a S S n --+-+=-=-=检验首项11a =符合n a n =,所以数列{}n a 的通项公式为n a n =. (2)由(1)可得()21nnn b n =+-,记数列{}n b 的前2n 项和为2n T ,则()()123222222123452n n T n =+++++-+-+-++()()()()()12222212345621212n n T n n -⎡⎤⇒=+-++-++-+++--+⎣⎦-21222n n T n +⇒=+-故数列{}n b 的前2n 项和为21222n n T n +=+- 【考点定位】数列前n 项和 等差数列 等比数列 分组求和法【名师点睛】本题主要考查数列通项公式的求法-公式法及数列求和的方法-分组求和法,考查学生的运算能力,属中档题.已知数列{a n }的前n 项和S n ,求数列的通项公式,其求解过程分为三步:(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n≥2)便可求出当n≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n≥2两段来写.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.8. [2016高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式. 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 【解析】试题分析:(Ⅰ)将11a =代入递推公式求得2a ,将2a 的值代入递推公式可求得3a ;(Ⅱ)将已知的递推公式进行因式分解,然后由定义可判断数列{}n a 为等比数列,由此可求得数列{}n a 的通项公式. 试题解析:(Ⅰ)由题意得41,2132==a a . .........5分 (Ⅱ)由02)12(112=---++n n n n a a a a 得)1()1(21+=++n n n n a a a a .因为{}n a 的各项都为正数,所以211=+n n a a , 故{}n a 是首项为1,公比为21的等比数列,因此121-=n n a . ......12分 考点:1、数列的递推公式;2、等比数列的通项公式.【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明1n na q a +=(常数);(2)中项法,即证明212n n n a a a ++=.根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解.9. 【2015高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题14 推理与证明

三年高考(2014-2016)数学(理)真题分项版解析—— 专题14 推理与证明

推理与证明1.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根2.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油4.甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________5.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.6.观察分析下表中的数据:多面体面数(F )顶点数(V )棱数(E )三棱锥569五棱锥6610立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________.7.一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于.。

专题12 概率和统计-2014届高三名校数学(理)试题解析分项汇编(第02期) Word版含解析[ 高考]

专题12 概率和统计-2014届高三名校数学(理)试题解析分项汇编(第02期) Word版含解析[ 高考]

一.基础题组1. 【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】已知2~(3,)N ξσ,若(2)0.2P ξ≤=,则ξ≤P(4)等于( )A .2.0B .3.0C .7.0D .8.02. 【河北省邯郸市2014届高三9月摸底考试数学理科】已知随机变量ξ服从正态分布2(4,)N σ,若(8)0.4P ξ>=,则(0)P ξ<=( )A .0.3B .0.4C .0.6D .0.73. 【湖北省武汉市2014届高三10月调研测试数学(理)】某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是 ( )4.【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】某小学对学生的身高进行抽样调查,如图,是将他们的身高(单位:厘米)数据绘制的频率分布直方图.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人,则从身高在[140,150]内的学生中选取的人数应为________.5.【江苏省阜宁中学2014届高三年级第一次调研考试】下图茎叶图是甲、乙两人在5次综合测评中成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.二.能力题组1.【中原名校联盟2013-2014学年高三上期第一次摸底考试理】在圆22+=--(2)(2)4x y内任取一点,则该点恰好在区域50303x x y x ⎧⎪⎨⎪⎩+2y -≥-2+≥≤内的概率为( )A .18π B .14π C .12π D .1π考点:二元一次不等式组表示的平面区域和几何概型等知识, 考查学生的基本运算能力.2. .【山西省山大附中2014届高三9月月考数学理】抛一枚均匀硬币,正反每面出现的概率都是12,反复这样投掷,数列{}a n 定义如下:a n n n =-⎧⎨⎪⎩⎪11,第次投掷出现正面,第次投掷出现反面,若S a a a n N n n =+++∈12 ()*,则事件“280,2S S ≠=”的概率是( )A .1256 B.13128 C.12 D.732三.拔高题组1. 【湖北省武汉市2014届高三10月调研测试数学(理)】现有A ,B 两球队进行友谊比赛,设A 队在每局比赛中获胜的概率都是23.(Ⅰ)若比赛6局,求A 队至多获胜4局的概率;(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.(Ⅱ)由题意可知,ξ的可能取值为3,4,5.考点:排列组合,分布列,期望.2.【浙江省温州八校2014届高三10月期初联考数学(理)】一个袋子里装有7个球, 其中有红球4个, 编号分别为1,2,3,4;白球3个, 编号分别为2,3,4. 从袋子中任取4个球(假设取到任何一个球的可能性相同).(Ⅰ) 求取出的4个球中, 含有编号为3的球的概率;(Ⅱ) 在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.(Ⅱ)随机变量X的所有可能取值为1,2,3,4. ……6分考点:概率,分布列,期望.3. 【浙江省嘉兴一中2014届高三上学期入学摸底数学(理)】一个口袋中有红球3个,白球4个.(Ⅰ)从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,求摸2次恰好第2次中奖的概率;(Ⅱ)每次同时摸2个,并放回,摸到的2个球中至少有1个红球则中奖,连续摸4次,求中奖次数X 的数学期望E(X).(Ⅱ) 设“每次同时摸2个,恰好中奖”为事件B ,则75C C )(27141323=+=C C B P随机变量X 的所有可能取值为1,2,3,4. ……6分4314716075175)1(=⎪⎭⎫ ⎝⎛-⋅⋅==C X P , 42224760075175)2(=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛==C X P , 43347100075175)3(=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛==C X P , 4444762575)4(=⎪⎭⎫ ⎝⎛==C X P ,……10分所以随机变量X 的分布列是随机变量X 的数学期望240168607625471000376002716014444=⨯+⨯+⨯+⨯=EX . ……14分 考点:组合公式、概率,分布列,期望4. 【广东省广州市执信、广雅、六中2014届高三10月三校联考(理)】(本题满分12分)在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X 的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率.【答案】(Ⅰ)X 的分布列数学期望4EX =;(Ⅱ)81. 【解析】试题分析:(Ⅰ)先定出X 的所有可能取值,易知本题是6个独立重复试验中成功的次数的离散概率分布,即为二项分布.由二项分布公式可得到其分布列以及期望.(Ⅱ)根据比赛获胜的规定,教师甲前四次投球中至少有两次投中,后两次必须投中,即可能的情况有1.前四次投中2次(六投四中);考点:1.二项分布;2.离散型随机变量的分布列与期望;3.随机事件的概率.5.【2014届广东高三六校第一次联考理】甲乙丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题05 平面向量

