带电粒子在电磁场中运动压轴题.doc

合集下载

带电粒子在磁场中的运动压轴难题综合题附答案

带电粒子在磁场中的运动压轴难题综合题附答案

带电粒子在磁场中的运动压轴难题综合题附答案一、带电粒子在磁场中的运动压轴题1.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,由2v qvB mr=得:mv BqR =(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(1OG R R ==+② 225-22=2FG OF OG R =-③22EG R =④ 挡板上被粒子打中的区域长度l =FE 2R +5-222R 2+10-42R ⑤2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y ,由带电粒子在电场中偏转的规律得:y =12at 2…① a =qE m =qU md …② t =Lv…③ 由①②③解得:y =0.08m设此粒子射入时与x 轴的夹角为α,则由几何知识得:y =r sinα+R 0-R 0cosα 可知tanα=43,即α=53° 比例η=53180︒×100%=29%3.如图所示,虚线MN 为匀强电场和匀强磁场的分界线,匀强电场场强大小为E 方向竖直向下且与边界MN 成θ=45°角,匀强磁场的磁感应强度为B ,方向垂直纸面向外,在电场中有一点P ,P 点到边界MN 的竖直距离为d 。

带电粒子在磁场中的运动压轴题综合题含答案

带电粒子在磁场中的运动压轴题综合题含答案

带电粒子在磁场中的运动压轴题综合题含答案一、带电粒子在磁场中的运动压轴题1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小.(2)区域Ⅱ内匀强磁场的磁感应强度B 的大小.(3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E q =,2mg E q =122m gd 121626d d gd gd π+ 【解析】【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mg E q= 微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mg E q= (2)粒子进入磁场区域时满足:2111cos452qE d mv ︒= 2v qvB m R= 根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B = (3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒= 2302360R t vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ;(3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b 【解析】【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。

高考物理带电粒子在磁场中的运动压轴题综合题附答案

高考物理带电粒子在磁场中的运动压轴题综合题附答案

高考物理带电粒子在磁场中的运动压轴题综合题附答案一、带电粒子在磁场中的运动压轴题1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则v t rπ=解得:35l rπ=粒子在电场中沿虚线方向做匀变速直线运动,21cos22qEl r tmα-=⋅解得:220(23)9mvEqlππ-=2.如图所示,在xOy坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。

带电粒子在电磁场中运动压轴题

带电粒子在电磁场中运动压轴题

2012高考物理·压轴题1.(2010·江苏卷)制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示,加在极板A 、B 间的电压U AB 作周期性变化,其正向电压为U 0,反向电压为-kU 0(k>1), 电压变化的周期为2r ,如图乙所示。

在t=0时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动。

若整个运动过程中,电子未碰到极板A ,且不考虑重力作用。

(1)若54k =,电子在0—2r 时间内不能到达极板A ,求d 应满足的条件; (2)若电子在0—2r 时间未碰到极板B ,求此运动过程中电子速度v 随时间t 变化的关系; (3)若电子在第N 个周期内的位移为零,求k 的值。

答案(1)20910eU d mτ>(2)当0≤τ-2n τ<τ时v=[t-(k+1)n τ] 0ekU md ,当0≤τ-2n τ<τ时v =[(n+1)(k+1)τ-kt]0eU dm (3)4143N k N -=- 3.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如左图所示.磁场的磁感应强度B 随时间t 的变化情况如右图所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间(3)小球运动的周期,并画出运动轨迹(只画一个周期)答案:(1)E =mg q .(2)2t 0+m B 0q (3)T =8t 0(或T =12πm qB 0) 轨迹如图4.如图甲所示,一对平行放置的金属板M 、N 的中心各有一小孔P 、Q 、PQ 连线垂直金属板;N 板右侧的圆A 内分布有方向垂直于纸面向外的匀强磁场,磁感应强度大小为B ,圆半径为r ,且圆心O 在PQ 的延长线上。

带电粒子在磁场中的运动压轴难题二轮复习及答案解析

带电粒子在磁场中的运动压轴难题二轮复习及答案解析

带电粒子在磁场中的运动压轴难题二轮复习及答案解析一、带电粒子在磁场中的运动压轴题1.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R = 解得正、负电子离开回旋加速器时的速度为:00eB Rv m =正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:200mv ev B r=电磁铁内匀强磁场的磁感应强度B 大小:02sinB R n B dπ=2.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:20v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-'解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最大值 解得:94L d =当322d y y【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.3.如图所示,在直角坐标系xOy 平面内有两个同心圆,圆心在坐标原点O,小圆内部(I 区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy 平面向里的匀强磁场(图中未画出),I 、Ⅱ区域磁场磁感应强度大小分别为B 、2B 。

带电粒子在磁场中的运动压轴难题知识归纳总结含答案

带电粒子在磁场中的运动压轴难题知识归纳总结含答案

带电粒子在磁场中的运动压轴难题知识归纳总结含答案一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A ,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为20粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (23B E【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子21L v t =,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:29v m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m =当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=4.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高考物理电磁场压轴题

