数值分析--33曲线拟合及函数逼近

合集下载

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。

函数逼近是指找到一个已知函数,尽可能地接近另一个函数。

而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。

本文将讨论常用的函数逼近和曲线拟合方法。

一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。

它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。

插值法的优点是精度高,缺点是易产生龙格现象。

常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。

拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。

牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。

2. 最小二乘法最小二乘法是一种常用的函数逼近方法。

它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。

通常采用线性模型,例如多项式模型、指数模型等。

最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。

最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。

最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。

曲线拟合实验报告[优秀范文5篇]

曲线拟合实验报告[优秀范文5篇]

曲线拟合实验报告[优秀范文5篇]第一篇:曲线拟合实验报告数值分析课程设计报告学生姓名学生学号所在班级指导教师一、课程设计名称函数逼近与曲线拟合二、课程设计目的及要求实验目的: ⑴学会用最小二乘法求拟合数据的多项式,并应用算法于实际问题。

⑵学会基本的矩阵运算,注意点乘与叉乘的区别。

实验要求: ⑴编写程序用最小二乘法求拟合数据的多项式,并求平方误差,做出离散函数与拟合函数的图形;⑵用MATLAB 的内部函数polyfit 求解上面最小二乘法曲线拟合多项式的系数及平方误差,并用MATLAB的内部函数plot作出其图形,并与(1)结果进行比较。

三、课程设计中的算法描述用最小二乘法多项式曲线拟合,根据给定的数据点,并不要求这条曲线精确的经过这些点,而就是拟合曲线无限逼近离散点所形成的数据曲线。

思路分析 : 从整体上考虑近似函数)(x p 同所给数据点)(i iy x , 误差i i iy x p r -=)(的大小,常用的方法有三种:一就是误差i i iy x p r -=)(绝对值的最大值im ir≤≤ 0max ,即误差向量的无穷范数;二就是误差绝对值的与∑=miir0,即误差向量的 1成绩评定范数;三就是误差平方与∑=miir02的算术平方根,即类似于误差向量的 2 范数。

前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑 2 范数的平方,此次采用第三种误差分析方案。

算法的具体推导过程: 1、设拟合多项式为:2、给点到这条曲线的距离之与,即偏差平方与:3、为了求得到符合条件的 a 的值,对等式右边求偏导数,因而我们得到了:4、将等式左边进行一次简化,然后应该可以得到下面的等式5、把这些等式表示成矩阵的形式,就可以得到下面的矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∑∑∑∑∑∑∑∑∑∑∑=====+==+====niininiiknikinikinikinikiniiniinikiniiyyyaax x xx x xx x11i11012111111211 1an MMΛM O M MΛΛ 6.将这个范德蒙得矩阵化简后得到⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡n kkn nkkyyyaaax xx xx x M MΛM O M MΛΛ21102 21 1111 7、因为 Y A X = * ,那么 X Y A / = ,计算得到系数矩阵,同时就得到了拟合曲线。

数值分析第三章

数值分析第三章
a≤ x≤b b ∫a | f ( x ) | dx,
称为1 − 范数 , 称为 2 − 范数 .
(
b 2 ∫a f ( x )dx
),
1 2
三、内积与内积空间
R n中向量x及y定义内积 : ( x, y ) = x1 y1 + L + x n y n .
定义3 上的线性空间, 定义3 设X是数域 K ( R或C)上的线性空间,对 ∀u, v ∈ X, 中一个数与之对应, 并满足条件: 有K中一个数与之对应,记 为( u, v ),并满足条件: (1) ( u,v ) = (v , u), ∀u,v ∈ X ; (2) (αu,v ) = α ( u,v ), α ∈ R; (3) ( u + v , w ) = ( u,w ) + (v,w ), ∀u,v,w ∈ X ; (4) ( u, u) ≥ 0, 当且仅当 u = 0时, , u) = 0. (u 则称( u, v )为X上的u与v的内积. 定义了内积的线性空间 称 的共轭, 为内积空间. (v , u)为( u,v )的共轭,当 K = R时 (v , u) = ( u,v ).
2)
j =1
∑ α ju j = 0 ⇔ ( ∑ α ju j , ∑ α ju j ) = 0
j =1 n j =1
n
n
n
⇔ ( ∑ α j u j , uk ) = 0, k = 1,L, n.
j =1
∴ G非奇异 ⇒ u1 , u2 ,L, un线性无关 (反证法 );反之亦然 .
在内积空间X上可以由内积导出一种范数, 即对u ∈ X , 记 || u ||= (u , u ), Cauchy − Schwarz不等式得出. (1.10) 易证它满足范数定义的正定性和齐次性, 而三角不等式由

实验二函数逼近与曲线拟合

实验二函数逼近与曲线拟合

《数值分析》课程设计实验报告实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t 的拟合曲线。

二、实验步骤先写出线性最小二乘法的M文件function c=lspoly(x,y,m)% x是数据点的横坐标组成的向量,y是纵坐标组成的向量% m是要构成的多项式的次数,c是多项式由高到低次的系数所组成的向量n=length(x);b=zeros(1:m+1);f=zeros(n,m+1);for k=1:m+1f(:,k)=x.^(k-1);enda=f'*f;b=f'*y';c=a\b;c=flipud(c);方法一:近似解析表达式为:y(t)=a1t+a2t2+a3t3第二步在命令窗口输入:lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44 ,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =0.0000-0.00520.26340.0178即所求的拟合曲线为y=-0.0052t2+0.2634t+0.0178在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44, 3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0052*t.^2+0.2634*t+0.0178;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-1)0102030405060拟合多项式与数据点的关系方法二:假设近似表达式为:y(t)=c0+c1t+c2t2第一步在命令窗口输入:>>lspoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3. 44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:ans =-0.00240.20370.2305即所求的拟合曲线为y=-0.0024t2+0.2037t+0.2305在编辑窗口输入如下命令:>>x=[0,5,10,15,20,25,30,35,40,45,50,55];y=[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64];>> t=0:0.1:55;>> z=-0.0024*t.^2+0.2037*t+0.2305;>> plot(x,y,'ro',t,z);grid命令执行得到如下图(图2-2)拟合多项式与数据点的关系三、实验结论在利用数据的最小二乘法求拟合曲线时,选取合适的近似表达式很重要,应通过不断的试验找出较为合适的近似表达式,这样才能尽可能的提高拟合精度。