三年高考(2014-2016)数学(理)真题分项版解析—— 专题05 平面向量

三年高考(2014-2016)数学(理)试题分项版解析第五章 平面向量一、选择题1. 【2014,安徽理10】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q满足)OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤ ,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω 为两段分离的曲线,则( )A .13r R <<<B .13r R <<≤C .13r R ≤<<D .13r R <<< 【答案】A .考点:1.平面向量的应用;2.线性规划.【名师点睛】对于平面向量应用性问题,常常要利用向量的坐标运算,当题中出现明显的垂直和特征长度特征,优先考虑建立平面直角坐标系,用图形表示出要题中给定的条件,再利用几何意义进行求解.尤其要与平面几何结合考虑.2.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅=(D )()4C a b +⊥B【答案】D【考点定位】1.平面向量的线性运算;2.平面向量的数量积.【名师点睛】平面向量问题中,向量的线性运算和数量积是高频考点.当出现线性运算问题时,注意两个向量的差OA OB BA -= ,这是一个易错点,两个向量的和2OA OB OD+=(D 点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.3. 【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4(C )94(D )–94【答案】B 【解析】试题分析:由43m n = ,可设3,4(0)m k n k k ==>,又()n tm n ⊥+ ,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以4t =-,故选B. 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.4. 【2016高考新课标2理数】已知向量(1,)(3,2)a m a =- ,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=- ,由(a b )b +⊥ 得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):5.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( ) (A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D 【解析】因为()B DC D B D B ⋅=⋅=+⋅()22223c o s 2BA B C +⋅=+故选D.【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.6. 【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【考点定位】1、向量的模;2、向量的数量积.【名师点晴】本题主要考查的是向量的模和向量的数量积,属于容易题.解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅=,22a a = .7.【2014新课标,理3】设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 5 【答案】A 【解析】因为22||()a b a b +=+=r u r r r 222a b a b++⋅r r r r =10,22||()a b a b -=-=r u r r r 2226a b a b +-⋅=r r r r ,两式相加得:228a b +=r r ,所以1a b ⋅=r r ,故选A.【考点定位】向量的数量积.【名师点睛】本题主要考查了向量数量积运算,本题属于基础题,解决本题的关健在于掌握向量的模与向量数量积之间的关系,还有就是熟练掌握数量积的运算性质与运算律.8. 【2014四川,理7】平面向量(1,2)a = ,(4,2)b =,c ma b =+ (m R ∈),且c 与a的夹角等于c 与b的夹角,则m =( )A .2-B .1-C .1D .2 【答案】 D.【考点定位】向量的夹角及向量的坐标运算.【名师点睛】本题考查两向量的夹角,涉及到向量的模,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.9. 【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N 满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.10. 【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+(B)1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =-【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.【考点定位】平面向量的线性运算【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量AD表示为AC CD + ,再用已知条件和向量减法将CD 用,AB AC表示出来.11. 【2016高考新课标3理数】已知向量1(2BA =uu v ,1)2BC =uu u v,则ABC ∠=( )(A)30︒ (B)45︒ (C)60︒ (D)120︒ 【答案】A 【解析】试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有|a ·cos a ba bθ=,·0a b a b ⇔⊥ =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.12. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将 a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”, “确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.13. 【2016年高考北京理数】设a ,b 是向量,则“||||a b = ”是“||||a b a b +=-”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】D 【解析】试题分析:由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.考点:1.充分必要条件;2.平面向量数量积.【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.14. 【2014高考重庆理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥ ,则实数k =( )9.2A -.0B .C 3 D.152【答案】C考点:1、平面向量的坐标运算;2、平面向量的数量积.【名师点睛】本题考查了向量的坐标运算,向量的数量积,向量垂直的条件,属于基础题,利用向量垂直的条件的坐标条件可将两向量垂直的条件转化为所求实数k 的方程,解之即得结果.15. 【2015高考重庆,理6】若非零向量a ,b 满足|a |=3|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( ) A 、4π B 、2π C 、34π D 、π【答案】A【解析】由题意22()(32)320a b a b a a b b -⋅+=-⋅-= ,即223cos 20a a b b θ--= ,所以2320θ⨯-=,cos θ=,4πθ=,选A . 【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.16. 【2014高考广东卷.理.5】已知向量()1,0,1a =- ,则下列向量中与a 成60的是( )A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1- 【答案】B【考点定位】本题考查空间向量数量积与空间向量的坐标运算,属于基础题.【名师点晴】本题主要考查的是空间向量数量积的坐标运算,属于中等题.解题时要抓住关键字眼“成60”,否则很容易出现错误.解本题需要掌握的知识点是空间向量数量积的坐标运算,即若()111,,a x y z =,()222,,b x y z =,则cos ,a b =.17.【2014天津,理8】已知菱形ABCD 的边长为2,120BAD? ,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m += ( ) (A )12 (B )23 (C )56 (D )712【答案】C . 【解析】试题分析:cos 120,120 2.AB ADAB AD BE BC BAD l ?鬃==Ð-=\,()(),.1,1AE AB AD AF AB AD AE AFAB AD ABADl m l m \=+=+?\+?=,即3222l m l m +-=①,同理可得23l m l m --=-②,①+②得56l m +=,故选C . 考点:1.平面向量共线充要条件;2.向量的数量积运算.【名师点睛】本题考查平面向量的有关知识及及向量运算,运用向量的加法、减法正确表示向量,利用向量的数量积求值,本题属于基础题.解决向量问题有两种方法,第一种是本题的做法,借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助模运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.18. 【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BCAB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.19. 【2014上海,理16】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)8 【答案】A【解析】如图,AB 与上底面垂直,因此i AB BP ⊥(1,2,)i = ,cos 1i i i AB AP AB AP BAP AB AB ⋅=∠=⋅=.【考点】数量积的定义与几何意义. 【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos <a ,b> .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.20. 【2014上海,理17】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP 与OQ 不平行,因此12210a b a b -≠,所以二元一次方程组112211a x b y a x b y +=⎧⎨+=⎩一定有唯一解.【考点】向量的平行与二元一次方程组的解.【名师点睛】可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y 的二元一次方程组:ax by cdx ey f +=⎧⎨+=⎩,当a/d≠b/e 时,该方程组有一组解。

三年高考(2014-2016)数学(文)试题分项版解析 专题11 概率与统计原卷版 Word版缺答案

三年高考(2014-2016)数学(文)试题分项版解析 专题11 概率与统计原卷版 Word版缺答案

三年高考(2014-2016)数学(文)试题分项版解析第十二章 概率与统计一、选择题1. 【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )(A )13 (B )12 (C )23 (D )562.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) (A )310 (B )15 (C )110 (D )1203. 【 2014湖南文3】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==4. 【 2014湖南文5】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 5. 【2016高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) (A )710 (B )58 (C )38 (D )3106.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、67.[2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个8.【2014山东.文8】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.189. [2016高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) (A )815 (B )18 (C )115 (D )13010.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④11. 【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )1412.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( ) A .93 B .123 C .137 D .167(高中部)(初中部)男男女女60%70%13. 【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56(B )60(C )120(D )14014. 【2014高考陕西版文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 15. 【2014高考陕西版文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s16. 【2015高考陕西,文12】 设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率( ) A .3142π+ B . 112π+ C .1142π- D . 112π- 17. 【2016高考天津文数】甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61(D )3118. 【2014四川,文2】在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题02 函数

