期末专题复习《三角形》(1)
人教版八年级上册第一学期数学期末专题复习卷(一)全等三角形-优选
八年级数学期末专题复习卷(一)全等三角形(考试时间:90分钟满分:100分)一、选择题 (每题3分,共24分)1.不能使两个直角三角形全等的条件是( )A.一条直角边和它的对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等2. 如图,BE AC ⊥于点D ,且AD CD =,BD ED =,则54ABC ∠=︒,则E ∠等于( )A 25° B. 27° C. 30° D. 45°3. 如图,//,//,AB DE AC DF AC DF =,下列条件中不能判断ABC DEF ∆≅∆的是( ) A. AB DE = B. B E ∠=∠ C. EF BC = D. //EF BC4. 如图,在正方形ABCD 中,连接BD ,O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点'M 、'N ,则图中的全等三角形共有( ) A. 2对 B. 3对 C. 4对 D. 5对5. 如图,在长方形ABCD 中(AD AB >),E 是BC 上一点,且DE DA =,AF DE ⊥,垂足为F .在下列结论中,不一定正确的是( )A. AFD DCE ∆≅∆B. 12AF AD =C. AB AF =D. BE AD DF =- 6. 如图,将ABC ∆绕着点C 顺时针旋转50后得到'''A B C ∆.若40A ∠=︒,'110B ∠=︒,则'BCA ∠的度数是( )A. 110°B. 80°C. 40°D. 30°7. 如图,ABC ∆中,B C ∠=∠,BD CF =,BE CD =,EDF α∠=则下列结论正确的是( ) A. 2180A α+∠=︒ B. 90A α+∠=︒ C. 290A α+∠=︒ D. 180A α+∠=︒8. 如图,AB BC ⊥,BE AC ⊥,12∠=∠,AD AB =,则( ) A. 1EFD ∠=∠ B.BE EC = C.BF DF CD -= D.//FD BC二、填空题(每题2分,共20分) 9. 如图,直线l 经过等边三角形ABC 的顶点B ,在l 上取点D 、E ,使120ADB CEB ∠=∠=︒. 若2AD =cm ,5CE =cm ,则DE = cm10. 如图,已知ABC ∆中,ABC ∠、ACB ∠的角平分线交于点O ,连接AO 并延长交BC 于点D ,OH BC ⊥于点H ,若60BAC ∠=︒,5OH =cm ,则BAD ∠= ,点O 到AB 的距离为 cm. 11. 如图,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在BE 上,125∠=︒,230∠=︒则3∠= . 12. 已知ABC ∆的三边长分别为3、5、7,DEF ∆的三边长分别为3、32x -、21x -,若这两个三角形全等,则x 的值为 . 13. 如图,AC BC =,DC EC =,90ACB ECD ∠=∠=︒,且38EBD ∠=︒,则AEB ∠= .14. 如图,在ABC ∆中,AB AC =,AD 是BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,下列四个结论:①DA 平分EDF ∠;②EB FC =;③AD 上的点与B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等.其中,正确的结论有 (填序号). 15. 如图,有块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E ,四边形AECF 的面积为 . 16. 如图,等边三角形ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为 cm.17. 如图,在24⨯的方格纸中,ABC ∆的3个顶点都在小正方形的顶点,这叫做格点三角形.作出另一个格点三角形DEF ,使DEF ABC ∆≅∆,这样的三角形共有 个. 18. 如图,ABC ∆中30A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,C 点恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B ∠= .三、解答题(共56分)19. (6分)如图,点B 、F 、C 、E 在直线l 上(点F 、C 之间的距离不能直接测量),点A 、D 在l 异侧,测得AB DE =、AC DF =、BF EC =. (1)求证: ABC DEF ∆≅∆.(2)指出图中所有平行的线段,并说明理由.20. (6分)如图,在Rt ABC ∆中,90ACB ∠=︒,点D 、E 分别在AB 、AC 上,CE BC =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF . (1)补充完成图形.(2)若//EF CD ,求证: 90BDC ∠=︒.21. (6分)如图,已知: 90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠.求证: (1) AM 平分DAB ∠. (2) AD AB CD =+.22. (6分)如图,在正方形ABCD 中,点E 在边CD 上,AQ BE ⊥于点Q ,DP AQ ⊥于点P . (1)求证:AP BQ =.(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.23. (8分)如图,已知D 为等腰直角三角形ABC 内一点,15CAD CBD ∠=∠=︒,E 为AD 延长线上的一点,且CE CA =. (1)求证:DE 平分BDC ∠.(2)若点M 在DE 上,且DC DM =,求证:ME BD =.24. 24.(8分)如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.(1)若固定三根木条AB 、BC 、AD 不动,2AB AD ==cm ,5BC =cm ,如图,量得第四根木条5CD =cm ,判断此时B ∠与D ∠是否相等,并说明理由.(2)若固定一根木条AB 不动,2AB =cm ,量得木条5CD =cm ,如果木条AD 、BC 的长度不变,当点D 移到BA 的延长线上时,点C 也在BA 的延长线上;当点C 移到AB 的延长线上时,点A 、C 、D 能构成周长为30cm 的三角形,求出木条AD 、BC 的长度.25. (8分)(1)如图①,以ABC ∆的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连接EG ,试判断ABC ∆与AEG ∆面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图②所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a m 2,内圈的所有三角形的面积之和是b m 2,这条小路一共占地多少平方米?26. (8分)如图,在四边形ABCD 中,8AD BC ==,AB CD =,12BD =,点E 从点D 出发,以每秒1个单位长度的速度沿DA 向点A 匀速移动,点F 从点C 出发,以每秒3个单位长度的速度沿C B C →→作匀速移动,点G 从点B 出发沿BD 向点D 移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t ts. (1)试证明://AD BC .(2)在移动过程中,小明发现有DEG ∆与BFG ∆全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间和G 点的移动距离.参考答案一、1. D 2. B 3. C 4. C 5. B 6. B 7. A 8. D 二、9.3 10.30︒ 5 11.55︒ 12.313. 128︒14.①②③④15.16 16.3 17.7 18.78︒三、19.略 20. (1)略(2)由旋转的性质得,DC FC =,90DCF ∠=︒ 所以90DCE ECF ∠+∠=︒ 因为90ACB ∠=︒所以90DCE BCD ∠+∠=︒ 所以ECF BCD ∠=∠因为//EF CD所以180EFC DCF ∠+∠=︒ 所以90EFC ∠=︒在BDC ∆和EFC ∆,DC FC BCD ECF BC EC =⎧⎪∠=∠⎨⎪=⎩所以()BDC EFC SAS ∆≅∆所以90BDC EFC ∠=∠=︒ 21. (1)过M 作MH AD ⊥于点H因为DM 平分ADC ∠,MC DC ⊥,MH AD ⊥ 所以CM HM = 又因为BM CM = 所以MH BM =因为MH AD ⊥,MB AB ⊥ 所以AM 平分DAB ∠AM (2)因为CDM HDM ∠=∠ 所以CMD HMD ∠=∠又因为DC MC ⊥,DH MH ⊥ 所以DC DH = 同理:AB AH =因为AD DH AH =+ 所以AD AB CD =+ 22. (1)因为正方形ABCD所以AD BA =,90BAD ∠=︒ 即90BAQ DAP ∠+∠=︒ 因为DP AQ ⊥所以90ADP DAP ∠+∠=︒ 所以BAQ ADP ∠=∠ 因为AQ BE ⊥,DP AQ ⊥ 所以90AQB DPA ∠=∠=︒ 所以AQB DPA ∆≅∆ 所以AP BQ =(2)①AQ AP PQ -= ②AQ BQ PQ -= ③DP AP PQ -= ④DP BQ PQ -=23. (1)因为ABC ∆是等腰直角三角形所以45BAC ABC ∠=∠=︒因为15CAD CBD ∠=∠=︒所以451530BAD ABD ∠=∠=︒-︒=︒ 所以BD AD =所以点D 在AB 的垂直平分线上 因为AC BC =所以点C 也在AB 的垂直平分线上 即直线CD 是AB 的垂直平分线所以45ACD BCD ∠=∠=︒ 所以451560CDE ∠=︒+︒=︒所以60BDE DBA BAD ∠=∠+∠=︒ 所以CDE BDE ∠=∠ 即DE 平分BDC ∠ ( 2 )连接MC因为DC DM =,且60MDC ∠=︒ 所以MDC ∆是等边三角形所以CM CD =,60DMC MDC ∠=∠=︒因为180ADC MDC ∠+∠=︒,180DMC EMC ∠+∠=︒ 所以EMC ADC ∠=∠ 又因为CE CA =所以DAC CEM ∠=∠在ADC ∆与EMC ∆中ADC EMC DAC MEC AC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩所以()ADC EMC AAS ∆≅∆ 所以ME AD BD == 24. (1)相等.理由:连接AC在ACD ∆和ACB ∆中,AC AC AD AB CD BC =⎧⎪=⎨⎪=⎩所以ACD ACB ∆≅∆ 所以B D ∠=∠(2)设AD x =,BC y =当点C 在点D 右侧时25(2)530x y x y +=+⎧⎨+++=⎩解得1310x y =⎧⎨=⎩当点C 在点D 左侧时 52(2)530y x x y =++⎧⎨+++=⎩ 解得815x y =⎧⎨=⎩此时17,5,5AC CD AD === 5817+<不合题意所以13AD =cm ,10BC =cm. 25. (1)ABC ∆与AEG ∆面积相等理由:过点C 作CM AB ⊥于点M ,过点G 作GN EA ⊥交EA 延长线于点N 则90AMC ANG ∠=∠=︒因为四边形ABDE 和四边形ACFG 都是正方形所以90BAE CAG ∠=∠=︒,AB AE =,AC AG = 因为360BAE CAG BAC EAG ∠+∠+∠+∠=︒ 所以180BAC EAG ∠+∠=︒ 因为180EAG GAN ∠+∠=︒ 所以BAC GAN ∠=∠在ACM ∆和AGN ∆中MAC NAG AMC ANG AC AG ∠=∠⎧⎪∠=∠⎨⎪=⎩所以ACM AGN ∆≅∆ 所以CM GN = 因为12ABC S AB CM ∆=g ,12AEG S AE GN ∆=g 所以ABCAEG S S ∆∆=(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.所以这条小路的面积为(2)a b +m 2.26. (1)在ABD ∆和CDB ∆中,AD BC AB CD BD DB =⎧⎪=⎨⎪=⎩所以ABD CDB ∆≅∆ 所以ADB CBD ∠=∠所以//AD BC(2)设G 点的移动距离为y ,当DEG ∆与BFG ∆全等时有EDG FBG ∠=∠ 所以DE BF =,DG BG =或DE BG =,DG BF = 当点F 由点C 到点B即803t <≤时,则有8312t t y y =-⎧⎨=-⎩解得26t y =⎧⎨=⎩或8312t y t y =⎧⎨-=-⎩ 解得22t y =-⎧⎨=-⎩(舍去)当点F 由点B 到点C即81633t <≤时,有3812t t y y=-⎧⎨=-⎩ 解得46t y =⎧⎨=⎩或3812t y t y=⎧⎨-=-⎩ 解得55t y =⎧⎨=⎩综上可知共会出现3次,移动的时间分别为2s 、4s 、5s ,移动的距离分别为6、6、5。
【人教版】八年级上《三角形》期末复习试卷及答案
【⼈教版】⼋年级上《三⾓形》期末复习试卷及答案第⼀学期⼋年级数学期末复习专题三⾓形综合练习姓名:_______________班级:_______________得分:_______________⼀选择题:1.在数学课上.同学们在练习画边AC上的⾼时.有⼀部分同学画出下列四种图形.请判断⼀下正确的是()A. B. C. D.2.有5根⼩⽊棒,长度分别为2cm,3cm,4cm,5cm,6cm,任意取其中的3根⼩⽊棒⾸尾相接搭三⾓形,可搭出不同的三⾓形的个数为( )A.5个B.6个C.7个D.8个3.已知三⾓形三边长分别为2,2x,13,若x为正整数,则这样的三⾓形个数为( ).A.2B.3C.5D.134.在△ABC中,三边长分别为、、,且>>,若=8,=3,则的取值范围是()A.3<<8B.5<<11C.6<<10D.8<<115.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN 的长为()A.6B.7C.8D.96.在△ABC中,∠A=55°,∠B⽐∠C⼤25°,则∠B等于()A.50°B.75°C.100°7.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=25°,则∠BDC 等于()A.60°B.60°C.70°D.75°8.如图,是⼀块三⾓形的草坪,现要在草坪上建⼀个凉亭供⼤家休息,要使凉亭到草坪三个顶点的距离相等,凉亭的位置应选在( )A.△ABC的三条中线的交点处B.△ABC三边的垂直平分线的交点处C.△ABC的三条⾓平分线的交点处D.△ABC三条⾼所在直线的交点处9.⼀个多边形内⾓和是1080o,则这个多边形的对⾓线条数为()A.26B.24C.22D.2010.在△ABC中,⾼AD和BE所在的直线交于点H,且BH=AC,则∠ABC等于( )A.45°B.120°C.45°或135°D.45°或120°11.⼀个正多边形的外⾓与它相邻的内⾓之⽐为1:4,那么这个多边形的边数为()A.8B.9C.10D.1212.如图,在四边形ABC D中,AC平分∠BAD,AB>AD,下列结论正确的是A.AB-AD>CB-CDB.AB-AD=CB-CDD.AB-AD与CB-CD的⼤⼩关系不确定.13.⼀个多边形截去⼀个⾓后,形成另⼀个多边形的内⾓和为720°,那么原多边形的边数为( )A.5B.5或6C.5或7D.5或6或714.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A.6<AD<8B.2<AD<14C.1<AD<7D.⽆法确定15.将⼀副直⾓三⾓板,按如图所⽰叠放在⼀起,则图中∠的度数是()A.45oB.60oC.75oD.90o16.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°17.⼀个多边形少加了⼀个内⾓时,它的度数和是1310°,则这个内⾓的度数为()A.120°B.130°C.140°D.150°18.正n边形的每⼀个外⾓都不⼤于40°,则满⾜条件的多边形边数最少为()A.七边形B.⼋边形C.九边形D.⼗边形19.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°20.如图,△ABC的⾓平分线 CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论是()A.只有①③B.只有②④C.只有①③④D.①②③④⼆填空题:21.⼀个三⾓形的两条边长为3,8,且第三边长为奇数,则第三边长为_______.22.如图,A,B,C分别是线段A1B,B1C,C1A的中点,若△ABC的⾯积是1,那么△A1B1C1的⾯积_______.23.如图,D为△ABC的BC边上的任意⼀点,E为AD的中点,△BEC的⾯积为5,则△ABC的⾯积为.24.已知⼀个多边形的内⾓和与外⾓和的差是1260°,则这个多边形边数是.25.如图,在△ABC中,沿DE折叠,点A落在三⾓形所在的平⾯内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为.26.如图所⽰,D是△ABC的边BC上的⼀点,且∠1=∠2,∠3=∠4,∠BAC=63°,则∠DAC= .27.明到⼯⼚去进⾏社会实践活动时,发现⼯⼈师傅⽣产了⼀种如图所⽰的零件,⼯⼈师傅告诉他:AB∥CD,∠BAE=40°,∠1=70°,⼩明马上运⽤已学的数学知识得出了∠ECD的度数,聪明的你⼀定知道∠ECD= .28.如图,分别以五边形的各个顶点为圆⼼,1cm长为半径作圆,则图中阴影部分的⾯积为 cm2.30.如图,在△ABC中E是BC上的⼀点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的⾯积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= .三简答题:31.如图所⽰,在△ABC中,AE、BF是⾓平分线,它们相交于点O,AD是⾼,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.32.请根据下⾯x与y的对话解答下列各⼩题:X:我和y都是多边形,我们俩的内⾓和相加的结果为1440°;Y:x的边数与我的边数之⽐为1:3.(1)求x与y的外⾓和相加的度数?(2)分别求出x与y的边数?(3)试求出y共有多少条对⾓线?33.如图,长⽅形ABCD中,AB=10cm,BC=8cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x为何值时,△APE的⾯积等于32cm2?34.四边形ABCD中,∠A=145°,∠D=75°.(1)如图1,若∠B=∠C,试求出∠C的度数;(2)如图2,若∠ABC的⾓平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(3)如图3,若∠ABC和∠BCD的⾓平分线交于点E,试求出∠BEC的度数.35.(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.36.平⾯内的两条直线有相交和平⾏两种位置关系.(1)如图①,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD,⼜因为∠BOD是△POD的外⾓,故∠BOD=∠BPD+∠D.得∠BPD=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成⽴?若成⽴,说明理由;若不成⽴,则∠BPD,∠B,∠D之间有何数量关系?请证明你的结论;(2)在如图②中,将直线AB绕点B逆时针⽅向旋转⼀定⾓度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A+∠B+∠C+∠D+∠E的度数.37.如图,已知四边形ABCD,BE、DF分别平分四边形的外⾓∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满⾜的等量关系式;(3) 如图2,若α=β,判断BE、DF的位置关系,并说明理由.38.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO⾓的平分线,点A、B在运动的过程中,∠AEB的⼤⼩是否会发⽣变化?若发⽣变化,请说明变化的情况;若不发⽣变化,试求出∠AEB的⼤⼩.(2)如图2,已知AB不平⾏CD,AD、BC分别是∠BAP和∠ABM的⾓平分线,⼜DE、CE分别是∠ADC和∠BCD的⾓平分线,点A、B在运动的过程中,∠CED的⼤⼩是否会发⽣变化?若发⽣变化,请说明理由;若不发⽣变化,试求出其值.(3)如图3,延长BA⾄G,已知∠BAO、∠OAG的⾓平分线与∠BOQ的⾓平分线及延长线相交于E、F,在△AEF 中,如果有⼀个⾓是另⼀个⾓的3倍,试求∠ABO的度数.39.△ABC中,三个内⾓的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由;(2)如图2,作∠ABC外⾓∠ABE的平分线交CO的延长线于点F.①求证:BF∥OD;②若∠F=40o,求∠BAC的度数.40.已知△ABC中,∠A=30°.(8分)(1)如图①,∠ABC、∠ACB的⾓平分线交于点O,则∠BOC= °.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n-1(内部有n-1个点),求∠BO n-1C(⽤n的代数式表⽰).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n-1,若∠BO n-1C=60°,求n的值.参考答案1、C2、C3、A4、D5、D6、B7、C8、B9、D 10、C 11、C 12、A 13、D14、A 15、C 16、C 17、B 18、C 19、B 20、C 21、7或9 22、7 23、10 24、⼗⼀.25、20° 26、24°.27、30° 29、5°30、2 .31、解:∵AD是⾼∴∠ADC=90°∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20°∵∠BAC=50°,∠C=70°,AE是⾓平分线∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的⾓平分线∴∠ABO=30°∴∠BOA=180°﹣∠BAO﹣∠ABO=125°32、【解答】解:(1)360°+360°=720°;(2)设X的边数为n,Y的边数为3n,由题意得:180(n﹣2)+180(3n﹣2)=1440,解得:n=3,∴3n=9,∴x与y的边数分别为3和9;(3)9×(9﹣3)=27条,答:y共有27条对⾓线.33、【解答】解:①如图1,当P在AB上时,∵△APE的⾯积等于32,∴×2x?8=32,解得:x=4;②当P在BC上时,∵△APE的⾯积等于32,∴S矩形ABCD﹣S△CPE﹣S△ADE﹣S△ABP=32,∴10×8﹣(10+8﹣2x)×5﹣×8×5﹣×10×(2x﹣10)=32,解得:x=6.6;③当P在CE上时,∴(10+8+5﹣2x)×8=32,解得:x=7.5<(10+8+5),此时不符合;答:4或6.6.34、【解答】解:(1)∵∠A=145°,∠D=75°,∴∠B=∠C==70°;(2)∵BE∥AD,∠A=145°,∠D=75°,∴∠ABE=180°﹣∠A=35°,∠BED=180°﹣∠D=105°,∵∠ABC的⾓平分线BE交DC于点E,∴∠CBE=∠ABE=35°,∴∠C=∠BED﹣∠EBC=40°;(3)∵∠A=145°,∠D=75°,∴∠ABC+∠BCD=360°﹣∠A﹣∠C=140°,∵∠ABC和∠BCD的⾓平分线交于点E,∴∠EBC+∠ECB=(∠ABC+∠DCB)=70°,∴∠BEC=110°.35、【解答】解:(1)∵∠B=40°,∠C=80°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠CAE=∠BAC=30°,∵AD⊥BC,∴∠ADC=90°,∵∠C=80°,∴∠CAD=90°﹣∠C=10°,∴∠EAD=∠CAE﹣∠CAD=30°﹣10°=20°;(2)∵三⾓形的内⾓和等于180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠CAE=∠BAC=(180°﹣∠B﹣∠C),∵AD⊥BC,∴∠ADC=90°,∴∠CAD=90°﹣∠C,∴∠EAD=∠CAE﹣∠CAD=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=∠C﹣∠B.36、解:(1)不成⽴,结论是∠BPD=∠B+∠D.证明:延长BP交CD于点E,∵AB∥CD,∴∠B=∠BED,⼜∵∠BPD=∠BED +∠D,∴∠BPD=∠B+∠D(2)∠BPD=∠BQD+∠B+∠D(3)由(2)的结论得:∠AGB=∠A+∠B+∠E且∠AGB=∠CGD,∴∠A+∠B+∠C+∠D+∠E=180°37、(1)150 (2)°(3)平⾏38、【解答】解:(1)∠AEB的⼤⼩不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO⾓的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的⼤⼩不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的⾓平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的⾓平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的⾓平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的⾓平分线,∴∠EAF=90°.在△AEF中,∵有⼀个⾓是另⼀个⾓的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.39、(1)∠AOC=∠ODC;(2)①略(2分);②80°.40、(1)105(2)80(3)(4)n=5。