5函数逼近与曲线拟合.docx

5函数逼近与曲线拟合.docx

第5章函数逼近与曲线拟合上一章讨论的是函数插值问题,通常都是用一个多项式来代替一个已知的函数,它们在 给定的插值基点上有相同的函数值,是对原函数的一-种近似。

然而,在实际应用中插值问题 仍有明显的缺点:对于有解析式的函数而言,在其它点上误差可能很大,如龙格现象;对于 离散(表)函数而言,给定的数据点本身是有误差的,刚性地让插值函数通过这些点不仅没 有意义,而且会影响对原函数的近似程度。

另外,泰勒展示也是对连续函数的一种低阶近似, 它在展开点附近误差较小,但在展开点远处,误差会很大。

本章讨论在新的函数谋旁度最条件下的函数近似问题,对连续函数称之为函数逼近问题, 对于离散函数称之为dii 线拟合问题。

主要内容有:函数最佳逼近的概念,正交多项式,最佳 均方逼近少最小二乘曲线拟合问题等。

5.1函数最佳逼近的概念希望能有一种方法寻求出一个近似多项式,使它在整个区间上既均匀的逼近/(%),所需 的计算呆又小,这就是函数逼近要解决的问题。

为了刻划“均匀逼近”,设P n (x)是定义在区 间[a,b ]上原函数/(x)的近似多项式。

我们用||/(x) -p n (x)||来度量p n (x)与/(x)近似逼近 程度。

这样,自然地会有下面两种不同的度暈标准:fM- p n (x)使丿IJ 这个度量标准的函数逼近称为均方逼近或平方逼近;/W 一 p n (x) = max f(x) 一 p n (x) 使用这个度量标准的函数逼近称为一致逼近或均匀逼近o关于一致逼近的问题,在数学分析中有以下结论。

设函数/(X )在区间[a,b ]上连续,若£>0,则存在多项式P(x)使|/(x)-P(x)|<£,在区间[a,b ]上一致成立。

对于函数插值而 言,如果插值余项也能满足对任意的£〉0, \R n (x)\ = \f(x)-p n M\<e 都成立的话,贝闹 值多项式P n M 是/(Q 的一致逼近多项式。

数据拟合与函数逼近

数据拟合与函数逼近

第十三章 数据拟合与函数逼近数据拟合与函数逼近涉及到许多内容与方法,从不同角度出发,也有多种叫法。

这一章,我们主要通地线性拟合而引出最小乘法这一根本方法。

13.1 数据拟合概念与直线拟合插值法是一种用简单函数近似代替较复杂函数的方法,它的近似标准是在插值点处的误差为零。

但有时,我们不要求具体某些点的误差为零,而是要求考虑整体的误差限制。

对了达到这一目的,就需要引入拟合的方法,所以数据拟合与插值相比:数据拟合--不要求近似 函数过所有的数据点,而要求它反映原函数整体的变化趋势。

插值法--在节点处取函数值。

实际给出的数据,总有观测误差的,而所求的插值函数要通过所有的节点,这样就会保留全部观测误差的影响,如果不是要求近似函数过所有的数据点,而是要求它反映原函数整的变化趋势,那么就可以用数据拟合的方法得到更简单活用的近似函数。

13.1.1 直线拟合由给定的一组测定的离散数据(,)i i x y (1,2,,i N = ),求自变量x 和因变量y 的近似表达式()y x ϕ=的方法。

影响因变量y 只有一个自变量x 的数据拟合方法就是直线拟合。

直线拟合最常用的近似标准是最小二乘原理,它也是流行的数据处理方法之一。

直线拟合步骤如下:(1) 做出给定数据的散点图(近似一条直线)。

(2) 设拟合函数为:i bx a y +=*(13.1.1)然后,这里得到的*i y 和i y 可能不相同,记它们的差为:i i i i i bx a y y y --=-=*δ (13.1.2)称之为误差。

在原始数据给定以后,误差只依赖于b a ,的选取,因此,可以把误差的大小作为衡量b a ,的选取是否优良的主要标志。

最小二乘法便是确定“最佳” 参数的方法,也就是要误差的平方和达到最小。

(3) 写出误差和表达式:),()(1212b a bx a yQ Ni i iNi iϕδ=--==∑∑== (13.1.3)要选择b a ,而使得函数),(b a ϕ最小,可以用数学分析中求极值的方法,即先分别对b a ,求偏导,再使偏导等于零。

数值分析---函数逼近与曲线拟合

数值分析---函数逼近与曲线拟合
2 1 2
于是
1 5 1 5 17 2 2 ( x) x ( x ) x x 9 7 4 7 252
2
3)几种常用的正交多项式
• 勒让德多项式 当区间[-1,1],权函数ρ(x) ≡1时,由 {1,x,…,xn,…}正交化得到的多项式就称为 勒让德多项式,并用P0(x),P1(x),…,Pn(x),… 表示. 其简单的表达式为
全体,按函数的加法和数乘构成连续函数 空间---- C[a, b]
3.1 函数逼近的基本概念
1)线性无关
设集合S是数域P上的线性空间,元素
x1,x2,…,xn∈S,如果存在不全为零的数
a1,a2,…,an∈P,使得
a1 x1 a2 x2 ... an xn 0,
则称x1,x2,…,xn线性相关.
( x , 0 )
2
1
0
于是
1
1 1 ( x) x 4
1 x ln xdx 9
2
1 1 2 1 1 7 2 (1 , 1 ) ( ln x)( x ) dx (ln x)( x x )dx 0 0 4 2 16 144
1 5 ( x , 1 ) ( ln x) x ( x )dx 0 4 144
且有以下常用公式
p 0 ( x) 1 p1 ( x ) x p 2 ( x ) (3 x 2 1) / 2 p 3 ( x ) (5 x 3 3 x ) / 2 p 4 ( x ) (35x 4 30x 2 x ) / 8 p 5 ( x ) (63x 5 70x 3 15x ) / 8 p 6 ( x ) ( 231 x 6 315x 4 105x 2 5) / 16