三年高考(2014-2016)数学(理)真题分项版解析—— 专题02 函数

三年高考(2014-2016)数学(理)试题分项版解析第二章 函数一、选择题 1. 【2014课标Ⅰ,理3】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A .)()(x g x f 是偶函数B .)(|)(|x g x f 是奇函数 C..|)(|)(x g x f 是奇函数 D .|)()(|x g x f 是奇函数 【答案】C【解析】设()()()H x f x g x =,则()()()H x f x g x -=--,因为)(x f 是奇函数,)(x g 是偶函数,故()()()()H x f x g x H x -=-=-,即|)(|)(x g x f 是奇函数,选C .【名师点睛】本题主要考查了函数的奇偶性,在研究函数|()|f x 的奇偶性时,一定要注意)(x f 的奇偶性,只有)(x f 具备奇偶性,函数|()|f x 才是偶函数,否者不成立.2. 【2014课标Ⅰ,理11】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .()2,+∞B .()1,+∞C .(),2-∞-D .(),1-∞- 【答案】C【名师点睛】本题主要考查了函数的奇偶性,在研究函数|()|f x 的奇偶性时,一定要注意)(x f 的奇偶性,只有)(x f 具备奇偶性,函数|()|f x 才是偶函数,否者不成立.【名师点睛】本题主要是考查函数的零点、导数在函数性质中的运用和分类讨论思想的运用,在研究函数的性质时要结合函数的单调性、奇偶性、零点、以及极值等函数的特征去研究,本题考查了考生的数形结合能力.3. 【2016高考新课标3理数】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b <<【答案】A 【解析】试题分析:因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A . 考点:幂函数的图象与性质.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.4. 【2016年高考北京理数】已知x ,y R ∈,且0x y >>,则( )A.110x y ->B.sin sin 0x y ->C.11()()022x y -<D.ln ln 0x y +>【答案】C考点: 函数性质【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.5. 【2014高考北京理第2题】下列函数中,在区间(0,)+∞上为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+【答案】A 【解析】试题分析:对A ,函数1+=x y 在),1[+∞-上为增函数,符合要求;对B ,2)1(-=x y 在)1,0(上为减函数,不符合题意; 对C ,xy -=2为),(+∞-∞上的减函数,不符合题意; 对D ,)1(log 5.0+=x y 在),1(+∞-上为减函数,不符合题意. 故选A.考点:函数的单调性,容易题.名师点睛:本题考查函数的性质,本题属于基础题,函数的性质涉及奇偶性、单调性、周期性,零点等,近几年高考函数性质问题是选填必考题,有时考单一性质,有时涉及两个或两个以上性质综合考查,题目新颖但注重基础,有时与图像、零点等结合考查,有时与方程、不等式结合考查,题目新鲜但有一点难度.6. 【2015高考北京,理7】如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤【答案】C【解析】如图所示,把函数2log y x =的图象向左平移一个单位得到2log (1)y x =+的图象1x =时两图象相交,不等式的解为11x -<≤,用集合表示解集选C【考点定位】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,体现了数形结合思想.【名师点睛】本题考查作基本函数图象和函数图象变换及利用函数图象解不等式等有关知识,本题属于基础题,首先是函数图象平移变换,把2log y x =沿x 轴向左平移2个单位,得到2log (y x =+2)的图象,要求正确画出画出图象,利用数形结合写出不等式的解集.7. 【2016高考新课标1卷】函数22x y x e =-在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.8. 【2015高考广东,理3】下列函数中,既不是奇函数,也不是偶函数的是( )A .x e x y +=B .x x y 1+=C .x xy 212+= D .21x y += 【答案】A .【解析】记()x f x x e =+,则()11f e =+,()111f e --=-+,那么()()11f f -≠,()()11f f -≠-,所以x y x e =+既不是奇函数也不是偶函数,依题可知B 、C 、D 依次是奇函数、偶函数、偶函数,故选A . 【考点定位】函数的奇偶性判断.【名师点睛】本题主要考查函数的奇偶性判断和常见函数性质问题,但既不是奇函数,也不是偶函数的判断可能较不熟悉,容易无从下手,因此可从熟悉的奇偶性函数进行判断排除,依题易知B 、C 、D 是奇偶函数,排除得出答案,属于容易题.9. 【 2014湖南3】已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g f ( )A. 3-B. 1-C. 1D. 3 【答案】C【考点定位】奇偶性【名师点睛】本题主要考查了函数的奇偶性及其应用,解决问题的关键是根据定义进行分析计算即可;⑴函数奇偶性判断的方法:定义法:函数定义域是否关于原点对称,对应法则是否相同;⑵图像法:f(x )为奇函数<=>f(x )的图像关于原点对称 点(x,y )→(-x,-y ) f(x )为偶函数<=>f(x )的图像关于Y 轴对称 点(x,y )→(-x,y );⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性;⑷性质法:利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇函数与偶函数的积(商)是奇函数.10. 【2016高考新课标2理数】已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m 【答案】C 【解析】试题分析:由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选C. 考点: 函数图象的性质【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.11. 【 2014湖南8】某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.2p q + B.(1)(1)12p q ++-1【答案】D【解析】设两年的平均增长率为(0)x x >,则有()()()2111x p q +=++1x ⇒=,故选D.【考点定位】实际应用题 二次方程【名师点睛】本题主要考查了函数模型的应用,解决问题的关键是根据所给实际问题进行分析找到对应的函数模型,然后利用对应的函数性质进行具体分析计算即可.12. 【 2014湖南10】已知函数())0(212<-+=x e x x f x 与())ln(2a x x x g ++=图象上存在关于y 轴对称的点,则a 的取值范围是( )A. )1,(e -∞ B. ),(e -∞ C. ),1(e e - D. )1,(ee - 【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()00f x g x =-⇒()()022001ln 2x x e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,令()()1ln 2x h x e x a =--+-,因为函数x y e =和()ln y x a =--+在定义域内都是单调递增的,所以函数()()1ln 2x h x e x a =--+-在定义域内是单调递增的,又因为x 趋近于-∞时,函数()h x 0<且()0h x =在(),0-∞上有解(即函数()h x 有零点),所以()()010ln 002h e a =-+->ln a a ⇒<⇒故选B. 【考点定位】指对数函数 方程 单调性【名师点睛】本题主要考查了函数的零点判定,解决问题的关键是根据存在关于y 轴对称的点则函数f(x)与g(x)必然存在交点,所以构造函数h(x)=f(x)-g(x)在(),0-∞必然存在零点,根据函数单调性不难得到只需h(0)>0即可,然后求解得到a 的范围.13. 【2014山东.理3】 函数1)(log 1)(22-=x x f 的定义域为( )A. )21,0( B. ),2(+∞ C. ),2()21,0(+∞ D.),2[]21,0(+∞ 【答案】C【解析】由已知得22(log )10,x ->即2log 1x >或2log -1x <,解得2x >或102x <<,故选C .考点:函数的定义域,对数函数的性质.【名师点睛】本题考查函数的概念、函数的定义域.解答本题关键是利用求函数定义域的基本方法,建立不等式组求解.本题属于基础题,注意基本概念的正确理解以及计算的准确性.14. 【2016高考山东理数】已知函数f (x )的定义域为R .当x <0时,3()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2【答案】D考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.15. 【2016高考天津理数】已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23] {34}(D )[13,23) {34}【答案】C 【解析】试题分析:由()f x 在R 上递减可知3401331,0134a a a a -≥⎧⇒≤≤⎨≥<<⎩,由方程|()|2f x x=-恰好有两个不相等的实数解,可知132,12a a ≤-≤,1233a ≤≤,又∵34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的去范围是123[,]{}334,故选C. 考点:函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.16. 【2014山东.理5】 已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )A.33xy > B.sin sin x y >C.22ln(1)ln(1)x y +>+ D.221111x y >++ 【答案】A【解析】由(01)x y a a a <<<知,,x y >所以,33x y >,A 正确. 通过举反例可以说明其它选项均不正确.对于B ,取2,,,33xy x y ππ==>此时sin sin x y =,sin sin x y >不成立;对于C ,取1,2,,x yx y ==->此时ln 2ln 5<,22ln(1)ln(1)x y +>+不成立;对于D ,取2,1,,x y x y ==->此时1152<,221111x y >++不成立; 故选A【名师点睛】本题考查指数函数、对数函数、正弦函数及幂函数的单调性.比较函数值大小问题,往往结合函数的单调性,通过引入“-1,0,1”等作为“媒介”.本题属于基础题,注意牢记常见初等函数的性质并灵活运用.17. 【2014山东.理8】已知函数()21,().f x x g x kx =-+=若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A.1(0,)2B.1(,1)2C.(1,2)D.(2,)+∞ 【答案】B【解析】由已知,函数()|2|1,()f x x g x kx =-+=的图象有两个公共点,画图可知当直线介于121:,:2l y x l y x ==之间时,符合题意,故选B .【名师点睛】本题考查函数与方程、函数的图象.此类问题的基本解法是数形结合法,即通过画出函数的图象,观察交点情况。

高考数学专题12概率与统计-高考数学(理)试题小题部分分项版解析(原卷版)

高考数学专题12概率与统计-高考数学(理)试题小题部分分项版解析(原卷版)

专题12概率与统计1.【2014高考广东卷理第6题】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10 2.【2014高考湖北卷理第4题】根据如下样本数据x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则() A.0a >,0>b B.0a >,0<b C.0a <,0>b D.0a <,0<b3.【2014高考湖北卷理第7题】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为() A.81B.41C.43D.874.【2014高考湖南卷第2题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则() A.321p p p <= B.132p p p <= C.231p p p <= D.321p p p ==5.【2014高考福建卷第14题】如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.6.【2014高考广东卷理第11题】从0、1、2、3、4、5、6、7、8、9中任取七个不同的数,则这七个数的中位数是6的概率为 .7.【2014高考江苏卷第4题】从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .8.【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]80,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.9.【2014江西高考理第6题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()表1 不及格及格总计男 6 14 20女10 22 32总计16 36 52A.成绩表2 不及格及格总计男 4 16 20女12 20 32总计16 36 52B.视力表3 不及格及格总计男8 12 20女8 24 32总计16 36 52C.智商表4 不及格及格总计男14 6 20女 2 30 32总计16 36 52D.阅读量10.【2014江西高考理第13题】10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.11.【2014辽宁高考理第14题】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x=-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .12.【2014全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为() A .81B .83C .85D .8713.【2014全国2高考理第5题】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是() A.0.8B.0.75C.0.6D.0.4514.【2014山东高考理第7题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.1815.【2014浙江高考理第9题】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<16.【2014浙江高考理第12题】随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.17.【2014重庆高考理第3题】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是().0.4 2.3A y x =+.2 2.4B y x =- .29.5C y x =-+.0.3 4.4C y x =-+18.【2014陕西高考理第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()1.5A2.5B3.5C4.5D 19.【2014陕西高考理第9题】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,1,2,,10i =),则12,10,y y y 的均值和方差分别为()(A )1+,4a (B )1,4a a ++(C )1,4(D )1,4+a20.【2014天津高考理第9题】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.。

