高考物理 专题集锦(一)“万有引力与航天”命题分析

合集下载

高中物理选题之万有引力与航天及答案解析概论

高中物理选题之万有引力与航天及答案解析概论

万有引力与航天一、万有引力定律及其应用1. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出()A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量D.火星表面的重力加速度和火星对“萤火一号”的引力二、人造地球卫星1. 如图所示,同步卫星离地心距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球的半径R,则下列比值正确的是()A. B. C. D.2. 美国宇航局2011年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒-226”,其直径约为地球的2.4倍.至今其确切质量和表面成分仍不清楚,假设该行星的密度和地球相当,根据以上信息,估算该行星的第一宇宙速度等于()A.3.3×103 m/s B.7.9×103 m/sC.1.2×104 m/s D.1.9×104 m/s突破训练1. 一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的1:4 ,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1B.角速度大小之比为2:1C.周期之比为1:8D.轨道半径之比为1:22. 2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图,关于航天飞机的运动,下列说法中正确的有[ ]A.在轨道Ⅱ上经过A的速度小于经过B的速度B.在轨道Ⅱ上经过A的速度小于在轨道Ⅰ上经过A的速度C.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度D.在轨道Ⅱ上运动时处超重状态,在轨道Ⅰ上运动时处失重状态3. 冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的1/7B.角速度大小约为卡戎的1/7C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍课后训练[第56页第10题](2011浙江理综, 19,6分) (多选) 为了探测X星球, 载着登陆舱的探测飞船在以该星球中心为圆心, 半径为r1的圆轨道上运动, 周期为T1, 总质量为m1。

高考物理试题分项解析:万有引力定律与航天(含解析)

高考物理试题分项解析:万有引力定律与航天(含解析)

万有引力定律与航天【2018高考真题】1.我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705 km,之前已运行的“高分四号”轨道高度约为36 000 km,它们都绕地球做圆周运动.与“高分四号冶相比,下列物理量中“高分五号”较小的是()A.周期B. 角速度C. 线速度D. 向心加速度【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 A点睛:本题考查人造卫星运动特点,解题时要注意两类轨道问题分析方法:一类是圆形轨道问题,利用万有引力提供向心力,即求解;一类是椭圆形轨道问题,利用开普勒定律求解。

2.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证A. 地球吸引月球的力约为地球吸引苹果的力的1/602B. 月球公转的加速度约为苹果落向地面加速度的1/602C. 自由落体在月球表面的加速度约为地球表面的1/6D. 苹果在月球表面受到的引力约为在地球表面的1/60【来源】2018年全国普通高等学校招生统一考试物理(北京卷)【答案】 B【解析】A、设月球质量为,地球质量为M,苹果质量为则月球受到的万有引力为:苹果受到的万有引力为:由于月球质量和苹果质量之间的关系未知,故二者之间万有引力的关系无法确定,故选项A错误;B、根据牛顿第二定律:,整理可以得到:,故选项B正确;C、在月球表面处:,由于月球本身的半径大小未知,故无法求出月球表面和地面表面重力加速度的关系,故选项C错误;D、苹果在月球表面受到引力为:,由于月球本身的半径大小未知,故无法求出苹果在月球表面受到的引力与地球表面引力之间的关系,故选项D错误。

点睛:本题考查万有引力相关知识,掌握万有引力公式,知道引力与距离的二次方成反比,即可求解。

3.2018年2月,我国500 m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19 ms,假设星体为质量均匀分布的球体,已知万有引力常量为。

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试万有引力与航天
1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该星球半径为R,引力常量为G,求:
(1)该星球表面的重力加速度;
(2)该星球的密度;
(3)该星球的“第一宇宙速度”.
(1)木星的质量M;
(2)木星表面的重力加速度 .
【答案】(1) (2)
【解析】
(1)由万有引力提供向心力
可得木星质量为
(2)由木星表面万有引力等于重力:
木星的表面的重力加速度
【点睛】万有引力问题的运动,一般通过万有引力做向心力得到半径和周期、速度、角速度的关系,然后通过比较半径来求解.
8.阅读如下资料,并根据资料中有关信息回答问题
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a.因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T,半径为r0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M;
3.设地球质量为M,自转周期为T,万有引力常量为G.将地球视为半径为R、质量分布均匀的球体,不考虑空气的影响.若把一质量为m的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.
(1)若把物体放在北极的地表,求该物体对地表压力的大小F1;
(2)若把物体放在赤道的地表,求该物体对地表压力的大小F2;
2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤 是从高度为h处下落,经时间t落到月球表面.已知引力常量为G,月球的半径为R.

