2018届中考数学专项复习 统计与概率的应用训练题
浙江省2018年中考数学复习 第一部分 考点研究 第八单元 统计与概率 第32课时 数据的分析与应用试题
第八单元统计与概率(建议答题时间:40分钟)1. (2017宿迁)一组数据:5,4,6,5,6,6,3.这组数据的众数是( )A. 6B. 5C. 4D. 32. (2017苏州)有一组数据:2,5,5,6,7,这组数据的平均数为( )A. 3B. 4C. 5D. 63. 校园文化艺术节期间,有19位同学参加了校十佳歌手比赛,所得的分数互不相同,取前10位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19位同学的( )A. 平均数B. 中位数C. 众数D. 方差4. (2017黄冈)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为( )A. 12B. 13C. 13.5D. 145. (2017聊城)为了满足顾客的需求,某商场将5 kg奶糖,3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( )A. 25元B. 28.5元C. 29元D. 34.5元6. (2017温州模拟)甲、乙两名运动员在10次的百米跑练习中,平均成绩分别为10.7秒、 10.7秒,方差分别为s2甲=0.054,s2乙=0.103,那么在这次百米跑练习中,甲、乙两名运动员成绩较为稳定的是( )A. 甲运动员B. 乙运动员C. 甲、乙两人一样稳定D. 无法确定7. (浙教八下第71页第10题改编)如图是A,B两家酒店去年下半年的月营业额折线统计图,下列结论正确的是( )第7题图A. A、B两酒店的月营业额方差相等B. A酒店的月营业额方差较小C. B酒店的月营业额方差较大D. B酒店的月营业额方差较小8. (2017泰安)某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是( )A. 10,20.6B. 20,20.6C. 10,30.6D. 20,30.69. (2017福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图,这5个正确答题数所组成的一组数据的中位数和众数分别是( )A. 10,15B. 13,15C. 13,20D. 15,15第9题图10. (2017上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是________万元.第10题图11. (2017重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.第11题图12. (2017苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图,由图可知,11名成员射击成绩的中位数是________环.第12题图13. (2017江西)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.14. (2017日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是________.15. (2017绥化)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为________.16. (浙教八下第64页探究活动题改编)已知五个数据99,97,96,98,95的方差为s2,如果把每个数据都减去97,得到一组新的数据,则这组新数据的方差为________.17. (2017天津)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:第17题图(Ⅰ)本次接受调查的跳水运动员人数为________,图①中m的值为________;(Ⅱ)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18. (浙教八下第68页第2题改编)某工艺品厂共有16名工人,调查每个工人的日均生产能力,获得如下数据:(1)求这16名工人日均生产件数的平均数、众数、中位数;(2)若要使75%的工人都能完成任务,应选什么统计量(平均数、众数、中位数)作为日生产件数的定额?19. (2017百色) 甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是s 2甲=15[(10-9)2+(8-9)2+(9-9)2+(10-9)2+(8-9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙射击成绩平均数都一样,则a +b =________;(3)在(2)的条件下,当甲比乙的成绩稳定时,请列举出a 、b 的所有可能取值,并说明理由.第19题图答案1. A 【解析】在5,4,6,5,6,6,3中,6出现了3次,出现次数最多,所以众数为6.2. C 【解析】根据平均数公式计算得x =15×(2+5+5+6+7)=5.3. B 【解析】由题意可得,19位同学取前10名,只要知道这19位同学的中位数,即排名第10的同学的成绩即可.故选B.4. B 【解析】将这10名篮球运动员的年龄按照从小到大排列,第5、6个数据都为13,∴这10名篮球运动员的年龄的中位数为13+132=13.5. C 【解析】根据题意,混合后的什锦糖的售价应该是:5×40+3×20+2×155+3+2=29010=29.故选C.6. A 【解析】因为s 2甲=0.054,s 2乙=0.103,方差小的为甲,所以成绩比较稳定的是甲运动员.故选A.7. D 【解析】x A =1+1.6+2.2+2.7+3.5+46=2.5,x B =2+3+1.7+1.8+1.7+3.66=2.3,s 2A =16×[(1-2.5)2+(1.6-2.5)2+(2.2-2.5)2+(2.7-2.5)2+(3.5-2.5)2+(4-2.5)2]≈1.073,s 2B =16×[(2-2.3)2+(3-2.3)2+(1.7-2.3)2+(1.8-2.3)2+(3.6-2.3)2+(1.7-2.3)2]≈0.54.故D 选项正确.8. D 【解析】这组数据共50个,则第25和26两个数据的平均数是中位数,即中位数是20.这组数据的平均数为x =150×(5×4+10×16+20×15+50×9+100×6)=30.6 .9. D 【解析】由条形统计图可得,5个班级中正确答题数为15个的班级数最多,∴众数为15,把这5个数据从大到小排列为20,15,15,13,10,可得15是中位数.10. 80 【解析】由图可得二月份产值的百分比为100%-25%-45%=30%,∵二月份产值为72万元,∴第一季度总产值为72÷30%=240万元,∴第一季度月产值的平均数x =2403=80万元. 11. 11 【解析】由折线图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,可得这组数据共有40个数,∴第20、21个数的平均数为中位数,∴中位数为(11+11)÷2=11.12. 8 【解析】∵共11名成员,∴中位数是第6个成员的成绩,由条形统计图可知,第6位成员的射击成绩为8环,∴这11名成员射击成绩的中位数为8环.13. 5 【解析】由题意得,平均数=2+5+x +y +2x +116=7,得出3x +y =24 ①,中位数=x +y2=7,得出x +y =14 ②,∴联立得⎩⎪⎨⎪⎧3x +y =24 ①x +y =14 ②,解得⎩⎪⎨⎪⎧x =5y =9,∴从小到大排列的数据为2,5,5,9,10,11,∴众数为5.14. 182 【解析】这组数据的平均数为183+191+169+190+1775=182.15. 2 【解析】数据5,8,7,6,9的平均数是7,所以方差是15×[(5-7)2+(8-7)2+(7-7)2+(6-7)2+(9-7)2]=15×(4+1+0+1+4)=2.16. s 2【解析】方差为各个数与其平均值差的平方的平均值,每个数减去97得到的新数与其平均值的差不变,所以方差不变.17. 解:(Ⅰ)40,30; 【解法提示】4÷10%=40(人),m =100-27.5-25-7.5-10=30.(Ⅱ)x =(13×4+14×10+15×11+16×12+3×17)÷40=15, ∵16出现12次,次数最多, ∴众数为16;按大小顺序排列,中间两个数都为15,∴中位数为15. 18. 解:(1)由表格可得, x =116×(10×1+11×3+12×5+13×4+14×2+15×1)=12.375,众数是12,中位数是12;(2)以平均数作为日生产件数定额,能完成任务的工人占:4+2+116×100%=43.75%,以众数作为定额,能完成任务的工人占5+4+2+116×100%=81.25%>75%,则若要使75%的工人都能完成任务,应选中位数作为日生产件数的定额. 19. 解:(1)如解图所示:第19题解图(2)17;【解法提示】a+b=9×5-10-9-9=17.(3)∵甲比乙成绩稳定,∴s2甲=0.8<s2乙,即(a-9)2+(b-9)2>3,∵a+b=17,0<a≤10,0<b≤10,∴当a=7时b=10,(a-9)2+(b-9)2>3符合题意;当a=8时b=9,(a-9)2+(b-9)2<3不符合题意;当a=9时b=8,(a-9)2+(b-9)2<3不符合题意;当a=10时b=7,(a-9)2+(b-9)2>3符合题意;即a=7,b=10或a=10,b=7.。
2018年中考数学复习第八单元统计与概率第33课时事件的概率与应用含近9年中考真题试题