近三年高考(2014-2016)数学(理)试题分项版解析:专题01+集合和常用逻辑用语(原卷版)

近三年高考(2014-2016)数学(理)试题分项版解析:专题01+集合和常用逻辑用语(原卷版)

三年高考(2014-2016)数学(理)试题分项版解析第一章 集合和常用逻辑用语一、选择题1. 【2014课标Ⅰ,理1】已知集合{}{}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( )A .]1,2[--B . )2,1[- C..]1,1[- D .)2,1[2. 【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭3. 【2015高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 4. 【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞) 5. 【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )66. 【2014高考重庆理第6题】 已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7. 【2015高考重庆,理1】已知集合A ={}1,2,3,B ={}2,3,则() A 、A =B B 、A ⋂B =∅ C 、A B D 、BA 8. 【2015高考重庆,理4】“1x >”是“12log (2)0x +<”的() A 、充要条件 B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件9. 【2014】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{10. 【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 11. 【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 12. 【2015高考浙江,理1】已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则()R P Q =( )A.[0,1)B. (0,2]C. (1,2)D. [1,2] 13. 【2015高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( )A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >14. 【2016年高考北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =( )A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-15. 【2015高考天津,理4】设x R ∈ ,则“21x -< ”是“220x x +-> ”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件16. .【2015高考天津,理1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =( )(A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,817. 【2014天津,理7】设,a b R ,则|“a b ”是“a a b b ”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要又不必要条件 18. 【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞19. 【2016高考浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <20. 【2014四川,理1】已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-21.【2015高考四川,理1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B ( )(){|13}A x x -<< (){|11}B x x -<< (){|12}C x x << (){|23}D x x << 22. 【2014高考广东卷.理.1】已知集合{}1,0,1M =-,{}0,1,2N =,则M N =( )A .{}1,0,1-B .{}1,0,1,2-C .{}1,0,2-D .{}0,1 23. 【2016高考山东理数】已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件 24. 【2015高考广东,理1】若集合{|(4)(1)0}Mx x x ,{|(4)(1)0}N x x x ,则M N( ) A .∅ B .{}1,4-- C .{}0 D .{}1,425. 【 2014湖南5】已知命题.,:,:22y x y x q y x y x p ><-<->则若;命题则若在命题①q p q p q p q p ∨⌝⌝∧∨∧)④(③②);(;;中,真命题是( ) A ①③ B.①④ C.②③ D.②④26. 【2016高考天津理数】设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n −1+a 2n <0”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件27. 【2016高考天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =( )(A ){1} (B ){4} (C ){1,3} (D ){1,4}29. 【2014山东.理2】设集合{}{}]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( )A. ]2,0[B. )3,1(C. )3,1[D. )4,1(30. 【2013高考陕西版理第1题】设全集为R ,函数f (x )=21x -的定义域为M ,则R M 为( ).A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 31. 【2014高考陕西版理第1题】已知集合2{|0,},{|1,}M x x x R N x x x R =≥∈=<∈,则M N =( ).[0,1]A .[0,1)B .(0,1]C .(0,1)D32. 【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞33. 【2014陕西理8】原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假34. 【2015高考新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,235. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}36. 【2014高考北京理第1题】 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B =( )A.{0} B .{0,1} C .{0,2} D .{0,1,2}37. 【2014湖北卷3】设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件38. 【2015高考湖北,理5】设12,,,n a a a ∈R ,3n ≥. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件39. 【2014上海,理15】设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件(C )充分必要条件 (D )既非充分又非必要条件48. 【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( ) A .{}1- B .{}1 C .{}1,1- D .φ49. 【2015高考四川,理8】设a ,b 都是不等于1的正数,则 “333a b >>”是“log 3log 3a b <”的 ( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件50. 【2014,安徽理2】“0<x ”是“0)1ln(<+x ”的 ( )A .充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 52. 【2015高考安徽,理3】设:12,:21x p x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件54. 【2014辽宁理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 55. 【2014辽宁理5】设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝56. 【2014新课标,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}57. 【2015湖南理2】设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )二、填空题1. 【2014高考重庆理第11题】设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===则______.2. 【2015高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .3. 【2015高考山东,理12】若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 4. 【2016高考江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ______________. 5. 【2014江苏,理1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂= . 6. 【2015高考江苏,1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 7. 【2014上海,理11】. 已知互异的复数a,b 满足ab ≠0,集合{a,b}={2a ,2b },则a b += . 8. 【2014福建,理15】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题13 算法

三年高考(2014-2016)数学(理)真题分项版解析—— 专题13 算法

三年高考(2014-2016)数学(理)试题分项版解析第十三章算法一、选择题1.【2016高考新课标1卷】执行右面的程序框图,如果输入的,,,则输出x,y的值满足===011x y n(A)2=(D)5=y xy x=(C)4y xy x=(B)3【答案】C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.2.【2014天津,理3】阅读右边的程序框图,运行相应的程序,输出的S的值为()(A)15 (B)105 (C)245 (D)945【答案】B.【解析】考点:算法与程序框图.【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.三视图问题,是进年高考热点,属于必考题,是高考备考的重点,也是学生必须掌握需要得满分的题目,需要加强训练的题型.3.【2015高考天津,理3】阅读右边的程序框图,运行相应的程序,则输出S的值为( )(A)10(B)6 (C)14 (D)18输出【答案】B【解析】模拟法:输入20,1S i==;=⨯=-=>不成立;21,20218,25i S=⨯==-=>不成立i S224,18414,45=⨯==-=>成立248,1486,85i S输出6,故选B.【考点定位】本题主要考查程序框图与模拟计算的过程.【名师点睛】本题主要考查程序框图与模拟计算的过程,首先是理解直到型循环结构的程序框图表示的算法功能,再用模拟的方法进行计算,是基础题.4. 【2016高考新课标3理数】执行下图的程序框图,如果输入的,,那么输出的n=()==a b46(A)3 (B)4 (C)5 (D)6【答案】B考点:程序框图.【注意提示】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.5. 【2014高考北京理第4题】当7,3==时,执行如图所示的程序m n框图,输出的S值为()A.7 B.42 C.210 D.840【答案】C【解析】试题分析:当输入7k?所以进入循<n,判断框内的条件为5m、3==环的k的值依次为7,6,5,因此执行k⨯⨯7=S.=SS⋅=后,则由21056故选C.考点:程序框图,容易题.名师点睛:本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,本题为直到型循环,所以直到满足条件为止,运行程序时要准确.6.【2015高考北京,理3】执行如图所示的程序框图,输出的结果为()A.()08,D.()-,---,C.()22-,B.()4044【答案】B【解析】运行程序:1,1,0;110,112x y k s t ====-==+=,0,2x y ==,011k =+=,因为13≥不满足,2,2s t =-=,2,2,2x y k =-==,因为23≥不满足,4,0s t =-=,4,0,3x y k =-==,因为33≥满足,输出(4,0)-考点定位:本题考点为程序框图,要求会准确运行程序【名师点睛】本题考查程序框图的程序运行,本题为基础题,掌握循环程序的运行方法,框图以赋值框和条件框为主,按照框图箭线方向和每个框的指令要求运行,注意条件框的要求是否满足,运行程序时要准确.7. 【 2014湖南6】执行如图1所示的程序框图,如果输入的]2,2[-∈t ,则输出的S 属于( )A.]2,6[--B.]1,5[--C.]5,4[-D.]6,3[-【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时,[]33,1S t =-∈--,则(][][]2,63,13,6S ∈---=-,故选D.【考点定位】程序框图 二次函数值域【名师点睛】本题主要考查程序框图知识,解决问题的根据是根据程序框图的逻辑结构分析程序,运用二次函数最值问题进行发现计算即可;有关程序框图的题目主要是以程序框图为载体,以平时所学其它知识点为对象,解决问题首先是读懂程序,然后运用有关知识分析解决即可.8. 【2016年高考四川理数】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为(A )9 (B )18 (C )20 (D )35【答案】B考点:1.程序与框图;2.秦九韶算法;3.中国古代数学史.【名师点睛】程序框图是高考的热点之一,几乎是每年必考内容,多半是考循环结构,基本方法是将每次循环的结果一一列举出来,与判断条件比较即可.9. 【2014高考陕西版理第4题】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=开始输入NS=1,i=1a i=2*SS=a ii=i+1否i>N是输出a1,a2,...,a N结束【答案】C考点:程序框图的识别.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要注意这是一个循环结构,而且最后输出的是数列的前N项要根据这些项归纳出数列的通项公式.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.【2015高考陕西,理8】根据右边的图,当输入x为2006时,输出的y ()A.28 B.10 C.4 D.2【答案】B【考点定位】程序框图.【名师点晴】本题主要考查的是程序框图,属于容易题.解题时一定要抓住重要条件“0x≥”,否则很容易出现错误.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.11.【2016高考新课标2理数】中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的==,依次输入的a为2,2,5,则输出的s=()2,2x n(A)7 (B)12 (C)17 (D)34【答案】C【解析】考点:程序框图,直到型循环结构.【名师点睛】直到型循环结构:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.12.【2014新课标,理7】执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】D【解析】由题意知:当1k =时,2M =,5S =;当2k =时,2M =,7S =;当3k =时,输出S=7,故选D 。

2014届高三名校数学(理)试题分省分项汇编 专题12 概率和统计

2014届高三名校数学(理)试题分省分项汇编 专题12 概率和统计

一.基础题组1. 【江苏启东中学2014届上学期期中模拟高三数学】若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .2. 【江苏启东中学2014届上学期期中模拟高三数学】 已知样本7,8,9,,x y 的平均数是8,且60xy ,则此样本的标准差是 .3. 【金陵中学2013-2014学年度第一学期高三期中试卷数学】若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y = 5下方的概率为 . 【答案】16【解析】4. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】一个频率分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.6,则估计样本在「40,50),[50,60)内的数据个数之和是_ __ .5. 【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】 甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是 _ .6. 【江苏省扬州中学2013—2014期中考试模拟】若以连续掷两次骰子分别得到的点数n m ,作为点P 的横、纵坐标,则点P 在直线5=+y x 上的概率为 .【答案】19【解析】试题分析:以连续掷两次骰子分别得到的点数n m ,作为点P 的横、纵坐标,这样的结果共有36个,其中使5m n +=的有(1,4),(2,3),(3,2),(4,1)共4个,根据古典概型的计算方法知,所求的概率为41369=. 考点:古典概型.7. 【江苏省扬州中学2013—2014期中考试模拟】如图是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为10,则抽取的学生人数是 .二.能力题组1.【江苏省扬州中学2013—2014期中考试模拟】若样本321,,a a a 的方差是2,则样本32,32,32321+++a a a 的方差是22221231[(23)(23)(23)](23)3a a a a +++++-+ 22221231231[4()12()27](4129)3a a a a a a a a =++++++-++222212314[()]4283a a a a =++-=⨯=. 考点:样本平均数和方差.2.【金陵中学2013-2014学年度第一学期高三期中试卷数学】口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X, 若P(X=2)= 730求:(1)n的值;(2)X的概率分布与数学期望.所以,X的概率分布表为。

三年高考高考数学试题分项版解析专题11概率与统计文(含解析)

三年高考高考数学试题分项版解析专题11概率与统计文(含解析)

三年高考(2014-2016)数学(文)试题分项版解析第十二章概率与统计一、选择题1. 【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()(A)13(B)12(C)23(D)56【答案】A考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2015高考新课标1,文4】如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)310(B)15(C)110(D)120【答案】C【解析】从1,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C.【考点定位】古典概型【名师点睛】求解古典概型问题的关键是找出样本空间中的基本事件数及所求事件包含的基本事件数,常用方法有列举法、树状图法、列表法法等,所求事件包含的基本事件数与样本空间包含的基本事件数的比值就是所求事件的概率.3. 【 2014湖南文3】对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查【名师点睛】本题主要考查了简单随机抽样,分层抽样,系统抽样,解决问题的关键是根据抽样的原理进行具体分析求得对应概率的关系,属于基础题目.4. 【 2014湖南文5】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 【答案】B【解析】在[]2,3-上符合1X ≤的区间为[]2,1-,因为区间[]2,3-的区间长度为5且区间[]2,1-的区间长度为3,所以根据几何概型的概率计算公式可得35P =,故选B. 【考点定位】几何概型【名师点睛】解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.解本题需要掌握的知识点是复数的模和几何概型的概率公式,即若z a bi =+(a 、R b ∈),则z =,几何概型的概率公式()P A =()()A 构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.5. 【2016高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) (A )710 (B )58 (C )38 (D )310【答案】B 【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为40155408-=,故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.6.【2015高考湖南,文2】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A、3B、4C、5D、6【答案】B【解析】根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取207435⨯= (人),故选B.【考点定位】茎叶图【名师点睛】系统抽样是指当总体中个数较多时,将总体分成均衡的几部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本的抽样方法,其实质为等距抽样. 茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.缺点为不能直接反映总体的分布情况. 由数据集中情况可以估计平均数大小,再根据其分散程度可以估测方差大小.7. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.8.【2014山东.文8】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18 【答案】C【解析】由图知,样本总数为2050.0.160.24N ==+设第三组中有疗效的人数为x ,则60.36,1250xx +==,故选C . 考点:频率分布直方图.【名师点睛】本题考查频率分布直方图及频率组距等概念,解答本题的关键,是理解概念,细心计算.本题属于基础题,在考查概念的同时,考查考生识图用图的能力,是近几年高考常见题型. 9. [2016高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,M I N ,中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) (A )815 (B )18 (C )115 (D )130【答案】C 【解析】试题分析:开机密码的可能有(,1),(,2),(,3),(,4),(,5),(,1),(,2),(,3),(,4),(,5)M M M M M I I I I I ,(,1),(,2),(,3),(,4),(,5)N N N N N ,共15种可能,所以小敏输入一次密码能够成功开机的概率是115,故选C . 考点:古典概型.【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n 必须是有限个;②出现的各个不同的试验结果数m 其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式()mP A n=得出的结果才是正确的.10.【2015高考山东,文6】为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的标号为( ) (A )①③ (B) ①④ (C) ②③ (D) ②④ 【答案】B【考点定位】1.茎叶图;2.平均数、方差、标准差.【名师点睛】本题考查茎叶图的概念以及平均数、方差、标准差的概念及其计算,解答本题的关键,是记清公式,细心计算.本题属于基础题,较全面地考查了统计的基础知识.11. 【2015高考山东,文7】在区间[]0,2上随机地取一个数x ,则事件“121-1log 2x ≤+≤()1”发生的概率为( ) (A )34 (B )23 (C )13 (D )14【答案】A【解析】由121-1log 2x ≤+≤()1得,11122211113log 2log log ,2,022222x x x ≤+≤≤+≤≤≤(),所以,由几何概型概率的计算公式得,3032204P -==-,故选A .【考点定位】1.几何概型;2.对数函数的性质.【名师点睛】本题考查几何概型及对数函数的性质,在理解几何概型概率计算方法的前提下,解答本题的关键,是利用对数函数的单调性,求得事件发生的x 范围. 本题属于小综合题,较好地考查了几何概型、对数函数等基础知识.12.【2015高考陕西,文2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167(高中部)(初中部)男男女女60%70%【答案】C【解析】由图可知该校女教师的人数为11070%150(160%)7760137⨯+⨯-=+=,故答案选C .【考点定位】概率与统计.【名师点睛】1.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表各部分数量占总数的百分数.2.通过扇形图可以很清晰地表示各部分数量同总数之间的关系.13. 【2016高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56(B )60(C )120(D )140【答案】D 【解析】试题分析:由频率分布直方图知,自习时间不少于22.5小时的有200(0.160.080.04) 2.5140⨯++⨯=,选D.考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.14. 【2014高考陕西版文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 【答案】B 【解析】试题分析:如图,从正方形四个顶点及其中心这5个点中,任取2个点,共有2510C =条线段,O 点与A ,B ,C ,D 四点中任意1点的连线段都小于该正方形边长,共有144C =,所以这2个点的距离小于该正方形边长的概率42105P ==,故选B .D考点:古典概型及其概率计算公式.【名师点晴】本题主要考查的是古典概型及其概率计算公式.,属于中档题.解题时要准确理解题意由“5个点中,任取2个点,则这2个点的距离不小于该正方形边长”.利用排列组合有关知识,正确得到基本事件数和所研究事件所包含事件数.从而得到所求事件的概率 15. 【2014高考陕西版文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s 【答案】D考点:均值和方差.【名师点晴】本题主要考查的是样本的均值和方差等知识,属于中档题;解题时可以根据均值和方差的定义去计算,也可以直接利用已知的结论或公式得到结果,利用定义时运算量大,也容易出现不必要的错误。

高考数学专题12概率与统计-高考数学(理)试题小题部分分项版解析(原卷版).docx

高考数学专题12概率与统计-高考数学(理)试题小题部分分项版解析(原卷版).docx

专题12 概率与统计1. 【2014高考广东卷理第6题】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A.200,20B.100,20C.200,10D.100,10 2. 【2014高考湖北卷理第4题】根据如下样本数据x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0>b B.0a > ,0<b C.0a < ,0>b D.0a < ,0<b3. 【2014高考湖北卷理第7题】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( )A.81 B.41 C. 43 D.87 4. 【2014高考湖南卷第2题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则( ) A.321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p == 5. 【2014高考福建卷第14题】如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.6. 【2014高考广东卷理第11题】从0、1、2、3、4、5、6、7、8、9中任取七个不同的数,则这七个数的中位数是6的概率为 .7. 【2014高考江苏卷第4题】从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .80,130,它的频率分布直方图如图所8. 【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]示,则在抽测的60株树木中,有株树木的底部周长小于100 cm.9. 【2014江西高考理第6题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()表1 不及格及格总计男 6 14 20女10 22 32总计16 36 52A.成绩表2 不及格及格总计男 4 16 20女 12 20 32 总计 163652B.视力表3 不及格 及格 总计 男 8 12 20 女824 32 总计 163652C.智商表4 不及格 及格 总计 男 14 6 20 女230 32 总计 163652D.阅读量10. 【2014江西高考理第13题】10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.11. 【2014辽宁高考理第14题】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .12. 【2014全国1高考理第5题】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A .81 B .83 C .85 D .8713. 【2014全国2高考理第5题】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.4514. 【2014山东高考理第7题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.1815. 【2014浙江高考理第9题】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<16. 【2014浙江高考理第12题】随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.17. 【2014重庆高考理第3题】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( )$.0.4 2.3A y x =+ $.2 2.4B y x =- $.29.5C y x =-+ $.0.3 4.4C y x =-+18. 【2014陕西高考理第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D 19. 【2014陕西高考理第9题】设样本数据1210,,,x x x L 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =L ),则12,10,y y y L 的均值和方差分别为( ) (A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a20. 【2014天津高考理第9题】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.。

高考数学分项版解析 专题12 概率和统计 理2

高考数学分项版解析 专题12 概率和统计 理2

【十年高考】(浙江专版)高考数学分项版解析 专题12 概率和统计 理一.基础题组1. 【2014年.浙江卷.理12】随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.2. 【2011年.浙江卷.理9】有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率 (A )15 (B )25 (C )35 D 45【答案】B【解析】:5本不同的书并排摆放到书架的同一层上有55120A =,每种摆放方法等可能,同一科目的书都不相邻的摆放有1112122222222222222()48C C C A C A A A A ++=,概率4821205P ==,故选B3. 【2007年.浙江卷.理5】已知随机变量服从正态分布2(2,),(4)0.84N P σξ≤=,则(0)P ξ≤=(A )0.16 (B )0.32 (C )0.68 (D )0.84 【答案】A【解析】(0)(4)1(4)10.840.16P P P ξξξ≤=≥=-≤=-=,故选A. 4. 【2007年.浙江卷.理15】随机变量ξ的分布列如下:ξ-1 0 1其中,,a b c 成等差数列.若3E ξ=,则D ξ的值是_____________. 【答案】59【解析】因为,,a b c 成等差数列,所以2b a c =+,又因为1a b c ++= ,1113E a c c a ξ=-⨯+⨯=-=二.能力题组1. 【2014年.浙江卷.理9】.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 答案:C 解析:()11222m n m np m n m n m n +=+⨯=+++,()()()()()()()()2112111313m m n n mn p m n m n m n m n m n m n --=+⨯+⨯++-++-++-()()2233231m m mn n nm n m n -++-=++-,()()()()()()()()2222123212332233223161m n m n m m mn n n m n m m mn n n p p m n m n m n m n m n ++---++-+-++--=-=+++-++-()()()51061mn n n m n m n +-=>++-,故12p p >,()()()112201222nm n m n E m n m n m n ξ++⎛⎫=⨯⨯+⨯=⎪+++⎝⎭,()()()()()()()()22212133201131331n n mn m m mn n n E m n m n m n m n m n m n ξ⎛⎫⎛⎫--++-=⨯⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪++-++-++-⎝⎭⎝⎭()()2233231m m mn n nm n m n -++-=++-,由上面比较可知()()12E E ξξ>,故选C 考点:独立事件的概率,数学期望.2. 【2013年.浙江卷.理19】(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c .P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为所以E(η)=53 a b c a b c a b c++=++++++,D(η)=2225555 1233339a b ca b c a b c a b c⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅=⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,化简得240,4110.a b ca b c--=⎧⎨+-=⎩解得a=3c,b=2c,故a∶b∶c=3∶2∶1.3. 【2012年.浙江卷.理19】已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).【答案】(1)X的分布列为(2)3所以X的分布列为(2)由(1)知E(X)=3·P(X=3)+4·P(X=4)+5·P(X=5)+6·P(X=6)=133.4. 【2011年.浙江卷.理15】某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率为p,且三个公司是否让其面试是相互独立的。

三年高考(2014-2016)数学(理)试题分项版解析 专题14推理与证明解析版

三年高考(2014-2016)数学(理)试题分项版解析 专题14推理与证明解析版

三年高考(2014-2016)数学(理)试题分项版解析第十四章 推理与证明一、选择题1. 【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3【答案】C .【解析】显然正三角形和正四面体的顶点是两两距离相等的,即3n =或4n =时命题成立,由此可排除A 、B 、D ,故选C .【考点定位】空间想象能力,推理能力,含有量词命题真假的判断.【名师点睛】本题主要考查学生的空间想象能力,推理求解能力和含有量词命题真假的判断,此题属于中高档题,如果直接正面解答比较困难,考虑到是选择题及选项信息可以根据平时所积累的平面几何、空间几何知识进行排除则不难得出正确答案C ,由于3n =时易知正三角形的三个顶点是两两距离相等的从而可以排除A 、B ,又当4n =时易知正四面体的四个顶点也是两两距离相等的从而可以排除D . 2. 【2014福建,理10】用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 【答案】A考点:1.新定义.2.二项式展开式.【名师点睛】解决本题的关键是读懂题意,盯住关键字眼,就可以快速破解,如5个无区别的篮球都取出或都不取出,有()51b +种不同取法,看选项没有()51b +这一项的,直接排除,由此可排除B ,C ,D ,故选A.3.【2014山东.理4】 用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根【答案】A【名师点睛】本题考查反证法.解答本题关键是理解反证法的含义,明确至少有一个的反面是一个也没有.本题属于基础题,难度较小.4.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立【答案】A.【解析】命题①显然正确,通过如下文氏图亦可知),(C A d 表示的区域不大于),(),(C B d B A d +的区域,故命题②也正确,故选A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合A ,B ,C ,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.5. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+ 答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有有效的方法.6.【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B【解析】试题分析:用A、B、C分别表示优秀、及格和不及格,依题意,事件A、B、C中都最多只有一个元素,所以只有AC,BB,CA满足条件,故选B.考点:合情推理,中等题.【名师点睛】本题考查计数问题,本题属于基础题,但要求学生对题目中“学生甲比学生乙成绩好”这个定义要读懂,还考查学生的分析问题的能力.7.【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.【名师点睛】本题考查对新定义“燃油效率”的理解和读图能力,本题属于中等题,有能力要求,贴近学生生活,要求按照“燃油效率”的定义,汽车每消耗1升汽油行驶的里程,可以断定“燃油效率”高的车省油,相同的速度条件下,“燃油效率”高的汽车,每消耗1升汽油行驶的里程必然大,需要学生针对四个选择只做出正确判断.8.【2014年普通高等学校招生全国统一考试湖北卷6】若函数)(x f 、)(x g 满足⎰-=110)()(dx x g x f ,则称)(x f 、)(x g 在区间]1,1[-上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==. 其中为区间]1,1[-的正交函数的组数是( )A.0B.1C.2D.3【答案】C考点:新定义题型,微积分基本定理的运用,容易题.【名师点睛】以高等数学中的正交函数为载体,重点考查微积分基本定理的应用,充分体现了数学基础知识的应用能力,能较好的考查学生识记和理解数学基本概念的能力、基础知识在实际问题中的运用能力以及较强的数学计算能力.9. 【2014年普通高等学校招生全国统一考试湖北卷8】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258 C.15750 D.355113 【答案】B【解析】试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,r L π2=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B. 考点:《算数书》中π的近似计算,容易题.【名师点睛】以数学史为背景,重点考查圆锥的体积计算问题,其解题的关键是读懂文字材料,正确理解题意,建立方程关系.充分体现了方程思想在实际问题中的应用,能较好的考查学生运用基础知识的能力和简单近似计算能力.10. 【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C【考点定位】1.集合的相关知识,2.新定义题型.【名师点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.二、填空题1.【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C,三个城市时,BA,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】由丙说可知,乙至少去过A,B,C中的一个城市,由甲说可知,甲去过A,C且比乙去过的城市多,故乙只去过一个城市,且没去过C城市,故乙只去过A城市.【考点定位】推理.【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题,解决问题的能力.2.【2014山东.理15】已知函数R=),y∈g(xg关x(,定义)=),xxfy∈(,对函数Ix于)(x f 的对称函数为函数I x x h y ∈=),(,)(x h y =满足:对于任意I x ∈,两个点))(,()),(,(x g x x h x 关于点()),(x f x 对称,若)(x h 是24)(x x g -=关于b x x f +=3)(的“对称函数”,且)()(x g x h >恒成立,则实数b 的取值范围是_________.【答案】(210,).+∞【名师点睛】本题考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系.解答本题的关键,是理解新定义运算,将问题转化成234x b x +-恒成立,利用数形结合思想,再将问题转化成直线与圆的位置关系问题.本题属于新定义问题,是一道创新能力题,中等难度之上.在考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系等的同时,考查转化与化归思想及数形结合思想. 3. 【2015高考山东,理11】观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题.4. 【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】1和3【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式. 5. 【2014高考陕西版理第14题】观察分析下表中的数据: 多面体面数(F ) 顶点数(V ) 棱数(E ) 三棱锥5 6 9 五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】2F V E +-=考点:归纳推理.【名师点晴】本题主要考查的是归纳推理,属于中档题,解题时注意观察,归纳三棱锥、五棱锥、立方体等几何体面数(F )、顶点数(V )、棱数(E )之间的关系,归纳猜想一般凸多面体中,E V F ,,所满足的等式.当然,如果平时能够记忆这个关系,则可以得到事半功倍的效果6.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)【答案】①③④【考点定位】1、新定义;2、函数的定义域值域.【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质. 7. 【2014年普通高等学校招生全国统一考试湖北卷14】设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点))(,(a f a ,))(,(b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可)【答案】(1))0()(>=x x x f ;(2))0()(>=x x x f .考点:两个数的几何平均数与调和平均数,难度中等.新定义型试题是高考的热点试题,考生错误往往有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.但纵观湖北近四年高考试题,新定义型试题是必考试题,在专题复习中应加强训练.【名师点睛】以新定义为背景,以函数为依托,重点考查两个数的几何平均数与调和平均数,涉及构造函数,充分体现了函数思想在高中数学中的重要地位,其易错点有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.8.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 .【答案】5.【解析】由题意得相同数字经过运算后为0,不同数字运算后为1.由45670x x x x ⊕⊕⊕=可判断后4个数字出错;由23670x x x x ⊕⊕⊕=可判断后2个数字没错,即出错的是第4个或第5个;由13570x x x x ⊕⊕⊕=可判断出错的是第5个,综上,第5位发生码元错误.【考点定位】推理证明和新定义.【名师点睛】本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的,.三、解答题1. 【2014高考北京理第20题】(本小题满分13分)对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数. (1)对于数对序列:(2,5),(4,1)P ,求12(),()T P T P 的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(,),(,)a b c d 组成的数对序列:(,),(,)P a b c d 和:(,),(,)P c d a b ',试分别对m a =和m d =两种情况比较2()T P 和2()T P '的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).【答案】(1)7,8;(2)无论a m =还是d m =,都有)()(22P T P T '≤成立;(3)10)(1=P T ,26)(2=P T ,42)(3=P T ,50)(4=P T ,52)(5=P T .【解析】试题分析:根据条件中的定义,对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,求解.试题解析:依题意,752)(1=+=PT,8}6,7{1}42),({1)(12=+=++=MaxPTMaxPT.(3)数对序列:(4,6),(11,11),(16,11),(11,8),(5,2)的)(5PT值最小.10)(1=PT,26)(2=PT,42)(3=PT,50)(4=PT,52)(5=PT.考点:新定义题型.【名师点睛】近年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,题目给出新的定义:1()()kT P T P、并对定义中max{T k-1(P),a1+a2+…+a k}做出解释,第一步尝试对于数对序列P:(2,5),(4,1)使用定义,求得T1(P),T2(P),初步使用定义,加深对定义的理解,第二步中的比较大小及第三步中的求最值就是在第一步的基础上的深化研究,毕竟是一个新的信息题,在一个全新的环境下进行思维,所以学生做起来还是很费力的.2.【2015高考北京,理20】已知数列{}na满足:*1a∈N,136a≤,且121823618n nnn na aaa a+⎧=⎨->⎩,≤,,()12n=,,….记集合{}*|nM a n=∈N.(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8(Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,①若n a 中有3的倍数,由(2)知:所有的n a 都是3的倍数,所以n a 都是3的倍数,所以n a 除以9的余数为为3,6,3,6,...... ,或6,3,6,3......,或0,0,0,...... ,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M 中的数从第三项起最多2项,加上前面两项,最多4项.②n a 中没有3的倍数,则n a 都不是3的倍数,对于3a 除以9的余数只能是1,4,7,2,5,8中的一个,从3a 起,n a 除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M 中的项加上前两项最多8项,则11a =时,{1,2,4,8,16,32,28,20}M =,项数为8,所以集合M 的元素个数的最大值为8.考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生.3. 【2014上海,理22】(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l 没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线. ⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔; ⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围; ⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-+∞;(3)证明见解析.【解析】试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出η的值,若0η<,则结论就可得证;(2)直线y kx =是曲线2241x y -=的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组2241x y y kx⎧-=⎨=⎩,方程组应无实解,方程组变形为22(14)10k x --=,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线y kx =的两侧.则可得到所求范围;(3)首先求出轨迹E 的方程1x =,化简为2221(2)x y x +-=,过原点的直线中,当斜率存在时设其方程为y kx=,然后解方程组2221(2)x yxy kx⎧+-=⎪⎨⎪=⎩,变形为2221(1)44k x kxx+-+=,这个方程有无实数解,直接判断不方便,可转化为判断函数22()(1)44F x k x kx=+-+与21()G xx=的图象有无交点,而这可利用函数图象直接判断.()y F x=是开口方向向上的二次函数,()y G x=是幂函数,其图象一定有交点,因此直线y kx=不是E的分隔线,过原点的直线还有一条就是0x=,它显然与曲线E无交点,又曲线E上两点(1,2),(1,2)-一定在直线0x=两侧,故它是分隔线,结论得证.(3)由题得,设(,)M x y,∴22(2)1x y x+-=,化简得,点M的轨迹方程为222[(2)]1x y x+-⋅=①当过原点的直线斜率存在时,设方程为y kx=.联立方程,2222432[(2)]1(1)4410x y xk x kx xy kx⎧+-⋅=⇒+-+-=⎨=⎩.令2432()(1)441F x k x kx x=+-+-,因为2(0)(2)(1)[16(1)15]0F F k=-⋅-+<,所以方程()0F x=有实解,直线y kx=与曲线E有交点.直线y kx=不是曲线E的分隔线.②当过原点的直线斜率不存在时,其方程为0x=.显然0x=与曲线222[(2)]1x y x+-⋅=没有交点,又曲线E上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线0x =是E 分隔线.综上所述,仅存在一条直线0x =是E 的分割线.【考点】新定义,直线与曲线的公共点问题.【名师点睛】判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切;Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三年高考(2014-2016)数学(理)试题分项版解析第十二章 概率与统计一、选择题1. 【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) (A )13 (B )12 (C )23 (D )342.【2014高考广东卷.理.6】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )图1初中生4500名高中生2000名小学生3500名图2503010O近视率/%年级高中初中小学A .200,20B .100,20C .200,10D .100,103. 【2016高考新课标3理数】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A)各月的平均最低气温都在0C ︒以上 (B)七月的平均温差比一月的平均温差大 (C)三月和十一月的平均最高气温基本相同 (D)平均气温高于20C ︒的月份有5个4.【2015高考广东,理4】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .1 B.2111 C. 2110 D. 215 5. 【 2014湖南2】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则( ) A.321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p ==6. 【2016高考山东理数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56(B )60(C )120(D )1407.【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。