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)

高考物理万有引力与航天试题(有答案和解析)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。

该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度为g = 10m/s 2。

求:(1)火星表面重力加速度的大小; (2)火箭助推器对洞察号作用力的大小.【答案】(1)2=4m/s g 火 (2)F =260N 【解析】 【分析】火星表面或地球表面的万有引力等于重力,列式可求解火星表面的重力加速度;根据运动公式求解下落的加速度,然后根据牛顿第二定律求解火箭助推器对洞察号作用力. 【详解】(1)设火星表面的重力加速度为g 火,则2=M m Gmg r火火火2=M mGmg r 地地解得g 火=0.4g=4m/s 2(2)着陆下降的高度:h=h 1-h 2=700m ,设该过程的加速度为a ,则v 22-v 12=2ah 由牛顿第二定律:mg 火-F=ma 解得F=260N3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)1v =【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为1v =4.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度0v 竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求: (1)行星的半径R ;(2)小石子能上升的最大高度. 【答案】(1)R = (2)202v h g =【解析】(1)对行星表面的某物体,有:2GMmmg R=-得:R =(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:2002v gh =-+得:202v h g=5.侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全部都拍摄下来,卫星在通过赤道上空时,卫星上的摄影像机至少应拍地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T .【答案】l =【解析】 【分析】 【详解】设卫星周期为1T ,那么:22214()()Mm m R h G R h T π+=+, ① 又2MmGmg R=, ② 由①②得1T =设卫星上的摄像机至少能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的情况全都拍摄下来,则12TlR T π⋅=. 所以23124()RT h R l T Tgππ+==. 【点睛】摄像机只要将地球的赤道拍摄全,便能将地面各处全部拍摄下来;根据万有引力提供向心力和万有引力等于重力求出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再根据弧长与圆心角的关系求解.6.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G ;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-7.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)

高考物理万有引力与航天常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.2.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B rT GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得:2B T = (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆=解得:t ∆=点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.3.假设在月球上的“玉兔号”探测器,以初速度v 0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R ,引力常数为G . (1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大? 【答案】(1)032v GRt π (2【解析】 【详解】(1)由匀变速直线运动规律:02gtv = 所以月球表面的重力加速度02v g t=由月球表面,万有引力等于重力得2GMmmg R= GgR M 2= 月球的密度03=2v M V GRtρπ= (2)由月球表面,万有引力等于重力提供向心力:2v mg m R=可得:v =4.利用万有引力定律可以测量天体的质量. (1)测地球的质量英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转的影响,求地球的质量. (2)测“双星系统”的总质量所谓“双星系统”,是指在相互间引力的作用下,绕连线上某点O 做匀速圆周运动的两个星球A 和B ,如图所示.已知A 、B 间距离为L ,A 、B 绕O 点运动的周期均为T ,引力常量为G ,求A 、B 的总质量.(3)测月球的质量若忽略其它星球的影响,可以将月球和地球看成“双星系统”.已知月球的公转周期为T 1,月球、地球球心间的距离为L 1.你还可以利用(1)、(2)中提供的信息,求月球的质量.【答案】(1)2gR G;(2)2324L GT π;(3)2321214L gR GT G π-. 【解析】 【详解】(1)设地球的质量为M ,地球表面某物体质量为m ,忽略地球自转的影响,则有2Mm G mg R =解得:M =2gR G; (2)设A 的质量为M 1,A 到O 的距离为r 1,设B 的质量为M 2,B 到O 的距离为r 2, 根据万有引力提供向心力公式得:2121122()M M G M r L Tπ=, 2122222()M M GM r L T π=, 又因为L =r 1+r 2解得:231224L M M GTπ+=; (3)设月球质量为M 3,由(2)可知,2313214L M M GT π+=由(1)可知,M =2gR G解得:23213214L gR M GT Gπ=-5.根据我国航天规划,未来某个时候将会在月球上建立基地,若从该基地发射一颗绕月卫星,该卫星绕月球做匀速圆周运动时距月球表面的高度为h ,绕月球做圆周运动的周期为T ,月球半径为R ,引力常量为G .求: (1)月球的密度ρ;(2)在月球上发射绕月卫星所需的最小速度v .【答案】(1)3233()R h GT R π+(2 【解析】 【详解】(1)万有引力提供向心力,由牛顿第二定律得:G 2()Mm R h =+m 224Tπ(R +h ), 解得月球的质量为:2324()R h M GTπ+=; 则月球的密度为:3233()M R h V GT Rπρ+==; (2)万有引力提供向心力,由牛顿第二定律得:G 2Mm R =m 2v R,解得:v =6.已知地球的半径为R ,地面的重力加速度为g ,万有引力常量为G 。

高中物理万有引力与航天技巧小结及练习题及解析

高中物理万有引力与航天技巧小结及练习题及解析

高中物理万有引力与航天技巧小结及练习题及解析一、高中物理精讲专题测试万有引力与航天1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-=解得t =2.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R= 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.3.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编(含答案)含解析

高考物理万有引力与航天真题汇编(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)022Rt v π【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期22RtT v π=3.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T .【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tanav R t;(4)02tan Rt v α【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.4.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) G gR M 2=(2)v =【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R = 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得7gRv =.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.地球同步卫星,在通讯、导航等方面起到重要作用。

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT +=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT +=. 联立得()2πR H R HV TR++=2.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。