《数值分析》第3讲:函数逼近与计算

《数值分析》第3讲:函数逼近与计算
想)
函数的逼近与计算
pn * ( x) ? 1、Chebyshev给出如下概念
设 f ( x) C[a,b], 如p果( x) Hn ,
f (x)
|
p( x0 )
f
(
x0
)
|
max
a xb
|
p( x)
f ( x) |
p4 0*(x)
则称 x是0 偏差点。
如果 p( x0 ) f ( x0 ) 则称 x是0 正偏差点。
b
2a
a0 (
x ) 0 (
x)k
(
x)dx
b
b
2a an( x)n( x)k ( x)dx 2a ( x) f ( x)k ( x)dx

I ak
2a0 0( x),k ( x) 2a11( x),k ( x)
2an n( x),k ( x) 2 f ( x),k ( x)
函数的逼近与计算

1
1 1
2
n1
1 H 2
1 3
1 n2
1 n 1
1 n2
1 2n 1
例3.2 (P56)
已知 f ( x) 1 x2 C[0, 1], span{1, x}

1
(0 , 0 )
1dx 1,
0
(0 , 1)
1
1
xdx
0
2
(1, 0 )
1
1
xdx ,
▲ 1856年解决了椭圆积分的雅可比逆转问题,建立了椭圆函数 新结构的定理,一致收敛的解析函数项级数的和函数的解析性的 定理,圆环上解析函数的级数展开定理等。
函数的逼近与计算

数值分析--第3章 函数逼近和快速傅里叶变换-文档资料

数值分析--第3章 函数逼近和快速傅里叶变换-文档资料

则称 x1, , xn 线性相关. 否则,若等式(1.1)只对 成立, 0 1 2 n
, xn线性无关. 则称 x 1,
2019/2/17 课件 6
若线性空间 S是由 n 个线性无关元素 x1, , xn 生成的,
x S 都有 x x x 1 1 n n
, xn 称为空间 S 则 x1, 的一组基,记为
S span { x , , x } 1 n
并称空间 S 为n 维空间,系数 称为 x 在基 , 1, n
, , x1, , xn下的坐标, 记作 ( 1 n).
如果 S中有无限个线性无关元素 x , ,x , 则称 S 1 n, 为无限维线性空间.
n
的一组基,故
n H span { 1 , x , , x }, n
a ,a , ,a )是 p ( x ) 的坐标向量,H n 是 n 1 维的. 且( 0 1 n
2019/2/17
课件
8
对连续函数 f( ,它不能用有限个线性无关的 x ) C [ a , b ] 函数表示,故 C[a, b] 是无限维的,但它的任一元素 f ( x)
( x ) span { ( x ), ( x ), , ( x )} C [ a , b ]
0 1 n
可表示为
( x ) a ( x ) a ( x ) a ( x ). (1.4)
0 0 1 1 n n
*
*
函数逼近问题就是对任何 f( , x ) C [ a , b ] 在子空间Φ
个代数多项式 p ( x ) , 使
在 [ a , b ] 上一致成立. 伯恩斯坦1912年给出的证明是一种构造性证明. 他根据函数整体逼近的特性构造出伯恩斯坦多项式

小波分析之函数逼近与曲线拟合

小波分析之函数逼近与曲线拟合


=
max
f (x)
a≤ x≤b
绝对值与
n上范数的扩充关系 R
• 数a的绝对值(a离开原点0的距离):∣a∣ • 数a与b的差异(距离): ∣a-b∣ • 向量A=( 1, a2,…,an)的范数(A离开0向量 A=(a , 的范数 A=( 的距离) : n • x = ∑ x i
1 i = 1
x x
距离空间定义
• ฀ 设X是非空集合,对于X中的任意两元素x与y ,按某一法则都对应唯一的实数ρ(x, y),并满足 以下三条公理: • 1.非负性:ρ(x, y) ≥0,ρ(x, y) =0当且仅当x=y; • 2.对称性:ρ(x, y) =ρ(y, x); • 3.三角不等式;对任意的x, y, z ρ(x, y) ≤ρ(x, z) + ρ(z, y), 则称ρ(x, y)为x与y间的距离(或度量),并称X是 以ρ为距离的距离空间(或度量空间),记为(X, ρ).
2
2
2

内积空间的性质
定理 设 X 为内积空间,{u1 , u2 ,⋯ , un } ⊆ X , 格拉姆(Gram)矩阵
(u1 , u1 ) (u2 , u1 ) ⋯ (u n , u1 ) (u1 , u2 ) (u2 , u2 ) ⋯ (u n , u2 ) G= ⋮ ⋮ ⋮ (u , u ) (u , u ) ⋯ (u , u ) 2 n n n 1 n
内积空间
设X 是定义在实(或复)数域K上的线性空 间,若对于X中 任意一对有序元素x,y, 恒对应 数域K的值(x, y),且满足: • (x, x) ≥0,且(x, x)=0的充要条件是x=0; • (ax, y) = a(x, y);฀ • (x+y, z) = (x, z) + (x, z).฀ ฀ 则称X为内积空间,(x, y)称为x, y的内积. 正交: 正交 若(x, y)=0,称x与y正交.

