宁夏银川市2017-2018学年高二数学上学期期末考试试题 理

合集下载

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共14分)1. (1分)已知命题p:∃x0∈Z,的个位数字等于3.则命题¬p:________.2. (1分)已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为________3. (1分) (2020高二下·静安期末) 若一个实系数一元二次方程的一个根是,则此方程的两根之积为________.4. (1分) (2018高三上·大连期末) 已知的导函数为,若,且当时,则不等式的解集是________.5. (1分) (2018高二上·鼓楼期中) 已知椭圆的左、右焦点分别为F1、F2 ,若在椭圆上存在点P使得,且△PF1F2的面积是2,则a2的值是________.6. (1分)已知复数z=1+i(其中i是虚数单位),则z2+z=________7. (1分)已知=(1,0,1),=(t,1,1),,,则t=________8. (1分)(2020·南京模拟) 已知双曲线的离心率为,那么此双曲线的准线方程为________.9. (1分)(2020·桐乡模拟) 已知函数,,若存在实数使在上有2个零点,则m的取值范围为________.10. (1分) (2019高一上·长沙月考) 对于函数,若在其定义域内存在两个实数a,b(a<b),使当时,的值域也是,则称函数为“攀登函数”.若函数是“攀登函数”,则实数k的取值范围是________.11. (1分)(2020·上饶模拟) 已知实数x,y满足约束条件,则的最大值是________.12. (1分)若点P(3,﹣4,5)在平面xoy内的射影为M,则OM的长为________.13. (1分) (2019高二上·四川期中) 已知椭圆的左焦点为,动点在椭圆上,则的取值范围是________.14. (1分) (2016高一上·杭州期末) 下列命题:·(1)y=|cos(2x+ )|最小正周期为π;·(2)函数y=tan 的图象的对称中心是(kπ,0),k∈Z;·(3)f(x)=tanx﹣sinx在(﹣,)上有3个零点;·(4)若∥ ,,则其中错误的是________.二、解答题 (共6题;共45分)15. (5分)含有参数形式的复数如:3m+9+(m2+5m+6)i,(m∈R)何时表示实数、虚数、纯虚数?16. (15分) (2016高一下·随州期末) 已知数列{an}是首项为a1= ,公比q= 的等比数列,设bn+2=3an(n∈N*),数列{cn}满足cn=an•bn .(1)求证:{bn}是等差数列;(2)求数列{cn}的前n项和Sn;(3)若cn≤ +m﹣1对一切正整数n恒成立,求实数m的取值范围.17. (5分) (2017高二上·宜昌期末) 如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1(Ⅰ)求证:AD⊥平面BFED;(Ⅱ)点P是线段EF上运动,设平面PAB与平面ADE成锐角二面角为θ,试求θ的最小值.18. (10分)设函数f(x)=sin2x+a(1+cosx)﹣2x在x= 处取得极值.(1)若f(x)的导函数为f'(x),求f'(x)的最值;(2)当x∈[0,π]时,求f(x)的最值.19. (5分) (2016高二上·武城期中) 已知命题p:不等式2x﹣x2<m对一切实数x恒成立;命题q:|m﹣1|≥2.如果“¬p”与“p∧q”均为假命题,求实数m的取值范围.20. (5分) (2016高二上·南昌期中) 如图,椭圆E:的左焦点为F1 ,右焦点为F2 ,离心率e= .过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.参考答案一、填空题 (共14题;共14分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:二、解答题 (共6题;共45分)答案:15-1、考点:解析:答案:16-1、答案:16-2、答案:16-3、考点:解析:答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:。

宁夏银川市数学高二上学期理数期末考试试卷

宁夏银川市数学高二上学期理数期末考试试卷

宁夏银川市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A .B .C .D .2. (2分)设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()A .B .C .D .3. (2分)(2016·静宁模拟) 已知命题P:有的三角形是等边三角形,则()A . ¬P:有的三角形不是等边三角形B . ¬P:有的三角形是不等边三角形C . ¬P:所有的三角形都是等边三角形D . ¬P:所有的三角形都不是等边三角形4. (2分)(2018·宣城模拟) 若方程()表示双曲线,则该双曲线的离心率为()A . 1B .C .D . 25. (2分)平行六面体ABCD—A1B1C1D1的六个面都是菱形,则D1在面ACB1上的射影是的()A . 重心B . 外心C . 内心D . 垂心6. (2分) "”是“函数”的最小正周期为”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件7. (2分)如果对于空间任意n(n≥2)条直线总存在一个平面α ,使得这n条直线与平面α所成的角均相等,那么这样的n()A . 最大值为3B . 最大值为4C . 最大值为5D . 不存在最大值8. (2分) (2018高二上·南昌期中) 椭圆的离心率是()A .B .C .D .9. (2分) (2017高二上·河北期末) 若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A . 10cm3B . 20cm3C . 30cm3D . 40cm310. (2分)已知正四棱锥S-ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成的角的余弦值为()A .B .C .D .11. (2分)已知抛物线y2=2px(p>0)的焦点F与双曲的右焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为()A .B . 3C .D . 412. (2分)(2016·兰州模拟) 三棱椎S﹣ABC中,SA⊥面ABC,△ABC为等边三角形,SA=2,AB=3,则三棱锥S﹣ABC的外接球的表面积为()A . 4πB . 8πC . 16πD . 64π二、填空题 (共4题;共4分)13. (1分) (2018高二上·无锡期末) 直线的倾斜角的大小为________.14. (1分) (2016高一下·浦东期中) 半径r=1的圆内有一条弦AB,长度为,则弦AB所对的劣弧长等于________.15. (1分) (2017高二上·武清期中) 棱长为2的四面体的体积为________.16. (1分)若双曲线的实轴长是离心率的2倍,则m=________三、解答题 (共6题;共50分)17. (10分) (2017高二上·湖北期末) 设p:实数x满足x2+4ax+3a2<0,其中a≠0,命题q:实数x满足.(1)若a=﹣1,且p∨q为真,求实数x的取值范围;(2)若¬p是¬q的必要不充分条件,求实数a的取值范围.18. (10分) (2019高三上·牡丹江月考) 如图,在四棱锥中,底面ABCD为梯形,AB//CD,,AB=AD=2CD=2,△ADP为等边三角形.(1)当PB长为多少时,平面平面ABCD?并说明理由;(2)若二面角大小为150°,求直线AB与平面PBC所成角的正弦值.19. (5分)过点M(0,1)作直线,使它被两直线l1:y= + ,l2:y=﹣2x+8所截得的线段恰好被点M平分,求此直线方程.20. (10分) (2019高二上·哈尔滨期中) 已知在平面直角坐标系中,抛物线的准线方程是 .(1)求抛物线的方程;(2)设直线与抛物线相交于两点,为坐标原点,证明:以为直径的圆过原点.21. (10分) (2017高三下·河北开学考) 如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.(1)求证:AC⊥FB(2)求二面角E﹣FB﹣C的大小.22. (5分)(2017·泰安模拟) 已知椭圆C: =1(a>b>0)的离心率为,短轴长为2.直线l:y=kx+m与椭圆C交于M、N两点,又l与直线y= x分别交于A、B两点,其中点A在第一象限,点B在第二象限,且△OAB的面积为2(O为坐标原点).(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、。