若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣2.试求:(1)该行星表面处的重力加速度的大小g 行; (2)该行星的第一宇宙速度的大小v ;(3)该行星的质量M 的大小(保留1位有效数字)。

【答案】(1)4m/s 2(2)4km/s(3)1×1024kg 【解析】 【详解】(1)由平抛运动的分位移公式,有:x =v 0t y =12g 行t 2 联立解得:t =1s g 行=4m/s 2;(2)第一宇宙速度是近地卫星的运行速度,在星球表面重力与万有引力相等,据万有引力提供向心力有:22mM v G mg m R R行== 可得第一宇宙速度为:34400010m/s 4.0km/s v g R =⨯⨯=行=(3)据2mMGmg R 行= 可得:23224114400010kg 110kg 6(.)6710g R M G -⨯⨯==≈⨯⨯行3.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt =由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R= 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.4.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B rT GM=3)03t GM r ω∆=-【解析】【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GMπ= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.5.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A 是地球的同步卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加速度为g,求:(1)同步卫星离地面高度h (2)地球的密度ρ(已知引力常量为G )【答案】(122324gR T R π(2)34g GR π 【解析】 【分析】 【详解】(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为()2224()R h mMG m R h Tπ+=+ 在地球表面上引力等于重力为2MmGmg R =故地球同步卫星离地面的高度为22324gR T h R π=- (2)根据在地球表面上引力等于重力2MmGmg R= 结合密度公式为233443gR M g G V GR R ρππ===6.宇航员来到某星球表面做了如下实验:将一小钢球以v 0的初速度竖直向上抛出,测得小钢球上升离抛出点的最大高度为h (h 远小于星球半径),该星球为密度均匀的球体,引力常量为G ,求:(1)求该星球表面的重力加速度;(2)若该星球的半径R ,忽略星球的自转,求该星球的密度. 【答案】(1)(2)【解析】(1)根据速度-位移公式得:,得(2)在星球表面附近的重力等于万有引力,有及联立解得星球密度7.已知地球的半径为R ,地面的重力加速度为g ,万有引力常量为G 。

高考物理专题力学知识点之万有引力与航天全集汇编附答案解析

高考物理专题力学知识点之万有引力与航天全集汇编附答案解析

高考物理专题力学知识点之万有引力与航天全集汇编附答案解析一、选择题1.2017年6月19日,“中星9A ”卫星在西昌顺利发射升空。

卫星变轨如图所示,卫星先沿椭圆轨道Ⅰ飞行,后在远地点Q 改变速度成功变轨进入地球同步轨道Ⅱ,P 点为椭圆轨道近地点。

下列说法正确的是( )A .卫星在椭圆轨道Ⅰ运行时,在P 点的速度等于在Q 点的速度B .卫星在椭圆轨道Ⅰ的Q 点加速度大于在同步轨道Ⅱ的Q 点的加速度C .卫星在椭圆轨道Ⅰ的Q 点速度小于在同步轨道Ⅱ的Q 点的速度D .卫星耗尽燃料后,在微小阻力的作用下,机械能减小,轨道半径变小,动能变小 2.设宇宙中某一小行星自转较快,但仍可近似看作质量分布均匀的球体,半径为R .宇航员用弹簧测力计称量一个相对自己静止的小物体的重量,第一次在极点处,弹簧测力计的读数为F 1=F 0;第二次在赤道处,弹簧测力计的读数为F 2=02F .假设第三次在赤道平面内深度为2R的隧道底部,示数为F 3;第四次在距行星表面高度为R 处绕行星做匀速圆周运动的人造卫星中,示数为F 4.已知均匀球壳对壳内物体的引力为零,则以下判断正确的是( ) A .F 3=04F ,F 4=04F B .F 3=04F ,F 4=0 C .F 3=154F ,F 4=0 D .F 3=04F ,F 4=4F 3.由于地球自转和离心运动,地球并不是一个绝对的球形(图中虚线所示),而是赤道部分凸起、两极凹下的椭球形(图中实线所示),A 点为地表上地理纬度为 的一点,在A 点有一静止在水平地面上的物体m ,设地球对物体的万有引力仍然可看做是质量全部集中于地心O 处的质点对物体的引力,地球质量为M ,地球自转周期为T ,地心O 到A 点距离为R ,关于水平地面对该物体支持力的说法正确的是( )A .支持力的方向沿OA 方向向上B .支持力的方向垂直于水平地面向上C .支持力的大小等于2GMmR D .支持力的大小等于222cos GMm m R R T πθ⎛⎫- ⎪⎝⎭4.太空——110轨道康复者”可以对卫星在太空中补充能源,使卫星的寿命延长10年或更长。