函数逼近与曲线拟合

函数逼近与曲线拟合

函数逼近与曲线拟合3.1函数逼近的基本概念3.1.1 函数逼近与函数空间在数值计算中常要计算函数值,如计算机中计算基本初等函数及其他特殊函数;当函数只在有限点集上给定函数值,要在包含该点集的区间上用公式给出函数的简单表达式,这些都涉及到在区间上用简单函数逼近已知复杂函数的问题,这就是函数逼近问题.上章讨论的插值法就是函数逼近问题的一种.本章讨论的函数逼近,是指“对函数类A中给定的函数,记作,要求在另一类简单的便于计算的函数类B中求函数,使与的误差在某种度量意义下最小”.函数类A通常是区间上的连续函数,记作,称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等.函数逼近是数值分析的基础,为了在数学上描述更精确,先要介绍代数和分析中一些基本概念及预备知识.数学上常把在各种集合中引入某些不同的确定关系称为赋予集合以某种空间结构,并将为样的集合称为空间.例如将所有实n维向量组成集合,按向量加法及向量与数的乘法构成实数域上的线性空间,记作,称为n维向量空间.类似地,对次数不超过n(n为正整数)的实系数多项式全体,按通常多项式与多项式加法及数与多项式乘法也构成数域上的一个线性空间,用表示,称为多项式空间.所有定义在上的连续函数集合,按函数加法和数与函数乘法构成数域上的线性空间,记作.类似地,记为具有p阶的连续导数的函数空间.定义1设集合S是数域P上的线性空间,元素,如果存在不全为零的数,使得, (3.1.1)则称线性相关.否则,若等式(3.1.1)只对成立,则称线性无关.若线性空间S是由n个线性无关元素生成的,即对都有则称为空间S的一组基,记为,并称空间S为n维空间,系数称为x在基下的坐标,记作,如果S中有无限个线性无关元素,…,则称S为无限维线性空间.下面考察次数不超过n次的多项式集合,其元素表示为, (3.1.2)它由个系数唯一确定.线性无关,它是的一组基,故,且是的坐标向量,是维的.对连续函数,它不能用有限个线性无关的函数表示,故是无限维的,但它的任一元素均可用有限维的逼近,使误差(为任给的小正数),这就是著名的Weierstrass定理.定理1(Weierstrass)设,则对任何,总存在一个代数多项式,使在上一致成立.这个定理已在“数学分析”中证明过.这里需要说明的是在许多证明方法中,伯恩斯坦1912年给出的证明是一种构造性证明.他根据函数整体逼近的特性构造出伯恩斯坦多项式, (3.1.3)其中,其中,并证明了在上一致成立;若在上阶导数连续,则.这不但证明了定理1,而且由(3.1.3)给出了的一个逼近多项式.它与拉格朗日插值多项式很相似,对,当=1时也有关系式. (3.1.4)这只要在恒等式中令就可得到.但这里当时还有,于是是有界的,因而只要对任意成立,则有界,故是稳定的.至于拉格朗日多项式,由于无界,因而不能保证高阶插值的稳定性与收敛性.相比之下,多项式有良好的逼近性质,但它收敛太慢,比三次样条插值效果差得多,实际中很少被使用.更一般地,可用一组在上线性无关的函数集合来逼近,元素,表示为. (3.1.5) 函数逼近问题就是对任何,在子空间中找一个元素,使在某种意义下最小.3.1.2 范数与赋范线性空间为了对线性空间中元素大小进行衡量,需要引进范数定义,它是空间中向量长度概念的直接推广.定义2.1.2 设为线性空间,,若存在唯一实数,满足条件:(1)正定性:,(2)当且仅当时,(3);(4)齐次性:,(5);(6)三角不(7)等式:,(8).则称为线性空间上的范数,与一起称为赋范线性空间,记为.例如,在上的向量,三种常用范数为类似地对连续函数空间,若可定义三种常用范数如下:可以验证这样定义的范数均满足定义3.1.2中的三个条件.3.1.3 内积与内积空间在线性代数中,中两个向量及的内积定义为.若将它推广到一般的线性空间,则有下面的定义.定义3.1.3设是数域上的线性空间,对,有中一个数与之对应,记为,它满足以下条件:(1);(2);(3);(4),当且仅当时,.则称为上与的内积.定义了内积的线性空间称为内积空间.定义中(1)的右端称为的共轭,当为实数域时.如果=0,则称与正交,这是向量相互垂直的概念的推广.关于内积空间性质有以下重要定理.定理3.1.2设为一个内积空间,对,有(3.1.6) 称为Cauchy-Schwarz不等式.[证明]当时(3.1.6)式显然成立.现设,则,且对任何数有.取,代入上式右端,得,即得时.定理证毕定理3.1.2设为一个内积空间,,矩阵(3.1.7)称为Gram矩阵,则G非奇异的充分必要条件是线性无关.[证明]G非奇异等价于,其充分必要条件是齐次方程组(3.1.8) 只有零解.而(3.1.9) 从以上的等价关系可知,等价于从(3.1.8)推出.而后者等价于从(3.1.9)推出,即线性无关.定理证毕在内积空间上可以由内积导出一种范数,即对于,记(3.1.10) 容易验证它满足范数定义的三条性质,其中三角不等式(3.1.11)可由定理3.1.2直接得出,即两端开方即得(3.1.11).例1与的内积.设,,,则其内积定义为(3.1.12)由此导出的向量2-范数为.若给定实数,称为权系数,则在上可定义加权内积为(3.1.13)相应的范数为.不难验证(3.1.13)给出的满足内积定义的4条性质,当时,(3.1.13)就是(3.1.12).如果,带权内积定义为(3.1.14) 这里仍为正实数序列,为的共轭.在上也可以类似定义带权内积,为此先给出权函数的定义.定义3.1.4 设是有限或无限区间,在上的非负函数满足条件:(1)存在且为有限值;(2)对上的非负连续函数,如果,则.则称为上的一个权函数.例2上的内积.设,是上给定的权函数,则可定义内积. (3.1.15)容易验证它满足内积定义的4条性质,由此内积导出的范数为. (3.1.16)称(3.1.15)和(3.1.16)为带权的内积和范数.特别常用的是的情形,即若是中的线性无关函数族,记,它的Gram矩阵为(3.1.17)根据定理3.1.3可知线性无关的充分必要条件是.3.2 正交多项式正交多项式是函数逼近的重要工具,在数值积分中也有着重要的应用.3.2.1 正交函数族与正交多项式定义3.2.1 若,为上的权函数且满足, (3.2.1)则称与在上带权正交.