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二下·阳高开学考) 下列有关命题的说法中错误的是()A . 若p或q为假命题,则p、q均为假命题.B . “x=1”是“x2﹣3x+2=0”的充分不必要条件.C . 命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”.D . 对于命题p:存在x∈R使得x2+x+1<0,则非p:存在x∈R,使x2+x+1≥0.2. (2分)(2017·南海模拟) 若抛物线x2=8y的焦点到双曲线的渐近线的距离为1,则双曲线C的离心率为()A .B .C . 2D . 43. (2分) (2017高二上·安平期末) 已知A(﹣1,1,2)、B(1,0,﹣1),设D在直线AB上,且 =2,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A .B . ﹣C .D .4. (2分) (2018高二下·河南期中) 已知椭圆与抛物线的交点为,连线经过抛物线的焦点,且线段的长度等于椭圆的短轴长,则椭圆的离心率为()A .B .C .D .5. (2分)(2018·徐汇模拟) 在中,“ ”是“ ”的()A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既不充分也不必要条件6. (2分)在空间直角坐标系中,点,过点P作平面xOy的垂线PQ,则Q的坐标为()A .B .C .D .7. (2分)在一次投掷链球比赛中,甲、乙两位运动员各投掷一次,设命题p是“甲投掷在20米之外”,q 是“乙投掷在20米之外”,则命题“至少有一位运动员没有投掷在20米之外”可表示为()A . p或qB . p或非qC . 非p且非qD . 非p或非q8. (2分) (2018高三上·河北月考) 已知双曲线与抛物线的交点为点A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为()A .B .C .D .9. (2分)在长方体ABCD﹣A1B1C1D1中,AB=,BC=AA1=1,点P为对角线AC1上的动点,点Q为底面ABCD 上的动点(点P,Q可以重合),则B1P+PQ的最小值为()A .B .C .D . 210. (2分)(2017·怀化模拟) 已知抛物线关于x轴对称,顶点在原点,且过点M(x0 , 3),点M到焦点的距离为4,则OM(O为坐标原点)等于()A . 2B .C .D . 2111. (2分)空间四边形ABCD中,若,则与所成角为()A .B .C .D .12. (2分)(2016·城中模拟) 给出下列4个命题,其中正确命题的个数是()①计算:9192除以100的余数是1;②命题“∀x>0,x﹣lnx>0”的否定是“∃x>0,x﹣lnx≤0”;③y=tanax(a>0)在其定义域内是单调函数而且又是奇函数;④命题p:“|a|+|b|≤1”是命题q:“对任意的x∈R,不等式asinx+bcosx≤1恒成立”的充分不必要条件.A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共4分)13. (1分)已知=(1-t,1-t,t),=(3,t,t),则|-|的最小值________14. (1分)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是________.①p且q;②p或q;③¬p;④¬p且¬q.15. (1分)(2018·杨浦模拟) 若双曲线()的左焦点在抛物线的准线上,则________.16. (1分) (2016高二上·葫芦岛期中) P是以F1 , F2为焦点的椭圆上的任意一点,若∠PF1F2=α,∠PF2F1=β,且cosα= ,sin(α+β)= ,则此椭圆的离心率为________.三、解答题 (共6题;共45分)17. (15分) (2019高一上·葫芦岛月考) 设 .(1)若是的必要不充分条件,求的取值范围;(2)若是的充分不必要条件,求的取值范围;(3)若是方程的根,判断是的什么条件.18. (5分)如图所示的“8”字形曲线是由两个关于x轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是x2+y2﹣4y﹣4=0,双曲线的左、右顶点A、B是该圆与x轴的交点,双曲线与半圆相交于与x轴平行的直径的两端点.(1)试求双曲线的标准方程;(2)记双曲线的左、右焦点为F1、F2 ,试在“8”字形曲线上求点P,使得∠F1PF2是直角.19. (5分)(2017·荆州模拟) 如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)设直线AM与平面ABCD所成的角为α,二面角M﹣AC﹣B的大小为β,求sinαcosβ的值.20. (10分) (2016高二上·张家界期中) 已知椭圆,动直线(1)若动直线l与椭圆C相交,求实数m的取值范围;(2)当动直线l与椭圆C相交时,证明:这些直线被椭圆截得的线段的中点都在直线3x+2y=0上.21. (5分)(2017·三明模拟) 如图,在四棱锥P﹣ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,,E为CD的中点,点F在线段PB上.(Ⅰ)求证:AD⊥PC;(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.22. (5分)(2017·福州模拟) 已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x 轴的负半轴交于点P.(Ⅰ)若⊙F被l所截得的弦长为,求|AB|;(Ⅱ)判断直线PA与C的交点个数,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、17-2、17-3、18-1、19-1、20-1、20-2、22-1、。

2017-2018学年高二上期末数学试卷(含答案解析)

2017-2018学年高二上期末数学试卷(含答案解析)