万有引力与航天在高考物理中的命题研究

万有引力与航天在高考物理中的命题研究

万有引力与航天在高考物理中的命题研究作者:潘爽马佳宁来源:《理科考试研究·高中》2017年第11期摘要:高考是我国普通高等院校招生的主要途径.认真对待高考,透彻把握各个考点至关重要.“万有引力与航天”作为高考中的重要考点,长期保持较高的出题率.本文从最近五年试题的考情出发,分析高考数据,总结命题趋势,为确定高考复习策略提供依据.关键词:高考物理;万有引力与航天;命题规律高考作为国家选拔人才的重要手段之一,具有广泛的关注性,认真研究考点,把握考试脉搏,找到高效的备考策略是必要的.下面是对“万有引力与航天”专题的具体分析.一、“万有引力与航天”考情分析《考试说明》中,对本专题说明有五点,分别是开普勒行星运动定律、万有引力定律、人造卫星运行、同步卫星、三个宇宙速度.以上五个知识点为基本考点,在考题中,通常又拓展出五个命题点,分别是天体质量M及密度ρ的计算、天体表面重力加速度g、人造卫星变轨问题部分物理量的定性分析(速率v、周期T、加速度a等)、卫星追及、天体运动特殊模型.下面将结合《考试说明》对近五年部分高考理综卷命题点情况进行统计分析:以上数据可以看出,万有引力与航天这个专题命题率较高,通常情况下以选择题的形式出现,少数时候可能与能量、圆周运动等知识点综合考查,以计算题的形式出现.其中开普勒三定律、万有引力定律需灵活运用,难度不大;地球同步卫星、天体质量M及密度ρ的计算、人造卫星的变轨问题、卫星的追及问题是热点也是难点,另外双星、多星模型也是热点并有一定的难度.通过对考情的解读,来研究高考,把握考况,才能取得更好的成绩.二、命题趋势及启示1.联系实际,题干复杂本专题抽象性较高,需要学生有较强的空间想象力.随着新课改实施,更加注重学生的情感态度与价值观,所以本专题更多的结合我国航天国情,比如说以“天宫号”、“神舟号”、“嫦娥号”为背景.通常这种情况下题干比较复杂,且出题形式多样,以“嫦娥三号”为例,它的探月过程需要“四步”,每一个步骤都是命题点,首先探测器的发射,其次地月转移,接着绕月飞行,最后探测器着落.这就需要我们在审题过程中,化繁为简,抓住核心考点,从容应对.例如2016年天津高考理综,“神州十一号”与“天宫二号”对接,部分同学看到题目后无从下手,实际上就是考查人造卫星的变轨以及追及问题;2016年四川高考理综,涉及“东方红一号”、“东方红二号”,看似题目复杂,实则考查地球同步卫星加速度a与轨道半径r的关系.2.综合程度的提升万有引力与航天可以单独考查,也可以与其它专题相结合,从而考查的更全面,难度有所提升.比如2015年全国Ⅰ卷,结合运动学基本公式(v2-v02=2ah)、机械能守恒定律、反冲运动等,并不是单一的考查某个知识点;2015年安徽高考理综,主要考查三星系统,但解答此题时,需要三个思维起点,首先在力学上抓住万有引力提供向心力GMmr2=ma,其次在运动学中灵活选用参量的表达式,例如线速度v=GMr,角速度ω=GMr3,周期T=2πr3GM,最后分析讨论求解.综合能力的提升,要求考生首先要立足基础,掌握基本考点,注重知识积累与拓展,最后在技巧上突破,才能在高考中取得更优异的成绩.3.巧用数学运算万有引力与航天部分,对数学运算的能力要求相对较高,应选用恰当的解题方式,并在解题过程中巧妙运算,加快解题速度.针对以上问题,总结以下几点:首先巧用“黄金代换公式”,即GM=gR2,其中M为中心天体质量,R为中心天体半径,g为天体表面的重力加速度.“黄金代换公式”在解题中经常会用到,应该熟记于心;其次灵活运用三角函数解题;最后,面对复杂运算时,在不影响正确率的情况下,可以适当进行估算.例如2014年全国高考理综Ⅰ卷,数目非常复杂,其中选项C为“天王星相邻两次冲日的时间间隔为土星的一半”,在代入数值后,式子变成t1t2=193(953-1)953(193-1),可估算出t1t2≈1,而题目中所给比值为一半,显然是错误的.4.灵活思维和迁移变通万有引力与航天该专题有较强的抽象性,在学习过程中,应该充分发挥想象,多查阅相关资料,学会举一反三.对于常识性知识,我们可以用公式去计算,也可以直接记住.例如地球表面的重力加速度约为月球表面重力加速度的6倍,在选择题中就可以直接运用,省去不必要的计算而节省时间.例如2015年全国高考理综Ⅰ卷,要计算探测器在月球表面着陆前的速度大小v=2g月h,如果把g月当成已知条件,解题速度会提高.综上所述,在高考备考过程中需要紧扣最新考情,直击核心考点,掌握命题趋势.本文通过对“万有引力与航天”专题的考情分析、命题趋势的研究,让考生能够更加从容的面对高考,做到厚积薄发,心中有数.参考文献:[1]阎金铎,郭玉英中学物理教学概论(第三版)[M]北京:高等教育出版社,2009,12。