若函数族满足关系(3.2.2)则称是上带权的正交函数族;若,则称之为标准正交函数族.例如,三角函数族就是在区间上的正交函数族.因为对有,而对,当时有定义3.2.2 设是上首项系数的次多项式,为上权函数,如果多项式序列满足关系式(3.2.2),则称多项式序列为在上带权正交,称为上带权的次正交多项式.只要给定区间及权函数,均可由一族线性无关的幂函数,利用逐个正交化手续构造出正交多项式序列;,(3.2.3) 这样得到的正交多项式序列有以下性质:(1)是具有最高次项系数为1的次多项式.(2)任何次多项式均可表示为的线性组合.(3)当时,,且与任一次数小于的多项式正交.(4)成立递推关系.其中这里.(5)设是在上带权的正交多项式序列,则的个根都是在区间内的单重实根.3.2.2 勒让德多项式当区间为[-1,1],权函数时,由正交化得到的多项式就称为勒让德(Legendre)多项式,并用表示.这是勒让德于1785年引进的,1814年罗德利克(Rodrigul)给出了简单的表达式由于是2次的多项式,求阶导数后得,于是得首项系数为,显然最高项系数为1的勒让德多项式为.(3.2.6) 勒让德多项式有下述几个性质:性质1正交性(3.2.7) [证明]令,则.设是在区间[-1,1]上的阶连续可微的函数,由分部积分知下面分两种情况讨论:(1)若是次数小于的多项式,则,故得(2)若,则,于是由于,故,于是(3.2.7)得证.性质2奇偶性(3.2.8)[证明]由于是偶次多项式,经过偶次求导仍为偶次多项式,经过奇次求导则为奇次多项式,故为偶数时为偶函数,为奇数时为奇函数,于是(3.2.8)成立.性质3递推关系(3.2.9) [证明]考虑+1次多项式,它可表示为两边乘以,并从-1到1积分,得.当时,的次数小于-1,上式左端积分为0,故得.当时.为奇函数,左端积分仍为0,故.于是.其中,代入上式整理可得(3.2.9).例1由利用性质3可得性质4在区间[-1,1]内有个不同的实零点.3.2.3 切比雪夫多项式当权函数,区间为[-1,1]时,由序列正交化得到的多项式就称为切比雪夫(Chebyshev)多项式,它可表示为(3.2.10)若令,则.切比雪夫多项式有很多重要性质:性质1递推关系(3.2.11) 这只要由三角不等式.令即得.由(3.2.11)就可推出由递推关系(3.2.11)还可得到的最高次项系数是.性质6切比雪夫多项式在区间[-1,1]上带权正交,且(3.2.12) 事实上,令,则,于是性质7只含的偶次幂,只含有的奇次幂.这性质由递推关系直接得到.性质8在区间[-1,1]上的个零点此外,实际计算中时常要求用的线性组合,其公式为. (3.2.13) 例如:结果如下:3.2.4 其他常用的正交多项式一般说,如果区间及权函数不同,则得到的正交多项式也不同.除上述两种最重要的正交多项式外,下面再给出三种较常用的正交多项式.第二类切比雪夫多项式在区间[-1,1]上带权的正交多项式称为第二类切比雪夫多项式,其表达式为. (3.2.14)令,可得即是[-1,1]上带权的正交多项式族.还可得到递推关系式.拉盖尔多项式在区间上带权的正交多项式称为拉盖尔(Laguerre)多项式,其表达式为. (3.2.15)其正交性为和递推关系.3. 埃尔米特多项式在区间上带权的正交多项式称为埃尔米特多项式.其表达式为, (3.2.16)其正交性为递推关系为.3.3 最佳一致逼近多项式3.3.1 基本概念及其理论本节讨论,在中求多项式,使其误差.这就是通常所谓最佳一致逼近或切比雪夫逼近问题.为了说明这一概念,先给出以下定义.定义3.3.1 设,,称. (3.3.1) 为与在上的偏差.显然,的全体组成一个集合,记为{},它有下界0.若记集合的下确界为(3.3.2)则称之为在上的最小偏差.定义3.3.2 假定,若存在,使得, (3.3.3)则称是在上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式.注意,定义并未说明最佳逼近多项式是否存在,但可证明下面的存在定理.定理4若,则总存在,使.为了研究最佳逼近多项式的特性,先引进偏差点的定义.定义3.3.3设,,若在上有,就称是的偏差点.若,称为“正”偏差点.若,称为“负”偏差点.由于函数在上连续,因此,至少存在一个点,使,也就是说的偏差点总是存在的.下面给出反映最佳逼近多项式特征的切比雪夫定理.定理3.3.2是的最佳逼近多项式的充分必要条件是在上至少有个轮流为“正”、“负”的偏差点,即有个点,使. (3.3.4) 这样的点组称为切比雪夫交错点组.[证明]只证充分性.假定在上有个点使(3.3.4)成立,要证明是在上的最佳逼近多项式.用反证法,若存在,使.由于在点上的符号与一致,故也在个点上轮流取“+”、“-”号.由连续性质,它在内有个零点,但因是不超过次的多项式,它的零点不超过.这矛盾说明假设不对,故就是所求最佳逼近多项式.充分性得证,必要性证明略,可参看[5].定理5说明用逼近的误差曲线是均匀分布的.由这定理还可得以下重要推论.推论1若,则在中存在唯一的最佳逼近多项式.证明略.利用定理5可直接得到切比雪夫多项式的一个重要性质,即定理3.3.3 在区间[-1,1]上所有最高次项系数为1的次多项式中与零的偏差最小,其偏差为.[证明]由于,且点是的切比雪夫交错点组,由定理5可知,区间[-1,1]上在中最佳逼近多项式为,即是与零的偏差最小的多项式.定理证毕例3求在[-1,1]上的最佳2次逼近多项式.解由题意,所求最佳逼近多项式应满足由定理3.3.3可知,当时,多项式与零偏差最小,故就是在[-1,1]上的最佳2次逼近多项式.3.3.2 最佳一次逼近多项式定理3.3.2给出了最佳逼近多项式的特性,但要求出却相当困难.下面讨论的情形.假定,且在内不变号,我们要求最佳一次逼近多项式.根据定理3.3.2可知至少有3个点,使由于在内不变号,故单调,在内只有一个零点,记为,于是,即.另外两个偏差点必是区间端点,即,且满足由此得到(3.3.5) 解出, (3.3.6) 代入(3.3.5)得. (3.3.7)这就得到了最佳一次逼近多项式,其几何意义如图3-3所示.直线与弦MN平行,且通过MQ的中点D,其方程为.图3-3一次最佳一致逼近多项式几何意义例4 求在上的最佳一次逼近多项式。