第一部分考点研究第八单元统计与概率第33课时事件的概率与应用浙江近9年中考真题精选(2009~2017)命题点1事件的分类及意义(杭州2012.3,台州2考)1.(2010杭州14题3分)“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件2.(2012杭州3题3分)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同,若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与白球的可能性相等D.摸到红球比摸到白球的可能性大命题点2概率的意义(台州2014.6)3.(2014台州6题4分)某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是()A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格命题点3概率的计算类型一一步概率(杭州4考,台州2考,温州4考,绍兴必考)4.(2016绍兴5题4分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.16B.13C.12D.235.(2014湖州7题3分)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于()A.1B.2C.3D.46.(2013义乌9题3分)为支援雅安灾区,小慧准备通过爱心热线捐款,他只记得号码的前5位,后三位由5、1、2这三个数字组成,但具体顺序忘记了,他第一次就拨通电话的概率是()A.12 B.14 C.16 D.187.(2016湖州7题3分)有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6.若任意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,则其结果恰为2的概率是()A.16 B.14 C.13 D.128.(2014宁波7题4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B,在余下的7个点中任取一点C,使△ABC 为直角三角形的概率是()A.12 B.25 C.37 D.47第8题图9.(2015杭州9题3分)如图,已知点A,B,C,D,E,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为()第9题图A.14 B.25 C.23 D.59。
2018届中考数学复习《统计与概率的应用》专题训练及答案
2018届初三数学中考复习统计与概率的应用专题复习训练题1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理90≤x≤100 c请根据上述统计图表,解答下列问题:(1)在表中,a=__0.1__,b=__0.3__,c=__18__;(2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略(3)平均成绩是81分(4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__; (2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 ∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了__150__个评价;②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略.(2)列表:由表可知,一共有95种,∴两人中至少有一个给“好评”的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.国画类 b 0.20根据以上信息完成下列问题:(1)直接写出频数分布表中a的值;(2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a=18÷50=0.36(2)b=50×0.20=10,补图略(3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__; (2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率; ②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60 ②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略(2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元.(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图以上 严重污染 2(1)统计表中m =__20__,n =__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m 的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。
2018中考数学复习第八单元统计与概率第28讲统计试题
第八单元统计与概率第28讲统计1.(2014·巴中)今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2 000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2 000名考生是总体的一个样本;④样本容量是2 000.其中说法正确的有(C)A.4个B.3个C.2个D.1个2.(2013·广州)为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式是________,图中的a的值是________.(D)A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,243.(2017·唐山路北区三模)下表为某市2017年5月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是(C)A.14 ℃,14 ℃ B.14 ℃,13 ℃C.13 ℃,13 ℃ D.13 ℃,14 ℃4.(2017·河南)小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是(D)A.255分 B.84分 C.84.5分 D.86分5.(2017·河北中考考试说明)某商场对上周女装的销售情况进行了统计,如下表所示:经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是(C)A.平均数 B.中位数 C.众数 D.方差6.(2017·日照)积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:请你估计该200户家庭这个月节约用水的总量是(A)A.240吨 B.360吨 C.180吨 D.200吨7.(2017·广安)初三体育素质测试,某小组5名同学成绩如下所示,有两个数据被遮盖,如图:。
2018中考数学统计与概率专题训练
2018中考数学专题训练:统计1. (2012福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%。
童装占得百分比1-30%-25%=45%。
补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是8163.7510884.25%300++=。
2. (2012湖北) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.【答案】解:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人。
(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%;喜爱A 粽的频率:180÷600=30%。
2018中考数学专题06 统计与概率的实际应用(解答题重难点题型)(原卷版)
中考指导:统计与概率部分在社会生活及科学领域中有广泛应用。
加强应用统计与概率的意识,不仅仅是学习的需要,更是工作生活必不可少的.加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
本专题在中考题中多出现在极富有生活气息和时代特色的题目中,考查的问题通常有:(1)选择使用合适的统计图来表示统计量;(2)根据所哦给出的统计图提取有用的信息,并用这些信息解答问题;(3)能用加权平均数的公式求扇形统计图中的平均数,(4)求出购物券、福利彩票、摸奖等问题中有关事件的概率;(5)通过具体问题情境评判事件是否“合算”;(6)能用条形统计图或扇形统计图求平均数,题型多以选择、简答的形式出现,分值在3~9分.典型例题解析:【例1】(湖南省岳阳市十二校2018届九年级4月联考一模)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为________人.家长表示“不赞同”的人数为________人;(2)请在图①中把条形统计图补充完整;(3)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是________;(4)求图②中表示家长“无所谓”的扇形圆心角的度数.1【答案】(1)600、80(2)120人,补图见解析;(3)60%(4)24°.【解析】试题分析:(1)根据赞成的人数与所占的百分比列式计算即可求调查的家长的总数,然后求出不赞成的人数;(2)用总人数×其所占百分比得到人数,画出图形即可;(3)根据扇形统计图即可得到恰好是“赞同”的家长的概率;(4)求出无所谓的人数所占的百分比,再乘以360°,计算即可得解.试题解析:解:(1)调查的家长总数为:360÷60%=600人,很赞同的人数:600×20%=120人,不赞同的人数:600﹣120﹣360﹣40=80人;(2)600×20%=120,补充图形如图;(3)“赞同”态度的家长的概率是60%;2(4)表示家长“无所谓”的圆心角的度数为:×360°=24°.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【例2】(2018年河南省新乡市九年级下学期中考复习数学第一次模拟)2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表。
2018年中考数学真题专题汇编:统计与概率(解析版)
19.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从
, 两个景点中任意选择一个游玩,
下午从 、 、 三个景点中任意选择一个游玩, 用列表或画树状图的方法列出所有等可能的结果
.并求
小明恰好选中景点 和 的概率 .