2017-2018学年高二(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”形式的复合命题中,真命题有()个.和“?p”A.0 B.1 C.2 D.34.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.410.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.14.(5分)求y=x3+3x2+6x﹣10的导数y′=.15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:.(把你认为正确命题的序号都填上)三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.2017-2018学年甘肃省白银市高二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47﹣51=﹣4,首项为51,所以通项a n=51+(n﹣1)×(﹣4)=55﹣4n所以令55﹣4n<0解得n>,因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”和“?p”形式的复合命题中,真命题有()个.A.0 B.1 C.2 D.3【解答】解:因为??{0},所以命题p为真.因为:{1}?{1,2},所以命题q为假.所以p∨q为真,p∧q为假,?p为假.故真命题的个数为1个.故选B.4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.【解答】解:由内角和定理得:A=180°﹣60°﹣75°=45°,根据正弦定理得:=,又a=8,sinA=,sinB=,则b===4.故选C6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【解答】解:因为3a?3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选C8.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x【解答】解:由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=﹣2px将p代入可得y2=﹣4x.故选:B.9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.4【解答】解:由椭圆a=,b=,c2=a2﹣c2=4,则椭圆的焦点右焦点F(2,0),由抛物线y2=2px的焦点,则=2,则p=4,故选:D.10.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选C.11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.【解答】解:由导函数图象可知,f(x)在(﹣∞,﹣2),(0,+∞)上单调递减,在(﹣2,0)上单调递增,故选A.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=4x+2y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+的截距最大,此时z最大.由,解得,即C(2,1),代入目标函数z=4x+2y得z=4×2+2×1=10.即目标函数z=4x+2y的最大值为10.故选:B二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.【解答】解:∵a n=(n∈N*),∴a3==,故答案为:.14.(5分)求y=x3+3x2+6x﹣10的导数y′=3x2+6x+6,.【解答】解:函数的导数为y′=3x2+6x+6,故答案为:3x2+6x+6,15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.【解答】解:由∠A=60°,得到sinA=,cosA=,又b=1,S△ABC=,∴bcsinA=×1×c×=,解得c=4,根据余弦定理得:a2=b2+c2﹣2bccosA=1+16﹣4=13,解得a=,根据正弦定理====,则=.故答案为:﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:②.(把你认为正确命题的序号都填上)【解答】解:①(log a x)′=;故①错误,﹣sinx;故②正确,②(cosx)′=③()′=,故③错误,故真命题为②,故答案为:②三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.【解答】解:(1)在△ABC中,cosA=.B=则:sinA=,所以:sinC=sin(A+B)=sinAcosB+cosAsinB,=.(2)利用正弦定理得:,由于:B=,b=,sinA=,解得:a=,所以:,=.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.【解答】解:∵“p或q”为真命题,则p,q中至少有一个为真命题,当p为真命题时,则,解得m<﹣2,当q为真命题时,则△=16(m+2)2﹣16<0,得﹣3<m<﹣1.当p真q假时,得m≤﹣3.当q真p假时,得﹣2≤m<﹣1.当p真q真时,﹣3<m<﹣2综上,m<﹣1.∴m的取值范围是(﹣∞,﹣1).19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.【解答】解:函数f(x)=ax3﹣3x2+x+b,则:f′(x)=3ax2﹣6x+1,由于:y=f(x)在x=1处的切线方程为2x+y+1=0,则:f′(1)=﹣2,即:3a﹣6+1=﹣2,解得:a=1.又:当x=1时,y=﹣3,则(1,﹣3)满足函数f(x)=x3﹣3x2+x+b,解得:b=﹣2.故函数的解析式为:f(x)=x3﹣3x2+x﹣2.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)>0,解得:x>1或x<﹣1,令f′(x)<0,解得:﹣1<x<1,故f(x)在[﹣3,﹣1)递增,在(﹣1,1)递减,在(1,]递增,而f(﹣3)=﹣27+9=﹣18,f(﹣1)=2,f(1)=﹣2,f()=﹣,故函数的最大值是2,最小值是﹣18.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.【解答】(1)证明:由S n=2a n﹣2n(n∈N+),n=1时,a1=S1=2a1﹣2,解得a1=2.n≥2时,a n=S n﹣S n﹣1=2a n﹣2n﹣(),化为:a n﹣2a n﹣1=2n﹣1,化为:﹣=.令b n=.则b n﹣b n﹣1=,b1==1.∴数列{b n}为等差数列,首项为1,公差为.(2)解:由(1)可得:b n=1+(n﹣1)==.∴a n=(n+1)?2n﹣1.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.【解答】解:(Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,,故椭圆的半焦距c=,从而b2=a2﹣c2=4,所以椭圆C的方程为=1.(Ⅱ)解法一:设A,B的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).从而可设直线l的方程为y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.因为A,B关于点M对称.所以.解得,所以直线l的方程为,即8x﹣9y+25=0.(经检验,所求直线方程符合题意)(Ⅱ)解法二:已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2且,①,②由①﹣②得.③因为A、B关于点M对称,所以x1+x2=﹣4,y1+y2=2,代入③得=,即直线l的斜率为,所以直线l的方程为y﹣1=(x+2),即8x﹣9y+25=0.(经检验,所求直线方程符合题意.)23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.【解答】证明:(1)方法一:作AH⊥面BCD于H,连DH.AB⊥BD,HB⊥BD,又AD=,BD=1,∴AB==BC=AC,∴BD⊥DC,又BD=CD,则BHCD是正方形,则DH⊥BC,∴AD⊥BC.方法二:取BC的中点O,连AO、DO,则有AO⊥BC,DO⊥BC,∴BC⊥面AOD,∴BC⊥AD(2)作BM⊥AC于M,作MN⊥AC交AD于N,则∠BMN就是二面角B﹣AC﹣D的平面角,因为AB=AC=BC=,∵M是AC的中点,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cos∠BMN=,∴二面角B﹣AC﹣D的余弦值为.。

宁夏银川一中高二上学期期末考试数学(理)试题Word版含答案

宁夏银川一中高二上学期期末考试数学(理)试题Word版含答案

银川一中2017/2018学年度(上)高二期末考试数学试卷(理科)命题教师:一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a 2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315 D .-315 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .3226.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R OB OA OP ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=ax-,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B 是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 .三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D角坐标系。

宁夏银川市2017-2018学年高二数学上学期期中试题 理

宁夏银川市2017-2018学年高二数学上学期期中试题 理

宁夏银川市2017-2018学年高二数学上学期期中试题 理 一、选择题(每小题5分,共60分)1.下列四个命题中,其中为真命题的是A .∀x ∈R,x 2+3<0B .∀x ∈N ,x 2≥1C .∃x ∈Z ,使x 5<1D .∃x ∈Q ,x 2=32.抛物线y =4x 2的准线方程为A .y =41- B .y =错误! C .y =错误!D .y =161- 3.若抛物线22y p x =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为A .2-B .2C .4-D .44.若R ∈k ,则“3>k "是“方程13322=+--k y k x表示双曲线"的( ) 条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.已知定点A 、B ,且|AB |=4,动点P 满足|PA |-|PB |=3,则|PA |的最小值是A .错误!B .错误!C .错误!D .56.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(11AD -1A A )-AB ; ②(1B C B B +)-11DC ;③(A D A B -)-21D D ; ④(11BD +1A A )+1D D .其中能够化简为向量1B D 的是A .②③B .①②C .③④D .①④ 7.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号1,2,...,270,并将整个编号依次分为10段。

如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 A .②、③都不能为系统抽样 B .②、④都不能为分层抽样 C .①、④都可能为系统抽样 D .①、③都可能为分层抽样8.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制) 如图所示,假设得分值的中位数为em ,众数为om , 平均值为x ,则A .eom m x == B .eom m x =< C .eom m x << D .oem m x <<9.已知双曲线12222=-b y a x (a 〉0,b 〉0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A 。

宁夏银川一中2017-2018学年高二上学期期末考试数学(理)试题

宁夏银川一中2017-2018学年高二上学期期末考试数学(理)试题

(上)高二期末考试数学试卷一、精心选一选:每小题5分,共60分,1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315 D .-315 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .322 6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是 A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R OB OA OP ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=ax-,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B 是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 . 三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.建立如图的空间直角坐标系。

2017-2018学年高二年级数学期末试卷(理数)含答案

2017-2018学年高二年级数学期末试卷(理数)含答案

2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2

a
1f
x
a

0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知


解得 的横坐标分别是 则 有 又
,又 于是
, ,

,即 l 与直线 平行, 一定相交,分别联立方

是平面
的法向量,则
,即

对任意
,要使

的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)