第三章函数逼近和曲线拟合

第三章函数逼近和曲线拟合
则称 x1, x2 ,..., xn 为空间S的一组基,记为:
S=span{ x1,..., xn}
并称该空间为n维空间。1,2 ,...,n P
称为x在这组基下的坐标。 例:n次多项式
p(x) Hn , p(x)=a0 + a1x ... an xn Hn span{1, x, x2 ,..., xn}
4
11
4.5
12
4.6
强 度 yi 编 号 拉伸倍数 xi
1.4
13
5
1.3
14
5.2
1.8
15
6
2.5
16
6.3
2.8
17
6.5
2.5
18
7.1
3
19
8
2.7
20
8
4
21
8.9
3.5
22
9
4.2
23
9.5
3.5
24
10
强 度 yi
5.5 5
5.5
6.4 6
5.3 6.5
7 8.5
8 8.1 8.1
6
内积与内积空间 定义3:设X为数域K(R或C)上的线性空
间,满足条件:
u, v X , k (u, v) K, st.
(1) (u, v) (v, u)
(2) (u, v) (u, v), for K
(3) (u v, w) (u, w) (v, w), for w X
(4) (u, u) 0, u 0 iff (u, u) 0
存在唯一实数 g ,满足条件:
(1) x 0; x 0 iff x 0
(2) x x , R
(3) x y x y , x, y R

《数值分析》_实验

《数值分析》_实验

( )
( )
4、另外选取一个近似表达式,尝试拟合效果的比较; 5、* 绘制出曲线拟合图。 三、目的和意义 1、掌握曲线拟合的最小二乘法; 2、最小二乘法亦可用于解超定线代数方程组; 3、探索拟合函数的选择与拟合精度间的关系
第5页
数值分析实验,宋伦继
6
实验四 数值积分与数值微分
一、问题提出 选用复合梯形公式,复合 Simpson 公式,Romberg 算法,计算
x
*
⎡ 0 ⎤ ⎢ −6 ⎥ ⎥ ⎢ ⎢ 20 ⎥ ⎥ ⎢ ⎢ 23 ⎥ ⎢ 9 ⎥ ⎥ ⎢ ⎢− 22⎥ ⎢ − 15 ⎥ ⎥ ⎢ ⎥ ⎢ 45 ⎦ ⎣
=
( 1,
-1,
0,
2,
1,
-1,
0,
2)
T
第7页
数值分析实验,宋伦继
8
3、三对角形线性方程组
⎡ 4 − 1 0 0 0 0 0 0 0 0 ⎤ ⎡ x1 ⎤ ⎡ 7 ⎤ ⎢− 1 4 − 1 0 0 0 0 0 0 0 ⎥ ⎢ x ⎥ ⎢ 5 ⎥ ⎥ ⎢ 2⎥ ⎥ ⎢ ⎢ ⎢ 0 − 1 4 − 1 0 0 0 0 0 0 ⎥ ⎢ x3 ⎥ ⎢ − 13⎥ ⎥⎢ ⎥ ⎥ ⎢ ⎢ ⎢ 0 0 − 1 4 − 1 0 0 0 0 0 ⎥ ⎢ x4 ⎥ ⎢ 2 ⎥ ⎢ 0 0 0 − 1 4 − 1 0 0 0 0 ⎥ ⎢ x5 ⎥ ⎢ 6 ⎥ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎢ 0 0 0 0 − 1 4 − 1 0 0 0 ⎥ ⎢ x6 ⎥ ⎢− 12⎥ ⎢ 0 0 0 0 0 −1 4 −1 0 0 ⎥ ⎢ x ⎥ ⎢ 14 ⎥ ⎥ ⎢ 7⎥ ⎥ ⎢ ⎢ ⎢ 0 0 0 0 0 0 − 1 4 − 1 0 ⎥ ⎢ x8 ⎥ ⎢−4⎥ ⎢ 0 0 0 0 0 0 0 − 1 4 − 1⎥ ⎢ x ⎥ ⎢ 5 ⎥ ⎥ ⎢ 9⎥ ⎥ ⎢ ⎢ ⎥ ⎥⎢ ⎥ ⎢ 0 0 0 0 0 0 0 0 −1 4 ⎦ ⎢ −5⎦ ⎣ ⎣ ⎣ x10 ⎦