【答案】 解:列树状图如下:
一共有 6 种可能,出现小明恰好选中景点
和 两景点的有 1 种可能
故答案为: A . 【分析】根据这组数据的平均数,列出方程,求解得出 公式即可得出这组数据的方差。
x 的值,进而得出这组数据的平均数,再根据方差
10.某排球队 名身高为
名场上队员的身高(单位: 的队员换下场上身高为
)是:
,
,
,
,
,
的队员,与换人前相比,场上队员的身高(
.现用一 )
A. 平均数变小,方差变小 C. 平均数变大,方差变小 【答案】 A
【分析】根据中位数的定义,一组数据从小到大排列后,处于最中间位置的数就是中位数,如果这组数据
的个数是偶数个,则处于中间位置的两个数的平均数就是该组数据的中位数;抽样调查适合于要求的数据
不是那么精准,具有破坏性,等的调查;根据平均数的计算方法,把该组数据的总和除以该组数据的个数
即可得出该组数据的平均数;求一天温差就是用当天的最高温度减去最低温度,根据有理数的减法法则即
∴被录取的教师为乙,其综合成绩为 故答案为: 78.8
78.8 分,
【分析】计算加权平均数时,每类所占的比重需要乘以该类得数才算进综合得数里
.
15.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等统计量中,该鞋厂 最关注的是 ________.
【答案】 众数 【解析】 :∵某鞋厂调查了商场一个月内不同尺码男鞋的销量,∴该鞋厂最关注的是众数。
2018中考数学专题训练---统计与概率(含解析)
专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2017年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;B.1 000是样本容量,故B错误;C.每位考生的数学成绩是个体,故C正确;D.9万多名考生的数学成绩是总体,故D错误.3.(2017·扬州中考)下列统计量中,反映一组数据波动情况的是( )A.平均数B.众数C.频率D.方差【解析】选D.方差反映数据的波动情况.4.下列事件中,属于随机事件的是( )A.掷一枚骰子,向上一面的数字是2B.度量四边形的内角和,结果是360°C.测量某天的最高气温是100℃D.袋中装有5只黑球,从中摸出一个是黑球【解析】选A.掷一枚骰子,向上一面的数字是2是随机事件,A符合题意;度量四边形的内角和,结果是360°是必然事件,B不符合题意;测量某天的最高气温是100℃是不可能事件,C不符合题意;袋中装有5只黑球,从中摸出一个是黑球是必然事件,D不符合题意.5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为( )A.300条B.380条C.400条D.420条【解析】选C.因为×100%=5%,所以20÷5%=400(条).6.(2017·宁波中考)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2017·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2017·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2017·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2017·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分;排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40-38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )A. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.14.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( ) A.平均数 B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2017·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( )A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2017·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是( ) A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2017·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2017·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2017·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2017·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2017·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2017·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2017·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.【解析】(1)(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==.28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2000×=600(人).(3)列表如下:画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
2018年中考数学统计与概率试题整理
2018年xx数学统计与概率试题整理汇集以下是查字典数学网为您推荐的2018年中考数学统计与概率试题整理汇集,希望本篇文章对您学习有所帮助。
2018年中考数学统计与概率试题整理汇集一、选择题1. (北京4分)北京今年6月某日部分区县的高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32则这10个区县该日最高气温的众数和中位数分别是A、32,32B、32,30C、30,32D、32,31【答案】A。
【考点】众数,中位数。
【分析】一组数据中出现次数最多的一个数是众数,这一组数据中32是出现次数最多的,故众数是32;中位数是将一组数据从小到大(或从大到小)从头排列后,最中间的那个数(最中间两个数的平衡数),是这组数据的中位数,这组数据从头排列:29,30,30,30,32,32,32,32,32,32,位于这组数据中间位置的数是32、32,由中位数的定义可知,这组数据的中位数是32。
故选A。
2.(北京4分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A、B、C、D、【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
根据题意可得:一个不透明的盒子中装有2个白球,5个红球和8个黄球,共15个,摸到红球的概率为。
故选B。
3.(天津3分)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A)甲比乙的成绩安定(B)乙比甲的成绩安定(C)甲、乙两人的成绩一样安定(D)无法确定谁的成绩更安定【答案】B。
【考点】条形统计图,平衡数和方差。
【分析】甲的平衡成绩为(84+92+104)10=9,乙的平衡成绩为(83+94+103)10=9,甲的方差为[4(8-9)2+2(9-9)2+4(10-9)2]10=0.8,乙的方差为[3(8-9)2+4(9-9)2+3(10-9)2]10=0.6,∵甲的方差乙的方差,乙比甲的成绩安定。
2018 初三数学中考复习 统计与概率 专题复习训练题及答案
2018 初三数学中考复习统计与概率专题复习训练题1.下列说法正确的是( C )A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“经过由交通信号灯的路口,遇到红灯”是必然事件2.某市七天的空气质量指数分别是:28,45,28,45,28,30,53,这组数据的众数是( A )A.28 B.30 C.45 D.533.(2016·临沂)某老师为了了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( B )A.4 B.3 C.2 D.14.某小学校足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是( B ) A .11,10 B .11,11 C .10,9 D.10,115.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( C )A .3B .5C .8D .106.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( C )A.12B.14C.16D.1127.某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是 __152__.8.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图①和图②是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是__6_000__.9.