高考物理专题汇编物理万有引力与航天(一)及解析

高考物理专题汇编物理万有引力与航天(一)及解析

高考物理专题汇编物理万有引力与航天(一)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。

【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R = 解得2202v R tan gR M G Gtα==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯3.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析

高中物理万有引力与航天解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加速度为g ,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)32()2B R h T gR +=23()t gR R h ω=-+ 【解析】 【详解】(1)由万有引力定律和向心力公式得()()2224B MmGm R h T R h π=++①,2Mm G mg R =②联立①②解得:()322B R h T R g+=(2)由题意得()02B t ωωπ-=④,由③得()23B gR R h ω=+代入④得()203t R gR h ω=-+2.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R=得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.3.土星是太阳系最大的行星,也是一个气态巨行星。

高考物理万有引力与航天解析版汇编及解析

高考物理万有引力与航天解析版汇编及解析

高考物理万有引力与航天解析版汇编及解析一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R = 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

高考物理万有引力与航天试题类型及其解题技巧含解析

高考物理万有引力与航天试题类型及其解题技巧含解析

高考物理万有引力与航天试题类型及其解题技巧含解析一、高中物理精讲专题测试万有引力与航天1.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?【答案】(1)345LGm233Gm L 【解析】 【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:222222()(2)Gm Gm m L L L Tπ+= 345L T Gm∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗星,满足:2222cos30()cos30LGm m L ω︒=︒解得:33Gm L ω2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T,地球质量为M、半径为R,引力常量为G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量分布均匀的正球体,请比较h1和h2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMTh Rπ-(3)h1= h2【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω(2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()MmG m R hR h T++解得:2312=4πGMTh R-(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T,根据牛顿运动定律,22222=()()()MmG m R hR h Tπ++解得:23224GMTh Rπ因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMTh R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR=mg 月 月球的质量 222hR M Gt =质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.5.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点3L .已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】223LR M = 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220(3)(2)L h v t -=,联立解得:3h =,23g t =,在星球表面:2Mm G mg R =,解得:223M t G=6.“神舟”十号飞船于2013年6月11日17时38分在酒泉卫星发射中心成功发射,我国首位 80后女航大员王亚平将首次在太空为我国中小学生做课,既展示了我国在航天领域的实力,又包含着祖国对我们的殷切希望.火箭点火竖直升空时,处于加速过程,这种状态下宇航员所受支持力F 与在地球表面时重力mg 的比值后Fk mg=称为载荷值.已知地球的半径为R =6.4×106m (地球表面的重力加速度为g =9.8m/s 2)(1)假设宇航员在火箭刚起飞加速过程的载荷值为k =6,求该过程的加速度;(结论用g 表示)(2)求地球的笫一宇宙速度;(3)“神舟”十号飞船发射成功后,进入距地面300km 的圆形轨道稳定运行,估算出“神十”绕地球飞 行一圈需要的时间.(π2≈g )【答案】(1) a =5g (2)37.9210m/s v =⨯ (3)T =5420s 【解析】 【分析】(1)由k 值可得加速过程宇航员所受的支持力,进而还有牛顿第二定律可得加速过程的加速度.(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,此时万有引力近似等于地球表面的重力,然后结合牛顿第二定律即可求出;(3)由万有引力提供向心力的周期表达式,可表示周期,再由地面万有引力等于重力可得黄金代换,带入可得周期数值. 【详解】(1)由k =6可知,F =6mg ,由牛顿第二定律可得:F -mg =ma 即:6mg -mg =ma 解得:a =5g(2)笫一宇宙速度等于环绕地球做匀速圆周运动的速度,由万有引力提供向心力得:2v mg m R=所以:37.9210m/s v ===⨯(3)由万有引力提供向心力周期表达式可得:222()Mm G m r Tπ= 在地面上万有引力等于重力:2MmGmg R=解得:5420s T === 【点睛】本题首先要掌握万有引力提供向心力的表达式,这在天体运行中非常重要,其次要知道地面万有引力等于重力.7.双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动.已知某双星系统中两颗星之间的距离为 r ,运行周期为 T ,引力常量为 G ,求两颗星的质量之和.【答案】2324r GT π【解析】 【详解】对双星系统,角速度相同,则:22122Mm GM r m r rωω== 解得:221Gm r r ω=; 222GM r r ω=;其中2Tπω=,r =r 1+r 2; 三式联立解得:2324r M m GT π+=8.阅读如下资料,并根据资料中有关信息回答问题 (1)以下是地球和太阳的有关数据(2)己知物体绕地球表面做匀速圆周运动的速度为v =7.9km/s ,万有引力常量G =6.67×l0-11m 3kg -1s -2,光速C =3×108ms -1;(3)大约200年前法国数学家兼天文学家拉普拉斯曾预言一个密度如地球,直径为太阳250倍的发光星体由于其引力作用将不允许任何光线离开它,其逃逸速度大于真空中的光速2倍),这一奇怪的星体就叫作黑洞.在下列问题中,把星体(包括黑洞)看作是一个质量分布均匀的球体.(①②的计算结果用科学计数法表达,且保留一位有效数字;③的推导结论用字母表达) ①试估算地球的质量;②试估算太阳表面的重力加速度;③己知某星体演变为黑洞时的质量为M ,求该星体演变为黑洞时的临界半径R . 【答案】(1)6×1024kg (2)32310/m s ⨯(3)22GMC 【解析】(1)物体绕地球表面做匀速圆周运动22m GM v m R R=地地解得:2R v M G=地=6×1024kg (2)在地球表面2mGM mg R =地地地解得:2G R M g =地地地同理在太阳表面2G R M g =日日日2322g g 310/M R m s M R ==⨯日地日地日地 (3)第一宇宙速度212v GMmm R R=第二宇宙速度21v c == 解得:22GM R C=【点睛】本题考查了万有引力定律定律及圆周运动向心力公式的直接应用,要注意任何物体(包括光子)都不能脱离黑洞的束缚,那么黑洞表面脱离的速度应大于光速.9.已知“天宫一号”在地球上空的圆轨道上运行时离地面的高度为h 。