宁夏银川市高二上学期期末数学试卷(理科)姓名:________ 班级:________ 成绩:________一、一.选择题 (共12题;共24分)1. (2分)集合的关系如图所示,那么“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分) (2017高二下·安阳期中) 函数f(x)=ax2+bx(a>0,b>0)在点(1,f(1))处的切线斜率为2,则的最小值是()A . 10B . 9C . 8D .3. (2分)已知点 A(﹣3,1,5)与点 B(4,3,1),则AB的中点坐标是()A . (, 1,﹣2)B . (, 2,3)C . (﹣12,3,5)D . (,, 2)4. (2分) (2016高二上·成都期中) 以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()A . ﹣B . ﹣1C .D .5. (2分)(2018·潍坊模拟) 在中, , , 分别是角,,的对边,且,则 =()A .B .C .D .6. (2分)(2018·吕梁模拟) 为等比数列的前项和,,,则()A . 31B .C . 63D .7. (2分)过正方体ABCD﹣A1B1C1D1的顶点A作直线,使与直线AD1所成的角为30°,且与平面C1D1C所成的角为60°,则这样的直线的条数是()A . 1B . 2C . 3D . 48. (2分) (2017高二下·保定期末) 函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上是单调递减的,则实数a的取值范围是()A . a≤﹣3B . a≥﹣3C . a≤5D . a≥59. (2分) (2016高二上·马山期中) 若<0,则下列不等式中,正确的不等式有()①a+b<ab②|a|>|b|③a<b④ >2.A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·上高模拟) 已知双曲线my2﹣x2=1(m∈R)与抛物线x2=8y有相同的焦点,则该双曲线的渐近线方程为()A . y=± xB . y=± xC . y=± xD . y=±3x11. (2分) (2018高二下·临泽期末) 岳阳高铁站进站口有3个闸机检票通道口,高考完后某班3个同学从该进站口检票进站到外地旅游,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这3个同学的不同进站方式有()种A . 24B . 36C . 42D . 6012. (2分)已知离心率为e的双曲线和离心率为的椭圆有相同的焦点F1、F2 , P是两曲线的一个公共点,∠F1PF2=,则e等于()A .B .C .D . 3二、二.填空题 (共4题;共4分)13. (1分)(2017·深圳模拟) 在平面直角坐标系xOy中,直线y=x+b是曲线y=alnx的切线,则当a>0时,实数b的最小值是________.14. (1分)(2013·江苏理) 抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是________.15. (1分) (2016高二上·台州期中) 曲线x2+y2=2(|x|+|y|)围成的图形面积是________.16. (1分) (2018高一上·上海期中) 当时,可以得到不等式,,,由此可以推广为,则 ________三、三.解答题: (共6题;共60分)17. (10分) (2017高二上·抚州期末) 已知椭圆C: =1(a>b>0)的离心率e= ,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).(1)求椭圆C的方程;(2)若P、Q分别是AB、椭圆C上的动点,且=λ (λ<0),求实数λ的取值范围.18. (10分)已知的内角所对的边分别为,。

银川高二上学期数学期末试卷及答案(理科)

银川高二上学期数学期末试卷及答案(理科)

高二期末考试试卷(理科)数学试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 用数学归纳法证明不等式2n>n 2时,第一步需要验证n 0=_____时,不等式成立( ) A. 5 B. 2和4 C. 3 D. 12.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 3.如图,长方形的四个顶点为)2,0(),2,4(),0,4(),0,0(C B A O ,曲线x y =经过点B .现将一质点随机投入长方形OABC 阴影区域的概率是( ) A .125 B .21C .43 D . 324. 如图,第(1)个图案由1个点组成,第(4)个图案由13个点组成,第(5)个图案由,第100个图形由多少个点组成( )5. 抛物线2y ax =的焦点坐标是( ) A .1(0,)4a B .1(0,)4a - C .(0,)4a - D .(0,)4a6. 设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A.x y 2±= B .x y 22±= C . x y 2±= D.x y 21±= 7. 已知椭圆22221x y a b+=(0a b >>)中,,,a b c 成等比数列,则椭圆的离心率为( )A .2 B .35 C . D8. 设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 ( )A .2)B .C .(25),D .(29. 对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A .f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1) 10. 设a R ∈,若函数x y e ax =+,x R ∈,有大于零的极值点,则( )A .1a <-B .1a >-C .1a e <- D .1a e>-11. 已知32()32f x x x =-+,1,2x x 是区间[]1,1-上任意两个值,12()()M f x f x ≥-恒成立,则M 的最小值是( )A. -2B. 0C. 2D. 4 12. 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞- 二、填空题:本大题共4小题,每小题5分。

银川市高二上学期期末数学试卷(II)卷

银川市高二上学期期末数学试卷(II)卷

银川市高二上学期期末数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018高二下·南宁月考) 设,则“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分)设,若函数在上单调递增,则的取值范围是________A .B .C .D .3. (2分) (2015高二下·忻州期中) 设f(x)= ,若f(f(1))≥1,则实数a的范围是()A . a≤﹣1B . a≥﹣1C . a≤1D . a≥14. (2分)(2017·荆州模拟) 抛物线y2=4x的焦点到双曲线x2﹣ =1的渐近线的距离是()A .B .C . 1D .5. (2分)在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折叠,其正视图和俯视图如图所示. 此时连结顶点B,D形成三棱锥B-ACD,则其侧视图的面积为()A .B .C .D .6. (2分) (2018高一下·鹤岗期末) 将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A .B .C .D .7. (2分) (2016高二上·福田期中) 已知双曲线 =1(b∈N*)的两个焦点F1 , F2 ,点P是双曲线上一点,|OP|<5,|PF1|,|F1F2|,|PF2|成等比数列,则双曲线的离心率为()A . 2B . 3C .D .8. (2分) (2016高一上·芒市期中) 计算lg2+lg5+2log510﹣log520的值为()A . 21B . 20C . 2D . 1二、填空题 (共7题;共8分)9. (2分)(2018·浙江学考) 已知函数,则的最小正周期是________,的最大值是________.10. (1分) (2016高二上·嘉兴期中) 对于任意实数x,不等式ax2﹣ax﹣1<0恒成立,则实数a的取值范围是________.11. (1分)(2020·银川模拟) 已知,两点均在焦点为的抛物线上,若|,线段的中点到直线的距离为,则的值为________.12. (1分)(2016·海南模拟) 已知m,n,s,t∈R+ , m+n=2,,其中m、n是常数,当s+t 取最小值时,m、n对应的点(m,n)是双曲线一条弦的中点,则此弦所在的直线方程为________.13. (1分) (2016高一下·信阳期末) 已知半径为2的扇形面积为4,则扇形的角度大小为________弧度.14. (1分)(2017·唐山模拟) 已知函数f(x)= 恰有两个零点,则a的取值范围是________.15. (1分) (2017高二下·新乡期末) 在长方体ABCD﹣A1B1C1D1中,底面ABCD是边长为的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则 =________三、解答题 (共5题;共60分)16. (10分) (2017高一上·福州期末) 在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PD⊥底面ABCD,点M、N分别是棱AB、CD的中点.(1)证明:BN⊥平面PCD;(2)在线段PC上是否存在点H,使得MH与平面PCD所成最大角的正切值为,若存在,请求出H点的位置;若不存在,请说明理由.17. (10分) (2019高一下·上海月考)(1)如图,点在线段上,直线外一点对线段的张角分别为,即 .求证: .(2)在中,为线段上一点,,其中,试用表示线段的长.18. (10分)(2018·银川模拟) 已知椭圆过点,离心率是,(1)求椭圆C的标准方程;(2)若直线l与椭圆C交于A、B两点,线段AB的中点为求直线l与坐标轴围成的三角形的面积.19. (10分) (2016高二上·阳东期中) 已知函数f(x)=x2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.20. (20分) (2018高二下·双流期末) 已知中心在原点,焦点在轴上的椭圆过点,离心率为 .(1)求椭圆的方程;(2)求椭圆的方程;(3)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;(4)设过定点的直线与椭圆交于不同的两点,且,求直线的斜率的取值范围;参考答案一、选择题 (共8题;共16分)1-1、2-1、答案:略3-1、答案:略4-1、答案:略5-1、6-1、7-1、8-1、答案:略二、填空题 (共7题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共5题;共60分)16-1、答案:略16-2、答案:略17-1、17-2、18-1、答案:略18-2、答案:略19-1、答案:略19-2、答案:略20-1、答案:略20-2、答案:略20-3、答案:略20-4、答案:略。