一次数学考试中,九年(1)班和(2)班的学生数和平均分如表所示,则这两班平均成绩为__82.6__分.10.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”,“2”,“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为__49__.11.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是91+80+783=83(分),乙组的平均成绩是81+74+853=80(分),丙组的平均成绩是79+83+903=84(分),从高分到低分小组的排名顺序是:丙>甲>乙 (2)由题意可得,甲组的平均成绩是91×40%+80×30%+78×30%40%+30%+30%=83.8(分),乙组的平均成绩是81×40%+74×30%+85×30%40%+30%+30%=80.1(分),丙组的平均成绩是79×40%+83×30%+90×30%40%+30%+30%=83.5(分),由上可得,甲组的成绩最高12.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差s 2甲=712,平均成绩x 甲=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少? (2)求乙射击的平均成绩和方差,并据此比较甲乙的射击“水平”.解:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=712(2)x 乙=2×7+3×8+6×9+1×1012=8.5(环),s 2乙=112[(7-8.5)2×2+(8-8.5)2×3+(9-8.5)2×6+(10-8.5)2]=912=34,∵x 甲=x 乙,s 2甲<s 2乙,∴甲的射击成绩更稳定13.某校有学生2 000名,为了了解学生在篮球、足球、排球和乒乓球这四项球类运动中最喜爱的一项球类运动情况,对学生开展了随机调查,并将结果绘制成如下的统计图.请根据以上信息,完成下列问题: (1)本次调查的样本容量是__400__; (2)某位同学被抽中的概率是__15__;(3)据此估计全校最喜爱篮球运动的学生人数约有__800__名; (4)将条形统计图补充完整. 解:(1)400 (2)15 (3)800(4)乒乓球的人数:400×30%=120(人).补图略14.教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是__0__;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.解:(1)因为控制第二排灯的开关已坏(闭合开关时灯也不亮),所以将4个开关都闭合时,教室里所有灯都亮起的概率是0(2)用1,2,3,4分别表示第一排、第二排、第三排和第四排灯,画树状图为:共有12种等可能的结果数,其中恰好关掉第一排与第三排灯的结果数为2,所以恰好关掉第一排与第三排灯的概率=212=1 6。
2018年九年级数学中考统计与概率专题复习
2018 年 九年级数学中考 统计与概率专题复习一、选择题 :1.学校为认识七年级学生参加课外兴趣小组的状况,随机检查了40 名学生,将结果绘制成了以下图的统计图,则七年级学生参加绘画兴趣小组的频次是()A .B .C .D .2. 自来水企业检查了若干用户的月用水量x ( 单位:吨 ) ,按月用水量将用户分红 ,,,, 五组进行统计,ABCDE并制作了以下图的扇形统计图 . 已知除 B 组之外,参加检查的用户共 64 户,则全部参加检查的用户中月用水量在 6 吨以下的共有 ()A .18 户B .20 户C .22 户D .24 户3.已知 a,b,c,d,e 的均匀分是 m,则 a+5,b+12,c+22,d+9,e+2 的均匀分是 ()A . m-1B . m+3C . m+1 0D . m+124.如图是交警在一个路口统计的某个时段来往车辆的车速(单位: 千米 / 时)状况. 则这些车的车速的众数、中位数分别是()A . 8, 6B . 8, 5C . 52, 53D . 52,525. 已知 5 名学生的体重分别是 41、 50、 53、 49、 67(单位: kg ),则这组数据的极差是()A . 8B . 9C . 26D . 416. 以下说法正确的选项是()A .“翻开电视机,正在播《民生当面》”是必定事件B. “一个不透明的袋中装有6 个红球,从中摸出 1 个球是红球”是随机事件C.“概率为 0.0001 的事件”是不行能事件D.“在操场上向上抛出的篮球必定会着落”是确立事件7.九年级一班和二班每班选 8 名同学进行投篮竞赛, 每名同学投篮 10 次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6 个的最多”乙说:“二班同学投中次数最多与最少的相差6 个.”上边两名同学的谈论能反应出的统计量是()A .均匀数和众数B .众数和极差C .众数和方差D .中位数和极差8.在 2016 年我县中小学经典朗读竞赛中,10 个参赛单位成绩统计以下图, 关于这 10 个参赛单位的成绩,以下说法中错误的选项是()A .众数是 90B .均匀数是 90C .中位数是 90D .极差是 159.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数散布表:则通话时间不超出15min 的频次为()A .B .C .D .10. 桌面上放有 6 张卡片(卡片除正面的颜色不一样外,其他均同样) ,此中卡片正面的颜色3 张是绿色, 2 张是红色, 1 张是黑色.现将这6 张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是A.1B.1C.1D.1 2 3 4 6二、填空题 :11.若数据 1、﹣ 2、 3、x 的均匀数为2,则 x=.12.2016 年 6 月尾,九年级学生马上毕业,好朋友甲、乙、丙三人决定站成一排合影纪念,则甲、乙二人相邻的概率是.13.布袋内装有大小、形状同样的3 个红球和 1 个白球,从布袋中一次摸出两个球,那么两个都摸到红球的概率是.14.甲、乙两地5 月下旬的日均匀气温统计如表(单位:℃):甲地气温24 30 28 24 22 26 27 26 29 24乙地气温24 26 25 26 24 27 28 26 28 26则甲、乙两地这10 天日均匀气温的方差大小关系为:S 甲2S 乙2.(填“>”、“<”或“ =”)15. 如图,圆形转盘中,A,B,C三个扇形地区的圆心角分别为150°, 120°和 90°.转动圆盘后,指针停止在任何地点的可能性都同样(若指针停在分界限上,则从头转动圆盘),则转动圆盘一次,指针停在B区域的概率是.BCA16. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击竞赛.在选拔赛中,每人射击10 次,他们 10 次成绩的均匀数及方差以下表所示.请你依据表中数据选一人参加竞赛,最适合的人选是.三、解答题 :17.某地域在一次九年级数学质量检测试题中,有一道分值为8 分的解答题,全部考生的得分只有四种,即:0 分, 3 分, 5 分, 8 分,老师为认识此题学生得分状况,从全区4500 名考生试卷中随机抽取一部分,剖析、整理此题学生得分状况并绘制了以下两幅不完好的统计图:请依据以上信息解答以下问题:(1)本次检查从全区抽取了份学生试卷;扇形统计图中a=,b=;(2)补全条形统计图;(3)该地域此次九年级数学质量检测中,请预计全区考生这道8 分解答题的均匀得分是多少?得8 分的有多少名考生?18.为认识某地域七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜欢状况,从该地域随机抽取部分七年级学生作为样本,采纳问卷检查的方法采集数据(参加问卷检查的每名同学只好选择此中一类节目),并检查获得的数据用下边的表和扇形图来表示(表、图都没制作达成)依据表、图供给的信息,解决以下问题:(1)计算出表中 a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地域七年级学生共有 47500 人,试预计该地域七年级学生中喜欢“新闻”类电视节目的学生有多少人?19. 为进一步增强和改良学校体育工作,确实提升学生体质健康水平,决定推动“一校一球队、一级一专项、一人一技术”活动计划,某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球, D:羽毛球, E:乒乓球)进行问卷检查,学生可依据自己的爱好选修一门,李老师对某班全班同学的选课状况进行统计后,制成了两幅不完好的统计图(如图)(1)将统计图增补完好;(2)求出该班学生人数;(3)若该校共用学生 3500 名,请预计有多少人选修足球?(4)该班班委 5 人中, 1 人选修篮球, 3 人选修足球, 1 人选修排球,李老师要从这 5 人中任选 2 人认识他们对体育选修课的见解,请你用列表或画树状图的方法,求选出的 2 人恰巧 1 人选修篮球, 1 人选修足球的概率.20.一袋中装有形状大小都同样的四个小球,每个小球上各标有一个数字,分别是1,4, 7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;而后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定获得全部可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.第5页共7页参照答案9. D.11.答案为: 6.12.答案为.13.答案为: 0.5 .14.答案为:>.15.答案为:16.答案为:丁;17.解:( 1)24÷ 10%=240份, 240﹣ 24﹣108﹣ 48=60 份,60÷ 240=25%, 48÷ 240=20%,抽取了240 份学生试卷;扇形统计图中a=25,b=20;(2)如图:(3) 0× 10%+3× 25%+5× 45%+8× 20%=4.6 分, 4500× 20%=900名.答:这道8 分解答题的均匀得分是 4.6 分;得 8 分的有 900 名考生.18.解:( 1)162, 135;( 2) 108°;( 3)3800.19.解:( 1)检查的家长总数为: 360÷ 60%=600人,很赞成的人数: 600× 20%=120人,不赞成的人数:600﹣ 120﹣ 360﹣ 40=80 人;(2)“赞成”态度的家长的概率是60%;(3)表示家长“无所谓”的圆心角的度数为:24°.20.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11, 41,71, 81,14, 44, 74, 84, 17, 47, 77, 87, 18, 48, 78,88;(2)算术平方根大于 4 且小于 7 的结果数为6,因此算术平方根大于 4 且小于 7 的概率 = =.。