2021-2022学年苏科版八年级数学上册《第1章全等三角形》期末复习训练(附答案)
2021-2022学年苏科版八年级数学上册《第1章全等三角形》期末复习训练(附答案)1.如图,在四边形ABCD与四边形A'B'C'D'中,AB=A'B',∠B=∠B',BC=B'C'.下列条件中:①∠A=∠A',AD=A'D';②∠A=∠A',CD=C'D';③∠A=∠A',∠D=∠D';④AD=A'D',CD=C'D'.添加上述条件中的其中一个,可使四边形ABCD≌四边形A'B'C'D'.上述条件中符合要求的有()A.①②③B.①③④C.①④D.①②③④2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等3.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形4.如图,△ABC≌△A'B'C',其中∠A=37°,∠C'=23°,则∠B=()A.60°B.100°C.120°D.135°5.已知△ABC≌△DEF,∠A=70°,∠E=40°,则∠F的度数为()A.30°B.40°C.70°D.110°6.如图,两个三角形是全等三角形,则∠α的度数是()A.50°B.58°C.60°D.72°7.如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠B=∠E D.∠ACB=∠DFE 8.如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC 9.下列条件中,能判断两个三角形全等的是()A.两边和它们的夹角分别相等B.两边及其中一边所对的角分别相等C.三个角分别相等D.两个三角形面积相等10.如图,OE是∠AOB的平分线,BD⊥OA,AC⊥OB,垂足分别为D、C,BD、AC都经过点E,则图中全等的三角形共有多少对()A.3B.4C.5D.611.如图,用纸板挡住部分直角三角形后,能画出与此直角三角形全等的三角形,其全等的依据是()A.SSS B.SAS C.ASA D.HL12.下列条件中,能判断两个直角三角形全等的是()A.有两条边分别相等B.有一个锐角和一条边相等C.有一条斜边相等D.有一直角边和斜边上的高分别相等13.如图,BF=CE,AE⊥BC,DF⊥BC,根据‘HL’证明Rt△ABE≌Rt△DCF,则还要添加()A.∠A=∠D B.AB=DC C.∠B=∠C D.AE=BF14.如图,AC=BD,∠A=∠B=90°,要根据“HL”证明Rt△ACE≌Rt△BDF,则还需要添加一个条件是()A.AF=BE B.AE=BF C.∠C=∠D D.CE=DF15.如图,一块玻璃碎成三片,小智只带了第③块去玻璃店,就能配一块一模一样的玻璃,你能用三角形的知识解释,这是为什么?()A.ASA B.AAS C.SAS D.SSS16.在测量一个小口圆形容器的壁厚时,小明用“x型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=7厘米,圆形容器的壁厚是()A.1厘米B.2厘米C.5厘米D.7厘米17.如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度为,说明理由.18.如图②,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=1.5m,点A到地面的距离AE=1.5m,当他从A处摆动到A'处时,若A'B⊥AB,求A'到BD的距离.19.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.20.如图,AB=AC,直线l经过点A,BM⊥l,CN⊥l,垂足分别为M、N,BM=AN.(1)求证:MN=BM+CN;(2)求证:∠BAC=90°.21.如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC 于点E,连接BE,∠A=∠ABE.(1)求证:ED平分∠AEB;(2)若AB=AC,∠A=40°,求∠F的度数.22.如图,已知AB∥CD,AB=CD,AF=CE,求证:DF=EB.23.如图,已知△ABC和△ADE,AB=AD,∠BAD=∠CAE,∠B=∠D,AD与BC交于点P,点C在DE上.(1)求证:BC=DE;(2)若∠B=30°,∠APC=70°.①求∠E的度数;②求证:CP=CE.24.如图,在△ABC中,AB=AC,AD⊥BC于点F,∠ABC的平分线BE交AD于点E,CD⊥AC,连接BD.(1)DB⊥AB吗?请说明理由;(2)试说明:∠DBE与∠AEB互补.25.如图,在△ABC中,∠ACB=60°,D为△ABC边AC上一点,BC=CD,点M在BC 的延长线上,CE平分∠ACM,且AC=CE.连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.(1)△ABC≌△EDC吗?为什么?(2)求∠DHF的度数;(3)若EB平分∠DEC,则BE平分∠ABC吗?请说明理由.26.已知,在△ABC中,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,且AD=CE.(1)求证:∠ACB=90°;(2)点O为AB的中点,连接OD,OE.请判断△ODE的形状?并说明理由.参考答案1.解:符合要求的条件是①③④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∠ACB=∠A′C′B′,∵∠BAD=∠B′A′D′,∴∠BAD﹣∠DAC=∠B′A′D′﹣∠D′A′C′,∴∠DAC=∠D′A′C′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D′,∠ACD=∠A′C′D′,CD=C′D′,∴∠BCD=∠B′C′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.同理根据③④的条件证得四边形ABCD≌四边形A′B′C′D′.故选:B.2.解:A、如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B、面积相等的两个图形是全等图形,错误,符合题意;C、图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;D、全等三角形的对应边相等,对应角相等,正确,不合题意;故选:B.3.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.4.解:∵△ABC≌△A'B'C',∠C'=23°,∴∠C=∠C′=23°,∵∠A=37°,∴∠B=180°﹣∠A﹣∠C=180°﹣37°﹣23°=120°,故选:C.5.解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=70°,∴∠C=180°﹣70°﹣40°=70°,∴∠F=70°,故选:C.6.解:∵△ABC≌△DEF,∴∠α=∠A,∵∠A=50°,∴∠α=50°,故选:A.7.解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A.AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;B.BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC ≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:B.8.解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.9.解:A、根据SAS定理可判定两个三角形全等,故此选项符合题意;B、SSA不能证明两个三角形全等,故此选项不符合题意;C、AAA不能证明两个三角形全等,故此选项不符合题意;D、两个三角形面积相等不能证明两个三角形全等,故此选项不符合题意;故选:A.10.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和Rt△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故选:B.11.解:由图得:遮挡住的三角形中露出两个角及其夹边.∴根据三角形的判定方法ASA可解决此题.故选:C.12.解:A、两边分别相等,但是不一定是对应边,不能判定两直角三角形全等,故此选项不符合题意;B、一条边和一锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、有一条斜边相等,两直角边不一定对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、有一条直角边和斜边上的高对应相等的两个直角三角形全等,故此选项符合题意;故选:D.13.解:∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,根据‘HL’证明Rt△ABE≌Rt△DCF,需要添加AB=CD,故选:B.14.解:条件是CE=DF,理由是:在Rt△ACE和Rt△BDF中,,∴Rt△ACE≌Rt△BDF(HL),故选:D.15.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带③去才能配一块完全一样的玻璃,是符合题意的.故选:A.16.解:在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=CD=5厘米,∵EF=7厘米,∴圆柱形容器的壁厚是×(7﹣5)=1(厘米),故选:A.17.解:∵O是AB和CD的中点,∴AO=BO,CO=DO,在△AOD和△BOC中,,∴△AOD≌△BOC(SAS),∴AD=BC,∵AD=30cm,∴CB=30cm,故答案为:30cm.18.解:如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BF A'中,,∴△ACB≌△BF A'(AAS);∴A'F=BC∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.5;∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1(m),即A'到BD的距离是1m.19.证明:∵C是AB的中点,∴AC=BC,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠E=∠D.20.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL),∴BM=AN,CN=AM,∴MN=AM+AN=BM+CN;(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.21.(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA=EB,AD=DB,∴ED⊥AB,∴∠FDB=90°,∴∠F=90°﹣∠ABC=20°.22.证明:∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∵AB∥CD,∴∠A=∠C,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS),∴DF=EB.23.(1)证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(ASA),∴BC=DE;(2)①解:∵∠B=30°,∠APC=70°,∴∠BAP=∠APC﹣∠B=70°﹣30°=40°,∴∠CAE=40°,∵△BAC≌△DAE,∴AC=AE,∴∠ACE=∠E===70°;②证明:∵△BAC≌△DAE,∴∠ACB=∠E=70°,∴∠ACB=∠ACE,∠APC=∠E,在△ACP和△ACE中,,∴△ACP≌△ACE(AAS),∴CP=CE.24.解:(1)DB⊥AB.理由如下:∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠ABD=∠ACD,∵CD⊥AC,∴∠ACD=90°,∴∠ABD=90°,∴DB⊥AB;(2)∵AD⊥BC,∴∠AFB=90°,∵∠BAF+∠ABF=90°,∠DBF+∠ABF=90°,∴∠BAF=∠DBF,∵BE平分∠ABC,∴∠ABE=∠FBE,∴∠BEF=∠BAE+∠ABE=∠DBF+∠FBE=∠DBE,∵∠AEB+∠BEF=180°,∴∠DBE+∠AEB=180°,即∠DBE与∠AEB互补.25.解:(1)△ABC≌△EDC.理由:∵CA平分∠BCE,∴∠ACB=∠ACE,∵AC=CE,BC=CD,∴△ABC≌△EDC(SAS);(2)在△CDG和△CBF中,,∴△CDG≌△CBF(SAS),∴∠CBF=∠CDG,∵∠DFH=∠BFC,∴∠DHF=∠BCF=60°;(3)BE平分∠ABC.理由:由(1)得△ABC≌△EDC,∴∠ABC=∠EDC,∵∠ACB=∠DCE=60°,∴∠BEC+∠CBE=60°,又∵∠DFH=∠A+∠ABE=∠BEC+∠FCG,∵∠A=∠DEC=2∠DEB=2∠BEC,∴2∠DEB+∠ABE=∠BEC+60°,∴∠DEB+∠ABE=60°,∴∠ABE=∠CBE,即BE平分∠ABC.26.(1)证明:∵AD⊥CE,BE⊥CE,∴∠D=∠E=90°,在Rt△ACD和Rt△CBE中,,∴Rt△ACD≌Rt△CBE(HL),∴∠DCA=∠EBC,∵∠E=90°,∴∠EBC+∠ECB=90°,∴∠DCA+∠ECB=90°,∴∠ACB=180°﹣90°=90°;(2)解:△ODE等腰直角三角形,理由如下:如图2,连接OC,∵AC=BC,∠ACB=90°,点O是AB中点,∴AO=BO=CO,∠CAB=∠CBA=45°,CO⊥AB,∴∠AOC=∠BOC=∠ADC=∠BEC=90°,∵∠BOC+∠BEC+∠ECO+∠EBO=360°,∴∠EBO+∠ECO=180°,且∠DCO+∠ECO=180°,∴∠DCO=∠EBO,由(1)知,Rt△ACD≌Rt△CBE,∴DC=BE,在△DCO和△EBO中,,∴△DCO≌△EBO(SAS),∴EO=DO,∠EOB=∠DOC,∵∠COE+∠EOB=90°,∴∠DOC+∠COE=90°,∴∠DOE=90°,且DO=EO,∴△ODE是等腰直角三角形.。
【河北专版】八年级数学上册测试题:期末复习(一)11《三角形》(含答案)
期末复习(一)三角形01 本章结构图三角形的内角和、外角和 多边形的内角和、外角和 02 重难点突破重难点1三角形三边关系【例1】 已知三角形三边长分别是3,8, x ,若x 值为偶数,则x 值有(DA 6个B 5个C 4个D 3个 通过多个条件确定三角形第三边方法:1. (包头中考)长为9, 6, 5, 4四根木条,选其中三根组成三角形, 选法有(C )A 1种B 2种C 3种D 4种2. (朝阳中考)一个三角形两边长分别是 2和3,若它第三边长为奇 数,则这个三角形周长为8.3. (佛山中考)各边长度都是整数.最大边长为8三角形共有20个. 重难点2三角形三条重要线段【例2】(贺州中考改编)如图,A, B, C 分别是线段AB, BC, GA 中点,若△ ABC 面积是1,求厶ABC 面积.与三角形有关的线段 三角形高中线角平分线【方法归纳】解:连接AC, BA, CB,T A, B, C分别是线段AB, BC, C i A中点,••• AB= AA i, AC= CC, BC= BB.二S\ABC= S A AAC, S A ABB= S A AA1B1,S A ACB= S A CCB, S A ACA= S A CCA,S A BCA= S A BBA, S A BCC^ S A BBC.•- S A ABC= S A AA i C= S A CCB= S A BBA= S A AAB =S A CCA= S A BBG= 1.• S A A1B1C = 7.【方法归纳】遇到线段中点,求三角形面积,一般会用到“等底等高三角形面积相等”性质.构建面积相等三角形是常用添加辅助线方法.4. (威海中考)如图,在A ABC中,/ ABC= 50°,/ ACB= 60°,点E 在BC延长线上,/ ABC平分线BD与/ ACE平分线CD相交于点D,连接AD下列结论中不正确是(B)A / BAC= 70°B / DOC= 90°C / BDC= 35D / DAC= 555. 如图,在A ABC中, AM是中线,AN是高.如果BM= 3.5 cm AN= 42cm 那么△ ABC面积是14_cm.6. 如图,在厶ABC中,PA PB, PC是△ ABC三个内角平分线,则/PBC + / PCAH Z PAB= 90度.重难点3与三角形有关角【例3】(南充中考)如图,点D在厶ABC边BC延长线上,CE平分/ ACD / A= 80°,/ B= 40°,则/ ACE大小是60 度.【思路点拨】根据三角形任意一个外角等于与之不相邻两内角和得到/ ACD=Z B+/ A,然后利用角平分线定义计算即可.【方法归纳】解答求角有关问题时,常考虑三角形内角和定理.三角形外角定理.角平分线.平行线性质,建立已知角与所求角之间数量关系.7. (昭通中考)如图,AB// CD DBL BC, / 2 = 50°,则/ 1度数是(A)A40 ° B.50 °C60 ° D.140 °8. (毕节中考)如图,已知AB// CD / EBA= 45°,那么/ E+/ D度数为(D)9. 如图,BP 是△ ABC 中/ABC 平分线,CP 是/ ACB 外角平分线,如果A 70B 80C 90D 10003 备考集训.选择题(每小题3分,共30分)C5,6,102. 如图是一个由四根木条钉成框架,拉动其中两根木条后,它形状 将会改变,若固定其形状,下列有四种加固木条方法,木条不能固定形 状时两点是(D3. 如图,人醍厶ABC 中线,△ ABC 面积为4 cn i ,则厶ABME 积为(C ) 2 2 A 8 cm B 4 cmA 30 B.60 / ABP= 20°,/ACP= 501.下列各组中三条线段能组成三角形是 (C )A 3,4,8B 5 , 6, 11D.4,4,8 A A.F B.C.ED.E.FD.45C 90 C C.AC 2 cm iD 以上答案都不对4. 如图,在△ ABC 中,/ B = 46°,/ C = 54°, AD 平分/ BAC 交 BC 于D,则/ BAD 大小是(C )A 45C40形周长为(D )B.137.下列度数不可能是多边形内角和是(C )A 360C 810 ° D.2 160 °8.(枣庄中考)如图,在△ ABC 中, AB= AC / A = 30°, E 为BC 延长 线上一点,/ ABC 与/ ACE 平分线相交于点D,则/ D 等于(A )B 17.5B 54 D505.小方画了一个有两边长为3和5等腰三角形,则这个等腰三角A.11 C.8 D.11 或13(B )6.将两个分别含3045 角直角三角板如图放置, 则/a 度数是 A 10 B 15D25B.720 A 15果为(C )A 2a — 10C 4 10. 如图,把△ ABC 纸片沿DE 折叠,当点A 在四边形BCD0卜部时, 记/ AEB 为/ 1,Z ADC 为/2,则/ A. / 1与/2数量关系,结论正确是(B )B. 21 = 2/A +2 2.填空题(每小题3分,共18分)11. 如图,共有6个三角形.=72°,则 2 D- 36—.9.已知三角形三边长分别为则化简|a — 3| + |a — 7|结B 10 —2aC 21 = 222 + 22A D.2 2 1 = 2 2+2 A2 B =2 F12.如图,点 B, C, E ,13. 如图所示图形中,x值为60.14. 根据如图所示已知角度数,求出其中/a 度数为5015. 一个多边形截去一个角后,所形成一个新多边形内角和为2520°,则原多边形有15或16或17条边.16. (昆明中考)如图,AB// CE BF交CE于点D, DE^DF, / F= 20°, 则/ B度数为40°.三.解答题(共52分)17. (10 分)如图,在△ ABC中, / ACB= 90°, CD是高.(1)图中有几个直角三角形?是哪几个?(2)/ 1和/A有什么关系?/ 2和/A呢?还有哪些锐角相等.解:(1)图中有3个直角三角形,分别是厶ACD △ BCD △ ABC.(2)/ 1 + / A= 90° ,/ 2=/ A ,/ 1 = / B.18. (10分)如图,B处在A处南偏西42°方向,C处在A处南偏东16°方向,C处在B处北偏东72°方向,求从C处观测A, B两处视角/ C 度数./ BAG 58v AD// BE•••/ EBA=Z BAD= 42° .•••/ ABG 30° .• / 0180°—/ ABO Z BAG 92° .19. (10分)如图所示,在厶ABC 中,已知AD 是角平分线,Z B = 66Z O 54° .(1) 求Z ADB 度数;⑵若DEI AC 于点E ,求Z ADE 度数•解:(1) v 在厶 ABC 中, Z B = 66°,Z C = 54• Z BAC= 180°—Z B-Z O 60° .v AD 是Z BAC 平分线,1 • Z BAD= 2Z BAC= 30° .在厶ABD 中, Z B = 66°,Z BAD= 30°,• Z ADB= 180°—Z B-Z BAD= 84° .1 (2) vZ CAD= ^Z BAC= 30°, DEI AC• Z ADE= 90°—Z EAD= 60°.解:根据题意可知,/ ,/ EBC- 7220. (10分)已知一个正多边形相邻内角比外角大140(1) 求这个正多边形内角与外角度数;(2) 直接写出这个正多边形边数.解:(1)设正多边形外角为x 。
2020年秋人教版八年级数学上册期末复习专题《三角形》(含答案)