高考物理电磁场压轴题

以下是高考物理电磁场的压轴题:
1.带电粒子在电磁场中的运动
在一个匀强磁场中,有一个竖直向下的匀强电场。

一个带正电的粒子从A点以一定的初速度垂直射入这个电磁场中,粒子在电场力和洛伦兹力的共同作用下做运动。

已知粒子在A点的初速度为v₀,质量为m,电量为q,磁场的磁感应强度为B,电场强度为E,重力加速度为g。

若粒子能沿直线从A点运动到B点,求A、B两点间的距离。

2.电容器与电磁场的综合问题
真空中有一个竖直放置的平行板电容器,两极板间的距离为d,电容为C,上极板带正电。

现有一个质量为m、带电量为+q的小球,从小孔正上方h高度处由静止开始释放,小球穿过小孔到达下极板处速度恰好为零。

已知小球在运动过程中所受空气阻力的大小恒为f,静电力常量为k,重力加速度为g。

求:
(1) 小球到达下极板时的动能;
(2) 电容器的带电量。

3.电磁感应与电磁场的综合问题
在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感线垂直的轴匀速转动,产生的交变电动势的图象分别如甲、乙所示,则在两图中t₁和t₁时刻()
A. 甲图中线圈平面与磁感线平行,乙图中线圈平面与磁感线垂直
B. 甲图中线圈的转速小于乙图中线圈的转速
C. 甲、乙两图中交变电动势的有效值相等
D. 甲、乙两图中交变电动势的瞬时值表达式相同。

压轴题 带电粒子在电磁组合场中运动(解析版)

压轴题  带电粒子在电磁组合场中运动(解析版)

压轴题 带电粒子在电磁组合场中运动1.带电粒子在电磁组合场中的运动是高考物理中的一个重要考点,它涵盖了电学和力学的核心知识,是考查学生综合应用能力的关键。

2.在高考命题中,这一考点通常以综合性较强的题目形式出现,涉及电场、磁场和粒子运动等多个方面。

题目可能要求考生分析带电粒子在电磁组合场中的运动轨迹、速度、加速度等物理量,也可能要求考生运用动量定理、能量守恒等原理解决复杂问题。

3.备考时,考生应首先深入理解电磁组合场的基本原理和带电粒子在其中的运动规律,掌握电场力、洛伦兹力等基本概念的计算和应用。

同时,考生需要熟悉相关的物理公式和定理,并能够灵活运用它们解决具体问题。

此外,考生还应注重实践练习,通过大量做题来提高自己的解题能力和速度。

考向一:带电粒子在电磁组合场中的基本规律1.带电粒子在组合场中运动的分析思路第1步:粒子按照时间顺序进入不同的区域可分成几个不同的阶段。

第2步:受力分析和运动分析,主要涉及两种典型运动,如第3步中表图所示。

第3步:用规律2.“电偏转”与“磁偏转”的基本规律垂直电场线进入匀强电场(不计重力)垂直磁感线进入匀强磁场(不计重力)受力情况电场力F E=qE,其大小、方向不变,与速度v无关,F E是恒力洛伦兹力F B=qvB,其大小不变,方向随v而改变,F B是变力轨迹抛物线圆或圆的一部分运动轨迹示例求解方法利用类平抛运动的规律求解:v x=v0,x=v0t,v y=qEm·t,y=12·qEm·t2偏转角φ满足:tanφ=v yv x=qEtmv0半径:r=mvqB;周期:T=2πmqB偏移距离y和偏转角φ要结合圆的几何关系利用圆周运动规律讨论求解运动时间t=xv0t=φ2πT=φmBq 动能变化不变考向二:先电场后磁场(1)先在电场中做加速直线运动,然后进入磁场做圆周运动。

如图甲、乙所示,在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度。

高中物理带电粒子在磁场中的运动压轴题专项复习附答案

高中物理带电粒子在磁场中的运动压轴题专项复习附答案

高中物理带电粒子在磁场中的运动压轴题专项复习附答案一、带电粒子在磁场中的运动压轴题1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R qB==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin =︒=,水平分速度001602x v v cos v =︒=; 质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==所以质点在P 点的竖直分速度03yP y v v ==, 水平分速度000317322xP x v qE v v t v g v m =+=+=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图所示,质量m=15g 、长度L=2m 的木板D 静置于水平地面上,木板D 与地面间的动摩擦因数μ=0.1,地面右端的固定挡板C 与木板D 等高。

高中物理带电粒子在磁场中的运动压轴题专项复习附答案解析

高中物理带电粒子在磁场中的运动压轴题专项复习附答案解析

高中物理带电粒子在磁场中的运动压轴题专项复习附答案解析一、带电粒子在磁场中的运动压轴题1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m =当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远,这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ== 22x Eq qEL q v t m m mϕ===若速度与x 轴方向的夹角为α角cos x v v α=1cos 2α=060α∴=3.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