数值分析李庆版

数值分析李庆版
为[a,b]上的权函数, 若多项式序列{ pn( x)}0 ,满足正交性
(2.2),则称{ pn( x)}0 为以( x)为权函数的[a,b]上的正交 多项式序列. 称pn( x)为以( x)为权函数的[a,b]上的n次正
交多项式.
只要给定[a,b]上的权函数( x), 由{1, x, xn,}利用逐个
例2 设f ( x), g( x) C[a,b], ( x)为[a,b]上的权函数,则可
定义内积
( f , g) ab( x) f ( x)g( x)dx. 1,( f , g) ab f (x)g(x)dx.
容易验证内积定义中的四个性质,并导出范数
||
f ( x) ||2
有限维空间 vs 无限维空间.
Rn, C[a,b],
定理 1(维尔斯特拉斯) 如果f ( x) C[a,b], 那么 0,
多项式p( x),使得
| f ( x) p( x) | , 对于一切a x b.
伯恩斯坦(1912)给出一种构造性证明:伯恩斯坦多项式
Bn (
j1
j1
只有零解。
k 1,,n.
n
n
n
2) juj 0 ( juj , juj ) 0
j1
j1
j1
n
( ju j ,uk ) 0, k 1,,n.
j1
G非奇异 u1, u2,, un线性无关(反证法);反之亦然.
在内积空间X上可以由内积导出一种范数,即对u X ,记
1
|| f ||2 ab f 2( x)dx 2, 称为2 范数.
三、内积与内积空间
Rn中向量x及y定义内积 : ( x, y) x1 y1 , xn yn. 定义3 设X是数域K(R或C)上的线性空间,对u,v X, 有K中一个数与之对应,记为( u, v ),并满足条件:

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

数值分析第三章函数逼近与 曲线拟合习题答案

数值分析第三章函数逼近与    曲线拟合习题答案

6。对,定义 问它们是否构成内积。 解: 令(C为常数,且) 则 而 这与当且仅当时,矛盾 不能构成上的内积。 若,则 ,则 若,则 ,且 即当且仅当时,. 故可以构成上的内积。 7。令,试证是在上带权的正交多项式,并求。 解: 若,则 令,则,且,故 又切比雪夫多项式在区间上带权正交,且 是在上带权的正交多项式。 又 8。对权函数,区间,试求首项系数为1的正交多项式 解: 若,则区间上内积为 定义,则 其中 9。试证明由教材式给出的第二类切比雪夫多项式族是上带权的正交多 项式。 证明: 若 令,可得 当时, 当时, 又,故 得证。 10。证明切比雪夫多项式满足微分方程 证明:
若 且,则 则法方程组为 解得 故关于的最佳平方逼近多项式为 17。求函数在指定区间上对于的最佳逼近多项式: 解: 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且,则有 则法方程组为 从而解得 故关于的最佳平方逼近多项式为 若 且则有 则法方程组为 从而解得 故关于最佳平方逼近多项式为 18。,在上按勒让德多项式展开求三次最佳平方逼近多项式。 解: 按勒让德多项式展开 则 从而的三次最佳平方逼近多项式为 19。观测物体的直线运动,得出以下数据:
切比雪夫多项式为 从而有 得证。 11。假设在上连续,求的零次最佳一致逼近多项式? 解: 在闭区间上连续 存在,使 取 则和是上的2个轮流为“正”、“负”的偏差点。 由切比雪夫定理知 P为的零次最佳一致逼近多项式。 12。选取常数,使达到极小,又问这个解是否唯一? 解: 令 则在上为奇函数 又的最高次项系数为1,且为3次多项式。 与0的偏差最小。 从而有 13。求在上的最佳一次逼近多项式,并估计误差。 解: 于是得的最佳一次逼近多项式为 即 误差限为 14。求在上的最佳一次逼近多项式。 解: 于是得的最佳一次逼近多项式为 15。求在区间上的三次最佳一致逼近多项式。 解: 令,则 且 令,则 若为区间上的最佳三次逼近多项式应满足 当 时,多项式与零偏差最小,故 进而,的三次最佳一致逼近多项式为,则的三次最佳一致逼近多项式为 16。,在上求关于的最佳平方逼近多项式。 解:

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文

《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。

试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。

实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。

在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。

t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。

三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这里 n << m。
实际上是 a0, a1, …, an 的多元函数,即
[ ] (a0

,的a1 极, ...值, a点n )应 法有i/m*1/方r*enag程o0rre组msa0sa回(1,il或oxe归nkiq正cu系o0.a规.,e.t数.if.o方.f,inacnsn程iex*n/in组ts)*y/ i
++ +
+ +
P=a1+a2/x
+ +++ +
P=aebx
+ +
++ +
P=ae-bx
+ + + ++
例: y
§1 L-S Approximating Polynomials
(xi , yi) , i = 1, 2, …, m
x
方案一:设
y

P(x)

x ax b

a

b
使得
(a,b)
称为切比雪夫多项式。他还研究了二次逼近和用三角函数及有理函数逼
近连续函数的问题。由此,创立了函数构造理论。切比雪夫在数学分析
中也作了大量的工作。他研究了无理函数的可积性,解决了有限形式下
椭圆积分问题,证明了著名的微分二项式可积性条件的定理,对正交多
项式理论和内插法理论也作出了贡献。
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
y1
y



yn
超定方程一般是不存在解的矛盾方程组。 n
如果有向量a使得 (ri1a1 ri2a2 rimam yi )2 达到最小, i 1
则称a为上述超定方程的最小二乘解。
所以,曲线拟合的最小二乘法要解决的问题,实际上就是 求以下超定方程组的最小二乘解的问题。
数据拟合的最小二乘法
/* Least Squares Method */
仍然是已知 x1 … xm ; y1 … ym, 求一个简单易 算的近似函数 P(x) f(x)。
但是 ① m 很大; ② yi 本身是测量值,不准确,即 yi f (xi)
这时没必要取 P(xi) = yi , 而要使 P(xi) yi 总体上尽可能小。