高考物理专题汇编万有引力与航天(一)含解析

高考物理专题汇编万有引力与航天(一)含解析

高考物理专题汇编万有引力与航天(一)含解析一、高中物理精讲专题测试万有引力与航天1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)h R = 【解析】 【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:h R =4.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。

最新高考物理万有引力与航天解题技巧分析及练习题(含答案)

最新高考物理万有引力与航天解题技巧分析及练习题(含答案)

最新高考物理万有引力与航天解题技巧分析及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度;(2)根据万有引力提供向心力可以求出静止轨道到地面的高度;(3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度;【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMT h R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:2322=4GMT h R π- 因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小.(2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s【解析】【分析】【详解】(1)小物块沿斜面向上运动过程00v at =-解得:26m/s a =又有:sin cos mg mg ma θμθ+=解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2mv mg R=3310m/s v gR ==⨯3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMm E r =-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (22122GM GM v R h R +-+32GM R【解析】【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解;(2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能;【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动 即:22mM v G m R R= 则飞船的动能为2122k GMm E mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GM v v R h R =+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm G mv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GM v R=. 【点睛】 本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求:(1)行星的质量M ;(2)行星表面的重力加速度g ;(3)行星的第一宇宙速度v .【答案】(1)(2) (3)【解析】【详解】 (1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.5.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。

高中物理专题汇编物理万有引力与航天(一)及解析

高中物理专题汇编物理万有引力与航天(一)及解析

高中物理专题汇编物理万有引力与航天(一)及解析一、高中物理精讲专题测试万有引力与航天1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)23124GMT h R π(3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:2322=4GMTh R π- 因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R= 匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.如图所示是一种测量重力加速度g 的装置。