带电粒子在磁场中的运动压轴难题培优题含答案

带电粒子在磁场中的运动压轴难题培优题含答案

带电粒子在磁场中的运动压轴难题培优题含答案一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S= 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+(3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at=,qE ma = 联立解得: 20mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB mR=得:()0 2221n mv BqL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小04nmvBqL=,n=1、2、3....或()2221n mvBqL+=,n=1、2、3....(3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则2222n n m Lt TqB vππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt TqB vππππ++=⨯==粒子从进入磁场到坐标(-L,0)点所用的时间为2222n n m Lt TqB vππππ=⨯==或2220(42)(42)2n n m Lt TqB vππππ++=⨯==3.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB dEm≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.4.如图所示,空间存在方向垂直于xOy平面向里的匀强磁场,在0<y<d的区域Ⅰ内的磁感应强度大小为B,在y>d的区域Ⅱ内的磁感应强度大小为2B.一个质量为m、电荷量为-q的粒子以速度qBdm从O点沿y轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径:(2) 若粒子射入区域Ⅰ时的速度为2qBdvm=,求粒子打在x轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdvm>,求该粒子打在x轴上位置坐标的最小值.【答案】(1)R d=(2)()43OP d=-23mtqBπ=(3)min3x d=【解析】【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:21vqv B mr=把qBdvm=,代入上式,解得:R d=(2) 当粒子射入区域Ⅰ时的速度为02v v=时,如图所示在OA 段圆周运动的圆心在O 1,半径为12R d = 在AB 段圆周运动的圆心在O 2,半径为R d = 在BP 段圆周运动的圆心在O 3,半径为12R d = 可以证明ABPO 3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d ==所以:323OO d d =-所以粒子打在x 轴上的位置坐标()133243OP O O OO d =+=- 粒子在OA 段运动的时间为:13023606m mt qB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =5.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。

高中物理带电粒子在磁场中的运动压轴题二轮复习word

高中物理带电粒子在磁场中的运动压轴题二轮复习word

高中物理带电粒子在磁场中的运动压轴题二轮复习word一、带电粒子在磁场中的运动压轴题1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。

挡板PQ 垂直MN 放置,挡板的中点置于N 点。

在挡板的右侧区域存在垂直纸面向外的匀强磁场。

在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。

已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。

(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。

若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。

【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为20粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T 0+T ′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B 0中偏转60°,而后又在− B 0中再次偏转60°,经过n 次这样的循环后恰恰从N 点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.3.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2g kB (3)2222232(,)28g k B L L k B g-【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B gθ=-+=-4.如图所示,在竖直平面(纸面)内有一直角坐标系xOy ,水平轴x 下方有垂直纸面向里的匀强磁场,第三象限有沿x 轴负方向的匀强电场,第四象限存在另一匀强电场(图中未画出);光滑绝缘的固定不带电细杆PQ 交x 轴于M 点,细杆PQ 与x 轴的夹角θ=30°,杆的末端在y 轴Q 点处,PM 两点间的距离为L .一套在杆上的质量为2m 、电荷量为q 的带正电小环b 恰好静止在M 点,另一质量为m 、不带电绝缘小环a 套在杆上并由P 点静止释放,与b 瞬间碰撞后反弹,反弹后到达最高点时被锁定,锁定点与M 点的距离为16L,b 沿杆下滑过程中始终与杆之间无作用力,b 进入第四象限后做匀速圆周运动,而后通过x 轴上的N 点,且OM=ON .已知重力加速度大小为g ,求:(1)碰后b 的速度大小υ以及a 、b 碰撞过程中系统损失的机械能△E ; (2)磁场的磁感应强度大小B ;(3)b 离开杆后经过多长时间会通过x 轴.【答案】(1;564mgL (2(3)ⅰ;竖直向上经过x 轴:()1t n =- (n=1、2、3……)ⅱ;竖直向下经过x 轴:()1t n =- (n=1、2、3……) 【解析】 【分析】(1)根据能量守恒定律和动量守恒定律求解碰后b 的速度大小υ以及a 、b 碰撞过程中系统损失的机械能△E ;(2)b 从M 点运动到Q 点的过程中与杆无作用力,列出平衡方程,结合其他关系求解B ;(3)画出粒子的运动轨迹,结合几何关系以及圆周运动的知识求解b 离开杆后通过x 轴可能的时间. 【详解】(1)设a 和b 相碰前的速度大小为v 1,碰后的速度为v 2,由机械能守恒定律:211sin 2mgL mv θ= 221sin 162L mg mv θ⋅= 由动量守恒定律:122mv mv mv =-+解得v =机械能损失:22212111(2)222E mv mv mv ∆=-+⨯ 解得564E mgL ∆=(2)设匀强磁场的磁感应强度大小为B ,由于b 从M 点运动到Q 点的过程中与杆无作用力,可得qvBcos θ=2mg ,解得B =(3)b 在第四象限做匀速圆周运动的轨迹如图,由几何关系可知轨迹的圆心O ′在x 轴上,b 经过N 点时速度方向与x 轴垂直,圆心角α=1200,又匀速圆周运动的周期为4mT qBπ= b 从Q 点第一次通过N 点的时间为10360t T α=可得15324Lt gπ=b 第一次通过N 点后做竖直上抛运动,经t 2时间第二次通过N 点,有:2254v Lt g g ==b 第二次通过N 点后做竖直上抛运动,经t 3时间第三次通过N 点,有:253216T L t gπ==故b 离开杆后会通过x 轴的可能时间是: (ⅰ)竖直向上通过x 轴:12353553(1)()(1)()24416L L Lt t n t t n g g gππ=+-+=- (n=1、2、3、……) (ⅱ)竖直向下通过x 轴:1223535553(1)()(1)()244416L L L Lt t t n t t n g g g gππ=++-+=- (n=1、2、3、……) 【点睛】此题考查带电粒子在复合场中的运动,粒子的运动较复杂,关键是是先搞清粒子运动的物理过程,画出粒子运动的轨迹图,结合圆周运动的知识,能量守恒以及动量守恒的关系求解.5.如图所示,在xoy 平面(纸面)内,存在一个半径为R=02.m 的圆形匀强磁场区域,磁感应强度大小为B=1.0T ,方向垂直纸面向里,该磁场区域的左边缘与y 轴相切于坐标原点O.在y 轴左侧、-0.1m≤x≤0的区域内,存在沿y 轴负方向的匀强电场(图中未标出),电场强度的大小为E=10×104N/C .一个质量为m=2.0×10-9kg 、电荷量为q=5.0×10-5C 的带正电粒子,以v 0=5.0×103m/s 的速度沿y 轴正方向、从P 点射入匀强磁场,P 点的坐标为(0.2m ,-0.2m),不计粒子重力.(1)求该带电粒子在磁场中做圆周运动的半径; (2)求该带电粒子离开电场时的位置坐标;(3)若在紧靠电场左侧加一垂直纸面的匀强磁场,该带电粒子能回到电场,在粒子回到电场前瞬间,立即将原电场的方向反向,粒子经电场偏转后,恰能回到坐标原点O ,求所加匀强磁场的磁感应强度大小. 【答案】(1)0.2r m = (2)()0.1,0.05m m -- (3)14B T = 【解析】 【分析】粒子进入电场后做类平抛运动,将射出电场的速度进行分解,根据沿电场方向上的速度,结合牛顿第二定律求出运动的时间,从而得出类平抛运动的水平位移和竖直位移,即得出射出电场的坐标.先求出粒子射出电场的速度,然后根据几何关系确定在磁场中的偏转半径,然后根据公式B mvqR=求得磁场强度 【详解】(1)带正电粒子在磁场中做匀速圆周运动,由牛顿第二定律有:200v qv B m r=解得:0.2r m =(2)由几何关系可知,带电粒子恰从O 点沿x 轴负方向进入电场,带电粒子在电场中做类平抛运动,设粒子在电场中的加速度为a ,到达电场边缘时,竖直方向的位移为y ,有:0L v t =,212y at =由牛顿第二定律有:qE ma = 联立解得:0.05y m =所以粒子射出电场时的位置坐标为()0.1,0.05m m -- (3)粒子分离电场时,沿电场方向的速度y v at = 解得:30 5.010/y v v m s ==⨯则粒子射出电场时的速度:02vv =设所加匀强磁场的磁感应强度大小为1B ,粒子磁场中做匀速圆周运动的半径为1r ,由几何关系可知:1220r m =由牛顿第二定律有:211v qvB m r =联立解得:14B T =6.如图所示,三块挡板围成截面边长L =1.2m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E =4×10-4N /C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外, 磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷q/m =105C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN 小孔C 进入内部匀强磁场,经内部磁场偏转后直接垂直AN 经过Q 点进入外部磁场.已知粒子最终回到了O 点,OC 相距2m .设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1) 磁感应强度B 1的大小;(2) 粒子从O 点出发,到再次回到O 点经历的时间;(3) 若仅改变B 2的大小,当B 2满足什么条件时,粒子可以垂直于MA 经孔P 回到O 点(若粒子经过A 点立即被吸收). 【答案】(1)51210T 3B -=⨯;(2)-22.8510s t =⨯;(3)524210T 3k B -+=⨯' 【解析】 【详解】(1) 粒子从O 到C 即为在电场中加速,则由动能定理得:212Eqx mv = 解得v =400 m/s带电粒子在磁场中运动轨迹如图所示.由几何关系可知 10.6m 2LR == 由211v qvB m R =代入数据得 51210T 3B -=⨯ (2)由题可知 B 2=3B 1=2×10-5 T211v qvB m R =则 120.2m 3R R == 由运动轨迹可知:进入电场阶段做匀加速运动,则112x vt = 得到 t 1=0.01 s粒子在磁场B 1中的周期为 112mT qB π=则在磁场B 1中的运动时间为 3211310s 3t T -==⨯ 在磁场B 2中的运动周期为 222mT qB π= 在磁场B 2中的运动时间为3-3321803001801110s 5.510s 3606t T π-︒+︒+︒==⨯=⨯︒则粒子在复合场中总时间为:3-21231722010s 2.8510s 6t t t t π-⎛⎫=++=+⨯=⨯ ⎪⎝⎭(3)设挡板外磁场变为'2B ,粒子在磁场中的轨迹半径为r ,则有 2'2v qvB m r=根据已知条件分析知,粒子可以垂直于MA 经孔P 回到O 点,需满足条件()212Lk r =+其中 k =0、1、2、3…… 解得524210T 3k B -+=⨯'7.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】 【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB m R=,半径0.4mvR m Bq==, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90,则第一次经过x 轴时的横坐标为120.420.57x R m m ==≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v-===⨯ 在沿电场方向上的位移22112s at =, 又因22s R = 得722212110/s a m s t ==⨯ 根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯ 【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="ma" ⑥粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨ 【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.如图所示,足够大的平行挡板A 1,A 2竖直放置,间距为6L .两板间存在两个方向相反的匀强磁场区域Ⅰ和Ⅱ,以水平面yN 为理想分界面.Ⅰ区的磁感应强度为B 0,方向垂直纸面向外,A 1,A 2上各有位置正对的小孔S 1,S 2,两孔与分界面yN 的距离为L .质量为m ,电量为+q 的粒子经宽度为d 的匀强电场由静止加速后,沿水平方向从S 1进入Ⅰ区,并直接偏转到yN 上的P 点,再进入Ⅱ区.P 点与A 1板的距离是L 的k 倍.不计重力,碰到挡板的粒子不予考虑.(1)若k =1,求匀强电场的电场强度E ;(2)若2<k <3,且粒子沿水平方向从S 2射出,求出粒子在磁场中的速度大小v 与k 的关系式和Ⅱ区的磁感应强度B 与k 的关系式. 【答案】(1) (2),【解析】试题分析:(1)粒子在电场中,由动能定理有qEd=mv 2-0 ①粒子在Ⅰ区洛伦兹力提供向心力 qvB 0=②当k=1时,由几何关系得 r=L ③ 由①②③解得E=④(2)由于2<k<3时,由题意可知粒子在Ⅱ区只能发生一次偏转,由几何关系可知 (r-L)2+(kL)2=r 2⑤ 解得r=⑥由②⑥解得v=⑦粒子在Ⅱ区洛伦兹力提供向心力 qvB=⑧由对称性及几何关系可知⑨解得r1=⑩由⑧⑩解得B=考点:带电粒子在电场中的运动、带电粒子在匀强磁场中的运动10.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s发出质量为m、电量为q的粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+ΔE(ΔE>0,且ΔE<<E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx2【答案】见解析【解析】【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得x qB= 所以1x ∆=化简可得1x E ∆≈; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得)2222cos 1cos 2φx R R φφ∆=-=-=。

高考物理带电粒子在磁场中的运动压轴难题综合题含答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题含答案解析

高考物理带电粒子在磁场中的运动压轴难题综合题含答案解析一、带电粒子在磁场中的运动压轴题1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eU v vm=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m=由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m =当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m mϕ===若速度与x 轴方向的夹角为α角cos x v v α=1cos 2α=060α∴=4.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

专题17 带电粒子(计重力)在电场中的运动(电磁学部分)(解析版)

专题17 带电粒子(计重力)在电场中的运动(电磁学部分)(解析版)

专题17 带电粒子(计重力)在电场中的运动 压轴题一、单选题1.用长为1.4m 的轻质柔软绝缘细线,拴一质量为1.0×10-2kg 、电荷量为2.0×10-8C 的小球,细线的上端固定于O 点.现加一水平向右的匀强电场,平衡时细线与铅垂线成370,如图所示.现向左拉小球使细线水平且拉直,静止释放,则(sin370=0.6)( )A .该匀强电场的场强为3.75×107N/CB .平衡时细线的拉力为0.17NC .经过0.5s ,小球的速度大小为6.25m/sD .小球第一次通过O 点正下方时,速度大小为7m/s 【答案】C 【解析】AB .小球在平衡位置时,由受力分析可知:qE=mgtan370,解得2681.010100.75/ 3.7510/2.010E N C N C --⨯⨯⨯==⨯⨯,细线的拉力:T=201.010100.125cos370.8mg T N N ⨯⨯===-,选项AB 错误; C .小球向左被拉到细线水平且拉直的位置,释放后将沿着电场力和重力的合力方向做匀加速运动,其方向与竖直方向成370角,加速度大小为2220.125/12.5/1.010T a m s m s m ===⨯-,则经过0.5s ,小球的速度大小为v=at=6.25m/s ,选项C 正确;D .小球从水平位置到最低点的过程中,若无能量损失,则由动能定理:212mgL qEL mv +=,带入数据解得v=7m/s ;因小球从水平位置先沿直线运动,然后当细绳被拉直后做圆周运动到达最低点,在绳子被拉直的瞬间有能量的损失,可知到达最低点时的速度小于7m/s ,选项D 错误.2.如图所示,一电荷量q =+3×10-5C 的小球,用绝缘细线悬挂于竖直放置足够大的平行金属板中的O 点,开关S 合上后,小球静止时细线与竖直方向的夹角θ=37°.已知两板间距d =0.1m ,电源电动势E =15V ,内阻r =0.5Ω,电阻R 1=3Ω,R 2=R 3=R 4=8Ω,.取g=10m/s 2,已知sin37°=0.6,cos37°=0.8.则以下说法正确的是( )A .电源的输出功率为14WB .两板间的电场强度的大小为140V/mC .带电小球的质量5.6毫克D .若增加R 1的大小,会有瞬时电流从右向左流过R 4 【答案】B 【解析】R 2=R 3=8Ω,并联后的电阻值为:R′=12R 2=4Ω;由闭合电路的欧姆定律得:1152340.5E I A A R R r ==='++++;电源的输出功率P=EI-I 2r=15×2-22×0.5=28W ,故A 错误;两板间的电压为:U C =I (R 1+R 23)=2×(3+4)=14V ;两板间的电场强度为:14140/0.1C U E V m d ===,故B 正确;小球处于静止状态,所受电场力为F ,又F=qE ,由平衡条件得:水平方向 Tcosα-mg=0 ;竖直方向:Tsinα-qE=0; 得:m=37Eqgtan ︒=5.6×10-4kg ,故C 错误;若增加R 1的大小,电容两端电压增大,电容器充电,会有瞬时电流从左向右流过R 4,故D 错误.故选B .3.如图所示,倾角为α的光滑斜面下端固定一绝缘轻弹簧,M 点固定有一个带电量为-q 的小球甲.整个装置处在场强大小为E 、方向沿斜面向下的匀强电场中.另一个带电量为+q 、质量为m 的小球乙,从N 点由静止释放后,沿着斜面向下运动.重力加速度为g .则( )A .小球乙返回时,有可能撞到小球甲B .小球乙在N 点的加速度大小为sin qE mg mα+C .小球乙刚接触弹簧时,速度最大D .小球乙沿着斜面向下运动过程中,其电势能可能增加 【答案】D 【解析】A .根据动能定理知,当小球乙返回到N 点,由于重力做功为零,匀强电场的电场力做功为零,电荷甲的电场对乙做功为零,则合力做功为零,则到达N 点的速度为零,所以小球乙不可能撞到小球甲,故A 错误;B .设MN 两点之间的距离为0s ,根据牛顿第二定律得,小球在N 点的加速度220sin q qE mg k F s a m mα+-==合, 故B 错误;C .当小球所受的合力为零时,速度最大,即22sin q qE mg k kx sα+=+,此时弹簧仍处于压缩状态,故C 错误;D .小球乙沿着斜面向下运动过程中,匀强电场的电场力做正功,电荷甲产生的电场对乙做负功,两个电场力的合力不一定沿斜面向下,最终电场力可能做正功,也可能做负功,故电势能可能减少,也电势能可能增加,故D 正确.4.在光滑水平面上充满水平向右的匀强电场,被拉直的绝缘轻绳一端固定在O 点,另一端系着带正电的小球,轻绳与水平面平行,OB 与电场线平行.若小球从A 点由静止释放后,沿水平面摆动到B 点,不计空气阻力,则关于此过程,下列判断正确的是( )A .小球的动能先变小后变大B .小球的切向加速度一直变大C .小球受到的拉力先变大后变小D .小球受到的电场力做功的功率先增大后减小【答案】D 【解析】小球从A 点摆动到B 点的过程中,只有电场力做功且一直做正功,根据动能定理知小球的动能E k 一直增大,故A 错误;小球从A 点摆动到B 点的过程中轻绳与OB 的夹角设为θ,根据牛顿第二定律:sin qE ma θ=则小球的切向加速度为:1sin qE a mθ=,可知加速度随着θ的减小而减小,故B 错误;根据牛顿第二定律和向心力公式有:2v F qEcos m Lθ=-,可得小球受到的拉力大小为:2k F qEcos E L θ=+,cos θ、E k 均随着θ的减小而增大,可见F 一直增大,故C 错误;在A 点时小球的速率为零,电场力做功的瞬时功率为零,过B 点时小球的速度方向与电场力垂直,电场力做功的瞬时功率也为零,可见小球受到的电场力做功的功率先增大后减小,故D 正确.所以D 正确,ABC 错误.5.如图所示,绝缘轻弹簧的上端固定在天花板上的O 点,下端系一质量为m 、电荷量为q 的带正电小球,小球套在O 点正下方的水平光滑绝缘杆上,整个装置处于电场强度大小为E,方向沿杆向右的匀强电场中,现将小球以某个初速度从A 点运动到B 点,到B 点时与其在A 点时的弹簧弹カ大小相等,在小球从A 点运动到B 点的过程中,下列判断正确的是( )A .小球在A 点时的速度大于在B 点时的速度 B .小球的电势能一直减小,弹性势能先增大后减小C .小球的加速度大小仅由电场力决定的位置有2个D .弹簧弹力对小球做功的瞬时功率为零的位置有4个 【答案】C【解析】A. 小球从A 到B 的过程中,弹簧弹力做功为零,光滑杆无摩擦,杆处于水平位置中立不做功,故只有电场力做功;根据动能定理可得221122AB B A EqS mv mv =-,由于0AB EqS >,所以小球到达B 点时的速度大于A 点是的速度,故A 错误;B. 小球从A 到B 的过程中电场力一直做正功,所以小球的电势能一直减小,弹性势能先增大后减小再增大,故B 错误;C. 小球处于O 点正下方和小球受到的弹力为零的位置时,小球合力都是qE ,加速度都是qE/m ,所以小球的加速度大小为qE/m 的位置有2个,故C 正确;D.在O 点正下方弹力方向与速度方向垂直,弹力不做功,功率为零;在弹簧处于原长的位置弹力为零,则弹力的功率为零,所以弹簧测力计对小球做功的瞬间功率为零的位置有2个,故D 错误. 故选C.6.一个带正电荷量为q ,质量为m 的小球,从光滑绝缘的斜面轨道的A 点由静止下滑,小球恰能通过半径为R 的竖直圆形轨道的最高点B 而做圆周运动.现在竖直方向上的加如图所示的匀强电场,若仍从A 点由静止释放该小球,则( )A .小球仍恰好能过B 点 B .小球不能过B 点C .小球通过B 点,且在B 点与轨道之间的压力不为0D .以上说法都不对 【答案】A【解析】没有电场时,最高点速度设为v ,则2v mg m R=又根据机械能守恒定律2()122mg h R mv -=解得52h R =加上电场时,恰好过最高点需要的速度设为v′,则'2v mg qE m R+=解得'()mg qE Rv m+=而由动能定理得22212mg h R qE h R mv ---='()() 解得'()mg qE Rv m+=说明小球仍恰好能过B 点,球与轨道间无作用力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012 高考物理·压轴题
1.(2010·江苏卷)制备纳米薄膜装置的工作电极可简化为真空中间距为 d 的两平行极板,如图甲
所示,加在极板 A 、B 间的电压 U AB作周期性变化,其正向电压为U 0,反向电压为 -kU 0( k>1),电压变化的周期为2r,如图乙所示。

在t=0 时,极板 B 附近的一个电子,质量为m、电荷量为e,受电场作用由静止开始运动。

若整个运动过程中,电子未碰到极板 A ,且不考虑重力作用。

( 1)若k 5 ,电子在0— 2r 时间内不能到达极板 A ,求 d 应满足的条件;
4
v 随时间t变化的关系;
( 2)若电子在0— 2r 时间未碰到极板 B ,求此运动过程中电子速度
( 3)若电子在第N 个周期内的位移为零,求k 的值。

答案( 1) d 9eU 0 2 0 2n < ekU 0,当0≤-
2n < 时
( 2)当时 v=[t-(k+1)n
10m ≤ - md
v=[(n+1)(k+1) -kt] eU0 ( 3)k 4N 1
dm 4N 3
3.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如左图
所示.磁场的磁感应强度 B 随时间 t 的变化情况如右图所示.该区域中有一条水平直线MN,D 是MN 上的一点.在t= 0 时刻,有一个质量为m、电荷量为+ q 的小球 (可看做质点 ),从 M 点开始沿
着水平直线以速度v0做匀速直线运动,t0时刻恰好到达 N 点.经观测发现,小球在t=2t0至 t= 3t0 时间内的某一时刻,又竖直向下经过直线MN 上的 D 点,并且以后小球多次水平向右或竖直向下经
过 D 点.求:
(1)电场强度 E 的大小.
(2)小球从 M 点开始运动到第二次经过 D 点所用的时间
(3)小球运动的周期,并画出运动轨迹(只画一个周期 )
答案:( 1) E=mg
.( 2) 2t0+
m
( 3) T= 8t0(或 T=
12π m
) 轨迹如图q B0 q qB0
4.如图甲所示,一对平行放置的金属板M 、N 的中心各有一小孔P、Q、PQ 连线垂直金属板;N 板右侧的圆 A 内分布有方向垂直于纸面向外的匀强磁场,磁感应强度大小为B,圆半径为r,且圆心 O 在 PQ 的延长线上。

现使置于P 处的粒子源连续不断地沿PQ 方向放出质量为m、电量为 +q 的带电粒子(带电粒子的重力和初速度忽略不计,粒子间的相互作用力忽略不计),从某一时刻开始,在
板 M 、 N 间加上如右图所示的交变电压,周期为T ,电压大小为U。

如果只有在每一个周期的0—
T/4 时间内放出的带电粒子才能从小孔 Q 中射出,求: ( 1)在每一个周期内哪段时间放出的带电粒子到达 Q 孔的速度最大?
( 2)该圆形磁场的哪些地方有带电粒子射出,在图中标出有带电粒子射出的区域
答案(
1) v
2qU
( 2)斜线部分有带电粒子射出
m
5. (2010·石家庄质检 )两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时
间周期性变化的电场和磁场,变化规律分别如图
1、图 2 所示 (规定垂直纸面向里为磁感应强度的正 方向 )。

在 t=0。

时刻由负极板释放一个初速度为零的带负电的粒子2 (不计重力 )。

若电场强度 E 0、磁 感应强度 B 0、粒子的比荷 q/m 均已知,且
h
10 mE 0
t 0
2 m
2
,两板间距。

(1) 求粒子在 0~to 时间内的位移大小与极板间距 qB 0
qB 0
h 的比值。

(2) 求粒子在极板间做圆周运动的最大半径 (用 h 表示 )。

⑶若板间电场强度 E 随时间的变化仍如图 1 所示,磁场的变化改为如图 3 所示,试画出粒子在板间
运动的轨迹图(不必写计算过程)。

答案:( 1)
s 1 1
( 2) 2
h ( 3)如右图 2
h
5 5
6.(2011 ·湖南十校联考 )如图甲所示,在边界 MN 左侧存在斜方向的匀强电场 E 1,在 MN 的右侧有 竖直向 上、场强大小为 E 2= 0.4N/C 的匀强电场,还有垂直纸面向内的匀强磁场
B( 图甲中未画出 )和 水平向右的匀强电场
E 3(图甲中未画出 ),B 和 E 3 随时间变化的情况如图乙所示,
P 1P 2 为距 MN 边界
2.295m 的竖直墙壁,现有一带正电微粒质量为
- 7
- 5
4×10 kg ,电量为 1×10
C ,从左侧电场中距 MN 边

1
1m/s 速度垂直 MN 边界进入右侧场区,设此时刻
t = 0, 取
15m 的 A 处无初速释放后,沿直线以
2
g = 10m/s 。

求:
(1)MN 左侧匀强电场的电场强度E1(sin37°= 0.6);
(2)带电微粒在 MN 右侧场区中运动了 1.5s 时的速度;
(3)带电微粒在 MN 右侧场区中运动多长时间与墙壁碰撞? (1.2
≈ 0.19) 2π
37
答案:( 1) 0.5 N/ C,水平向右方向夹53°角斜向上 . ( 2)1.1 m/ s,水平向左( 3)s
12
7.(2010·黄冈质检)在竖直平面内建立一平面直角坐标系xOy , x 轴沿水平方向,如图甲所示,坐标系的第一象限内有一正交的匀强电场和匀强磁场,电场方向竖直向上,场强为E,磁场方向垂直
纸面,磁感应强度 B0 3
3
T ,方向按图乙所示规律变化(以垂直纸面向外为磁场的正方向),
10
场强 E2=2E1,一个比荷 q/m=10 2C/kg 的带电的粒子(可视为质点)
第二象限内有一水平的匀强电场,
以 v0=4m/s 的速度在 -x 轴上的 A 点竖直向上抛出,恰能以v1=8m/s速度从+y轴上的C点水平进入第
一象限。

取粒子刚进入第一象限时刻为t=0 时刻, g=10m/s2.
( 1)求 AC 间电势差 U AC
( 2)为确保粒子不再越过OC 进入第二象限,则交变磁场周期最大值Tm 为多大?若磁场周期为上述最大值,粒子打到 +x 轴上的 D 点 (图中未标出 ),求 OD 长度 L0。

yE1 B/T
E2
v1
B0 B0 C
v0 t/s
0T0/2 T0 3T0/2 2T0
A O x -B0
(3 3) 4(33) m
答案:( 1) U AC 0.32V ( 2)Tm s, L0
15
36
9.如图(甲)所示为电视机中显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些
电子再经加速电场加速后,从O点进入偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发
出荧光形成图象,不计逸出电子的初速度和重力。

已知电子的质量为m、电荷量为 e,加速电场的电压为 U,偏转线圈产生的磁场分布在边长为l 的正方形abcd区域内,磁场方向垂直纸面,且磁感应
强度随时间的变化规律如图乙所示。

在每个周期内磁感应强度都是从-B0均匀变化到 B0。

磁场区域的左边界的中点与 O点重合, ab 边与OO′平行,右边界 bc 与荧光屏之间的距离为 s。

由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,
即为匀强磁场,不计电子之间的相互作用。

(1)求电子射出加速电场时的速度大小
(2)为使所有的电子都能从磁场的bc 边射出,求偏转线圈产生磁场的磁感应强度的最大值
(3)荧光屏上亮线的最大长度是多少
答案: (1) (2) (3)
v0 从平行金属板 MN 间中线OO
10.(2011·西安四校联考)如图甲所示,带正电粒子以水平速度
连续射入电场中。

MN 板间接有如图乙所示的随时间t 变化的电压uMN ,两板间电场可看作是均匀的,且两板外无电场。

紧邻金属板右侧有垂直纸面向里的匀强磁场 B ,分界线为 CD, EF 为屏幕。

金属板间距为d,长度为 l,磁场 B 的宽度为 d。

已知: B=5×10-3T ,l = d =0.2m ,每个带正电粒子的速度 v0=105m/s,比荷为q/m=108C/T ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电
场可视作是恒定不变的。

试求:
(1)带电粒子进入磁场做圆周运动的最小半径?
(2)带电粒子射出电场时的最大速度?
(3)带电粒子打在屏幕 EF 上的范围?
M
v0
uM d
O
N
N
答案:( 1) r min=0.2m
d
C E uMN
l
B 200
O′
0T2T3T4T t
图乙
D F
图甲
(2) v max=1.414× 105m/s (3)EF=0.38m,。

相关文档
最新文档