宁夏银川高二上学期期末考试数学(理)试题 Word版含答案

宁夏银川高二上学期期末考试数学(理)试题 Word版含答案

银川一中2016/2017学年度(上)高二期末考试数学试卷(理科)命题教师:吕良俊一、选择题(每小题5分,共60分) 1.抛物线241x y =的准线方程是( )A .1-=yB .1=yC .161-=xD .161=x2.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)3.若双曲线E :116922=-y x 的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于 ( ) A .11B .9C .5D .3或94.已知命题p :∀x ∈R ,2x 2+2x +21<0,命题q :∃x 0∈R ,sinx 0-cosx 0=2,则下列判断中正确的是 ( ) A .p 是真命题B .q 是假命题C .⌝p 是假命题D . ⌝q 是假命题5.一动圆P 过定点M (-4,0),且与已知圆N :(x -4)2+y 2=16相切,则动圆圆心P 的轨迹方程是 ( )A .)2(112422≥=-x y xB .)2(112422≤=-x y xC .112422=-y xD .112422=-x y 6.已知向量a=(1,0,-1),则下列向量中与a 成60°夹角的是 ( ) A .(-1,1,0)B .(1,-1,0)C .(0,-1,1)D .(-1,0,1)7.已知椭圆E 的中心为坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,点A 、B 是C 的准线与E 的两个交点,则|AB |= ( ) A .3B .6C .9D .128.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的 ( )9.设Q P ,分别为圆()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A. 25B.246+C.27+D.2610.若AB 是过椭圆22221(0)x y a b a b+=>>中心的一条弦,M 是椭圆上任意一点,且AM ,BM 与两坐标轴均不平行,k AM ,k BM 分别表示直线AM ,BM 的斜率,则k AM ·k BM =( )A. 22c a -B. 22b a-C. 22c b-D. 22a b-11.已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A .34B .32C .1D .212.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,C 与过原点的直线相交于A 、B 两点,连接AF 、BF . 若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为 ( ) A.35B.57C.45D.67二、填空题(每小题5分,共20分)13.若抛物线y ²=-2px (p >0)上有一点M ,其横坐标为-9,它到焦点的距离为10,则点M 的坐标为________.14.过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆 交于A ,B 两点,O 为坐标原点,则△OAB 的面积为______ 15.如图,M 、N 分别是四面体OABC 的棱AB 与OC 的中点,已知向量MN xOA yOB zOC =++,则xyz=_________.16.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________.N MC 1B 1A 1CBA三、解答题(共70分) 17. (本小题满分10分)(1)是否存在实数m ,使2x +m <0是x 2-2x -3>0的充分条件? (2)是否存在实数m ,使2x +m <0是x 2-2x -3>0的必要条件?18. (本小题满分12分)在三棱柱ABC-A 1B 1C 1中,AA 1⊥平面ABC ,AB=AC=AA 1,∠CAB=90°,M 、N 分别是AA 1和AC 的中点.(1) 求证:MN ⊥BC 1(2) 求直线MN 与平面BCC 1B 1所成角.19. (本小题满分12分)双曲线C 的中心在原点,右焦点为⎪⎪⎭⎫⎝⎛0,332F ,渐近线方程为 x y 3±=.(1)求双曲线C 的方程;(2)设点P 是双曲线上任一点,该点到两渐近线的距离分别为m 、n .证明n m ⋅是定值.20. (本小题满分12分)已知抛物线C 的顶点在坐标原点O ,对称轴为x 轴,焦点为F ,抛物线上一点A 的横坐标为2,且10=⋅OA FA .(1)求此抛物线C 的方程.(2)过点(4,0)作直线l 交抛物线C 于M 、N 两点,求证:OM ⊥ON21. (本小题满分12分)如图,已知ABCD 是正方形,PD ⊥平面ABCD ,PD=AD. (1)求二面角A-PB-D 的大小;(2)在线段PB 上是否存在一点E,使PC ⊥平面ADE?若存在, 确定E 点的位置,若不存在,说明理由.22. (本小题满分12分)如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D在椭圆上,12112121,F F DF F F DF F DF ⊥=∆的面积为2 . (1)求椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程,若不存在,请说明理由.高二期末数学(理科)试卷答案一.选择题(每小题5分,共60分)1-6 ADBDCB 7-12 BCDBDB二.填空题(每小题5分,共20分)13. (-9,6)或(-9,-6) 14. 35 15. 8116.⎥⎦⎤⎢⎣⎡3333-, 三.解答题(共70分) 17. (1)欲使得是的充分条件, 则只要或,则只要即,故存在实数时, 使是的充分条件.(2)欲使是的必要条件,则只要或,则这是不可能的,故不存在实数m 时, 使是的必要条件.18.(1)解:接连A 1C 、AC 1在平面AA 1C 1C 内,∵AA 1⊥平面ABC AA 1=AC ∴A 1C ⊥AC 1又∵∠CAB=90︒即AB ⊥AC 、AA 1⊥AB且 AA 1∩AC=A ∴AB ⊥平面AA 1C 1C又∵A 1C 在平面AA 1C 1C 内 ∴A 1C ⊥AB又∵AB∩AC 1=A ∴A 1C ⊥平面ABC 1 又∵BC 1在平面ABC 1内 ∴A 1C ⊥BC 1又∵M,N 分别是AA 1和AC 的中点. ∴A 1C ∥MN ∴MN ⊥BC 1. (2)解:取C 1B 1的中点D ,连接CD∵A 1B 1=A 1C 1 ∴A 1D ⊥B 1C 1 又∵CC 1∥AA 1 AA 1⊥平面ABC ∴CC 1⊥平面ABC 即CC 1平面A 1B 1C 1 又∵A 1D 在平面A 1B 1C 1内 ∴A 1D ⊥CC 1 且CC 1∩C 1B 1=C CD 在平面CBB 1C 1内 ∴A 1D ⊥CD ∴cos ∠A 1CD=C A CD 1=23∴∠A 1CD=30°又∵MN ∥A 1C 即MN 与平面BCC 1B 1所成角为30°19. (1)易知 双曲线的方程是1322=-y x . (2)设P ()00,y x ,已知渐近线的方程为:x y 3±= 该点到一条渐近线的距离为:13300+-=y x m到另一条渐近线的距离为13300++=y x n412232020=⨯-=⋅y x n m 是定值.20. (1)根据题意,设抛物线的方程为(),因为抛物线上一点的横坐标为,设,因此有, ......1分因为,所以,因此,......3分解得,所以抛物线的方程为; ......5分(2)当直线的斜率不存在时,此时的方程是:,因此M,N,因此NO M O⋅,所以OM ⊥ON ; ......7分当直线的斜率存在时,设直线的方程是,因此,得,设M,N,则,,, ......9分所以N O M O⋅,所以OM ⊥ON 。