高中物理万有引力与航天试题类型及其解题技巧及解析

高中物理万有引力与航天试题类型及其解题技巧及解析

高中物理万有引力与航天试题种类及其解题技巧及分析一、高中物理精讲专题测试万有引力与航天1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018 ”.比如,我国将进行北斗组网卫星的高密度发射,整年发射 18 颗北斗三号卫星,为“一带一路”沿线及周边国家供给服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星构成.图为此中一颗静止轨道卫星绕地球飞翔的表示图.已知该卫星做匀速圆周运动的周期为 T,地球质量为 M、半径为 R,引力常量为 G.(1)求静止轨道卫星的角速度ω;(2)求静止轨道卫星距离地面的高度h1;(3)北斗系统中的倾斜同步卫星,其运行轨道面与地球赤道面有必定夹角,它的周期也是T,距离地面的高度为h2.视地球为质量散布平均的正球体,请比较h1和 h2的大小,并说出你的原因.【答案】( 1)=2π3GMT 212;( 2)h1=4 2R( 3) h = h T【分析】【剖析】(1)依据角速度与周期的关系能够求出静止轨道的角速度;(2)依据万有引力供给向心力能够求出静止轨道到地面的高度;(3)依据万有引力供给向心力能够求出倾斜轨道到地面的高度;【详解】(1)依据角速度和周期之间的关系可知:静止轨道卫星的角速度= 2πTMm2π2(2)静止轨道卫星做圆周运动,由牛顿运动定律有:G2= m( R h1 )( )(R h1 )T 解得:h =3GMT 2R124π( 3)如下图,同步卫星的运行轨道面与地球赤道共面,倾斜同步轨道卫星的运行轨道面与地球赤道面有夹角,可是都绕地球做圆周运动,轨道的圆心均为地心.因为它的周期也是 T ,依据牛顿运动定律,GMm2( R h 2 )=m(Rh 2 )( 2 T) 2解得: h 2 = 3 GMT 2R42所以 h 1= h 2.1) =2π GMT 2R (3) h 1= h 2故此题答案是:(;( 2) h 1 =3T4 2【点睛】关于环绕中心天体做圆周运动的卫星来说,都借助于万有引力供给向心力即可求出要求的物理量.2. 我国发射的 “嫦娥三号 ”登月探测器凑近月球后,经过一系列过程,在离月球表面高为h处悬停,即相对月球静止.封闭发动机后,探测器自由着落,落到月球表面时的速度大小 为 v ,已知万有引力常量为G ,月球半径为R , hR ,忽视月球自转 ,求:( 1)月球表面的重力加快度 g 0 ; ( 2)月球的质量 M ;( 3)若是你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,能够假想,假如速度足够大,小球就不再落回月球表面,它将绕月球做半径为 R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1 起码为多大?【答案】 (1) g 0v 2v 2 R 2 v 2 R(2) M(3) v 12h2h2hG【分析】(1)依据自由落体运动规律v 22g 0h ,解得 g 0v 22h(2)在月球表面,设探测器的质量为m ,万有引力等于重力, GMmmg 0 ,解得月球R 2v 2 R 2质量 M2hG(3)设小球质量为m ' ,抛出时的速度 v 1 即为小球做圆周运动的环绕速度万有引力供给向心力Mm 'v12,解得小球速度起码为v1v2 R G m '2h R2R3.一名宇航员到达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某地点以初速度v竖直向上抛出,小球在空中运动一间后又落回原抛出地点,测得小球在空中运动的时间为t,已知万有引力恒量为G,不计阻力,试依据题中所供给的条件和丈量结果,求:(1)该星球表面的“重力”加快度g 的大小;(2)该星球的质量M;(3)假如在该星球上发射一颗环绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)g 2v2vR2Rt(3)T 2(2)Mt Gt2v【分析】【详解】(1)由运动学公式得:t=2vg解得该星球表面的“重力”加快度的大小g=2vt(2)质量为m 的物体在该星球表面上遇到的万有引力近似等于物体遇到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg=GmMR2解得该星球的质量为2vR2 MGt(3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期 T 最小,则由牛顿第二定律和万有引力定律G m M= 4 2 m RR2T 2解得该卫星运行的最小周期T=2Rt 2v【点睛】重力加快度 g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.此题要修业生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力供给.4.“嫦娥一号”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道 .已知卫星在停靠轨道和工作轨道运行的半径分别为R和 R1,地球半径为r ,月球半径为 r1,地球表面重力加快度为g,月球表面重力加快度为.求:(1)卫星在停靠轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运行时,依据万有引力供给向心力:解得:卫星在停靠轨道上运行的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运行,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运行的周期.5. 侦探卫星在经过地球两极上空的圆轨道上运行 ,它的运行轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少 ?设地球半径为R ,地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】【剖析】【详解】设卫星周期为 T 1 ,那么 :GMm 4 2m( R h), ①( R h)2T 12又MmGR2mg ,②由①②得2( h R) 3T1.R g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为l ,地球自转周期为T ,要使卫星在一天(地球自转周期)的时间内将赤道各处的状况全都拍摄下来,则Tl 2R .T1所以2 RT1 4 2(h R)3 lT .T g【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.6.我国首颗量子科学实验卫星于2016 年 8 月 16 日 1 点 40 分红功发射。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“万有引力与航天”命题分析
“万有引力与航天”是牛顿运动定律和万有引力定律完美结合并应用于实际问题的典范。

在新课标高考中,基本上以选择题形式命题,难度偏高,主要考查学生的分析综合能力。

在一轮复习中,我们认为抓好以下几个基础性的问题,能够逐步提高难度与高考匹配。

一、“圆周运动”规律破解公转模型
学以致用是课标主要的理念,所以围绕万有引力理论的成就命题理所应当。

具体思路为:
(1)万有引力提供向心力,即2Mm G ma r =,2
222;v a r r r T πω⎛⎫
=== ⎪⎝⎭

(2)“黄金代换式”。

忽略自转,天体对其表面物体的万 有引力近似等于物体的重力,即
2Mm
G
mg
R =得2GM gR =。

【例1】一行星绕恒星作圆周运动。

由天文观测可得,其运动周期为T ,速度为v 引力常量为G,下列表述不正确的是 ( )
A.恒星的质量为32v T
G π
B.行星的质量为23
2
4v GT π
C.行星运动的轨道半径为2vT π
D.行星运动的加速度为
2v
T
π 【解析】由2R T v π=可得,2vT
r π
=,C 项正确;由22Mm v G m r r =,将r 代人可得32v T M G π=A 项正确; 由
2
v a r
=可得2v a T π=,D 项正确;在万有引力提供向心力的表达式中,行星质量无法求出,B 项错误。

【答案】B
【总结】“万冇引力”中的定量问题主要有网个方而。

一个针对中心天体,涉及的物理量有质量和密度。

如天体质量2gR M G =,天体密度34M g
V GR
ρπ==
;天体的质量324R M GT π= 天体的密度3
23
3M r V GT R πρ==
;若天体表面运行时,可认为轨进半径r 等于天体R,则天体密度2
3g
GT ρ=
(天体表面的重力加速度为g 和天休半径为R ,卫星绕天体做匀速圆周运动的周期为T 和半径为r)。

另一个就是围绕卫星或行星的运动量命题,可以定量,也可以定性分析比较等。

主要公式为:
二、重力加速度"牵手”天地两物体
【例1】若在某行星和地球上相对于各自的水平地面附近相同的商度处、以相同的速率平抛一
物体,它们在水平方向运动的距离之比为2。

已知该行星质量约为地球的7倍,地球的半径为R 。

由此可知,该行星的半径约为 ( ) A.R/2
/2
【解析】平抛运动在水平方向上做匀速直线运动,即x=v 0t,在竖直方向上做自由落体运动,即h=gt 2
/2,
所以x v =两种情况下,抛出的速度相同,高度相同,所以7
=4
g g 行
地,根据公式2
Mm
G
mg R =可得,2GM g R =,故2
27
==4
M g R M g R 行行行地地地
,解得=2R R 行地知=2%,故C 项正确。

【答案】C
【总结】在天体上进行小型的科学探究,如让物体处于平衡态(mg=F ),让物体做自由落体运动(h=gt 2
/2);让物体做平抛运动(x=v 0t ,h=gt 2
/2);让物体做圆周运动等,找出重力加速
度,利用黄金代换2
GM gR =把“地上”与“天上”的物理量联系起来,实现天地归一。

三、“供需”辩证关系解读变轨模型
【例3】同步卫星的发射方法是变轨发射,即先把卫星发射到离地面高度为200 km 〜300 km 的圆形轨道上,这条轨进叫停序泊轨道, 如图1所示,当卫星穿过赤道平面上的P 点时,末级火箭点火工作,使卫星进人一条大的椭圆轨道,其远地点恰好在地球赤道上空约36000 km 处,这条轨道叫转移轨道;当卫星到达远地点Q 时,再开动卫星上的发动机,使之进人同步轨道,也叫静止轨道。

关于同步卫星及发射过程,下列说法正确的是 ( )
A.在P 点火箭点火和Q 点开动发动机的目的都是使卫星加速,因此,卫星在静止轨道上上运行的线
速度大于在停泊轨道运行的线速度
B.在P点火箭点火和Q点开动发动机的目的都是使卫星加速,因此,卫星在静止轨道上上运行的机械能大于在停泊轨道运行的机械能
C.卫星在转移轨道上运动的速度大小范围为7.9-- 11.2 km/s
D.所有地球同步卫星的静止轨道都相同
【解析】卫星点火加速后,由于克服地球引力做功,速度减小,而由
2 2
Mm v
G m
r
r
=知,在高轨道上的线速度小于停泊轨道上的线速度,A错误;在P点火箭点火和Q点火箭开动发动机的目的都是使卫星加速,则卫星在静止轨道上运行的机械能大于在停泊轨道运行的机械能,故B项正确,在转移轨道上的速度一定小于第一宇宙速度,故C项错误;所有的地球同步卫星的静止轨道都相同,并且都在赤道平面上,故 D项正确。

【答案】BD
【总结】(1)卫星发射及变轨过程概述:
人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图2所示。

①为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 I上。

②在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做
离心运动进人椭圆轨道II。

③在B点(远地点)再次点火加速进入圆形轨道III。

(2)三个运行物理量的大小比较
①速度:设卫星在圆轨道I和III上运行时的速率分别v1和v3,在轨道II上过A和B点速率分别为v A、v B。

在 A点加速,则v A>v1,在B点加速,则切v3 > v B,又因v1 >v3,故有v A>v1>v3> v B.
②加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道I还是轨道II上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同。

③周期:设卫星在I、II、III轨道上运行周期分别为 T1、T2、T3,轨道半径分别为r1、r2(半长轴)、
r3,由开普勒第三定律
3
2
r
k
T
=可知T1<T2<T3。

四、“传动规律’,嫁接双星模型
【例4】宇宙中两颗相距很近的恒星常常组成一个双星系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T,两星到某一共同圆心的距离分别为R1和R2,那么,这双星系统中两颗恒星的质量关系正确的是( ) A.这两颗恒星的质毋必定相等
B.这两颗恒星的质量之和为
23
12
2
4()
R R
GT
π+
C.这两颗恒星的质量之比为m1:m2=R2:R1
D.其中必有一颗恒星的质量为
22
112
2
4()
R R R
GT
π+
【解析】设双星的质量分别为m1、m2于它们做圆周运动所需向心力是由万有引力提供的,故有:
对m1:
2
12
11
2
12
2
()
m m
G m R
T
R R
π
⎛⎫
= ⎪
+⎝⎭
对m2:
2
12
22
2
12
2
()
m m
G m R
T
R R
π
⎛⎫
= ⎪
+⎝⎭
解得:
22
112
22
4()
R R R
m
GT
π+
=,
22
212
12
4()
R R R
m
GT
π+
=,
23
12
122
4()
R R
m m
GT
π+
+=。

m1:m2=R2:R1,所以 B、C、D项正确。

【答案】BCD
【拓展】三星与四星问题掠影。

相关文档
最新文档