2018届甘肃中考数学《第八章统计与概率》总复习练习题(含答案)
第八章统计与概率第26讲统计(时间70分钟满分85分)A卷一、选择题(本大题共7小题,每小题4分,共28分)1.(2017·重庆A)下列调查中,最适合采用全面调查(普查)方式的是(D)A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查2.为了解某市七年级20000名学生的身高,从中抽取了500名学生,对其身高进行统计分析.以下说法中正确的是(D)A.20000名学生是总体B.每名学生是个体C.500名学生是抽取的一个样本D.每名学生的身高是个体3.(2017·苏州)有一组数据:2,5,5,6,7,这组数据的平均数为(导学号35694223)(C) A.3B.4C.5D.64.则这组数据的中位数与众数分别是(A)A.27,28 B.27.5,28 C.28,27 D.26.5,275.(2017·安徽)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是(导学号35694224)(A)A.280 B.240 C.300 D.2606.(2017·潍坊)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示,欲选一名运动员参赛,从平均数与方差两个因素分析,应选(C)A.甲B.乙C.丙D.丁7.下列说法正确的是(A)A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是s甲2=3.2,s乙2=2.9,则甲组数据更稳定二、填空题(本大题共7小题,每小题3分,共21分)8.(2017·上海)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是__80__万元.(导学号35694225)9.(2017·南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有__680__人.10.(2017·日照)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183191169190177则在该时间段中,通过这个路口的汽车数量的平均数是__182__.11.(2017·益阳)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为12人,频率为0.25,那么被调查的学生人数为__48人__.12.(2017·苏州)某射击俱乐部将11名成员在某次射击训练中取得的成绩绘制成如图所示的条形统计图.由图可知,11名成员射击成绩的中位数是__8__环.13.(2017·沈阳)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s甲2=0.53,s乙2=0.51,s丙2=0.43,则三人中成绩最稳定的是__丙__.(填“甲”或“乙”或“丙”)(导学号35694226)14.(2017·南京)如图是某市2013-2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是__2016__年,私人汽车拥有量年增长率最大的是__2015__年.三、解答题(本大题共2小题,共18分)15.(9分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类)A:共享单车;B:步行;C:公交车;D:的士;E:私家车,并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有__800__人,其中选择B类的人数有__240__人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.解:(2)补全条形统计图略;(3)12×(25%+30%+25%)=9.6(万人).答:估计该市“绿色出行”方式的人数为9.6万人.16.(8分)(2017·齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a =__70____0.40__(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第__3__组;(4)请估计该校七年级学生日阅读量不足1小时的人数. 解:(2)补全条形统计图略; (4)1200×(0.05+0.10)=1200×0.15=180(人).答:估计该校七年级学生日阅读量不足1小时的人数为180人.B 卷1.(4分)(2017·嘉兴)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a -2,b -2,c -2的平均数和方差分别是(B )A .3,2B .3,4C .5,2D .5,4 2.(4分)(2016·南京)若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为(导学号 35694227)(C )A .1B .6C .1或6D .5或6 3.(3分)(2017·咸宁)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)__1.4,1.35__. 4.(8分)(2017·沈阳)某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题: (1)m =__50__,n =__30__;(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是__72__度;(3)请根据以上信息补全条形统计图;(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书. 解:(3)补图略;(4)由题意可得,600×1550=180(名).答:该校600名学生中约有180名学生最喜欢科普类图书.第27讲 概 率(时间70分钟 满分75分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·沈阳)下列事件中,是必然事件的是(A ) A .将油滴入水中,油会浮在水面上 B .车辆随机到达一个路口,遇到红灯 C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,一定正面向上 2.(2017·巴中)下列说法正确的是(C )A .“打开电视机,正在播放体育节目”是必然事件B .了解夏季冷饮市场上冰淇淋的质量情况适合用普查C .抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为12D .甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是s 甲2=0.3,s 乙2=0.5,则乙的射击成绩稳定3.(2017·岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是(C )A.15B.25C.35D.454.(2017·赤峰)小明向如图所示的正方形ABCD 区域内投掷飞镖,点E 是以AB 为直径的半圆与对角线AC 的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为(B )A.12B.14C.13D.185.(2017·南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为(C )A.15B.14C.13D.126.(2017·海南)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为(D )A.12B.14C.18D.1167.(2017·金华)某校举行“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是(导学号 35694228)(D )A.12B.13C.14D.16三、填空题(本大题共5小题 ,每小题3分,共15分) 8.(2017·泰州)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为4”,这个事件是__不可能事件__.(填“必然事件”“不可能事件”或“随机事件”)9.(2017·徐州)如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为__23__.10.(2017·福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是__红球__.(导学号 35694229)11.(2017·营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是__15__个.12.(2016·重庆B )点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是__15__.