期末专题《三角形》一、选择题1.如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )A.10B.8C.6D.42.如图,D为△ABC内部一点,E、F两点分别在AB、BC上,且四边形DEBF为矩形,直线CD交AB于G点.若CF=6,BF=9,AG=8,则△ADC的面积为何?()A.16B.24C.36D.543.如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A,B1,C1,使A1B=AB,B1C=BC,1C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面积是()A.7B.14C.49D.504.已知a,b,c是△ABC的三条边,对应高分别为h,h b,h c,且a:b:c=4:5:6,则么h a:h b:h c等于a()A.4:5:6B.6:5:4C.15:12:10D.10:12:155.如图,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,则△ABC的面积为()A.300B.315C.279D.3426.已知三角形三边长分别为2,2x,13,若x为正整数,则这样的三角形个数为( ).A. 2B. 3C. 5D. 13二、填空题7.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是8.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF= .9.如图,A,B,C分别是线段AB,B1C,C1A的中点,若△ABC的面积是1,那么△A1B1C1的面积1_______.10.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S,△CEF1的面积为S2,若S△ABC=6,则S1-S2的值为.三、解答题11.已知等腰三角形一腰上的中线把这个三角形的周长分成 9cm和 15cm两部分,求这个三角形的腰长。
1期末复习(平面直角坐标系、等腰三角形、全等三角形)
期末专题复习(直角坐标系)一、概念复习1、直角坐标系:横轴(x 轴)、纵轴(y 轴)、原点。
直角坐标系的平面叫直角坐标平面。
2、点的坐标:点P 对应的有序数对叫点的坐标,P (a,b )a 叫横坐标,b 叫纵坐标。
3、平面直角坐标系把平面分成四个象限:x 轴、y 轴不属于任何象限。
第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-) 4、经过点P (a ,b )且垂直于x 轴(或平行于y 轴)的直线表示为:直线x = a 经过点P (a ,b )且垂直于y 轴(或平行于x 轴)的直线表示为:直线y = b 5、平行于坐标轴的直线上的两点间的距离:平行于x 轴的直线上的两点A (x 1,y )、B (x 2,y )的距离是 21x x AB -= 平行于x 轴的直线上的两点C (x ,y 1)、D (x ,y 2)的距离是 21y y CD -= 6、点P (a ,b )沿着坐标轴(沿与x 轴或y 轴)平行的某一方向平移m (m>0)个单位 则;向右平移所对应的点的坐标为(a+ m ,b ); 向左平移所对应的点的坐标为(a- m ,b ) 向上平移所对应的点的坐标为(a ,b+ m );向下平移所对应的点的坐标为(a ,b- m ) 7、对称点的坐标特征 直角坐标平面内有点M (a ,b ) 与点M (a ,b )关于x 轴对称的点的坐标是(a ,- b ) 与点M (a ,b )关于 y 轴对称的点的坐标是(- a ,b ) 与点M (a ,b )关于原点对称的点的坐标是(- a ,- b )二、典型例题1、点A (-3,2)向左平移4个单位到B ,则B 点的坐标是___________2、点N (3,-4)沿x 轴翻折与M 重合,那么点M 的坐标是___________3、将点Q (10,2)绕原点O 旋转180°后落到P 处,则P 点的坐标是___________4、直角坐标平面内,点A (-2,3)向____平移______个单位后就和点B (2,3)重合5、点P 在第三象限,且点P 到x 轴和到y 轴的距离都是3,则点P 坐标是_______________6、如果点M (3a-1,5+b )与点(b -2,a )关于原点对称,则a=_______,b=__________7、在x 轴上有A 、B 两点,AB =10,若点A 的坐标是(2,0),那么点B 的坐标是___________ 8、在直角坐标平面内,设点P (x,y ),若xy>0,则点P 在_________象限。
第1章三角形的证明 期末复习综合训练1-2020-2021学年北师大版八年级数学下册
2021学年北师大版八年级数学下册《第1章三角形的证明》期末复习综合训练1(附答案)1.如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则()A.2α+3β=180°B.3α+2β=180°C.β+2γ=90°D.2β+γ=90°2.如图,在Rt△ABC中,∠C=90°,作AB的垂直平分线,交AB于点D,交AC于点E,若BC=4,CE=3,则AE的长是()A.3B.4C.5D.63.已知等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,CD垂直平分线段AB,交AB于D,∠EAC=∠CAD,且CE⊥AE,CD=1,AE =2,则BC+CE的值为()A.1+B.2﹣1C.3D.45.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°6.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF ⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB =90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个7.如图,已知△ABC中,AC=BC,且点D在△ABC外,且点D在AC的垂直平分线上,连接BD,若∠DBC=30°,∠ACD=13°,则∠A=度.8.如图所示,Rt△ABC中,CF是斜边AB上的高,角平分线BD交CF于点G,DE⊥AB 于点E,则下列结论:①∠A=∠BCF;②CD=CG;③AD=BD;④BC=BE.正确结论的序号.9.已知△ABC的某两个内角的比是4:7且AB=AC,BD⊥AC于D,BE平分∠ABC交AC 于E,则∠EBD的大小是或.10.如图,三角形ABC中,BD平分∠ABC,AD垂直于BD,三角形BCD的面积为45,三角形ADC的面积为20,则三角形ABD的面积等于.11.已知在有一角为30°的直角三角形中,30°角所对的边是斜边的一半,若在等腰三角形ABC中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为.12.在△ABC中,AB=AC,且过△ABC某一顶点的直线可将△ABC分成两个等腰三角形,则各内角的度数为.13.如图,在△ABC中,AB=AC,AE⊥BC于点E.在BC上取点D,使CD=CA.若AD =BD,则∠DAE=.14.在△ABC中,AB=5,AD是BC边上的高,且AD=3,∠ABC=2∠DAC,则BC=.15.平面直角坐标系中,已知A(﹣5,0),点P在第二象限,△AOP是以OA为腰的等腰三角形,且面积为10,则满足条件的P点坐标为.16.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为.17.如图,在△ABC中,AB=AC,AB的中垂线交AB于点D,交BC的延长线于点E,交AC于点F,若∠A=50°,AB+BC=6,则△BCF的周长=,∠EFC=度.18.如图,在△ABC中,AB=BC,∠ABC=120°,过点B作BD⊥BC,交AC于点D,若AD=1,则CD的长度为.19.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.20.如图,在△ABC中,AB=AC,点D和E分别是边BC和AC上的点,且满足DB=DA =DE,∠CDE=50°,则∠BAC=°.21.如图,△ABC中,AB=AC,DE垂直平分AB,D为垂足交AC于E.(1)若∠A=50°,求∠EBC的度数.(2)若AB=8,△BEC的周长是11,求△ABC的周长.22.如图△ABC中,AD平分∠BAC,AD的垂直平分线交AB于E,交AC于F求证:AF =ED.23.如图,在△ABC中,AB=AC,BC=12,∠BAC=120°,AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N.(1)求△AEN的周长.(2)求∠EAN的度数.(3)判断△AEN的形状.24.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.25.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)求证:BD=CE;(2)若AD=BD=DE,求∠BAC的度数.26.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.27.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直平分线BE与CD交于点F,与AC交于点E.(1)判断△DBC的形状并证明你的结论.(2)求证:BF=AC.(3)试说明CE=BF.28.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s 的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AP、AQ的长;(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?(3)当t为何值时,PQ∥BC?参考答案1.解:∵AB=AD=DC,∠BAD=α,∴∠B=∠ADB,∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90°,∵∠CDE=γ,∠AED=∠C+∠CDE,∴∠AED=γ+β,∴2β+γ=90°,故选:D.2.解:在Rt△BCE中,∠C=90°,∴BE===5,∵DE是线段AB的垂直平分线,∴AE=BE=5,故选:C.3.解:∵|2a﹣3b﹣7|+(2a+3b﹣13)2=0,∴,解得:,当a为底时,三角形的三边长为1,1,5,由于1+1<5,故不等构成三角形;当b为底时,三角形的三边长为1,5,5,则周长为11,∴等腰三角形的周长为11,故选:C.4.解:∵CE⊥AE,CD⊥AB,∠EAC=∠CAD,∴CE=CD=1,在Rt△ACE中,∴AC===,∵CD垂直平分线段AB,∴BC=AC=,∴BC+CE=1+,故选:A.5.解:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∵BC=BD,∴AB=BD,∴∠BAD=∠ADB=20°,∴∠ABD=140°,∴∠CBD=80°,又∵BC=BD,∴∠BCD=50°=∠BDC,故选:A.6.解:(1)证明:作PH⊥AB于H,∵AP是∠CAB的平分线,∴∠PAE=∠PAH,在△PEA和△PHA中,,∴△PEA≌△PHA(AAS),∴PE=PH,∵BP平分∠ABD,且PH⊥BA,PF⊥BD,∴PF=PH,∴PE=PF,∴(1)正确;(2)与(1)可知:PE=PF,又∵PE⊥OC于E,PF⊥OD于F,∴点P在∠COD的平分线上,∴(2)正确;(3)∵∠O+∠OEP+∠EPF+∠OFP=360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EPA+∠HPA+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EPA=∠HPA,同理:∠FPB=∠HPB,∴∠O+2(∠HPA+∠HPB)=180°,即∠O+2∠APB=180°,∴∠APB=90°﹣,∴(3)错误;故选:C.7.解:如图,过C作CM⊥BD,交BD的延长线于M,过D作DN⊥AC于N,∵点D在AC的垂直平分线上,∴DN是AC的垂直平分线,∴NC=AC,∵AC=BC,∴NC=BC,在Rt△BMC中,∠DBC=30°,∴CM=BC,∴CM=CN,在Rt△DNC和Rt△DMC中,∵,∴Rt△DNC和Rt△DMC(HL),∴∠DCM=∠DCN=13°,∵∠DBC=30°,∴∠MCB=60°,∴∠ACB=60°﹣26°=34°,又∵AC=BC,∴∠A=(180°﹣34°)=73°,故答案为:73.8.解:∵Rt△ABC中,CF是斜边AB上的高,∴∠A+∠ABC=∠BCF+∠ABC=90°,∴∠A=∠BCF;故①正确;∵∠CDG+∠CBD=90°,∠BGF+∠ABD=90°,且BD是△ABC的角平分线,∴∠CDG=∠BGF,∵∠BGF=∠CGD,∴∠CDG=∠CGD,∴CD=CG,故②正确;无法求得∠A的度数,即∠A不一定等于∠ABD,故AD不一定等于BD,故③错误.∵Rt△ABC中,∠ACB=90°,角平分线BD交CF于点G,DE⊥AB,∴CD=DE,∠CDB=∠EDB,∴BC=BE,故④正确;故答案为:①②④.9.解:①如图1,当三个内角的比为:4:4:7时,三个内角分别是48°,48°,84°.∵BE平分∠ABC,BD⊥AC,∠A=84°,∴∠ABE=∠ABC=24°,∠ABD=90°﹣84°=6°,∴∠EBD=∠ABE﹣∠ABD=24°﹣6°=18°.②如图2,当三个内角的比为:4:7:7时,三个内角分别是40°,70°,70°.∵BE平分∠ABC,BD⊥AC,∠A=40°,∴∠ABE=∠ABC=35°,∠ABD=90°﹣40°=50°,∴∠EBD=∠ABD﹣∠ABE=50°﹣35°=15°.故答案为:18°,15°10.解:延长AD交BC于E,如图所示:∵BD平分∠ABC,AD垂直于BD,∴∠ABD=∠EBD,∠ADB=∠EDB=90°,在△ABD和△EBD中,,∴△ABD≌△EBD(ASA),∴AD=ED,∴△ABD的面积=△EBD的面积,△CDE的面积=△ACD的面积=20,∴△ABD的面积=△EBD的面积=△BCD的面积﹣△CDE的面积=45﹣20=25.故答案为:25.11.解:分为三种情况:①如图,△ABC中,AB=AC,AD=BC,∵AB=AC,AD⊥BC,∴BD=DC=BC,∴AD=BD=DC,∴△BAC是等腰直角三角形,∴∠B=∠C=45°;②如图,△ABC中,AC=BC,∵AD=BC,AD⊥BC,∴∠D=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠B=∠BAC,∵∠B+∠BAC=∠ACD,∴∠B=∠BAC=15°,③如图,AD=BC,∠C=30°,∵AC=BC,∴∠B=∠BAC=75°;故答案为:45°、45°或15°、15°或75°、75°.12.解:①如图①,∵AB=AC,BD=CD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∠C=45°,∠BAC=90°.②如图②,∵AB=AC,AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∠C=36°,∠BAC=108°.③如图③,∵AB=AC,AD=BD=BC,∴∠B=∠C,∠A=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴5∠A=180°,∴∠A=36°,∠C=72°,∠ABC=72°.④如图④,∵AB=AC,AD=BD,CD=BC,∴∠ABC=∠C,∠A=∠ABD,∠CDB=∠CBD,∵∠BDC=∠A+∠ABD=2∠A,∴∠ABC=∠C=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=()°,∠C=()°,∠ABC=()°.故答案为:(45°、45°、90°),(36°、36°、108°),(36°、72°、72°),(、、).13.解:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=DB,∴∠DAB=∠B=x,∵△CAD中,CA=CD,∴∠CAD=(180°﹣∠C)=90°﹣,∵△ABC中,∠B+∠C+∠BAC=180°,∴x+x+x+90°﹣=180°,∴x=36°,∴∠DAE=∠BAE﹣∠BAD=(90°﹣36°)﹣36°=18°.故答案为:18°.14.解:如图1中,当高AD在△ABC内部时,作∠ABC的角平分线交AD于O,交AC于H.∵∠ABH=∠CBH,∠ABC=2∠DAC,∴∠OAH=∠OBD,∵∠AOH=∠BOD,∴∠AHO=∠ODB=90°,∴∠BHA=∠BHC=90°,∵∠ABH+∠BAH=90°,∠HBC+∠C=90°,∴∠BAH=∠C,∴BC=BA=5.如图2中,当高在△ABC外时,延长CD到O,使得DO=DC,作∠ABC的角平分线BH 交AO于H.∵AD⊥CO,CD=DO,∴AC=AO,∴∠DAC=∠DAO,∵∠ABC=2∠DAC,∴∠ABC=2∠DAO,由图1可知,AB=AO=5,在Rt△ABD中,BD===4,∴OD=CD=OB﹣BD=1,∴BC=BD﹣CD=4﹣1=3,综上所述,BC的长为5或3.故答案为:5或3.15.解:设P(m,n).∵A(﹣5,0),∴OA=5,=10,∵S△POA∴×5×n=10,∴n=4,当OP=OA=5时,m2+42=52,∴m=±3,∵m<0,∴m=﹣3,∴P(﹣3,4),当AP′=5时,(m+5)2+42=52,∴m=﹣2或﹣8,∴P′(﹣8,4)或(﹣2,4).故答案为(﹣3.4)或(﹣8,4)或(﹣2,4).16.解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.17.解:如图:已知DF垂直且平分AB⇒AF=BF,AD=BD,∠A=∠ABF=50°,∠ADF =90°∠EFC=180°﹣∠A﹣∠ADF=40°(对角相等)因为AB+BC=6,AB=AC=BF+FC故周长△BCF=FC+BF+BC=6.故填6;40°.18.解:∵BD⊥BC,∴∠CBD=90°,∴∠ABD=∠ABC﹣∠CBD=120°﹣90°=30°,∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∴∠A=∠ABD,∴DB=AD=1,在Rt△CBD中,∵∠C=30°,∴CD=2BD=2.故答案为2.19.解:∵△ABC是等边三角形,∴∠C=∠A=60°,∵CG=CD,∴∠GDC=30°,∵DF=DE,∴∠E=15°.故答案为:15.20.解:∵AB=AC,∴∠B=∠C,设∠B=∠C=α,∵DB=DA=DE,∴∠DAB=∠B=α,∠DAE=∠DEA,∵∠DEA=∠CDE+∠C=50°+α,∴∠DAE=50°+α,∴∠BAC=∠DAE+∠DAB=50°+2α,∵∠BAC+∠B+∠C=180°,∴50°+2α+α+α=180°,解得α=32.5°,∴∠BAC=50°+2×32.5°=115°,故答案为115.21.解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°.∵DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=50°.∴∠EBC=15°.(2)∵AE=BE,AB=8,∴BE+CE=8.∵△BEC的周长是11,∴BC=3,∴△ABC的周长是8+8+3=19.22.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AD的垂直平分线交AB于点E,交AC于点F,∴AE=DE,∠AOE=∠AOF=90°,∴∠AEF=∠AFE,∴AE=AF,∴AF=ED.23.解:(1)∵AB的垂直平分线交BC边于点E,AC的垂直平分线交BC边于点N,∴AE=BE,AN=CN,∵BC=12,∴△AEN周长l=AE+EN+AN=BE+EN+NC=BC=12;(2)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AE=BE,AN=CN,∴∠BAE=∠CAN=30°,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN=60°;(3)∵∠AEN=∠B+∠BAE=60°,∠ANE=∠C+∠CAN=60°,∴△AEN为等边三角形.24.解:(1)∵△BOC≌△ADC,∴OC=DC,∵∠OCD=60°,∴△OCD是等边三角形.(2)△AOD是直角三角形.理由如下:∵△OCD是等边三角形,∴∠ODC=60°,∵△BOC≌△ADC,α=150°,∴∠ADC=∠BOC=α=150°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD是直角三角形.(3)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,∠ADO=∠ADC﹣∠ODC=α﹣60°,∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.①当∠AOD=∠ADO时,190°﹣α=α﹣60°,∴α=125°.②当∠AOD=∠OAD时,190°﹣α=50°,∴α=140°.③当∠ADO=∠OAD时,α﹣60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.25.解:(1)过点A作AF⊥BC于F.∵AB=AC,AD=AE.∴BF=CF,DF=EF,∴BD=CE.(2)∵AD=DE=AE,∴△ADE是等边三角形,∴∠DAE=∠ADE=60°.∵AD=BD,∴∠DAB=∠DBA.∴∠DAB=∠ADE=30°.同理可求得∠EAC=30°,∴∠BAC=120°.26.(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,AD平分线段EC,即直线AD是线段CE的垂直平分线.27.解:(1)△DBC是等腰直角三角形,理由:∵∠ABC=45°,CD⊥AB,∴∠BCD=45°,∴BD=CD,∴△DBC是等腰直角三角形;(2)∵BE⊥AC,∴∠BDC=∠BEC=90°,∵∠BFD=∠CFE,∴∠DBF=∠ACD,在△BDF与△CDA中,,∴△BDF≌△CDA,∴BF=AC;(3)∵BE是AC的垂直平分线,∴CE=AC,∴CE=BF.28.解:(1)∵Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°.又∵AB=12cm,∴AC=6cm,BP=2t,AP=AB﹣BP=12﹣2t,AQ=t;(2)∵△APQ是以PQ为底的等腰三角形,∴AP=AQ,即12﹣2t=t,∴当t=4时,△APQ是以PQ为底边的等腰三角形;(3)当PQ⊥AC时,PQ∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵PQ∥BC,∴∠QPA=30°∴AQ=AP,∴t=(12﹣2t),解得t=3,∴当t=3时,PQ∥BC.。
人教版八年级数学上册全等三角形期末复习专题试卷及答案