)(A )4.56% (B )13.59% (C )27.18% (D )31.74%8. 【2014山东.理7】 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.189. 【2016高考新课标2理数】从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n10. 【2015高考陕西,理2】某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为 ( )A .167B .137C .123D .9311. 【2016年高考北京理数】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多13. 【2014高考陕西版理第9题】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a14. 【2015高考陕西,理11】设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+ B .1142π- C .112π- D .112π+ 15. 【2014新课标,理5】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.4516.【2015高考新课标2,理3】根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关17. 【2014课标Ⅰ,理5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A .81 B .83 C .85 D .87 18.【2015高考新课标1,理4】投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648(B )0.432(C )0.36(D )0.31219.【2014年.浙江卷.理9】.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<20. 【2014高考重庆理第3题】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+21. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、2322.【2015高考安徽,理6】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准 差为( )(A )8 (B )15 (C )16 (D )3223. 【2014年普通高等学校招生全国统一考试湖北卷4】根据如下样本数据得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0>b B.0a > ,0<b C.0a < ,0>b D.0a < ,0<b24. 【2015高考湖北,理2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石25. 【2015高考湖北,理4】设211(,)XN μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥26. 【2015高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<27.【2015高考福建,理4】为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元 (2013辽宁,理5)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( ).A .45B .50C .55D .6028. 【2015湖南理2】在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( ) A.2386 B.2718 C.3413 D.4772 附:若2(,)XN μσ,则6826.0)(=+≤<-σμσμX P ,9544.0)22(=+≤<-σμσμX P29. 【2015陕西理11】设复数(1)z x yi =-+(,)x y R ∈,若||1z ≤,则y x ≥的概率为( )A .3142π+ B .1142π- C .112π- D .112π+ 二、填空题1. 【2016高考江苏卷】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .2. 【2016年高考四川理数】同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是 .3. 【2014江苏,理4】从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .4. 【2014江苏,理6】某种树木的底部周长的取值范围是[]90,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm..5. 【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.6. 【2015江苏高考,5】袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.7. 【2014天津,理9】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.8. 【2015高考广东,理13】已知随机变量X 服从二项分布(),B n p ,若()30E X =,()20D X =,则p = .9. 【2016高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 10. 【2016高考山东理数】在[1,1]-上随机地取一个数k ,则事件“直线y =kx 与圆22(5)9x y -+=相交”发生的概率为 .11. 【2014年.浙江卷.理12】随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.12. 【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).13. 【2014上海,理10】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示).14. 【2014上海,理13】某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .15.【2014福建,理14】如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.1eey=lnxy=e xO1xy16.【2015高考福建,理13】如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .17.【2014辽宁理14】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2yx =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是 .18. 【2015湖南理12】在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .三、解答题1. 【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.2. 【2016高考新课标1卷】(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?3. 【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.4.【2016高考新课标2理数】某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.5. 【2014天津,理16】某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (Ⅰ)求选出的3名同学是来自互不相同学院的概率;(Ⅱ)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望.6. 【2016年高考四川理数】(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.a 0.520.400.160.120.080.044.543.532.521.510.5月均用水量(吨)组距频率(I )求直方图中a 的值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (III )若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.7. 【2014高考北京理第16题】(本小题满分13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数,比较EX 与x 的大小(只需写出结论)8. 【2015高考北京,理16】A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果25a =,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)10. 【2016年高考北京理数】(本小题13分)A 、B 、C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A 、B 、C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记1μ ,表格中数据的平均数记为0μ ,试判断0μ和1μ的大小,(结论不要求证明)11. 【2015高考广东,理17】某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x 和方差2s ;(3)36名工人中年龄在s x -与s x +之间有多少人?所占的百分比是多少(精确到0.01%)?12. 【2014高考广东卷.理.17】 (本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30.42.41.36.44.40.37.37.25.45.29.43.31.36.49.34.33.43.38.42.32.34.46.39.36,根据上述数据得到样本的频率分布表如下:分组频数频率[]25,303 0.12(]30,35 5 0.20 (35,408 0.32 (]40,45 1n 1f (]45,502n2f(1)确定样本频率分布表中1n .2n .1f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率.13.【 2014湖南17】 某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和35,现安排甲组研发新产品A ,乙组研发新产品B .设甲,乙两组的研发是相互独立的. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获得120万元,若新产品B 研发成功,预计企业可获得利润100万元,求该企业可获得利润的分布列和数学期望.14. 【2016高考山东理数】(本小题满分12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(Ⅱ)“星队”两轮得分之和为X的分布列和数学期望EX.15.【2015高考山东,理19】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.(I)写出所有个位数字是5的“三位递增数” ;(II)若甲参加活动,求甲得分X的分布列和数学期望EX.16.【2014山东.理18】(本小题满分12分)乒乓球台面被球网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B,乙被划分为两个不相交的区域,C D.某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在,A B上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.17.【2016高考天津理数】(本小题满分13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,.现从这10人中随机选出2人作为该组代表参加座谈会.(I)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(II)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.18.【2014高考陕西版理第19题】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示在这块地上种植1季此作物的利润,求X 的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元 的概率.19. 【2015高考陕西,理19】(本小题满分12分)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(I )求T 的分布列与数学期望ET ;(II )刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授 从离开老校区到返回老校区共用时间不超过120分钟的概率.20.【2014全国2,理19】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =- 21.【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.22.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率.A 地区B 地区4 5 6 7 8 9(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.23. 【2014四川,理17】一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得200-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.24. 【2014课标Ⅰ,理18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I )求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表); (II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .12.2≈若()2~,Z N μσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。

相关文档
最新文档