(导学号 35694230)三、解答题(本大题共4小题,共32分) 13.(8分)(2017·毕节)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.解:(1)∵转盘的4个等分区域内只有1,3两个奇数,∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=24=12;(2)4种, ∴P (小王胜)=416=14,P (小张胜)=416=14,∴游戏公平.14.(8分)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-2,乙袋中有三个完全相同的小球,分别标有数字-1,0和2,小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ,再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).(1)请用列表或画树状图的方法列出点P 所有可能的坐标; (2)求点P 在一次函数y =-x 图象上的概率. 解:(1)画树状图如解图所示:∴点P 所有可能的坐标为:(1,-1),(1,0),(1,2),(-2,-1),(-2,0),(-2,2);(2)∵只有(1,-1),(-2,2)这两点在一次函数y =-x 图象上,∴P (点P 在一次函数y =-x 的图象上)=26=13.15.(8分)(2016·曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y =3x图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率. 解:(1)整点坐标有A 1(-3,-1),A 2(-1,-3),A 3(3,1),A 4(1,3);(2)由表得共12∴P (关于原点对称)=412=13.16.(8分)(2017·西宁)西宁市教育局在局属各初中学校设立“自主学习日”,规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E .社会实践;F .其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为__1000__,请补全条形统计图; (2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人? (3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.(导学号 35694231) 解:(1)补图略;(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人.答:全市学生中选择体育锻炼的人数约有16000人;(3)设两名女生分别用A 1,A 2,一名男生用B 表示,画树状图如解图,共有6种等可能的情况,恰好1男1女的有4种可能, 所以恰好选到1男1女的概率是46=23.第八章 统计与概率自我测试(时间80分钟 满分90分)一、选择题(本大题共7小题 ,每小题4分,共28分) 1.(2017·长沙)下列说法正确的是(D )A .检测某批次灯泡的使用寿命,适宜用全面调查B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,-2的中位数是4D .“367人中有2人同月同日出生”为必然事件 2.(2017·阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是(D ) A .某市明天将有75%的时间下雨 B .某市明天将有75%的地区下雨 C .某市明天一定下雨D .某市明天下雨的可能性较大 3.(2017·宜昌)九一(1)班在参加学校4×100 m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为(D )A .1 B.12 C.13 D.144.(2017·温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有(D )A .75人B .100人C .125人D .200人 5.(2017·南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是(C )A .8.8分,8.8分B .9.5分,8.9分C .8.8分,8.9分D .9.5分,9.0分6.(2016·锦州)如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是(D )A.14B.34C.12D.387.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是(A )A .12B .9C .4D .38.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是(B )A .0.2B .0.17C .0.33D .0.14 9.(2017·烟台)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是(C )A .两地气温的平均数相同B .甲地气温的中位数是6℃C .乙地气温的众数是4℃D .乙地气温相对比较稳定 二、填空题(本大题共5小题 ,每小题3分,共15分)10.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有__35__.11.(2017·张家界)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50__4__12.(2017·随州)“抛掷一枚质地均匀的硬币,正面向上”是__随机__事件(从“必然”、“随机”、“不可能”中选一个).(导学号 35694232) 13.(2017·江西)已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是__5__.14.(2017·杭州)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是__49__.三、解答题(本大题共5小题,共47分) 15.(8分)(2017·哈尔滨)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名. 解:(1)10÷20%=50(名).答:本次调查共抽取了50名学生; (2)补图略;(3)1350×2050=540(名).答:估计最喜欢太阳岛风景区的学生有540名.16.(9分)现有分别标有数字1,2,3,4,5,6的6个质地和大小完全相同的小球. (1)若6个小球都装在一个不透明的口袋中,从中随机摸出一个,其标号为偶数的概率是多少?(2)若将标有数字1,2,3的小球装在不透明的甲口袋中,标有数字4,5,6的小球装在不透明的乙口袋中,现从甲、乙两个口袋中各随机摸出1个球,用列表或画树状图的方法表示所有可能出现的结果,并求摸出的两个小球上数字之和为6的概率.(导学号 35694233)解:(1)∵6个数中有3个偶数,∴选中标号为偶数的概率是12;(2)∴P (两个球上数字之和为6)=29.17.(9分)(2017·岳阳)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a =__25__,b =__0.10__;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?解:(2)补图略;(3)根据题意得:2000×0.10=200(人).答:该校2000名学生中评为“阅读之星”的约有200人. 18.(9分)(2016·黔南州)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”. (1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率为14;(2)画树状图如解图,共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1, ∴恰好小红抽中“唐诗”且小明抽中“宋词”的概率为112.19.(12分)(2017·辽阳)某校以“我最喜爱的体育项目”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其他项目(每位同学仅选一项),根据调查数据绘制了如下不完整的统计表和扇形统计图:(1)统计表中的m =__30__,n =__0.20__;(2)在扇形统计图中,“篮球”所在扇形的圆心角为__108__度;(3)该学校共有2400名学生,据此估计有多少名学生最喜爱乒乓球?(4)将2名最喜爱篮球的学生和2名最喜爱羽毛球的学生编为一组,从中随机抽取两人,请用列表或画树状图的方法求出所抽取的两人都选择了最喜爱篮球的概率.(导学号 35694234)解:(3)根据题意得2400×0.20=480(人). 答:估计有480名学生最喜爱乒乓球;(4)将喜爱篮球的两名学生标号为A 1,A 2,将喜爱羽毛球的两名同学标号为B 1,B 2,根据题意画树状图如解图,由图可知总共有12种结果,每种结果出现的可能性相同,其中两人都选择篮球的结果有2种,所以抽取的两人都选择了最喜爱篮球的概率是212=16.。
2018年中考数学总复习第八章概率与统计第二节概率同步训练