2016-2017学年度第一学期八年级数学期末复习专题全等三角形姓名:_______________班级:_______________得分:_______________一选择题:1.下列结论错误的是()A.全等三角形对应边上的中线相等B.两个直角三角形中,两个锐角相等,则这两个三角形全等C.全等三角形对应边上的高相等D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是()A.∠AB.∠BC.∠CD.∠D4.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△ACBD.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有()A.1个B.2个C.3个D.4个9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是()A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( )A.5B.4C.3D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为().A. B. 1 C.2 D.512.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( )A.①②③④B.只有①②C.只有②③D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有()A.3对B.4对C.5对D.6对15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( )A.4个B.3个C.2个D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10B.12C.14D.1618.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A.1个B.2个C.3个D.4个19.如图,点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点(其中P、Q不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,下列结论:⑴BP=CM;⑵△ABQ≌△CAP;⑶∠CMQ的度数始终等于60°;⑷当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )A.1个B.2个C.3个D.420.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有()个.A.1B.2C.3D.4二填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△ABO ≌△ADO.下列结论:①AC ⊥BD;②CB=CD;③△ABC ≌△ADC;④DA=DC.其中所有正确结论的序号 是 .25.如图,△ABC 的角平分线交于点P ,已知AB ,BC ,CA 的长分别为5,7,6,则S △ABP ∶S △BPC ∶S △APC =___________.26.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB=6,BC=8.若S △ABC =28,则DE= .27.如图,OP 平分∠AOB ,PB ⊥OB ,OA=8cm ,PB=3cm ,则△POA 的面积等于 cm 2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为.29.如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC 上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为.31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE.33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC 于点G,连接FG.(1)求∠DFG的度数;(2)设∠BAD=θ,①当θ为何值时,△DFG为等腰三角形;②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF. 求证:AC=BF.36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1)当点D运动到AB的中点时,求AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半.38.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用:如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1、B2、B3、A4、D5、B6、D7、D8、C9、D 10、B 11、C 12、D 13、A 14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、12 cm2.28、9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE.33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.34、35、证:延长AD到G,使得DG=AD.(1分)在△ADC和△GDB中∴△ADC≌△GDB ∴AC=BG 且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC36、(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点∴∠B=∠BAD=∠DAC=45°,AD⊥BC∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形(2)△DEF仍为等腰直角三角形证明:连结AD∵AB=AC ∠BAC=90° D为BC的中点∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形37、(1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF==×4×=∴S△BDF(3)不变过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版初中八年级数学上册第十一章《三角形》经典复习题(含答案解析)(1)
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个C解析:C【分析】 利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒,再利用三角形的外角的性质求解4∠, 从而可判断④.【详解】解:90BAC DAE ∠=∠=︒,122390∴∠+∠=∠+∠=︒,13∴∠=∠,故①符合题意, 19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒,故②符合题意;//,BC AD180C CAD ∴∠+∠=︒,45C ∠=︒,135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒,故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,,30BAE ∴∠=︒,如图,记,AB DE 交于,G60E∠=︒,180306090AGE∴∠=︒-︒-︒=︒,45,B C∠=∠=︒4904545.AGE B∴∠=∠-∠=︒-︒=︒4.C∴∠=∠故④符合题意,综上:符合题意的有①②④.故选:.C【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.下列四组线段中,不可以构成三角形的是()A.4,5,6 B.1.5,2,2.5 C.13,14,15D.12,3D解析:D【分析】计算较小两边的和,与最大的边比较,大于最大的边时三角形存在,依此判断即可.【详解】∵4+5>6,∴能构成三角形;∵1.5+2>2.5,∴能构成三角形;∵14+15>13,∴能构成三角形;∵2<1+2=3,∴不能构成三角形;故选D.【点睛】本题考查了已知线段长判断三角形的存在,熟记三角形存在的条件是解题的关键. 3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.11A解析:A根据三角形的三边关系列出不等式,即可求出x 的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x ,∴7-3<x <7+3,即4<x <10,四个选项中,A 中,4<6<10,符合题意.故选:A .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40°B解析:B【分析】 利用平行线和三角形外角的性质即可求解.【详解】∵//AB CD ,∴60DEF A ∠=∠=︒.∵DEF C F ∠=∠+∠,∴604020F DEF C ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查平行线和三角形外角的性质,熟练利用其性质找到角的等量关系是解答本题的关键.5.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°A【分析】先根据三角形外角的性质得出∠ADC=∠B+∠BAD ,∠AED=∠C+∠EDC ,再根据∠B=∠C ,∠ADE=∠AED 即可得出结论.【详解】解:∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD ,∴∠ADE=∠ADC-∠CDE=∠B+∠BAD-∠CDE∵∠AED 是△CDE 的外角,∴∠AED=∠C+∠EDC ,∵∠ADE=∠AED ,∴∠B+∠BAD-∠CDE=∠C+∠EDC ,∵∠B=∠C ,∴∠BAD=2∠EDC ,∵10CDE ∠=︒∴∠BAD=20°;故选:A【点睛】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.6.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC ∠的度数是( )A .65︒B .75︒C .85︒D .105︒B解析:B【分析】 根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.7.一个多边形的内角和是外角和的4倍,则这个多边形的边数为()A.10 B.8 C.6 D.4A解析:A【分析】设这个多边形的边数为n,根据内角和公式以及多边形的外角和为360°即可列出关于n的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.a b,含30角的直角三角板按如图所示放置,顶点A在直线a上,斜边8.已知直线//BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.9.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm ,7cm ,∴第三边长的取值范围为7-3<x <7+3,即4<x <10,只有D 符合题意,故选:D .【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.10.小红有两根长度分别为4cm 和8cm 的木棒,他想摆一个三角形,现有长度分别为3cm ,4cm ,8cm ,15cm 四根木棒,则他应选择的木棒长度为( ).A .3cmB .4cmC .8cmD .15cm C 解析:C【分析】设选择的木棒长为x ,根据第三边大于两边之差小于两边之和即可求出范围,再结合选项即可得出答案.【详解】由题意得,设选择的木棒长为x ,则8448x -<<+,即412x <<, ∴选择木棒长度为8cm .故选C .【点睛】本题考查了三角形三边关系的应用,熟练掌握三边关系是解题的关键.二、填空题11.如图,则A B C D E ∠+∠+∠+∠+∠的度数为________.180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2再通过三角形的内角和定理即可求解【详解】解:如图∵∠1是△CDF 外角∴∠C+∠D=∠1∵∠2是三角形BFG 外角∴∠B+∠1=∠2∴∠解析:180°【分析】两次运用三角形的外角定理求出∠B+∠C+∠D=∠2,再通过三角形的内角和定理即可求解【详解】解:如图,∵∠1是△CDF 外角,∴∠C+∠D=∠1,∵∠2是三角形BFG 外角,∴∠B+∠1=∠2,∴∠B+∠C+∠D=∠2,∴=2180A B C D E A E ∠+∠+∠+∠+∠∠+∠+∠=︒.故答案为:180°【点睛】本题考查了三角形的外角定理、内角和定理,通过三角形的外角定理将∠B+∠C+∠D 转化为∠2是解题关键.12.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.13.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.6【分析】根据DE 分别是三角形的中点得出G 是三角形的重心再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案【详解析:6【分析】根据D ,E 分别是三角形的中点,得出G 是三角形的重心,再利用重心的概念可得:2GD =AG 进而得到S △ABG :S △ABD =2:3,再根据AD 是△ABC 的中线可得S △ABC =2S △ABD 进而得到答案.【详解】解:∵△ABC 的两条中线AD 、BE 相交于点G ,∴2GD =AG ,∵S △ABG =2,∴S △ABD =3,∵AD 是△ABC 的中线,∴S △ABC =2S △ABD =6.故答案为:6.【点睛】此题主要考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的两倍.14.如图,在ABC ∆中,4ACB A ∠=∠,点D 在边AC 上,将BDA ∆沿BD 折叠,点A 落在点A '处,恰好BA AC '⊥于点E 且//BC DA ',则BDC ∠的度数为__________度.54°【分析】根据折叠的性质及题意可在Rt △BEC中求解∠C 及∠CBE 的度数从而计算∠ABD 的度数则∠BDC=∠A+∠ABD 即可计算出结果【详解】由题意可得:∠A=∠∠=∠CBE ∴则在Rt △BEC 中 解析:54°【分析】根据折叠的性质及题意,可在Rt △BEC 中求解∠C 及∠CBE 的度数,从而计算∠ABD 的度数,则∠BDC=∠A+∠ABD ,即可计算出结果.【详解】由题意可得:∠A=∠A ',∠A '=∠CBE ,∴44ACB A CBE ∠=∠=∠,则在Rt △BEC 中,∠C+∠CBE=90°,即:5∠CBE=90°,∠CBE=18°,∴∠A=18°,∠C=72°,∠ABC=90°,∴72ABA ABC CBE '=-=︒∠∠∠,由折叠性质可知,ABD A BD '∠=∠,∴=36ABD A BD '∠=∠︒,∴54BDC ABD A ∠=∠+∠=︒故答案为:54°.【点睛】本体三角形的折叠问题,平行线的性质及三角形的外角定理,理解图形变化中的特点,准确结合题意计算是解题关键.15.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABC S =,则BEF S =△______.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC解析:3 2【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在一个四边形ABCD中,AE平分∠BAD,DE平分∠ADC,且∠ABC=80°,∠BCD=70°,则∠AED=_________.75°【分析】先根据四边形的内角和求出∠BAD+∠CDA然后再根据角平分线的定义求得∠EAD+∠EDA最后根据三角的内角和定理求解即可【详解】解:∵在四边形ABCD中∠ABC=80°∠BCD=70°解析:75°.【分析】先根据四边形的内角和求出∠BAD+∠CDA,然后再根据角平分线的定义求得∠EAD+∠EDA,最后根据三角的内角和定理求解即可.【详解】解:∵在四边形ABCD中,∠ABC=80°,∠BCD=70°∴∠BAD+∠CDA=360°-80°-70°=210°∵∠EAD=12∠BAD,∠EDA=12∠CAD∴∠EAD+∠EDA=1(∠BAD+∠CDA)=105°2∴∠AED=180°-(∠EAD+∠EDA)=180°-105°=75°.故答案为75°.【点睛】本题主要考查了三角形的内角和、四边形的内角和以及角平分线的相关知识,灵活应用相关知识成为解答本题的关键.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.鹿鸣社区里有一个五边形的小公园,如图所示,王老师每天晚饭后都要到公园里去散步,已知图中的∠1=95 ,王老师沿公园边由A点经B→C→D→E,一直到F时,他在行程中共转过了_____度.275【分析】王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数由多边形的外角和即可求解【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数∵多边形的外角和为360°∴解析:275王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,由多边形的外角和即可求解.【详解】解:王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数,∵多边形的外角和为360°,∴他在行程中共转过了()36018095275︒-︒-︒=︒,故答案为:275.【点睛】本题考查多边形的外角和,明确王老师每次转过的角度之和为该五边形的外角和减去∠1的外角度数是解题的关键.19.如图,在ABC 中,已知66ABC ∠=︒,54ACB ∠=︒,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,EHF ∠的度数是________.120°【分析】先根据三角形内角和定理求出∠A 的度数再根据CF是AB 上的高得出∠ACF 的度数再由三角形外角的性质即可得出结论【详解】解:∵∠ABC=66°∠ACB=54°∴∠A=60°∵CF 是AB 上解析:120°【分析】先根据三角形内角和定理求出∠A 的度数,再根据CF 是AB 上的高得出∠ACF 的度数,再由三角形外角的性质即可得出结论.【详解】解:∵∠ABC=66°,∠ACB=54°,∴∠A=60°,∵CF 是AB 上的高,∴在△ACF 中,∠ACF=180°-∠AFC-∠A=30°,在△CEH 中,∠ACF=30°,∠CEH=90°,∴∠EHF=∠ACF+∠CEH=30°+90°=120°.故答案为120°.【点睛】本题考查的是三角形内角和定理及三角形外角的性质、三角形的高线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数即可得出答案【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°答:这个三角形中最大的角是直角故答案解析:直角【分析】根据三角形内角和定理和已知求出这个三角形的最大内角的度数,即可得出答案.【详解】180°÷(1+2+3)×3=180°÷6×3=30°×3=90°,答:这个三角形中最大的角是直角.故答案为:直角.【点睛】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角的度数是解此题的关键,注意:三角形的内角和等于180°.三、解答题21.如图,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1.(1)∵BA1、CA1是∠ABC与∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=,∠ACD﹣∠ABD=∠,∴∠A1=.(2)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230°,求∠F的度数.(3)如图3,△ABC中,∠ABC的角平分线与外角∠ACD的平分线交于A1,若E为BA延长线上一动点,连接EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q﹣∠A1的值为定值,其中有且只有一个是正确的,请写出正确的结论,并求出其值.解析:(1)∠A1,A,12∠A;(2)25°;(3)①的结论是正确的,且这个定值为180°.【分析】(1)根据角平分线的定义可得∠A1BD=12∠ABC,∠A1CD=12∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,则可得出答案;(2)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°﹣(∠A+∠D),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,从而得出结论;(3)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.【详解】解:(1)∵BA1是∠ABC的平分线,CA1是∠ACD的平分线,∴∠A1BD=12∠ABD,∠A1CD=12∠ACD,∴∠A1CD﹣∠A1BD=12(∠ACD﹣∠ABD),∵∠A1CD﹣∠A1BD=∠A1,∠ACD﹣∠ABD=∠A,∴∠A1=12∠A.故答案为:∠A1,A,12∠A;(2)∵∠ABC+∠DCB=360°﹣(∠A+∠D),∵∠ABC+(180°﹣∠DCE)=2∠FBC+(180°﹣2∠DCF)=180°﹣2(∠DCF﹣∠FBC)=180°﹣2∠F,∴360°﹣(∠A+∠D)=180°﹣2∠F,2∠F=∠A+∠D﹣180°,∴∠F=12(∠A+∠D)﹣90°,∵∠A+∠D=230°,∴∠F=25°;(3)△ABC中,由三角形的外角性质知:∠BAC=∠AEC+∠ACE=2(∠QEC+∠QCE);即:2∠A1=2(180°﹣∠Q),化简得:∠A1+∠Q=180°,因此①的结论是正确的,且这个定值为180°.【点睛】此题考查三角形的角平分线的性质,三角形内角和定理,三角形外角定理,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.22.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.23.如图,AF ,AD 分别是ABC 的高和角平分线,且34B ∠=︒,76C ∠=︒,求DAF ∠的度数.解析:21︒【分析】运用三角形的内角和定理即可求出∠BAC 的度数;根据角平分线的定义、三角形的内角和定理的推论以及直角三角形的两个锐角互余即可求出∠FAC 的度数,再由DAF DAC FAC =-∠∠∠即可得出结论.【详解】解:∵AF 是ABC 的高,∴90AFC ∠=︒,∴90907614FAC C ∠=︒-∠=︒-︒=︒,∵180BAC B C ∠+∠+∠=︒,∴180180763470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是ABC 的角平分线, ∴11703522DAC BAC ==⨯︒=∠∠︒, ∴21DAF DAC FAC =-∠=∠∠︒.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键. 24.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.解析:(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】(1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠, ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .25.已知一个n 边形的每一个内角都等于120°.(1)求n 的值;(2)求这个n 边形的内角和;(3)这个n 边形内一共可以画出几条对角线?解析:(1)6;(2)720°;(3)9条【分析】(1)分别用两个式子表示多边形的内角和,列出方程,求解即可;(2)根据多边形内角和公式即可求解;(3)根据对角线的定义求出每个顶点的对角线条数,再求解即可.【详解】解:(1)由题意得()2180120n n -︒=︒,解得 6n =.(2)()62180720-⨯︒=︒,所以这个多边形的内角和为720°.(3)六边形每个顶点可以引6-3=3条对角线, 所以一共可画6392⨯=条对角线. 【点睛】本题考查了多边形的内角和公式,多边形对角线的定义,熟记多边形的内角和公式,理解对角线的定义是解题关键.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.解析:10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°. 【详解】解:∠B AC =60°,∠C =70°∴∠ABC =180°−∠ABC −∠C =180°−60°-70°=50°,∵AE 是角平分线,∴∠EAC =12∠BAC =12×60°=30°, ∵AD 是高,∴∠ADC =90°,∴∠CAD =90°−∠C =90°−70°=20°,∴∠DAE =∠EAC −∠CAD =30°−20°=10°;∵AE ,BF 是角平分线,∴∠OAB =12∠BAC ,∠OBA =12∠ABC , ∴∠BOE =∠OAB +∠OBA =12(∠BAC +∠ABC )=12(180°−∠C )=12×(180°−70°) =55°. 【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.27.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.解析:证明见解析【分析】由AB∥CD,可知∠BEF与∠DFE互补,由角平分线的性质可得∠PEF+∠PFE=90°,由三角形内角和定理可得出结论.【详解】∵AB∥CD,∴∠BEF+∠DFE=180°.又∵∠BEF的平分线与∠DFE的平分线相交于点P,∴∠PEF=12∠BEF,∠PFE=12∠DFE,∴∠PEF+∠PFE=12(∠BEF+∠DFE)=90°.∵∠PEF+∠PFE+∠P=180°,∴∠P=90°.【点睛】本题主要考查了平行线的性质、角平分线的定义、三角形内角和等知识,解题时注意:两直线平行,同旁内角互补.28.如图,AD,AE分别是△ABC的高和角平分线.(1)已知∠B=40°,∠C=60°,求∠DAE的度数;(2)设∠B=α,∠C=β(α<β).请直接写出用α、β表示∠DAE的关系式.解析:(1)10︒;(2)11 22βα-【分析】(1)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案;(2)根据三角形的内角和求出∠BAC的度数,得到∠BAE的度数,求出∠AED的度数,根据AD是高线,求得答案.【详解】(1)∵∠B=40°,∠C=60°,∴∠BAC=18080B C ︒-∠-∠=︒,∵AE 平分∠BAC ,∴∠BAE=1402BAC ∠=︒, ∴∠AED=∠B+∠BAE=80︒,∵AD 是高线,∴AD ⊥BC ,∴∠DAE=9010AED ︒-∠=︒;(2)∵∠B =α,∠C =β,∴∠180180BAC B C αβ=︒-∠-∠=︒--,∵AE 平分∠BAC ,∴∠BAE=121902B C ︒-∠-∠=121902αβ︒-- ∴∠AED=∠B+∠BAE=121902B C ︒+∠-∠=121902αβ︒+- ∵AD 是高线,∴AD ⊥BC , ∴∠DAE=190212AED C B ︒-∠=∠-∠=1122βα-, 故答案为:1122βα-. 【点睛】此题考查三角形的基础知识,三角形的角平分线的性质,三角形的内角和定理,三角形的高线,直角三角形两锐角互余,熟练掌握各知识点并应用解决问题是解题的关键.。
人教版八年级上册数学期末考试复习:第11章《三角形》解答题专题复习
第11章《三角形》解答题精选1.(2019秋•花都区期末)如图,在四边形ABCD 中,∠C +∠D =210°(1)∠DAB +∠CBA = 度;(2)若∠DAB 的角平分线与∠CBA 的角平分线相交于点E ,求∠E 的度数.2.(2019秋•南海区期末)阅读下面的材料,并解决问题.(1)已知在△ABC 中,∠A =60°,图1﹣3的△ABC 的内角平分线或外角平分线交于点O ,请直接求出下列角度的度数.如图1,∠O = ;如图2,∠O = ;如图3,∠O = ;如图4,∠ABC ,∠ACB 的三等分线交于点O 1,O 2,连接O 1O 2,则∠BO 2O 1= .(2)如图5,点O 是△ABC 两条内角平分线的交点,求证:∠O =90°+12∠A . (3)如图6,△ABC 中,∠ABC 的三等分线分别与∠ACB 的平分线交于点O 1,O 2,若∠1=115°,∠2=135°,求∠A 的度数.3.(2019秋•普宁市期末)某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.4.(2019秋•东莞市期末)如图,在△ABC 中,AD 是高,AE 是角平分线,∠B =70°,∠DAE =10°,求∠C 的度数.5.(2020春•东湖区期末)(1)已知一个正多边形的每个内角比它的每个外角的4倍多30°,求这个多边形的边数;(2)一个多边形的外角和是内角和的27,求这个多边形的边数.6.(2019秋•越秀区期末)如图所示,在△ABC 中,D 是BC 边上一点∠1=∠2,∠3=∠4,∠BAC =69°,求∠DAC 的度数.7.(2019秋•揭阳期末)探究与发现:如图①,在△ABC 中,∠B =∠C =45°,点D 在BC 边上,点E 在AC 边上,且∠ADE =∠AED ,连接DE .(1)当∠BAD =60°时,求∠CDE 的度数;(2)当点D 在BC (点B 、C 除外)边上运动时,试猜想∠BAD 与∠CDE 的数量关系,并说明理由.(3)深入探究:如图①,若∠B =∠C ,但∠C ≠45°,其他条件不变,试探究∠BAD 与∠CDE 的数量关系.8.(2019秋•江城区期末)如图,Rt △ABC 中,∠C =90°,∠B =3∠A ,求∠B 的度数.9.(2019春•龙门县期末)如图,在四边形ABCD 中,AD ∥BC ,连接BD ,点E 在BC 边上,点F 在DC 边上,且∠1=∠2.(1)求证:EF ∥BD ;(2)若DB 平分∠ABC ,∠A =130°,求∠2的度数.10.(2019春•番禺区期末)(1)如图1,已知AB ∥CD ,求证:∠EGF =∠AEG +∠CFG .(2)如图2,已知AB ∥CD ,∠AEF 与∠CFE 的平分线交于点G .猜想∠G 的度数,并证明你的猜想.(3)如图3,已知AB ∥CD ,EG 平分∠AEH ,EH 平分∠GEF ,FH 平分∠CFG ,FG 平分∠HFE ,∠G =95°,求∠H 的度数.11.(2019春•南海区期末)如图1,在△ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 与CE 交于点F .(1)求∠BFC 的度数;(2)如图2,EG、DG分别平分∠AEF、∠ADF,EG与DG交于点G,求∠EGD的度数.12.(2018秋•澄海区期末)如图,已知AD,AE是△ABC的高和角平分线,∠B=44°,∠C=76°,求∠DAE的度数.13.(2018秋•越秀区期末)如图,六边形ABCDEF的内角都相等,∠F AD=60°.(1)求∠ADE的度数;(2)求证:EF∥BC.14.(2018秋•揭西县期末)CE是△ABC的一个外角∠ACD的平分线,且EF∥BC交AB于点F,∠A=60°,∠CEF=50°,求∠B的度数.15.(2018秋•普宁市期末)已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB 的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.16.(2017春•石狮市期末)如图,在△ABC中,点D在BC边上,点E在AC边上,连接AD,DE,∠B=60°(1)若∠3=60°,试说明∠1=∠2;(2)∠C=40°,∠1=50°,且∠3=∠4,求∠2的度数.17.(2019春•潮南区期末)如图,在四边形ABCD中,AD∥BC,∠ABC的平分线交CD于点E.(1)若∠A=70°,求∠ABE的度数;(2)若AB∥CD,且∠1=∠2,判断DF和BE是否平行,并说明理由.18.(2018秋•大埔县期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,若∠A=42°.(1)求∠BOC的度数;(2)把(1)中∠A=42°这个条件去掉,试探索∠BOC和∠A之间有怎样的数量关系.19.(2019春•南海区期末)已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.20.(2018秋•禅城区期末)叙述并证明“三角形的内角和定理”.(要求根据下图写出已知、求证并证明)21.(2018春•福田区期末)完成下列推理说明.如图,在三角形ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,∠CDG=∠B,∠1+∠FEA =180°,试说明:∠BFE=∠ADF.理由:因为∠CDG=∠B(已知)所以DG∥AB()所以=∠BAD()因为∠1+∠FEA=180°(已知)所以+∠FEA=180°(等量代换)所以AD∥EF()所以∠BFE=()22.(2018春•海珠区期末)已知点C(﹣10,10),直线CE∥x轴交y轴于点B,点A是x轴的负半轴上的动点,作AD⊥AC交线段BO于点D(点D不与点O、B重合),MD⊥AD交CE于点M,∠EMD,∠OAD的角平分线MN,AN交于点N(1)直接写出OB的长度;(2)求出∠MNA的度数;(3)若NH⊥x轴于点H,求∠ANH的取值范围.23.(2017秋•潮安区期末)如图,AB、ED分别垂直于BD,点B、D是垂足,且∠ACB=∠CED.求证△ACE是直角三角形.24.(2017秋•白云区期末)如图,在△ABC中,AD⊥BC,垂足为D,∠1=∠B,∠C=67°,求∠BAC的度数.25.(2018春•澄海区期末)(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图①,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;①如图①,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.26.(2018春•白云区期末)已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.27.(2018春•越秀区期末)如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.28.(2018春•东莞市期末)如图,AC、BD相交于点O,∠A=∠ABC,∠DBC=∠D,BD平分∠ABC,点E在BC 的延长线上.(1)求证:CD∥AB;(2)若∠D=38°,求∠ACE的度数.29.(2018春•茂名期末)已知:△ABC,∠A、∠B、∠C之和为多少?为什么?解;∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠(已作)AB∥CD()∴∠B=()而∠ACB+∠ACD+∠DCE=180°∴∠ACB++=180°()30.(2018春•香洲区期末)如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.(1)求证:∠EAB=∠CED;(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.①求证EG⊥AF;①求∠F的度数.【提示:三角形内角和等于180度】第11章《三角形》解答题精选参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=12∠DAB,∠EBA=12∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°−12(∠DAB+∠CBA)=180°−12(360°﹣∠C﹣∠D)=12(∠C+∠D),∵∠C+∠D=210°,∴∠E=12(∠C+∠D)=105°.2.【解答】解;(1)如图1,∵BO平分∠ABC,CO平分∠ACB∴∠OBC=12∠ABC,∠OCB=12∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠BAC)=12(180°﹣60°)=60°∴∠O=180°﹣(∠OBC+∠OCB)=120°;如图2,∵BO平分∠ABC,CO平分∠ACD∴∠OBC=12∠ABC,∠OCD=12∠ACD∵∠ACD=∠ABC+∠A∴∠OCD=12(∠ABC+∠A)∵∠OCD=∠OBC+∠O ∴∠O=∠OCD﹣∠OBC=12∠ABC+12∠A−12∠ABC=12∠A =30°如图3,∵BO 平分∠EBC ,CO 平分∠BCD∴∠OBC =12∠EBC ,∠OCB =12∠BCD∴∠OBC +∠OCB=12(∠EBC +∠BCD )=12(∠A +∠ACB +∠BCD )=12(∠A +180°)=12(60°+180°)=120°∴∠O =180°﹣(∠OBC +∠OCB )=60°如图4,∵∠ABC ,∠ACB 的三等分线交于点O 1,O 2∴∠O 2BC =23∠ABC ,∠O 2CB =23∠ACB ,O 1B 平分∠O 2BC ,O 1C 平分∠O 2CB ,O 2O 1平分BO 2C ∴∠O 2BC +∠O 2CB=23(∠ABC +∠ACB ) =23(180°﹣∠BAC )=23(180°﹣60°) =80°∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=100°∴∠BO 2O 1=12∠BO 2C =50°故答案为:120°,30°,60°,50°;(2)证明:∵OB 平分∠ABC ,OC 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠O =180°﹣(∠OBC +∠OCB )=180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠A )=90°+12∠A . (3)∵∠O 2BO 1=∠2﹣∠1=20°∴∠ABC =3∠O 2BO 1=60°,∠O 1BC =∠O 2BO 1=20°∴∠BCO 2=180°﹣20°﹣135°=25°∴∠ACB =2∠BCO 2=50°∴∠A =180°﹣∠ABC ﹣∠ACB =70°或由题意,设∠ABO 2=∠O 2BO 1=∠O 1BC =α,∠ACO 2=∠BCO 2=β, ∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°∴α=20°,β=25°∴∠ABC +∠ACB =3α+2β=60°+50°=110°,∴∠A =70°.3.【解答】解:(1)∵BP 、CP 分别平分∠ABC 和∠ACB ,∴∠PBC =12∠ABC ,∠PCB =12∠ACB ,∴∠BPC =180°﹣(∠PBC +∠PCB )=180°﹣(12∠ABC +12∠ACB ), =180°−12(∠ABC +∠ACB ),=180°−12(180°﹣∠A ), =180°﹣90°+12∠A , =90°+32°=122°,故答案为:122°;(2)∵CE 和BE 分别是∠ACB 和∠ABD 的角平分线,∴∠1=12∠ACB ,∠2=12∠ABD ,又∵∠ABD 是△ABC 的一外角,∴∠ABD =∠A +∠ACB ,∴∠2=12(∠A +∠ABC )=12∠A +∠1,∵∠2是△BEC 的一外角,∴∠BEC =∠2﹣∠1=12∠A +∠1﹣∠1=12∠A =α2;(3)∠QBC =12(∠A +∠ACB ),∠QCB =12(∠A +∠ABC ), ∠BQC =180°﹣∠QBC ﹣∠QCB ,=180°−12(∠A +∠ACB )−12(∠A +∠ABC ),=180°−12∠A −12(∠A +∠ABC +∠ACB ),结论∠BQC =90°−12∠A . 4.【解答】解:∵AD 是高,∠B =70°,∴∠BAD =20°,∴∠BAE =20°+10°=30°,∵AE 是角平分线,∴∠BAC =60°,∴∠C =180°﹣70°﹣60°=50°.5.【解答】解:(1)设这个多边形的每个内角是x °,每个外角是y °, 则得到一个方程组{α=4α+30α+α=180 解得{α=150α=30, 而任何多边形的外角和是360°,则多边形内角和中的外角的个数是360÷30=12,则这个多边形的边数是12边形;(2)设这个多边形的边数为n ,依题意得:27(n ﹣2)180°=360°,解得n =9,答:这个多边形的边数为9.6.【解答】解:设∠1=∠2=x °,则∠3=∠4=2x °,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.7.【解答】解:(1)∵∠ADC是△ABD的外角,∴∠ADC=∠BAD+∠B=105°,∠DAE=∠BAC﹣∠BAD=30°,∴∠ADE=∠AED=75°,∴∠CDE=105°﹣75°=30°;(2)∠BAD=2∠CDE,理由如下:设∠BAD=x,∴∠ADC=∠BAD+∠B=45°+x,∠DAE=∠BAC﹣∠BAD=90°﹣x,∴∠ADE=∠AED=90°+α2,∴∠CDE=45°+x−90°+α2=12x,∴∠BAD=2∠CDE;(3)设∠BAD=x,∴∠ADC=∠BAD+∠B=∠B+x,∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,∴∠ADE=∠AED=∠C+12 x,∴∠CDE=∠B+x﹣(∠C+12x)=12x,∴∠BAD=2∠CDE.8.【解答】解:∵∠B=3∠A,∴∠A=13∠B,∵∠C=90°,∴∠A+∠B=90°,∴13∠B+∠B=90°,解得∠B=67.5°.9.【解答】(1)证明:如图,∵AD∥BC(已知),∴∠1=∠3(两直线平行,内错角相等).∵∠1=∠2,∴∠3=∠2(等量代换).∴EF∥BD(同位角相等,两直线平行).(2)解:∵AD∥BC(已知),∴∠ABC+∠A=180°(两直线平行,同旁内角互补).∵∠A=130°(已知),∴∠ABC=50°.∵DB平分∠ABC(已知),∴∠3=12∠ABC=25°.∴∠2=∠3=25°.10.【解答】证明:(1)如图1,过点G作GH∥AB,∴∠EGH=∠AEG.∵AB∥CD,∴GH∥CD.∴∠FGH=∠CFG.∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG;(2)如图2所示,猜想:∠G=90°;证明:由(1)中的结论得:∠EGF=∠AEG+∠CFG,∵EG、FG分别平分∠AEF和∠CEF,∴∠AEF=2∠AEG,∠CEF=2∠CFG,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2∠AEG+2∠CFG=180°,∴∠AEG+∠CFG=90°,∴∠G=90°;(3)解:如图3,∵EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∴∠AEG=∠GEH=∠HEF=13αααα,∠CFH=∠HFG=∠EFG=13αααα,由(1)可知,∠G=∠AEG+∠CFG,∠H=∠AEH+∠CFH,∴∠G=13∠AEF+23∠CFE=95°,∵AB∥CD,∴∠AEF+∠CFE=180°,∴13(∠AEF+∠CFE)+13αCFE=95°,∴∠CFE=105°,∴∠AEF=75°,∴∠H=23∠AEF+13∠CFE=23×75°+13×105°=85°.11.【解答】解:(1)∵BD、CE分别平分∠ABC、∠ACB∴∠CBD=12∠CBA,∠BCE=12∠ACB,∵∠CBA +∠BCA =180°﹣80°=100°,∴∠BFC =180°−12(∠CBA +∠ACB )=130°.(2)∵EG 、DG 分别平分∠AEF 、∠ADF∴∠GEF =12∠AEF ,∠GDF =12∠ADF ,∵∠AEF +∠ADF =360°﹣80°﹣130°=150°,∴∠GEF +∠GDF =12×150°=75°,∴∠EGD =360°﹣(∠GEF +∠GDF )﹣∠EFD =360°﹣75°﹣130°=155°.12.【解答】解:∵∠B =44°,∠C =76°,∴∠BAC =180°﹣∠B ﹣∠C =60°,∵AE 是角平分线,∴∠EAC =12∠BAC =30°.∵AD 是高,∠C =76°,∴∠DAC =90°﹣∠C =14°,∴∠DAE =∠EAC ﹣∠DAC =30°﹣14°=16°.13.【解答】解:(1)∵六边形ABCDEF 的内角都相等,∴∠BAF =∠B =∠C =∠CDE =∠E =∠F =(6−2)×180°6=120°, ∵∠F AD =60°,∴∠F +∠F AD =180°,∴EF ∥AD ,∴∠E +∠ADE =180°,∴∠ADE =60°;(2)∵∠BAD =∠F AB ﹣∠F AD =60°,∴∠BAD +∠B =180°,∴AD ∥BC ,∴EF ∥BC .14.【解答】解:∵EF ∥BC ,∴∠CEF =∠ECD =50°,∵CE 平分∠ACD ,∴∠ACE =∠ECD ,∴∠ACD =∠ACE +∠ECD =100°,∴∠ACB =180°﹣∠ACD =180°﹣100°=80°,∴∠B =180°﹣(∠A +∠ACB )=180°﹣60°﹣80°=40°.15.【解答】解:(1)证明:∵∠CDQ 是△CBD 的一个外角(三角形外角的定义),∴∠CDQ =∠α+∠C (三角形的一个外角等于和它不相邻的两个内角的和)∵PQ ∥MN (已知),∴∠CDQ =∠β(两直线平行,同位角相等).∴∠β=∠α+∠C (等量代换).∵∠C =45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C ,(2)证明:∵∠CFN 是△ACF 的一个外角(三角形外角的定义),∴∠CFN =∠β+∠C (三角形的一个外角等于和它不相邻的两个内角的和),∵PQ ∥MN (已知),∴∠CFN =∠α(两直线平行,同位角相等)∴∠α=∠β+∠C (等量代换).∵∠C =45°(已知),∴∠α=∠β+45°(等量代换).16.【解答】解:(1)∠B =60°,∠3=60°,∴△ABD 中,∠1=180°﹣∠B ﹣∠ADB =120°﹣∠ADB ,又∵∠2=180°﹣∠3﹣∠ADB =120°﹣∠ADB ,∴∠1=∠2;(2)∵∠C =40°,∠B =60°,∴∠BAC =80°,又∵∠1=50°,∴∠DAE=30°,又∵∠3=∠4,∴∠4=75°,∴∠2=∠4﹣∠C=75°﹣40°=35°.17.【解答】(1)解:∵AD∥BC,∠A=70°,∴∠ABC=180°﹣∠A=110°,∵BE平分∠ABC,∴∠ABE=12∠ABC=55°;(2)证明:DF∥BE.∵AB∥CD,∴∠A+∠ADC=180°,∠2=∠AFD,∵AD∥BC,∴∠A+∠ABC=180°,∴∠ADC=∠ABC,∵∠1=∠2=12∠ADC,∠ABE=12∠ABC∴∠2=∠ABE,∴∠AFD=∠ABE,∴DF∥BE.18.【解答】解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°﹣∠A=138°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12×138°=69°,∴∠BOC=180°﹣(∠1+∠2)=180°﹣69°=111°;(2)∠BOC=90°+12∠A,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠1=12∠ABC,∠2=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB)=12(180°﹣∠A),∴∠BOC=180°﹣(∠1+∠2)=180−12(180°−αα)=90°+12αα.19.【解答】解:∵AD⊥BC,∠B=60°,∴∠BAD=90°﹣∠B=90°﹣60°=30°,∵∠BAC=80°,∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,∵AE平分∠DAC,∴∠DAE=12∠DAC=12×50°=25°,∴∠BAE=30°+25°=55°,∴∠AEC=∠BAE+∠B=55°+60°=115°.20.【解答】已知:△ABC中,求证:∠A+∠B+∠C=180°.证明:过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)即∠A+∠B+∠C=180°.21.【解答】解:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠BAD(两直线平行,内错角相等),∵∠1+∠FEA=180°(已知),∴∠BAD+∠FEA=180°(等量代换),∴AD∥EF(同旁内角互补,两直线平行),∴∠BFE=∠ADF(两直线平行,同位角相等),故答案为:同位角相等,两直线平行,∠1,两直线平行,内错角相等,∠BAD,同旁内角互补,两直线平行,∠ADF,两直线平行,同位角相等.22.【解答】解:(1)∵C(﹣10,10),CE∥x轴,∴B(0,10),∴OB=10.(2)连接AM.∵AD⊥DM,∴∠DAM+∠DMA=90°,∵EC∥AH,∴∠EMA+∠HAM=180°,∴∠EMD+∠HAD=90°,∵MN平分∠EMD,AN平分∠DAH,∴∠EMN+∠NAH=45°,∴∠NMA+∠NAM=135°,∴∠MNA=180°﹣135°=45°.(3)由题意:0°<∠DAO<45°,∵AN平分∠DAO,∴0°<∠NAH<22.5°,∵NH⊥AH,∴∠AHN=90°,∴∠ANH=90°﹣∠NAH,∴67.5°<∠ANH<90°.23.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∴∠ACB+∠BAC=90°,∠CED+∠DCE=90°.∵∠ACB=∠CED,∴∠BAC=∠DCE,∴∠ACB+∠DCE=90°,∴∠ACE=180°﹣(∠ACB+∠DCE)=90°.∴△ACE是直角三角形.24.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠1=∠B=45°,又∵∠C=67°,∴∠BAC=180°﹣∠B﹣∠C=68°.25.【解答】(1)证明:如图①,过E作EF∥AD,∵AD∥BC,∴EF∥BC,∴∠DAE=∠AEF,∠CBE=∠BEF,∴∠AEB=∠DAE+∠CBE;(2)①证明:∵AD∥BC,∴∠DAC=∠ACB.∵AE平分∠DAC,∴∠EAC=12∠DAC=12∠ACB,∵∠ABC=∠BAC,∠ABC+∠BAC+∠ACB=180°,∴∠BAC+∠EAC=90°,∴∠ABE+∠AEB=90°;①解:如图(3),由①知∠BAE=90°,∴∠F AE=90°.∵∠F=65°,∴∠APC=90°+60°=155°.∴∠P AC+∠ACP=25°.∵AE平分∠DAC,CF平分∠ACD,∴∠DAC+∠ACD=2(∠P AC+∠ACP)=50°,∴∠D=180°﹣50°=130°.∵AD∥BC,∴∠BCD=180°﹣∠D=180°﹣130°=50°.26.【解答】证明:方法1:∵∠1=∠2,∴AB∥CD,∴∠ABC+∠DCB=180°,∵∠3=∠4,∴AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC=∠ADC.方法2:∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,∴ABCD是平行四边形,∴∠ABC=∠ADC.27.【解答】解:(1)AB∥CD,理由是:分别过点E、F作EM∥AB,FN∥AB,∵EM∥AB,FN∥AB,∴EM∥FN∥AB,∴∠1+∠A=180°,∠3+∠4=180°,∵∠A+∠E+∠F+∠C=540°,∴∠2+∠C=540°﹣180°﹣180°=180°,∴FN∥CD,∵FN∥AB,∴AB∥CD;(2)设∠P AQ=x,∠PCD=y,∵∠P AB=3∠P AQ,∠PCD=3∠PCQ,∴∠P AB=3x,∠BAQ=2x,∠PCD=3y,∠QCD=2y,过P作PG∥AB,过Q作QH∥AB,∵AB∥CD,∴AB∥CD∥PG∥GH,∴∠AQH=∠BAQ=2x,∠QCD=∠CQH=2y,∴∠AQC=2x+2y=2(x+y),同理可得:∠APC=3x+3y=3(x+y),∴αααααααα=23,即∠AQC=23∠APC.28.【解答】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠DBC=∠D,∴∠ABD=∠D,∴CD∥AB,(2)∵∠D=38°,∴∠ABD=∠D=38°,∵BD平分∠ABC,∴∠ABC=2∠ABD=76°,∴∠ABC=∠A=76°,∵CD∥AB,∴∠ACD=∠A=76°,∠ABC=∠DCE=76°,∴∠ACE=∠ACD+∠DCE=76°+76°=152°29.【解答】解;∠A+∠B+∠C=180°.理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠A(已作)∴AB∥CD(内错角相等,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)而∠ACB+∠ACD+∠DCE=180°∴∠ACB+∠A+∠B=180°(等量代换)故答案为:A,内错角相等,两直线平行,∠DCE,两直线平行,同位角相等,∠A,∠B,等量代换.30.【解答】解:(1)∵AB⊥BC,∴∠EAB+∠AEB=90°,∵AE⊥ED,∴∠CED+∠AEB=90°,∴∠EAB=∠CED.(2)①∵AF平分∠BAE,∴∠EAG=12∠EAB,∵EH平分∠CED,∴∠HED=12∠CED,∵∠EAB=∠CED,∴∠HED=∠EAG,∴∠HED+∠AEG=90°,∴∠EAG+∠AEG=90°,∴∠EGA=90°,∴EG⊥AF.①作FM∥CD.∵AB⊥BC,CD⊥BC,∴AB∥CD,∴FM∥AB,∴∠DFM=∠CDF=12∠CDE,∠AFM=∠F AB=12∠EAB,∵∠CDE+∠CED=90°,∴∠CDE+∠EAB=90°,∴∠DF A=∠DFM+∠AFM=12∠CDE+12∠EAB=12(∠CDE+∠EAB)=45°.。
苏科版数学七年级下期末复习提优专题三角形word版含解析
本文由一线教师精心整理/word可编辑初一期末复习专题-三角形模块一:三角形三边关系1.如果一个三角形的两边长分别是1cm,2cm,那么这个三角形第三边长可能是()A.1cm B.2.5cm C.3cm D.4cm【解答】解:设第三边长为x,则由三角形三边关系定理得2﹣1<x<2+1,即 1<x<3.故选:B.2.如果三角形的两边长分别为5 和 7,第三边长为偶数,那么这个三角形的周长可以是A.10 B.11 C.16 D.26【解答】解:设第三边为acm,根据三角形的三边关系知,2<a<12.由于第三边的长为偶数,则 a 可以为 4cm 或 6cm 或 8cm 或 10cm.∴三角形的周长是5+7+4=16cm或5+7+6=18cm或5+7+8=20cm或5+7+10=22cm.故选:C.3.一个等腰三角形的边长分别是4cm 和 7cm,则它的周长是 15cm 或 18cm .【解答】解:①当腰是4cm,底边是 7cm 时,能构成三角形,则其周长=4+4+7=15cm;②当底边是 4cm,腰长是 7cm 时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm 或 18cm.4.一个三角形的三边长分别是 xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,则 x 的取值范围是()A.x≤133B.1< x≤133C.D.1< x≤73【解答】解:∵三角形的三边长分别是xcm、(x+1)cm、(x+2)cm,它的周长不超过10cm,∴x+2<x+x+1,x+x+1+x+2≤10,解得:x>1,,所以 x 的取值范围是 1<x≤73,故选:D.5.一个三角形的三边长分别为 xcm、(x+2)cm、(x+4)cm,它的周长不超过39cm,则 x 的取值范围是 2<x≤11 .【解答】解:∵一个三角形的3 边长分别是 xcm,(x+2)cm,(x+4)cm,它的周长不超过 39cm,解得 2<x≤11.故答案为:2<x≤11.6.已知一个三角形中两条边的长分别是a、b,且a>b,那么这个三角形的周长L 的取值范围是()A.3b<L<3a B.2a<L<2(a+b)C.a+2b<L<2a+b D.3a﹣b<L<3a+b 【解答】解:设第三边长x.根据三角形的三边关系,得a﹣b<x<a+b.∴这个三角形的周长m 的取值范围是a﹣b+a+b<L<a+b+a+b,即2a<L<2a+2b.故选:B.7.现有长为 57cm 的铁丝,要截成n(n>2)小段,每小段的长度为不小于1cm 的整数,如果其中任意 3 小段都不能拼成三角形,则n 的最大值为 8 .【解答】解:因为 n 段之和为定值 57cm,故欲 n 尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1cm,且任意 3 段都不能拼成三角形,因此这些小段的长度只可能分别是 1,1,2,3,5,8,13,21,34,55,但 1+1+2+3+5+8+13+21=54<57,1+1+2+3+5+8+13+21+34=88>57,所以 n 的最大值为 8.故答案为 8.模块二:三角形中求角度8.如图,△A BC 的角平分线AD 交 BD 于点D,∠1=∠B,∠C=66°,则∠BAC 的度数是 76° .【解答】解:∵△ABC 的角平分线 AD 交 BD 于点 D,∴∠C AD=∠1=1∠BAC,2∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC 中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°9.将一副直角三角板如图放置,使含 30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 75 度.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.10.在锐角△ABC 中,三条高交于点H,若∠BHC=110°,则∠BAC= 70 °.【解答】解:如图所示,∵CF⊥AB,B E⊥AC,∴∠AFC=∠AEB=90°,∵∠E HF=∠BHC=110°,∴∠A=360°﹣∠AFC﹣∠AEB﹣∠EHF=360°﹣90°﹣90°﹣110°=70°.故答案为:70.11.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∥CD,则∠1+∠2= 75° .【解答】解:连接 AC,∵A B∥CD,∴∠BAC+∠ACD=180°.∵∠BAG=30°,∠EC D=60°,∴∠E AC+∠ACE=180°﹣30°﹣60°=90°.∵∠CE D=60°,∴∠GEF=180°﹣90°﹣60°=30°.同理∠E GF=180°﹣∠1﹣90°=90°﹣∠1,∠GFE=180°﹣45°﹣∠2=135°﹣∠2,∵∠GEF+∠EGF+∠GFE=180°,即30°+90°﹣∠1+135°﹣∠2=180°,解得∠1+∠2=75°.故答案为:75°.12.如图,方格中的点A,B 称为格点(格线的交点),以AB 为一边画△A BC,其中是直角三角形的格点 C 的个数为()A.3 B.4 C.5 D.6【解答】解:如图所示:以AB 为一边画△A BC,其中是直角三角形的格点C 共有 4 个,故选:B.13.我们都知道“三角形的一个外角等于与它不相邻的两个内角的和”,据此,请你叙述四边形的一个外角与它不相邻的三个内角的数量关系与它不相邻的三个内角的和减去180° .【解答】解:四边形的一个外角与相邻的内角互补,而四个内角的和是360 度,则四边形的一个外角等于:与它不相邻的三个内角的和减去180°.故答案是:与它不相邻的三个内角的和减去180°.模块三:三角形模型14.已知△A BC 中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+12α ;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于 O 1、O 2,则∠BO 2C= 60°+23α ;请你猜想,当∠B 、∠C 同时 n 等分时,(n ﹣1)条等分角线分别对应交于 O 1、 O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C= (用含 n 和α的代数式表 示).【解答】解:在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O 2B 和 O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC+∠O 2CB=23(∠ABC+∠ACB )=23(180°﹣α)=120°﹣23α; ∴∠BO 2C=180°﹣(∠O 2BC+∠O 2CB )=180°﹣(120°﹣23α)=60°+23α;在△ABC 中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O n ﹣1B 和 O n ﹣1C 分别是∠B 、∠C 的 n 等分线,∴ ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB= 1n n -( ∠ ABC+ ∠ ACB ) = 1n n-( 180 ° ﹣ α ) = 0180(1)n n -﹣(1)n nα-. ∴ ∠ BO n ﹣ 1C=180 ° ﹣ ( ∠ O n ﹣ 1BC+ ∠ O n ﹣ 1CB ) =180 ° ﹣ (0180(1)n n -﹣(1)n nα- )故答案为:60°+23 α;(1)n nα-+0180n 15.如图,在△ABC 中,∠A =m°,∠ABC 和∠ACD 的平分线交于点 A 1,得∠A 1;∠A 1BC 和 ∠A 1CD 的平分线交于点 A 2,得∠A 2;…∠A 2021BC 和∠A 2021CD 的平分线交于点 A 2021,则∠ A 2021= 20132m度.【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC=12∠ABC ,∠A 1CA=12∠ACD , ∵∠A 1CD=∠A 1+∠A 1BC , 即12∠ACD=∠A 1+12∠ABC , ∴∠A 1=12(∠ACD ﹣∠ABC ), ∵∠A+∠ABC=∠ACD ,∴∠A=∠ACD ﹣∠ABC ,∴∠A 1=12∠A , ∴∠A 1=12m °, ∵∠A 1=12∠A ,∠A 2=12∠A 1=212∠A, 以此类推∠A 2021=201312∠A=20132m °. 故答案为:20132m.16.如图,在△ABC 中,∠A=40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC= 110° .【解答】解:∵D点是∠ABC 和∠ACB 角平分线的交点,∴∠C BD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.模块四:多边形17.在一个 n(n>3)边形的 n 个外角中,钝角最多有()A.2 个B.3 个C.4 个D.5 个【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.18.若 n 边形的内角和是它外角和的2 倍,则 n= 6 .【解答】解:设所求多边形边数为n,则(n﹣2)•180°=360°×2,解得 n=6.19.如图是由射线 AB、BC、CD、DE、EA 组成的图形,∠1+∠2+∠3+∠4+∠5=360° .【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.20.一个多边形的内角和等于1080°,这个多边形是 8 边形.【解答】解:设所求正n 边形边数为 n,则1080°=(n﹣2)•180°,解得n=8.故答案为:8.模块五:面积问题21.如图,△A BC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12,则图中阴影部分的面积是 4 .【解答】方法 1解:∵△ABC 的三条中线 AD、BE,CF 交于点 G,∴S△CGE=S△AGE=13S△A CF,S△BGF=S△BGD=13S△BCF,∵S△ACF=S△BCF=12S△ABC =12×12=6,∴S△CGE=13S△ACF=13×6=2,S△BGF=13S△BCF=13×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为 4.方法 2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG 的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得: S1=S2 , S3=S4 , S5=S6 , S1+S2+S3=S4+S5+S6 ①,S2+S3+S4=S1+S5+S6②由①﹣②可得 S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.22.如图,A、B、C 分别是线段 A1B,B1C,C1A 的中点,若△A BC 的面积是 1,那么△A1B1C1的面积 7 .【解答】解:如图,连接AB1,BC1,CA1,∵A、B 分别是线段 A1B,B1C 的中点,∴S△ABB1=S△ABC=1,S△A1AB1=S△ABB1=1,∴S△A1BB1=S△A1AB1+S△ABB1=1+1=2,同理:S△B1CC1=2,S△A1AC1=2,∴△A1B1C1 的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=2+2+2+1=7.故答案为:7.23.如图,在△ABC 中,C1,C2 是 AB 边上的三等分点,A1,A2,A3 是 BC 边上的四等分点,AA1 与 CC1 交于点 B1,CC2 与 C1A2 交于点 B2,记△AC1B1,△C1C2B2,△C2BA3 的面积为 S1,S2,S3.若 S1+S3=9,S2= 4 .【解答】解:根据图形和已知条件发现:S1=12S△ACC1,S2=13S△CC1C2,S3=14S△CC2B,S△ACC1=S△CC1C2=S△CC2B,∴S1=32S2,S3=34S2,若 S1+S3=9,S2=4.24.(1)如图①,AD 是△ABC 的中线,△A BD 与△A CD 的面积有怎样的数量关系?为什么?(2)若三角形的面积记为S,例如:△ABC 的面积记为 S△ABC,如图②,已知S△ABC=1,△ABC 的中线 AD 、CE 相交于点 O ,求四边形 BDOE 的面积. 小华利用(1)的结论,解决了上述问题,解法如下:连接 BO ,设 S △BEO =x ,S △BDO =y , 由(1)结论可得:1122BCE ABD ABC S S S ∆∆∆===, S △BCO =2S △BDO =2y ,S △BAO =2S △BEO =2x .则有BEO BCO BCE BAO BDO BADS S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即122122x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. 所以13x y +=. 即 四边形 BDOE 的面积为13请仿照上面的方法,解决下列问题:①如图③,已知 S △ABC =1,D 、E 是 BC 边上的三等分点,F 、G 是 AB 边上的三等分点,AD 、 CF 交于点 O ,求四边形 BDOF 的面积.②如图④,已知 S △ABC =1,D 、E 、F 是 BC 边上的四等分点,G 、H 、I 是 AB 边上的四等分 点,AD 、CG 交于点 O ,则四边形 BDOG 的面积为110. 【解答】解:(1)S △ABD =S △ACD .∵AD 是△A BC 的中线∴BD=CD ,又∵△ABD 与△A CD 高相等,∴S △ABD =S △ACD .(2)①如图 3,连接 BO ,设 S △BFO =x ,S △BDO =y ,S △BCF =S △ABD =13S △ABC =13S △BCO =3S △BDO =3y ,S △BAO =3S △BFO =3x .则有BFO BCO BCF BDO BAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩即133133x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩. , 所以 x+y=16,即四边形 BDOF 的面积为16; ②如图,连接 BO ,设 S △BDO =x ,S △BGO =y ,,S △BCG =S △ABD =14S △ABC =14, S △BCO =4S △BDO =4x ,S △BAO =4S △BGO =4y .则有BGO BCO BCG BDOBAO BAD S S S S S S ∆∆∆∆∆∆+=⎧⎨+=⎩, 即144144x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 所以 x+y=110,即四边形 BDOG 的面积为110, 故答案为:110. 模块六:综合题25.证明:三角形三个内角的和等于180°. 已知: △A BC .求证: ∠BAC+∠B+∠C =180° .【解答】解:已知:△ABC , 求证:∠BAC+∠B+∠C =180°, 证明:过点 A 作 EF ∥BC ,∵E F ∥B C ,∴∠1=∠B ,∠2=∠C ,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°. 即知三角形内角和等于 180°. 故答案为:△ABC ;∠BAC+∠B+∠C =180°.26.如图①,在 Rt△ABC 中,∠ACB=90°,D 是 AB 上一点,且∠ACD=∠B.(1)求证:CD⊥AB;(2)如图②,若∠BAC 的平分线分别交 BC,CD 于点 E,F,求证:∠AEC=∠C FE.【解答】(1)证明:∵∠ACB=∠ACD+∠BCD=90°,∠B=∠ACD,∴∠B+∠BCD=90°,又∵∠CDB+∠B+∠BCD=180°,∴∠C DB=90°,∴CD⊥AB;(2)在△A CE 中,∠AEC+∠C AE=90°,在△AFD 中,∠FAD+∠AFD=90°,∵AE 平分∠BAC,∴∠C AE=∠FAD,∴∠AEC=∠AFD,又∵∠CFE=∠AFD,∴∠AEC=∠C FE.27.在△ABC 中,点 D、E 分别在边 AC、BC 上(不与点 A、B、C 重合),点 P 是直线 AB 上的任意一点(不与点A、B 重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点 P 在线段 AB 上运动,且 n=90°时①若PD∥BC,PE∥AC,则m= 90° ;②若 m=50°,求 x+y 的值.(2)当点 P 在直线 AB 上运动时,直接写出x、y、m、n 之间的数量关系.【解答】解:(1)①如图1,∵PD∥B C,PE∥AC,∴四边形 DPEC 为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠C DP=180°﹣x,∠CEP=180°﹣y,∵∠C+∠C DP+∠DPE+∠CE P=360°,∠C=90°,∠DPE=50°,∴90°+180°﹣x+50°+180°﹣y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为 360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.。
人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质
专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。
第15章轴对称与等腰三角形期末复习PPT课件(沪科版)(1)
(1)请在图中画出轴x、y轴, 并标出原点O.
(2)画出△ABC关于直线 m 对称的△A1B1C1.
(3)若点P(a,b)在△ABC内,
C A
B
m y C1
A1
B1
O
x
其关于直线m的对称点为P1,
则点P1的坐标是 (-a-4,b.)
A.
B.
C. D.
2.下列图形中,不是轴对称图形的是 ( C ) .
A.
B.
C.
D.
3. 下列图形中是轴对称图形的是( D ).
①
②
③
④
A.①② B.③④ C.②③ D.①④
4.下列“制止行人通行,注意危险,制止非机动车通行,
限速60”四个交通标志图中,为轴对称图形的是( B ).
A.
B.
C.
D.
(2)画出△ABC关于 y轴对称的△A2B2C2 ,并写出
△A2B2C2三个顶点的坐标.
y
解:(2)
A2
A
A2(-2,4),
4
A1
B2(-1,1) C2(-3,0)
C2-3
B2 B O- B12
3 Cx C1
20.如图,在正方形网格中,△ABC是格点三角形,
点B的坐标为(-5,1),点C的坐标为(-4,5).
4.如果把两个成轴对称的图形看作一个整体,那么 它就是一个轴对称图形.
4.已知点关于x 轴或 y 轴的对称点的规律
关于x 轴对称的点的横坐标相等,纵坐标互为相反数. 关于y 轴对称的点的纵坐标相等,横坐标互为相反数.
点(x,y)关于x 轴对称的点的坐标为(_x__,_-__y_); 点(x,y)关于y 轴对称的点的坐标为( -___x ,_y__).
专题01-三角形的证明-2017-2018学年下学期期末复习备考八年级数学之热点难点突破练(北师大版)(原卷版)
三角形的证明【知识梳理】一、等腰三角形1.等腰三角形的定义:____________的三角形是等腰三角形.2.等腰三角形的性质(1)等腰三角形两底角____________;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合,简称:____________;(3)等腰三角形是轴对称图形,有条对称轴.3.等腰三角形的判定方法(1)定义判定:一个三角形中,如果有两条边____________,那么这个三角形是等腰三角形.(2)判定定理:等角对等边,即一个三角形中,如果有两个角相等,那么这两个角所对的边____________.4.等边三角形的性质等边三角形的各角都____________,并且每—个角都等于;等边三角形是轴对称图形,有条对称轴.5.等边三角形的判定(1)三边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于的等腰三角形是等边三角形.二、直角三角形1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角________;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的____________ ;【例题精讲】考点一、等腰三角形的性质例1若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为()A.2cm B.4cm C.6cm D.8cm考点二、等腰三角形的有关角的计算例2如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°考点三、等腰三角形中的分类讨论问题例3如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7考点四、等边三角形的性质例4如图,已知△ABC为等边三角形,高AH=5cm,P为AH上一动点,D为AB的中点,则PD+PB的最小值为_________cm.考点五、角平分线的性质与判定例5如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.(提示:过P 作PE⊥直线BA)考点六、线段的垂直平分线例6如图,在锐角中,,.尺规作图:作BC边的垂直平分线分别交AC,BC于点D、保留作图痕迹,不要求写作法;在的条件下,连结BD,求的周长.【达标测试】一、单选题(本题共10小题,每题3分,满分30分)1.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( )A. 1∶1∶2B. 1∶3∶4C. 9∶25∶36D. 25∶144∶1692.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E.则∠EDC的大小是()A. 20°B. 30°C. 40°D. 50°3.如图,△ABC的三边长分别是6,9,12,其三条角平分线将其分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A. 1:1:1 B. 1:2:3 C. 2:3:4 D. 3:4:54.等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为()A. 40° 40°B. 80° 20°C. 50° 50°D. 50° 50°或80° 20°5.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A. 60° B. 70° C. 80° D. 90°6.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D 为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A. 6B. 8C. 9D. 107.如果一个三角形一边的平方为2(m2+1),其余两边分别为m-1,m + l,那么这个三角形是();A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形8.如图,是三个等边三角形(注:等边三角形的三个内角都相等)随意摆放的图形,则∠1+2∠+∠3等于()A. 90° B. 120° C. 150° D. 180°9.一个三角形的三边长为15,20,25,则此三角形最大边上的高为()A. 10B. 12C. 24D. 4810.在等边三角形ABC中,D ,E 分别是BC,AC 的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在().A. A点处B. D点处C. AD的中点处D. △ABC三条高线的交点处二、填空题(本题共10小题,每题3分,满分30分)11.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为______.12.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是________.13.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=6,沿DE折叠,使得点A与点B重合,则折痕DE的长为_________.14.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,△ADF的周长为7,则AC的长为__________.15.如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线交AB于点E,交BC于点D,若∠B=35°,则∠CAD=________°.16.如图所示,BD⊥AC于点D ,DE∥AB ,EF⊥AC于点F ,若BD平分∠ABC ,则与∠CEF相等的角(不包括∠CEF)的个数是________.17.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=______________时,△AOP为等腰三角形.18.18.如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连结BD.若AD=12cm,则BC的长为__________ .19.如图,△ABC中,∠ABC=120°,BD平分∠ABC,点P是BD上一点,PE⊥AB于E,线段BP的垂直平分线FH 交B C于F,垂足为H.若BF=2,则PE的长为 .20.如图 , 等边△A1C1C2的周长为 1, 作C1D1⊥A1C2于D1, 在C1C2 的延长线上取点C3, 使D1C3=D1C1, 连接D1C3, 以C2C3为边作等边△A2C2C3; 作C2D2⊥A2C3于D2, 在C2C3的延长线上取点C4, 使D2C4=D2C2, 连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧 , 如此下去 , 则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n C n C n+1的周长和为_______.(n≥2,且n为整数).(面积之和?)三、解答题(本题共7小题,满分60分)21.如图,△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G,BC=8.求△AEG周长.22.两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,点B,C,E在同一条直线上,连接CD.求证:CD⊥BE.23.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.如图,在△ABC中,AD是∠BAC的平分线,且∠B=∠ADB,过点C作CM垂直于AD的延长线,垂足为M.(1)若∠DCM=α,试用α表示∠BAD;(2)求证:AB+AC=2AM.25.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.26.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是__________,△AEF的周长是__________;(2)如图2,若将(1)中“△ABC中,AB=AC=10”该为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有__________个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长;(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.27.在△ABC中,AB=AC,AB的垂直平分线交AC于点N,交BC的延长线于点M,∠A=40°.(1)求∠NMB的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?。
七年级数学期末复习《三角形复习课》课案(教师用)
课案教师用三角形(复习课)【理论支持】巴班斯基“教学过程最优化”理论:教学过程最优化不是一种特殊的教学方法或教学手段,而是科学地指导教学、合理地组织教学过程的方法论原则;是在全面考虑教学规律、教学原则、教学任务、现代教学的形式和方法、该教学系统的特征以及内外部条件的基础上,教师对教学过程作出的一种目的性非常明确的安排,是教师有意识地、有科学根据地选择一种最适合于某一具体条件的课堂教学的模式和整个教学过程的模式,组织对教学过程的控制,以保证教学过程在规定的时间内发挥从一定标准看来是最优的作用,获得可能的最大效果。
本章主要研究三角形的边、高、中线、角平分线,三角形的稳定性,三角形的内角、外角,多边形的有关概念及其内角和。
教科书在学生已有的对三角形认识的基础上,首先整理了与三角形有关的线段,给出它们的符号表示;按照边的关系对三角形进行分类;通过探究三角形三边的大小关系,得出了两边之和大于第三边的结论;并从实际问题出发研究三角形的稳定性和四边形的不稳定性;对于三角形的内角,学生已经知道“三角形的内角和等于180”的结论,本章主要是对这个结论进行简单推理。
教科书通过探索把一个三角形的三个内角拼成一个平角的不同方法,找出说明三角形的内角和为180的思路,并对这个结论进行了简单推理,通过对三角形内角和等于180的简单论证,使学生进一步感受推理的作用;对于三角形的外角,通过探究得出了“三角形的一个外角等于与它不相邻的两个内角的和”等结论。
三角形是最常见的几何图形,也是最简单的一种多边形,在几何研究中,常常将多边形分割成三角形,利用三角形的性质来研究多边形的问题,本章就采用这种将多边形分割成三角形的方法来研究多边形的内角和,并探究得出了多边形的外角和等于360的结论。
本章在最后一节安排了一个课题学习“镶嵌”,使学生综合利用所学有关多边形的知识解决实际问题。
【教学目标】1.通过小结本章的知识结构,培养学生分析、归纳、总结的能力。
2021-2022学年浙教版八年级数学上册《第1章三角形的初步认识》期末综合复习训练1(附答案)
2021-2022学年浙教版八年级数学上册《第1章三角形的初步认识》期末综合复习训练1(附答案)1.下列各图形中,具有稳定性的是()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A.1,2,1B.2,3,6C.6,8,11D.1.5,2.5,4 3.在△ABC中,若∠A+∠B﹣∠C=0,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形4.一副三角板如图方式摆放,BM平分∠ABD,DM平分∠BDC,则∠BMD的度数为()A.102°B.107.5°C.112.5°D.115°5.如图,△ABC中,点F在边AB上,点D为BC的中点,连接AD、CF相交于点E,若S△AEC=6,S△DEC=2,则S四边形BDEF=()A.B.6C.D.6.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF7.如图,△ABD≌△EBC,AB=3cm,AC=8cm,则DE的长为()A.5cm B.3cm C.2cm D.1cm8.如图,已知∠ABC=∠BAD,以下条件不能证明△ABC≌△BAD的是()A.AC=BD B.∠C=∠D C.∠CAB=∠DBA D.BC=AD9.如图△ABC中,AB=21,AC=20,AD为中线,则△ABD与△ACD的周长之差=.10.已知a、b、c为三角形三边的长,化简:|a﹣b﹣c|+|b﹣c﹣a|=.11.如图,将一副三角板如图摆放,则图中∠1的度数是度.12.如图,在由6个相同的小正方形拼成的网格中,∠1+∠2=°.13.如图,△ABC≌△ADE,∠DAC=80°,∠BAE=120°,BC,DE相交于点F,则∠DFB的度数是.14.如图,在△ABC与△BAD中,要证明△ABC≌△BAD,(1)若∠ABD=∠CAB,若以“SAS”为依据,还需添加的条件是;(2)若∠ABD=∠CAB,若以“ASA”为依据,还需添加的条件是;(3)若∠ABD=∠CAB,若以“AAS”为依据,还需添加的条件是;(4)若∠ADB=∠BCA=90°,若以“HL”为依据,还需添加的条件是(填一个即可).15.如图,点E、F都在线段AB上,分别过点A、B作AB的垂线AD、BC,连接DE、DF、CE、CF,DF交CE于点G,已知AD=BE=7.5,AE=BF=CB=2.5.如果△DEG的面积为S1,△CFG的面积为S2,则S1﹣S2=.16.如图,在△ABC中,∠A=θ,∠ABC和∠ACD的平分线交于点A1,得∠A1,∠A1BC 和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=.(用θ表示)17.如图,在△ABC中,AD,AE分别是边BC上的中线和高.(1)若AE=5cm,S△ABC=30cm2.求DC的长.(2)若∠B=40°,∠C=50°,求∠DAE的大小.18.已知在△ABC中,∠B=2∠A,∠C﹣∠A=20°,求∠A的度数.19.如图,∠B=30°,∠C=50°,AD平分∠BAC,求∠DAC与∠ADB的度数.20.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.21.如图,已知△ABF≌△CDE.(1)若∠B=30°,∠DCF=40°,求∠EFC的度数;(2)求证:AE=CF.22.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DF A的度数.参考答案1.解:只有三角形具有稳定性.观察选项,只有选项A符合题意.故选:A.2.解:A、1+1=2,不能组成三角形,故此选项不符合题意;B、2+3<6,不能组成三角形,故此选项不符合题意;C、6+8>11,能组成三角形,故此选项符合题意;D、1.5+2.5=4,不能组成三角形,故此选项不符合题意;故选:C.3.解:∴∠A+∠B﹣∠C=0,∴∠C=∠A+∠B,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:A.4.解:∵BM平分∠ABD,DM平分∠BDC,∴∠MBD=,∠BDM=,∴∠BMD=180°﹣∠MBD﹣∠BDM=180°﹣30°﹣37.5°=112.5°,故选:C.5.解:连接BE,设S四边形BDEF=x,∵S△AEC=6,S△DEC=2,∴S△ACD=6+2=8,∵点D为BC的中点,∴S△ABD=S△ACD=8,S△BDE=S△DEC=2,∴S△AEF=8﹣x,∴S△ACF=8﹣x+6=14﹣x,S△BCF=x+2,S△BEF=x﹣2,∵==,∴=,整理得10x=44,解得x=,∴S四边形BDEF=,故选:D.6.解:△ABC的BC边上的高是AF,故选:B.7.解:∵AB=3cm,AC=8cm,∴BC=5cm,∵△ABD≌△EBC,∴BE=AB=3cm,CB=DB=5cm,∴DE=5﹣3=2(cm),故选:C.8.解:A、当添加AC=BD时,且∠ABC=∠BAD,AB=BA,由“SSA”不能证得△ABC ≌△BAD,故本选项符合题意;B、当添加∠C=∠D时,且∠ABC=∠BAD,AB=BA,由“AAS”能证得△ABC≌△BAD,故本选项不符合题意;C、当添加∠CAB=∠DBA时,且∠ABC=∠BAD,AB=BA,由“ASA”能证得△ABC≌△BAD,故本选项不符合题意;D、当添加BC=AD时,且∠ABC=∠BAD,AB=BA,由“SAS”能证得△ABC≌△BAD,故本选项不符合题意;故选:A.9.解:∵AD为△ABC的中线,∴BD=CD,∴△ABD的周长﹣△ACD的周长=(AB+BD+AD)﹣(AC+CD+AD)=AB﹣AC=1,故答案为:1.10.解:∵a、b、c为三角形三边的长,∴a﹣b﹣c<0,b﹣c﹣a<0,∴原式=b+c﹣a+a+c﹣b=2c.11.解:由三角形的外角性质控可知,∠2=30°+45°=75°,∴∠1=180°﹣∠2=105°,故答案为:105.12.解:如图所示:由图可知△ACE与△ABD与△ACF全等,∴AB=AC,∠1=∠CAE=∠ACF,∵∠CAE+∠DAC=90°,∴∠1+∠DAC=∠BAC=90°,∴△ABC是等腰直角三角形,∴∠2+∠ACF=45°,∴∠1+∠2=45°,故答案为:45.13.解:∵△ABC≌△ADE,∴∠B=∠D,∠BAC=∠DAE,∴∠BAD=∠CAE=×(120°﹣80°)=20°,∵∠B=∠D,∠BGA=∠DGF,∴∠DFB=∠BAD=20°,故答案为:20°.14.解:(1)若以“SAS”为依据,则需添加一个条件是AC=BD;(2)若以“ASA”为依据,则需添加一个条件是∠ABC=∠BAD;(3)若以“AAS”为依据,则需添加一个条件是∠C=∠D;(4)∠ADB=∠BCA=90°,若以“HL”为依据,还需添加的条件是AC=BD或BC=AD.故答案为:(1)AC=BD;(2)∠ABC=∠BAD;(3)∠C=∠D;(4)AC=BD或BC=AD.15.解:∵AD=BE=7.5,AE=BF=CB=2.5.∴AF=BE,∴AD=AF=7.5,在△ADE和△BEC中,,∴△ADE≌△BEC(SAS),∴S△DAE=S△CBE,∵S1=S△DAF﹣S△DAE﹣S△EFG,S2=S△CBE﹣S△EFG﹣S△CBF,∴S1﹣S2=S△DAE+S△CBF=+=.故答案为.16.解:∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=∠ABC,∠A1CA=∠ACD,∵∠A1CD=∠A1+∠A1BC,∴∠ACD=∠A1+∠ABC,∴∠A1=(∠ACD﹣∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD﹣∠ABC,∴∠A1=∠A,∠A2=∠A1=∠A,…,以此类推,∠A n=∠A,∴∠A2020=∠A=.故答案为:.17.解:(1)∵AD,AE分别是边BC上的中线和高,AE=5cm,S△ABC=30cm2,∴S△ADC=15cm2,∴×AE×CD=15,∴×5×CD=15,解得:CD=6(cm);(2)∵∠B=40°,∠C=50°,∴∠BAC=90°,又∵AD为中线,∴AD=BC=BD,∴∠ADE=2∠B=80°,又∵AE⊥BC,∴∠DAE=10°.18.解:∵∠C﹣∠A=20°,∴∠C=20°+∠A,∵∠A+∠B+∠C=180°,∠B=2∠A,∴∠A+2∠A+20°+∠A=180°,∴∠A=40°.19.解:∵∠B=30°,∠C=50°,∴∠BAC=180°﹣30°﹣50°=100°,∵AD平分∠BAC,∴∠DAC=∠BAC=50°,∴∠ADB=∠DAC+∠C=100°.20.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.21.(1)解:∵△ABF≌△CDE,∴∠D=∠B=30°,∴∠EFC=∠D+∠DCF=70°;(2)证明:∵△ABF≌△CDE,∴∠AFB=∠CED,AF=CE,在△AFE和△CEF中,,∴△AFE≌△CEF(SAS),∴AE=CF.22.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DF A=∠DCA+∠D=50°+20°=70°.。
新人教版八年级上册数学[《三角形》全章复习与巩固—知识点整理及重点题型梳理](提高)
新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形. 要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和: 三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键.举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BA C(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵A E平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。
2020-2021学年苏教新版数学四年级下册期末学业考复习:三角形的特征(解析版)
2020年苏教新版四年级下册重难点题型训练第七章《三角形、平行四边形和梯形》第一课时:三角形的特征参考答案与试题解析一.选择题1.(2020模拟秋•扬州期末)李红有两根小棒,长度分别是4厘米和9厘米,他准备再用一根小棒和它们围一个三角形.第三根小棒的长可能是 厘米.()A .4 B .7 C .13 D .15【解答】解:(厘米)945-=(厘米)4913+=第三根小棒的范围是:5厘米第三边厘米,<13<选项中符合的只有7厘米.故选:.B 2.(2020模拟春•大田县期末)用三根长度为整厘米数的小棒围成一个三角形,如果其中两根小棒分别长、,那么第三根小棒最短是 .8cm 10cm ()cm A .2 B .3 C .9 D .17【解答】解:第三边108-<108<+所以:第三边,2<18<即第三边的取值在厘米(不包括2厘米和18厘米),2~18所以最短为:(厘米);213+=故选:.B 3.(2020模拟秋•桑植县期末)下面4组木条,根据木条的长度判断, 组不能围成三角形.()A . B . C . D .5cm 5cm 5cm 8cm 6cm 12cm 1cm 2cm 3cm 3m 3m 5m 【解答】解:、因为,两边之和大于第三条边,所以三边能围成三角形;A 555+>、因为,所以三边能围成三角形;B 6812+>、因为,所以三边不能围成三角形;C 123+=、因为,所以三边能围成三角形;D 335+>故选:.C 4.(2020模拟秋•新泰市校级期中)一个三角形的两条边分别是6厘米和7厘米,那么第三条边的长度可能是 ()A .1 厘米 B .0.5 厘米 C .3 厘米 D .13 厘米【解答】解:第三边,76-<76<+所以:第三边,即另一条边的长应在厘米之间(不包括1厘米和13厘米);1<13<1~13可能是2、3、4、5、6、7、8、9、10、11、12厘米;故选:.C 5.(2020模拟秋•上海期中)下列图形中,最具有稳定性、不易变形的特性的是 ()A .三角形 B .平行四边形 C .正方形 D .长方形【解答】解:三角形具有不易变形的特性,平行四边形具有易变性,正方形、长方形都可以拉成平行四边形,所以也具有易变性;故选:.A 6.(2020模拟春•电白区期中)下列图形中,具有稳定性的图形是 ()A .梯形 B .长方形 C .三角形【解答】解:三角形具有稳定性;故选:.C 7.(2020模拟秋•靖州县期末)下列几组长度能拼成三角形的是 ()A .、、 B .、、 C .、、4cm 5cm 9cm 3cm 6cm 10cm 4cm 6cm 5cm 【解答】解:、,所以不能围成三角形;A 459+=、,所以不能围成三角形;B 36910+=<、,所以能围成三角形;C 4596+=>故选:.C8.(2020模拟秋•新泰市期中)一个三角形的两条边分别是6厘米和8厘米,那么第三条边的长度可能是 ()A .1厘米 B .2厘米 C .3厘米 D .14厘米【解答】解:根据三角形的三边关系,得第三边应大于,而小于,862-=8614+=第三边,结合选项可知:可以是3厘米;2<14<故选:.C 二.填空题9.(2020模拟春•沛县月考)如果一个三角形的两条边分别为5厘米、9厘米,那么第三条边最长是 13厘米 ,最短是 厘米.(填整厘米数)【解答】解:第三边95-<95<+所以:第三边4<14<即第三边的取值在厘米(不包括4厘米和14厘米),4~14因为三条边都是整厘米数,所以第三边最长为:厘米),最短为:(厘米);14113-=415+=故答案为:13厘米,5.10.(2020模拟春•肇州县校级期末)两根小棒长分别是4厘米、8厘米,要围成一个三角形,第三根小棒应该比 4 厘米长,比 厘米短.【解答】解:8412cm +=844cm -=所以第三根小木棒的长度应该介于和之间.4cm 12cm 故答案为:4,12.11.(2020模拟春•郾城区期末)自行车利用了三角形的 稳定性 ,伸缩门是利用了平行四边形的 .【解答】解:自行车利用了三角形的稳定性,自动伸缩门是利用了平行四边形的易变性;故答案为:稳定性,易变性.12.(2020模拟春•武侯区期末)用三根长度分别是、和小棒围三角形, 不能 围10cm 5.7cm 3.2cm 成.(填“能”与“不能”)【解答】解:,所以不能围成三角形;5.7 3.210+<故答案为:不能.13.(2020模拟春•高密市期末)小红用一根长的铁丝围成了一个三边长都为整厘米数的三角形,它的14cm 边长可能是、 3 、 .6cm cm cm 【解答】解:,35614++=,符合构成三角形的条件,所以,它的三边长可能是,,.356+>6cm 3cm 5cm 故答案为:3,5.(答案不唯一)14.(2020模拟春•新华区期末)升降机可以上下活动是利用了平行四边形的 易变性 ; 篮球架中的三角形,是利用了三角形的 .【解答】解:升降机可以上下活动是利用了平行四边形的 易变性;篮球架中的三角形,是利用了三角形的 稳定性.故答案为:易变性,稳定性.三.判断题15.(2020模拟秋•龙州县期末)用3厘米、4厘米和5厘米长的三根小棒可以围成一个三角形. .(判断对错)√【解答】解:根据三角形的三边关系,知,所以能围成三角形,345+>所以上面的说法是正确的.故答案为:.√16.(2020模拟秋•永州期末)自行车的框架是三角形,它是运用三角形的稳定性设计的. (判断对√错).【解答】解:因为三角形具有稳定性,自行车的三角架是利用三角形不易变形(稳定性)的特性; 原题说法正确.故答案为:.√17.(2020模拟春•榆树市校级期末)用、、长的三根绳子不能围成三角形, (判断对4cm 7cm 10m ⨯错)【解答】解:因为:,所以能围成一个三角形;4710+>原题说法错误.故答案为:.⨯18.(2020模拟春•永年区期末)用三条分别长为4厘米、5厘米、6厘米的线段可以围成一个三角形. √(判断对错)【解答】解:,所以能够组成三角形,故原题说法正确;456+>故答案为:.√19.(2020模拟春•市南区校级期末)用三根长度分别是7厘米、5厘米、14厘米的小棒可以围成一个等腰三角形. (判断对错)⨯【解答】解:7厘米、5厘米、14厘米的小棒,各不相等,所以用三根长度分别是7厘米、5厘米、14厘米的小棒不可以围成一个等腰三角形,故原题说法错误;故答案为:.⨯20.(2020模拟春•邹城市期末)用三根分别长、和的小棒能拼成一个三角形. (判断12cm 4cm 8cm ⨯对错)【解答】解:因为4812+=所以这三根小棒不能组成三角形.原题说法错误.故答案为:.⨯四.计算题21.如图,一个三角形的三条边都是整厘米数,第一条边长是,第二条边长,第三条边最长是几4cm 6cm 厘米?最短又是几厘米呢?【解答】解:第三边,64-<46<+所以:第三边,2<10<即第三边的取值在厘米(不包括2厘米和10厘米),2~10因为三条边都是整厘米数,所以第三条边最长为:(厘米),最短为:(厘米);1019-=213+=答:第三条边最长是9厘米,最短是3厘米.22.将一条长10厘米的绳子剪成整厘米长的三段,拼成一个三角形,它的最长边最长是几厘米?【解答】根据三角形两边之和大于第三边,所以:1021÷-51=-(厘米)4=答:它的最长边最长是4厘米.五.应用题23.木匠王伯伯要用3根木条钉一个三角形框架.他的材料中有以下4根木条,请你帮王伯伯选一选.你能想出几种选法?分别写一写.【解答】解:、,、选择其中三根组成一个三角形的有:7cm 8cm 15cm 13cm ①、、7cm 8cm 13cm ②、、7cm 15cm 13cm ③、、8cm 15cm 13cm 答:一共有3种选法,分别是:①、、,②、、,③、、.7cm 8cm 13cm 7cm 15cm 13cm 8cm 15cm 13cm 24.用一根长18厘米的铁丝围成一个等腰三角形,且三条边的长都是整厘米数,有多少种围法?【解答】解:等腰三角形的周长腰底=2⨯+即:,,一共有2种方法.66618++=55818++=答:一共有2种不同围法.25.我想用木条做一个三角形,选了两根长和的木条,还要选一根整数分米长的木条.5dm 8dm 请你帮他想一想,要使第三根最短,应选多少分米最合适?【解答】解:第三边,85-<58<+第三边,所以第三根木条最短需要.3<13<4dm 答:要使第三根最短,应选4分米最合适.六.解答题26.(2020模拟春•沛县月考)一个等腰三角形两条边的长度分别是5厘米和11厘米,这样的三角形有几个?周长是多少厘米?【解答】解:根据分析,这样的三角形共有两个;以腰为11厘米,底为5厘米时,周长为:(厘米);1111527++=以腰为5厘米,底为11厘米时,周长为:(厘米).551121++=答:有两个这样的三角形,周长分别为27厘米和21厘米.27.(2020模拟春•明光市期末)一个三角形的两边长分别是6厘米和9厘米,第三条边的长度一定大于 3 厘米,同时小于 厘米.【解答】解:第三边,96-<96<+即第三边.3<15<故答案为:3;15.28.(2020模拟春•厦门期末)王老师给同学们准备了一些小棒,数量如图.选用其中的部分小棒搭成一个长方体.(1)长方体一共有 12 条棱,每组相对的棱有 条, 因此,不可能选用 的小棒.cm (2)这个长方体相交于一个顶点的三条棱的长度分别是 、 和 .cm cm cm (3)计算这个长方体的表面积.【解答】解:(1)长方体一共有 12条棱,每组相对的棱有 4条,因此,不可能选用的小棒.8cm (2)这个长方体相交于一个顶点的三条棱的长度分别是、和.5cm 4cm 4cm (3)(545444)2⨯+⨯+⨯⨯(202016)2=++⨯562=⨯(平方厘米)112=答:这个长方体的表面积是112平方厘米.故答案为:12,4,8;5,4,4.29.(2020模拟春•射阳县月考)一个三角形两边分别是6厘米和9厘米,第三条边的长度一定大于多少厘米?同时小于多少厘米?【解答】解:第三边,96-<96<+即3厘米第三边厘米.<15<答:第三条边的长度一定大于3厘米,同时小于15厘米.30.(2020模拟•云岩区)有五根木条,它们的长度分别是1厘米、2厘米、3厘米、4厘米、5厘米,从它们当中选出3根木条围成一个三角形,一共可以围成多少种不同的三角形?请列举出来.【解答】解:根据分析知,共有以下情况,①2厘米,3厘米,4厘米;②3厘米,4厘米,5厘米;③2厘米,4厘米,5厘米;答:一共可以拼成3个不同的三角形,分别为2厘米,3厘米,4厘米;3厘米,4厘米,5厘米;2厘米,4厘米,5厘米.31.(2020春•纳雍县月考)一根27厘米长的铁丝,可以围成边长是几厘米的等边三角形?【解答】解:(厘米);2739÷=答:这个三角形的边长是9厘米的等边三角形.。
2020年人教版八年级数学上册 分层练习作业本 《期末复习专题 三角形》(含答案)
专题1 三角形1.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( )A.AC是△ABC的高 B.DE是△BCD的高C.DE是△ABE的高 D.AD是△ACD的高2.现有两根木棒,它们的长分别是40 cm 和50 cm,若要钉成一个三角形木架,则下列四根木棒应选取( )A.10 cm的木棒 B.40 cm的木棒 C.90 cm的木棒 D.100 cm的木棒3.一个多边形的内角和等于1 080°,这个多边形是__ __边形.4.如图,Rt△ABC中,∠C=90°,AE,BD分别是∠BAC,∠ABC的角平分线,则∠DEA=__ _.5.如图,在△ABC中,∠A=45°,直线l与边AB,AC分别交于点M,N,则∠1+∠2的度数是__ __.6.如图,已知∠B=33°,∠BAC=83°,∠C=30°,求∠BDC的度数.7.如图,在△ABC 中,AD⊥BC,垂足为点D ,∠C=2∠1,∠2=∠1,求∠B 的度数.128.如图,∠AOB=90°,点C ,D 分别在射线OA ,OB 上,CE 是∠ACD 的平分线,CE 的反向延长线与∠CDO 的平分线交于点F.(1)如图17(1),当∠OCD=50°时,试求∠F 的度数.(2)如图17(2),当C ,D 在射线OA ,OB 上任意移动时(不与点O 重合),∠F 的大小是否变化?若变化,请说明理由;若不变化,求出∠F.9.已知:如图,△ABC中,M为BC的中点,DM⊥ME,MD交AB于D,ME交AC于E.求证:BD+CE>DE.参考答案【题型归类】1.A 2.D 3.D 4.略 5.C 6.∠B=50°7.∠EAD=50° 8.120° 9.61°10.(1)∠EAD=12° (2)∠G=x°1211.C 12.这个多边形的边数是7.【过关训练】1.C 2.B 3.八 4.45° 5.225°6.∠BDC=146° 7.∠B=75°8.(1)∠F=45° (2)不变化,∠F=45°.9.略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习《三角形》(1)
1一木工师傅有两根长分别为5cm 、8cm 的木条,他要找第三根木
条,将它们钉成一个三角形框架,现有3cm 、10cm 、20cm 四根木条,他可以选择长为 cm 的木条。
2.若一个等腰三角形的两边长分别是3 cm 和5 cm ,则它的周长是 ____ _ cm 。
3、在△ABC 中,若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。
(按角的分类)
4、如图,AD 是△ABC 的中线,△ABC 的面积为100cm 2 , 则△ABD 的面积是 cm 2 。
5、如图,在△ABC 中, BAC 是钝角,完成下列画图,并用适当的符号在图中表示:
(1)AC 边上的高;(2) BC 边上的高.(在上图中直接画)
6 如图,在△ABC 中,两条角平分线BD 和CE 相交于点O , 若∠BOC=116°,那么∠A 的度数是 。
7 生活中,我们经常会看到如图所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )
A 、稳定性
B 、全等性
C 、灵活性
D 、对称性
C B A
A 0
D E B C A
B C D
B C D 1
8.图中全等的三角形是 ( )
A 、Ⅰ和Ⅱ
B 、Ⅱ和Ⅳ
C 、Ⅱ和Ⅲ
D 、Ⅰ和Ⅲ
9.如图,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条件中选一个,错误的选法是( )
A 、∠ADB=∠ADC
B 、∠B=∠
C 2
C 、DB=DC
D 、AB=AC 10如图 已知AB ∥CD ,AD ∥BC ,图中共有全等三角形( )
A 、8对
B 、4对
C 、2对
D 、1对 11、如图,⊿ABC 中,∠ACB=900,把⊿ABC 沿AC 翻折180° 使点B 落在B ’的位置,则关于线段AC 的性质中,准确的说法是( )
A 、是边B
B ’上的中线 B 、是边BB ’上的高
C 、是∠BAB ’的角平分线
D 、以上三种性质都有
12.下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。
其中错误的说法有( )
A 、4个
B 、3个
C 、2个
D 、1个
13 .根据下列条件作三角形,不能唯一确定三角形的是( )
A 、已知三个角
B 、已知三条边
C 、已知两角和夹边
D 、已知两边和夹角
B B ’
C A
A
D
C
B
O
A
B
C
D E
图
4
14.如图,△ABC ≌△AED ,∠C=400
, ∠EAC=300,∠B=300,则∠D= , ∠EAD= ;
15、尺规作图:已知∠α,∠β,线段a,
求作:△ABC ,使∠A=∠α, AB=a ,∠B=∠β( 不写作法,保留痕
迹 )
16已知:如图AC 、BD 相交于点O,AC=BD,∠C=∠D=90° (1)找出图中的一对全等三角形说明理由 (2)OC=OD 吗?为什么?
17.如图:已知AB=AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 试说明:① AC =AD ; ②CF =DF 。
B A
C
D O a
α
β
18没有量角器,利用刻度尺或三角板也能画出一个角的平分线吗? 下面是小彬与小红的做法,他们的画法正确吗?请说明理由. ( 1 ) 小彬的做法:如图,角平分线刻度尺画法:
①利用刻度尺在∠AOB 的两边上,分别取OD =OC . ②连结CD ,利用刻度尺画出CD 的中点E .
③画射线OE .所以射线OE 为∠AOB 的角平分线.
(2) 小红的做法 :如图,角平分线三角板画法:
①利用三角板在∠AOB 的两边上,分别取OM =ON . ②分别过M 、N 画OM 、ON 的垂线,交点为P . ③画射线OE .所以射线OP 为∠AOB 的角平分线.
19.数学实践课上,老师只给各活动小组教学用直角三角板一个、皮尺一条(皮尺长度不够直接测河宽),测量如下图所示小河的宽度(A 为河岸边一棵柳树)。
(1)简要说明你的测量方法,(2)在下图中画出测量图形,(3)说明你作法的合理性。
E A
O
B
C D
P
A
O B
M N
小
河。