2017-2018学年宁夏银川一中高二(上)期末数学试卷(理科)

2017-2018学年宁夏银川一中高二(上)期末数学试卷(理科)

2017-2018学年宁夏银川一中高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(1+i)=1﹣i(i是虚数单位),则z的共轭复数=()A.﹣i B.C.i D.2.(5分)演绎推理是()A.部分到整体,个别到一般的推理B.特殊到特殊的推理C.一般到一般的推理D.一般到特殊的推理3.(5分)用数学归纳法证明“1+a+a2+…+a2n+1=,(a≠1)”,在验证n=1时,左端计算所得项为()A.1+a+a2+a3+a4B.1+a C.1+a+a2D.1+a+a2+a34.(5分)双曲线8kx2﹣ky2=8的一个焦点是(0,﹣3),则k的值是()A.1 B.﹣1 C.D.﹣5.(5分)在正方体ABCD﹣A1B1C1D1中,E是AD的中点,则异面直线C1E与BC所成的角的余弦值是()A.B.C.D.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F 2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f (1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为()A.(﹣∞,0)B.(0,2)C.(2,+∞)D.(﹣∞,+∞)9.(5分)已知函数f(x)=3x3﹣ax2+x﹣5在区间[1,2]上单调递增,则a的取值范围是()A.(﹣∞,5] B.(﹣∞,5)C.D.(﹣∞,3]10.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值 D.既无极大值也无极小值11.(5分)设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()A.B.C.D.12.(5分)已知函数f(x)=a(x﹣)﹣2lnx(a∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,则实数a的范围为()A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)二、填空题:本大题共4小题,每小题5分.13.(5分)观察下列不等式:①1+<;②1++<;③1+++<;…照此规律,第五个不等式为.14.(5分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为.15.(5分)若函数f(x)=x2+2f(x)dx,则f(x)dx= .16.(5分)已知椭圆(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆的上顶点,B是直线AF 2与椭圆的另一个交点,且∠F1AF2=60°,△AF1B的面积为40,则a的值是.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知动圆C过点A(﹣2,0),且与圆M:(x﹣2)2+y2=64相内切求动圆C 的圆心的轨迹方程.18.(12分)已知函数f(x)=x3+ax2+bx+c在x=﹣,x=1处都取得极值(1)求a,b的值与函数f(x)的单调递减区间;(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.19.(12分)如图,正三棱柱的所有棱长都为2,D为CC1中点.用空间向量进行以下证明和计算:(1)求证:AB1⊥面A1BD;(2)求二面角A﹣A1D﹣B的正弦值;(3)求点C到面A1BD的距离.20.(12分)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.21.(12分)设椭圆C:=1(a>b>0)的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1﹣4y1的取值范围.22.(12分)已知函数.(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;(2)设m,n∈R,且m≠n,求证.2017-2018学年宁夏银川一中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足z(1+i)=1﹣i(i是虚数单位),则z的共轭复数=()A.﹣i B.C.i D.【解答】解:∵z(1+i)=1﹣i,∴z===﹣i,∴z的共轭复数=i.故选C.2.(5分)演绎推理是()A.部分到整体,个别到一般的推理B.特殊到特殊的推理C.一般到一般的推理D.一般到特殊的推理【解答】解:根据题意,演绎推理的模式是“三段论”形式,即大前提小前提和结论,是从一般到特殊的推理.故选:D.3.(5分)用数学归纳法证明“1+a+a2+…+a2n+1=,(a≠1)”,在验证n=1时,左端计算所得项为()A.1+a+a2+a3+a4B.1+a C.1+a+a2D.1+a+a2+a3【解答】解:∵等式“1+a+a2+…+a2n+1=,(a≠1)”左端和式中a的次数由0次依次递增,当n=k时,最高次数为(2k+1)次,∴用数学归纳法证明“1+a+a2+…+a2n+1=,(a≠1)”,在验证n=1时,左端计算所得项为1+a+a2+a3,故选:D.4.(5分)双曲线8kx2﹣ky2=8的一个焦点是(0,﹣3),则k的值是()A.1 B.﹣1 C.D.﹣【解答】解:双曲线8kx2﹣ky2=8的一个焦点是(0,﹣3),可知k<0,并且:=3,解得k=﹣1.故选:B.5.(5分)在正方体ABCD﹣A1B1C1D1中,E是AD的中点,则异面直线C1E与BC所成的角的余弦值是()A.B.C.D.【解答】解:分别以DA、DC、DD1为x轴、y轴和z轴,建立空间直角坐标系如图设正方体的棱长为2,得C1(0,2,2),E(1,0,0),B(2,2,0),C(0,2,0)∴=(1,﹣2,﹣2),=(﹣2,0,0)因此,得到||==3,||=2,且•=1×(﹣2)+(﹣2)×0+(﹣2)×0=﹣2∴cos<,>==﹣∵异面直线C1E与BC所成的角是锐角或直角∴面直线C1E与BC所成的角的余弦值是故选:C6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F 2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【解答】解:∵△AF 1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.7.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.8.(5分)已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f (1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为()A.(﹣∞,0)B.(0,2)C.(2,+∞)D.(﹣∞,+∞)【解答】解:f′(x)=3ax2+2bx,因为函数在x=2时有极值,所以f′(2)=12a+4b=0即3a+b=0①;又直线3x+y=0的斜率为﹣3,则切线的斜率k=f′(1)=3a+2b=﹣3②,联立①②解得a=1,b=﹣3,令f′(x)=3x2﹣6x<0即3x(x﹣2)<0,解得0<x<2.故选B9.(5分)已知函数f(x)=3x3﹣ax2+x﹣5在区间[1,2]上单调递增,则a的取值范围是()A.(﹣∞,5] B.(﹣∞,5)C.D.(﹣∞,3]【解答】解:f′(x)=9x2﹣2ax+1∵f(x)=3x3﹣ax2+x﹣5在区间[1,2]上单调递增∴f′(x)=9x2﹣2ax+1≥0在区间[1,2]上恒成立.即,即a≤5,故选A10.(5分)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值 D.既无极大值也无极小值【解答】解:∵函数f(x)满足,∴令F(x)=x2f(x),则F′(x)=,F(2)=4•f(2)=.由,得f′(x)=,令φ(x)=e x﹣2F(x),则φ′(x)=e x﹣2F′(x)=.∴φ(x)在(0,2)上单调递减,在(2,+∞)上单调递增,∴φ(x)的最小值为φ(2)=e2﹣2F(2)=0.∴φ(x)≥0.又x>0,∴f′(x)≥0.∴f(x)在(0,+∞)单调递增.∴f(x)既无极大值也无极小值.故选D.11.(5分)设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λμ=,则该双曲线的离心率为()A.B.C.D.【解答】解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),∵,∴(c,)=((λ+μ)c,(λ﹣μ)),∴λ+μ=1,λ﹣μ=,解得λ=,μ=,又由λμ=得=,解得=,∴e==故选C.12.(5分)已知函数f(x)=a(x﹣)﹣2lnx(a∈R),g(x)=﹣,若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,则实数a的范围为()A.[1,+∞)B.(1,+∞)C.[0,+∞)D.(0,+∞)【解答】解:若至少存在一个x0∈[1,e],使得f(x0)>g(x0)成立,即f(x)﹣g(x)>0在x∈[1,e]时有解,设F(x)=f(x)﹣g(x)=a(x﹣)﹣2lnx+=ax﹣2lnx>0有解,x∈[1,e],即a,则F′(x)=,当x∈[1,e]时,F′(x)=≥0,∴F(x)在[1,e]上单调递增,即F min(x)=F(1)=0,因此a>0即可.故选:D.二、填空题:本大题共4小题,每小题5分.13.(5分)观察下列不等式:①1+<;②1++<;③1+++<;…照此规律,第五个不等式为1+++++<.【解答】解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<14.(5分)已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为x=﹣1 .【解答】解:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,两式相减得:(y1﹣y2)(y1+y2)=2p(x1﹣x2),又因为直线的斜率为1,所以=1,所以有y1+y2=2p,又线段AB的中点的纵坐标为2,即y1+y2=4,所以p=2,所以抛物线的准线方程为x=﹣=﹣1.故答案为:x=﹣1.15.(5分)若函数f(x)=x2+2f(x)dx,则f(x)dx= ﹣.