第二节概率姓名:________ 班级:________ 限时:______分钟1.(2018·东营)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面向上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是________.2.(2018·舟山)小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面、那么你赢;如果两次是一正一反.则我赢.”小红赢的概率是________.据此判断该游戏__________.(填“公平”或“不公平”)3.(2018·淮安)某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是____________.(精确到0.01)4.(2018·益阳)2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的概率是_________.5.(2018·淄博)下列语句描述的事件中,是随机事件的为( )A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意6.(2018·泰州)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%.他明天将参加一场比赛,下面几种说法正确的是( ) A .小亮明天的进球率为10% B .小亮明天每射球10次必进球1次 C .小亮明天有可能进球 D .小亮明天肯定进球7.(2018·呼和浩特)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过98.(2018·苏州)如图,飞镖游戏板中每一块小正方形除颜色外都相同,若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )A. 12B. 13C. 49D. 599.(2018·贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( ) A.110B.15C.310D.2510.(2019·原创)某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签的方式.则第一、二位出场选手都是女选手的概率是( )A.16B.14C.13D.1211.(2018·贵阳)如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示的位置的概率是( )A.112B.110C.16D.2512.(2018·无锡)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A .4条B .5条C .6条D .7条13.(2018·聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A.12B.13C.23D.1614.(2018·镇江)小明将如图所示的转盘分成n(n 是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连续偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是56,则n 的取值为( )A .36B .30C .24D .1815.(2019·特色)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y =2x ,y =x 2-3(x>0),y =2x (x>0),y =-13x (x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y 随x 的增大而增大的概率是( ) A.14B.12C.34D .116.(2018·淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n.如果m ,n 满足|m -n|≤1,那么就称甲、乙两人“心领神会”.则两人“心领神会”的概率是( ) A.38B.58C.14D.1217.(2019·特色)小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12B .小明胜的概率是13,所以输的概率是23C .两人出相同手势的概率为12D .小明胜的概率和小亮胜的概率一样18.(2018·昆明五华区二模)第十九届中国(昆明)国际汽车博览会将于2018年6月28日-7月2日在昆明滇池国际会展中心举办,以“人·车·创造精彩新生活”为主题,博览会设了编号为1~5号新能源汽车展厅共5个,小雨一家计划利用两天时间参观其中两个展厅,第一天从5个展厅中随机选择一个,第二天从余下的4个展厅中再随机选择一个,且每个展厅被选中的机会均等 . (1)第一天,1号展厅没有被选中的概率是________;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.19.(2018·盐城)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子,一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.20.(2018·江西)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是__________事件,“小悦被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为________;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.21.(2018·昆明盘龙区一模)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率是12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率.22.(2019·特色)某体育馆有3个入口和3个出口,其示意图如下,参观者可从任意一个入口进入,参观结束后从任意一个出口离开.(1)用树状图表示,小明从进入到离开,对于入口和出口的选择共有多少种不同的结果? (2)小明从入口1进入并从出口2离开的概率是多少?23.(2018·甘肃省卷)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.24.(2019·易错)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图.(1)若小明设计的电路图(四个开关按键都处于打开状态)如图1所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图(四个开关按键都处于打开状态)如图2所示,求同时闭合其中两个开关按键,灯泡能发光的概率.(用列表或树状图法)25.(2018·陕西改编) 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.26.(2018·昆明五华区一模)为了弘扬中国传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加.其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“两个黄鹂鸣翠柳”.(1)小明回答该问题时,对第二个字是选“个”还是选“只”难以抉择,若随机选择其中一个,则小明回答正确的概率是________;(2)小丽回答该问题时,对第二个字是选“个”还是选“只”、第五个字是选“鸣”还是选“明”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.27.(2018·云南二模)正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.28.(2018·云南一模)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.29.(2018·连云港)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲、乙两队每局获胜的机会相同.(1)若前四局双方战成2∶2,那么甲队最终获胜的概率是________;(2)现甲队在前两局比赛中已取得2∶0的领先,那么甲队最终获胜的概率是多少?30.(2018·荆门)文化是一个国家、一个民族的灵魂.近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经典咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经典咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B ”所在扇形圆心角的度数;(3)若选“E ”的学生中有2名女生,其余为男生,现从选择“E ”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.参考答案1.452.14 不公平3.0.904.135.D 6.C 7.D 8.C 9.C 10.A 11.A 12.B 13.B 14.C 15.C 16.B 17.D 18.解:(1)45;(2)根据题意列表如下:由表格可知,总共有20种等可能的结果,每种结果出现的可能性相同. 其中两天中4号展厅被选中的结果有8种, ∴P(4号展厅被选中)=820=25.19.解:(1)画树状图如解图所示:由树状图可知:小悦拿到两个粽子的所有可能结果共有12种; (2)由树状图可知:小悦拿到的两个粽子都是肉馅的结果共有2种, 所以P(小悦拿到的两个粽子都是肉馅的)=212=16.20.解:(1)不可能,随机,14.(2)画树状图如解图:列表如下:由树状图或列表可知,共有12种等可能结果,其中小惠被抽中的有6种结果, 所以小惠被抽中的概率为:P(小惠被抽中)=612=12.21.解:(1)设口袋中黄球的个数为x 个,根据题意得:22+1+x =12,解得:x =1,经检验:x =1是原分式方程的解且符合实际, 答:口袋中黄球的个数为1个. (2)画树状图如解图:∵从树状图可知共有12种等可能的结果,其中两次摸出都是红球的有2种情况, ∴P(两次摸出都是红球)=212=16.22.