切比雪夫是圣彼得堡数学学派的创始人 。在数论方面,从本质上推
进了对素数分布问题的研究,1848年,他探讨了素数分布的渐近规律,
还证明了任何自然数n与 2n之间至少有一素数。稍后,他研究了用有理
数逼近实数的问题,发展了丢番图逼近理论。切比雪夫的工作为数论研
究开辟了新方向 。 在概率论方面 , 切比雪夫建立了证明极限定理的新
m
m
记 (a1, a2 , an )

2 i

[P(xi ) yi ]2
i 1
i 1
mn
[ ak rk (xi ) yi ]2
(2)
i1 k 1
问题归结为,求 a1,a2, …am 使 (a1, a2 , an ) 最小。
超定方程组:方程个数大于未知量个数的方程组
定理 Ba = c 的解就是 的极小点。即:设 a 为解,则任
n
意 b = (b0 b1 … bn )T 对应的多项式 F(x) bj x j 必有
j0
m
m
(a ) [P( xi ) yi ]2 [F ( xi ) yi ]2 (b)
i 1
i 1
m
m
证明:(b) (a) [F ( xi ) yi ]2 [P( xi ) yi ]2
i 1
i 1
m
m
[F(xi ) P(xi ) P(xi ) yi ]2 [P(xi ) yi ]2
i 1
i 1
0 m
m
[F(xi ) P(xi )]2 2 [F(xi ) P(xi )][P(xi ) yi ]
只要分别计算各点的误差 i f (xi ) P(xi )
利用 || || 或 || ||2 , 比较不同逼近函数误差范数的大小,
并从中挑选误差较小的模型.
§8.1 周期函数最佳平方逼近
设 f(x) 周期为2的平方可积函数,从数学分析知道: {1,cosx, sinx,…,coskx,sinkx,…}在[0, 2]上是一正交函数族.
进分析学,建立了实数理论,引进了现今分析学上通用的极限的εδ定义,为分析学的算术化作出重要贡献。在变分法中,他给出了 带有参数的函数的变分结构,研究了变分问题的间断解。在微分几 何中,研究了测地线和最小曲面;在线性代数中,建立了初等因子 理论,并用来简化矩阵。Weierstrass的学生还包括H.A. Schwarz , Sonya Kovalevski(柯瓦列夫斯卡娅 ), MittagLeffler(米塔-列夫勒 )(据说诺贝尔因此人而不设数学奖), G.Cantor, Hilbert等.称为“古典分析学集大成者 ”.
线性化:由
ln
y

ln
a

b x
可做变换
Y ln y ,
X

1 x
,
A ln a ,
B b
Y A BX 就是个线性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 A 和B
a eA , b B , P(x) a eb/x 如何比较不同逼近函数的好坏?
i 1
i 1
注: L-S method 首先要求设定 P(x) 的形式。若设
n=m1,则可取 P(x) 为过 m 个点的m1阶插值多
项式,这时 = 0。
P(x) 不一定是多项式,通常根据经验确定。
人物介绍
• Weierstrass(1815-1899)德意志帝国数学家,他把严格的论证引
b00

...
bn0
... b0n a0 c0
...
...


...



...

...
bn n

an

cn

§1 L-S Approximating Polynomials
定理 L-S 拟合多项式存在唯一 (n < m)。
常见做法:
不可导,求解困难 太复杂

使
max |
1 i m
P( xi
)

yi
|
最小
/*
minimax
problem
*/
m
➢ 使 | P( xi ) yi | 最小
i 1
m
➢ 使 | P( xi ) yi |2 最小 /* Least-Squares method */ i 1
方法 —— 矩法 , 用十分初等的方法证明了一般形式的大数律,研究了
独立随机变量的和函数的收敛条件,证明了这种和函数可以按n-1/2的方
幂渐近展开(n为变量的个数)。他的贡献使概率论的发展进入新阶段 。
切比雪夫从研究机 械 原理出发,研究了用多项式逼近连续函数的问题,
建立了偏离零最小函数的专门理论,他为此构造的几个著名的多项式,
B为正定阵,若则不非然奇,异则,所以法方程组存在唯一解。 存在一个 u 0 Rn1 使得 Φ u 0 …
n

x
j k
u
j

0,
k 1, ... , m
j0
x1, ... , xm 是 n 阶多项式
P( x) u0 u1 x ... un xn 的根
§1 L-S Approximating Polynomials
[0,
2
]
上展开为三角级数
C
e i ( jx )
j

j0
N 1
其中Cj 为复系数总,e之i( jx要) 进cos行 j形x如 i sCinj jx,x则k W实k际j 计算时要取
2
ak
0

ak
m
2 [P(xi )
i 1
yi
]
P( xi ak
)
mn
2
[
a
j
x
j i

yi ]
x
k i
i1 j0
n
m
m
2
aj
x jk i

yi xik
j0
i 1
i 1
m
m
记 bk xik , ck yi xik
i1
i1
m i 1
(axixi
b

yi )2
最小。
线性化
/*
linearization
*/:令
Y

1 y
,
X

1 x
,则
Y a bX 就是个线性问题
将( xi , yi ) 化为( X i ,Yi ) 后易解 a 和b。
§1 L-S Approximating Polynomials
方案二:设 y P( x) a eb/ x ( a > 0, b > 0 )
其中
Ra=y
(3)
r1 ( x1 ) rm ( x1 )
R
,
r1 ( xn ) rm ( xn )
a1
a


,
am
y1
y



yn
定理:当RTR可逆时,超定方程组(3)存在最小二乘 解,且即为方程组
相关文档
最新文档