【解答】解:设f(x)dx=c,则f(x)=x2+2c,所以f(x)dx=(x 2+2c)dx==c,解得c=;故答案为:﹣.16.(5分)已知椭圆(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆的上顶点,B是直线AF 2与椭圆的另一个交点,且∠F1AF2=60°,△AF1B的面积为40,则a的值是10 .【解答】解:∠F1AF2=60°⇔a=2c⇔e==.设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=a.△AF1B面积S=|BA||F1A|sin60°⇔×a×(a+a)×=40⇔a=10,故答案为:10.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知动圆C过点A(﹣2,0),且与圆M:(x﹣2)2+y2=64相内切求动圆C 的圆心的轨迹方程.【解答】解:定圆M圆心M(2,0),半径r=8,因为动圆C与定圆M内切,且动圆C过定点A(﹣2,0),|MA|+|MB|=8.所以动圆心C轨迹是以B、A为焦点,长轴长为8的椭圆.c=2,a=4,b2=12,动圆心轨迹方程.18.(12分)已知函数f(x)=x3+ax2+bx+c在x=﹣,x=1处都取得极值(1)求a,b的值与函数f(x)的单调递减区间;(2)若对x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范围.【解答】解:(1)f′(x)=3x2+2ax+b,∵=f′(1)=0,∴+2a×+b=0,3+2a+b=0,联立解得a=,b=﹣2.f(x)=x3﹣x2﹣2x+c,∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),令f′(x)=(3x+2)(x﹣1)≤0,解得.∴函数f(x)的单调递减区间为.(2)由(1)可得:f(x)=x3﹣x2﹣2x+c,对x∈[﹣1,2],不等式f(x)<c2恒成立⇔<c2﹣c,令g(x)=x3﹣x2﹣2x,x∈[﹣1,2],∴g′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),由(1)可得:函数g(x)在,[1,2]上单调递增,在区间上单调递减.而=,g(2)=2.∴g(x)max=2.∴c2﹣c>2,即c2﹣c﹣2>0,解得c>2,或c<﹣1.∴c的取值范围(﹣∞,﹣1)∪(2,+∞).19.(12分)如图,正三棱柱的所有棱长都为2,D为CC1中点.用空间向量进行以下证明和计算:(1)求证:AB1⊥面A1BD;(2)求二面角A﹣A1D﹣B的正弦值;(3)求点C到面A1BD的距离.【解答】(本小题满分12分)证明:(1)取BC中点O为原点,OB为x轴,在平面BB1C1C内过O作BB1的平行线为y 轴,OA为z轴,建立如图所示空间直角坐标系,则,B(1,0,0),C(﹣1,0,0),A 1(0,2,),B1(1,2,0),C1(﹣1,2,0),D(﹣1,1,0),=(1,2,﹣),=(﹣2,1,0),=(1,﹣2,﹣),∴=0,=0,∴AB1⊥BD,AB1⊥A1B,又BD∩A1B=B,∴AB1⊥平面AB1D.解:(2)∵AB 1⊥平面AB1D,∴==(1,2,﹣)是面BA1D的法向量,设面AA 1D的法向量=(x,y,z),=(0,2,0),=(﹣1,1,﹣),则,取x=﹣3,得=(﹣3,0,)设二面角A﹣A1D﹣B的平面角为θ,则cos<>==﹣,∴sinθ==,∴二面角A﹣A1D﹣B的正弦值为.(3)==(1,2,﹣)是面BA 1D的法向量,向量=(2,0,0),∴点C到面A1BD的距离为d===.20.(12分)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE;(3)求平面BCE与平面ACD所成锐二面角的大小.【解答】(1)证:取CE中点P,连接FP、BP,∵F为CD的中点,∴FP∥DE,且FP=.又AB∥DE,且AB=.∴AB∥FP,且AB=FP,∴ABPF为平行四边形,∴AF∥BP.…(2分)又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE.…(4分)(2)∵△ACD为正三角形,∴AF⊥CD.∵AB⊥平面ACD,DE∥AB,∴DE⊥平面ACD,又AF⊂平面ACD,∴DE⊥AF.又AF⊥CD,CD∩DE=D,∴AF⊥平面CDE.…(6分)又BP∥AF,∴BP⊥平面CDE.又∵BP⊂平面BCE,∴平面BCE⊥平面CDE.…(8分)(3)由(2),以F为坐标原点,FA,FD,FP所在的直线分别为x,y,z轴(如图),建立空间直角坐标系F﹣xyz.设AC=2,则C(0,﹣1,0),.…(9分)设n=(x,y,z)为平面BCE的法向量,则令z=1,则n=(0,﹣1,1).…(10分)显然,m=(0,0,1)为平面ACD的法向量.设平面BCE与平面ACD所成锐二面角为α,则.α=45°,即平面BCE与平面ACD所成锐二面角为45°.…(12分)21.(12分)设椭圆C:=1(a>b>0)的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1﹣4y1的取值范围.【解答】解:(1)依题意知,2a=4,∴a=2.∵,∴.∴所求椭圆C的方程为.(2)∵点P(x 0,y0)关于直线y=2x的对称点为,∴解得:,.∴3x1﹣4y1=﹣5x0.∵点P(x0,y0)在椭圆C:上,∴﹣2≤x0≤2,则﹣10≤﹣5x0≤10.∴3x1﹣4y1的取值范围为[﹣10,10].22.(12分)已知函数.(1)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;(2)设m,n∈R,且m≠n,求证.【解答】解:(1)f′(x)=﹣==,因为f(x)在(0,+∞)上为单调增函数,所以f′(x)≥0在(0,+∞)上恒成立即x2+(2﹣2a)x+1≥0在(0,+∞)上恒成立,当x∈(0,+∞)时,由x2+(2﹣2a)x+1≥0,得:2a﹣2≤x+,设g(x)=x+,x∈(0,+∞),则g(x)=x+≥2=2,当且仅当x=即x=1时,g(x)有最小值2,所以2a﹣2≤2,解得a≤2,所以a的取值范围是(﹣∞,2];(2)设m>n,要证,只需证<,即ln >,即ln ﹣>0,设h(x)=lnx ﹣,由(1)知h(x)在(1,+∞)上是单调增函数,又>1,所以h ()>h(1)=0,即ln ﹣>0成立,得到.第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017/2018学年度(上)高二期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i - B .i 2- C .i D .i 22.演绎推理是A .部分到整体,个别到一般的推理B .特殊到特殊的推理C .一般到一般的推理D .一般到特殊的推理3.用数学归纳法证明:“1+a +a 2+…+a 2n+1=aa n --+1112(a ≠1)”,在验证n =1时,左端计算所得项为A .1+aB .1+a +a 2+a 3C .1+a +a 2D .1+a +a 2+a 3+a 4 4.双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 A .1B .-1C .315D .-315 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线C 1E 与BC 所成的角的余弦值是 A .510B .1010C .31D .3226.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=7.曲线1x y xe -=在点(1,1)处切线的斜率等于 A .2eB .eC .2D .18.已知函数f (x )=x 2(ax +b )(a ,b ∈R )在x =2时有极值,其图象在点(1,f (1))处的切线与直线3x +y =0平行,则函数f (x )的单调减区间为A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,+∞) 9.已知函数53)(23-+-=x ax x x f 在区间[1,2]上单调递增,则a 的取值范围是 A .]5,(-∞B .)5,(-∞C .]437,(-∞ D .]3,(-∞10.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值11.设双曲线12222=-by a x (a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点, 若),(R ∈+=μλμλ,163=λμ,则该双曲线的离心率为 A .332 B .553 C .223 D .8912.已知函数f (x )=1a x x ⎛⎫-⎪⎝⎭-2lnx (a ∈R ),g (x )=a x -,若至少存在一个x 0∈[1,e ],使得f (x 0)>g (x 0)成立,则实数a 的取值范围为A .[1,+∞) B.(1,+∞) C.[0,+∞) D.(0,+∞) 二、填空题:本大题共4小题,每小题5分. 13.观察下列不等式213122+< 231151233++<, 474131211222<+++……照此规律,第五个...不等式为 .14.已知抛物线)0(22>=p px y ,过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 15.若⎰+=12)(2)(dx x f x x f ,则⎰=1)(dx x f .16.已知椭圆12222=+by a x (0)a b >>的左、右焦点分别为F 1,F 2,点A 为椭圆的上顶点,B是直线 A F 2与椭圆的另一个交点,且B AF AF F 1021,60∆=∠的面积为340,则a 的值是 .三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本大题满分10分)已知动圆C 过点A (-2,0),且与圆M :(x -2)2+y 2=64相内切求动圆C 的圆心的轨迹方程.18.(本大题满分12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值 (1)求a ,b 的值与函数f (x )的单调区间(2)若对x 〔-1,2〕,不等式f (x )c 2恒成立,求c 的取值范围19.(本大题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D角坐标系。

(1)求证:1AB ⊥平面1A BD ; (2)求二面角1A A D B --的正弦值; (3)求点C 到平面1A BD 的距离.20.(本大题满分12分)如图,已知AB ⊥平面ACD ,DE //AB ,△ACD 是正三角形,AD =DE =2AB ,且F 是CD 的中点。

(1)求证:AF //平面BCE ; (2)求证:平面BCE ⊥平面CDE ;(3)求平面BCE 与平面ACD 所成锐二面角的大小.21.(本大题满分12分)设椭圆:C )0(12222>>=+b a by a x 的离心率为e =22,点A 是椭圆上的一点,且点A 到椭圆C 两焦点的距离之和为4.(1)求椭圆C 的方程;(2)椭圆C 上一动点P ()00,y x 关于直线x y 2=的对称点为()111,y x P ,求1143y x -的取值范围.22.(本小题满分12分)已知函数(1)()ln .1a x f x x x -=-+ (1)若函数()(0,)f x +∞在上为单调增函数,求a 的取值范围; (2)设,,,:.ln ln 2m n m nm n m n m n +-+∈≠<-R 且求证高二期末数学(理科)试卷参考答案一、选择题:本大题共12小题,每小题5分,共60分,13. 6116151413121122222<+++++14. x= -1 15. 31- 16. 10 17.(本小题满分10分)定圆M 圆心M (2,0),半径r=8,因为动圆C 与定圆M 内切,且动圆C 过定点A (-2,0)|MA|+|MB|=8.所以动圆心C 轨迹是以B 、A 为焦点,长轴长为8的椭圆.C=2,a=4,b 2=12,动圆心轨迹方程1121622=+y x18.(本小题满分12分)解:(1)f (x )=x 3+ax 2+bx +c ,(x )=3x 2+2ax +b 由(23-)=124a b 093-+=,(1)=3+2a +b =0得a =12-,b =-2(x )=3x 2-x -2=(3x +2)(x -1),函数f (x )的单调区间如下表:(-,-23)(1,+)所以函数f (x )的递增区间是(-,-3)与(1,+)递减区间是(-3,1) (2)f (x )=x 3-12x 2-2x +c ,〔-1,2〕,当x =-23时,f (x )=2227+c 为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值 要使f (x )2(〔-1,2〕)恒成立,只需c 2f (2)=2+c解得-1或19(本小题满分12分)解法一:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点,1B O BD ∴⊥,1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥,1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF AD ⊥于F , 连结AF ,由(Ⅰ)得1AB ⊥平面1A BD .1AF A D ∴⊥,AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==,sin AG AFG AF ∴===∠所以二面角1A A D B --的正弦值为410. (Ⅲ)1ABD △中,111A BD BD A D A B S ===∴=△1BCD S =△. 在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d . 由11A BCD C A BD V V --=得111333BCD A BD S S d=△△,1A BD d ∴==△.∴点C 到平面1A BD解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B . 取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A ,(00A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-.12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥. 1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(11AD =-,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,nn 020x y y ⎧-+=⎪∴⎨=⎪⎩,,0y x =⎧⎪∴⎨=⎪⎩,. 令1z =得(=,n 为平面1A AD 的一个法向量.由(Ⅰ)知1AB ⊥平面1A BD ,1AB ∴为平面1A BD 的法向量. cos <n,1113222AB AB AB ->===n n .∴所以二面角1AA DB --的正弦值为410. (Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量,1(200)(12BC AB =-=,,,,.∴点C 到平面1A BD 的距离112BC AB d AB -==20((本小题满分12分)解(I )取CE 中点P ,连结FP 、BP ,∵F 为CD 的中点,∴FP//DE,且FP=.21DE 又AB//DE ,且AB=.21DE ∴AB//FP,且AB=FP , ∴ABPF 为平行四边形,∴AF//BP。

又∵AF ⊄平面BCE ,BP ⊂平面BCE , ∴AF//平面BCE 。

(II )∵△ACD 为正三角形,∴AF⊥CD。

相关文档
最新文档