解:(1)画树状图如解图:(2)由树状图可知,共有9种等可能结果,其中小明从入口1进入并从出口2离开的只有1种, ∴小明从入口1进入并从出口2离开的概率为19.23.(1)米粒落在阴影部分的概率为39=13;(2)列表如下:共有30种等可能的情况,其中图案是轴对称图形的有10种,故图案是轴对称图形的概率为1030=13.24.解:(1)任意闭合一个开关按键,灯泡能发光的概率为14;(2)画树状图如解图:共有12种等可能的结果数,其中同时闭合其中两个开关按键,灯泡能发光的结果数为6,所以同时闭合其中两个开关按键,灯泡能发光的概率为612=12.25.解:(1)数字“1”“-2”“3”所占的圆心角均为120°,则转动转盘一次,转出的数字是-2的概率为120360=13.(2)列表如下:由表格可知:共有9种等可能的结果,其中乘积为正数的情况有5种, ∴转动转盘两次,转出的数字之积为正数的概率为59.26.解:(1)12;(2)列表:∵由表格可知,若两次分别随机选择共有4种等可能结果,其中正确的有1种结果,∴小丽回答正确的概率为14.27.解:(1)解法一:用列表法如下:解法二:画树状图如解图.(2)P(和为3的倍数)=824=13.28.解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同, ∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA 1的概率是13;(2)画树状图如解图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种, 则甲、乙两位嘉宾能分为同队的概率是39=13.29.解:(1)12.(2)画树状图如解图所示:由解图可知,剩下的三局比赛共有8种等可能的结果,其中甲至少胜一局有7种,所以,P(甲队最终获胜)=78.30.解:(1)调查的学生人数=30÷20%=150(人); (2)D 类人数=150×50%=75(人);B 类人数=150-(30+24+75+6)=15(人).因此在条形统计图中在B 类处补充高为15的长方条,在D 类处补充高为75的长方条,如解图. B 类所在扇形的圆心角=360°×15150=36°.(3)记“E ”类中2名女生为N 1,N 2,4名男生为M 1,M 2,M 3,M 4.列表如下(画树状图略):∵共有30种等可能结果,其中恰好是同性别学生(记为事件F)的有14种情况, ∴P(F)=1430=715.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计与概率的应用1.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测请根据上述统计图表,解答下列问题:(1)在表中,a =__0.1__,b =__0.3__,c =__18__; (2)补全频数分布直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩;(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?解:(2)补图略 (3)平均成绩是81分 (4)800×(0.3+0.2)=400,即“优秀”等次的学生约有400人2. 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关); ②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0; ③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为__12__;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.解:(2)画树状图:乙 5 56 7 4 6 7 4 5 7 4 5 6 乙“最终点数”10 0 0 9 0 0 9 10 0 9 10 0 获胜情况乙甲甲甲甲甲乙乙平乙乙平∴乙获胜的概率为123.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘分组 家庭用水量x/吨 家庭数/户A 0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D 9.0<x≤11.5E 11.5<x≤14.06 Fx >4.03根据以上信息,解答下列问题:(1)家庭用水量在4.0<x≤6.5范围内的家庭有__13__户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是__30__%;(2)本次调查的家庭数为__50__户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是__18__%;(3)家庭用水量的中位数落在__C__组.(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.解:(4)估计该月用水量不超过9.0吨的家庭数为200×4+13+1550=128(户)4.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并绘制出了两幅不完整的统计图.利用图中所提供的信息解决以下问题: ①小明一共统计了__150__个评价; ②请将图1补充完整;③图2中“差评”所占的百分比是__13.3%__;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.解:(1)②“好评”一共有150×60%=90(个),补图略. (2)列表:由表可知,一共有9的概率是595.某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.根据以上信息完成下列问题:(1)直接写出频数分布表中a 的值; (2)补全频数分布直方图;(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?解:(1)14÷0.28=50,a =18÷50=0.36 (2)b =50×0.20=10,补图略 (3)1500×0.28=420(人),估计该校最喜爱围棋的学生大约有420人6.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500 mL )、红茶(500 mL )和可乐(600 mL ),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品. 根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.解:(1)15(2)画树状图(略),由树状图可知共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为2257.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A ,B ,C 中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D ,E ,F 中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E 处,移动甲后黑色方块构成的拼图是轴对称图形的概率是__13__;(2)若甲、乙均可在本层移动.①用树状图或列表法求出黑色方块所构拼图是轴对称图形的概率;②黑色方块所构拼图是中心对称图形的概率是__29__.解:(2)①由树状图可知,黑色方块所构拼图是轴对称图形的概率P =39=138.为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 值;②求扇形统计图中阅读时间为5小时的扇形圆心角的度数; ③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵m=15÷14=60②560×360°=30° ③第三小组的频数为60-10-15-10-5=20,补图略 (2)众数为 3小时,中位数为3小时,平均数为2.75小时9. 某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元. (1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.解:(1)P (得到优惠)=612=12 (2)转盘1能得到的优惠为112×(0.3×300+0.2×300×2+0.1×300×3)=25(元),转盘2能得到的优惠为40×24=20(元),∴选择转盘1更合算10. 研究问题: 一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验,摸球试验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.(1)盒中红球、黄球各占总球数的百分比分别是多少? (2)盒中有红球多少个?解:(1)红球占40%,黄球占60%(2)设总球数为x 个,由题意得8x =450,解得x =100,100×40%=40(个),即盒中红球有40个11. 某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)(1)统计表中m=__20__,n=__8__.扇形统计图中,空气质量等级为“良”的天数占__55__%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.解:(2)估计该市城区全年空气质量等级为“优”和“良”的天数共365×(25%+55%)=292(天),补图略(3)建议不要燃放烟花爆竹12. 在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛。