2013年重庆市高考数学试卷(理科)答案与解析
2013重庆高考试卷
2013年重庆高考理综物理试题:层次分明难度适中1.试题总的印象
2013年重庆高考物理试题不偏不倚、堂堂正正。题目情景比较新颖,试题内容与生产、生活实际以及学生学习联系紧密,关注科技热点,很好地体现了新课程理念,倡导学生的探究学习,融入研究性学习的过程和方法,注重“知识与技能”、“过程与方法”、“情感态度与价值观”多方面检测考生的科学素养。试题难易适中,对学生能力的考查,对各个层次学生的区分做得相当好,体现教育评价的科学性,可以说是一套比较出彩的高考题。
3.体现了新课程理念,注重过程与方法,倡导学生的探究学习
如第4、5、6、7、8题,试题选材有伽利略斜面实验的多角度分析、我国科学家在实验上观察到的反常霍尔效应的量子化、舰载机着陆时阻拦索的研究性学习课题、电热毯故障检测的研究性学习课题、测量磁感应强度的研究性学习课题、关于“子母球”的研究性学习课题等等,这些素材来源于教材、学生生活和生产实践,注重物理学与科学技术与社会生活的联系,注重对学生建模能力的培养,提倡科学探究,注重学习中的过程与方法,回归了物理学研究的本源、物理学主要的研究方法以及研究精神等。在考查学生对物理知识的掌握的同时,了解物理学的发生与发展过程,恰当地体现了新课标要求。
4.试题层次分明,体现选拔功能
今年高考物理试题科学严谨,符合课标和考纲的要求。试题起点较低,层次分明,难易适中,整卷阶梯明显,有主要考查1个考点的简单题目,也有考查了多个考点的复杂题目,较复杂的题目又搭建了台阶,让考生易于入手,对不同层次的考生都有较好的区分度。这些题目既考查了学生进一步学习物理所必备的基础知识,同时又能考查学生学习物理的基本素养,充分体现了试题的选拔功能,有利于高等学校选拔人才,也有利于学校新课程改革的顺利推进。
2007年重庆市高考数学试卷(理科)及解析
2007年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.62.(5分)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤﹣1 B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1 D.若x≥1或x≤﹣1,则x2≥13.(5分)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分4.(5分)若(x+)n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.1205.(5分)在△ABC中,AB=,A=45°,C=75°,则BC=()A.B.C.2 D.6.(5分)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为()A.B. C.D.7.(5分)若a是1+2b与1﹣2b的等比中项,则的最大值为()A.B.C.D.8.(5分)设正数a,b满足,则=()A.0 B.C.D.19.(5分)已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f (x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)10.(5分)如图,在四边形ABCD中,++=4,•=•=0,•+•=4,则(+)•的值为()A.2 B.C.4 D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)复数的虚部为.12.(4分)已知x,y满足,则函数z=x+3y的最大值是.13.(4分)若函数的定义域为R,则实数a的取值范围是.14.(4分)设{a n}为公比q>1的等比数列,若a2004和a2005是方程4x2﹣8x+3=0的两根,则a2006+a2007=.15.(4分)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有种.(以数字作答)16.(4分)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为.三、解答题(共6小题,满分76分)17.(13分)设f(x)=6cos2x﹣sin2x,(1)求f(x)的最大值及最小正周期;(2)若锐角α满足f(α)=3﹣2,求tanα的值.18.(13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列与期望.19.(13分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C﹣ABDA1与直三棱柱的体积之比为3:5.(1)求异面直线DE与B1C1的距离;(2)若BC=,求二面角A1﹣DC1﹣B1的平面角的正切值.20.(13分)已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.21.(12分)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.22.(12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.2007年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•重庆)若等差数列{a n}的前三项和S3=9且a1=1,则a2等于()A.3 B.4 C.5 D.6【分析】根据等差数列的前n项和公式,结合已知条件,先求出d,再代入通项公式即可求解.【解答】解:∵S3=9且a1=1,∴S3=3a1+3d=3+3d=9,解得d=2.∴a2=a1+d=3.故选A.2.(5分)(2007•重庆)命题“若x2<1,则﹣1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤﹣1 B.若﹣1<x<1,则x2<1C.若x>1或x<﹣1,则x2>1 D.若x≥1或x≤﹣1,则x2≥1【分析】根据逆否命题的定义,直接写出答案即可,要注意“且”形式的命题的否定.【解答】解:原命题的条件是““若x2<1”,结论为“﹣1<x<1”,则其逆否命题是:若x≥1或x≤﹣1,则x2≥1.故选D.3.(5分)(2007•重庆)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成()A.5部分B.6部分C.7部分D.8部分【分析】画出图形,用三线表示三个平面,结合图形进行分析.【解答】解:可用三线a,b,c表示三个平面,其截面如图,将空间分成7个部分,故选C.4.(5分)(2007•重庆)若(x+)n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.120【分析】根据二项式的展开式的二项式系数是64,写出二项式系数的表示式,得到次数n的值,写出通项式,当x的指数是0时,得到结果.【解答】解:∵C n°+C n1+…+C n n=2n=64,∴n=6.T r+1=C6r x6﹣r x﹣r=C6r x6﹣2r,令6﹣2r=0,∴r=3,常数项:T4=C63=20,故选B.5.(5分)(2007•重庆)在△ABC中,AB=,A=45°,C=75°,则BC=()A.B.C.2 D.【分析】结合已知条件,直接利用正弦定理作答.【解答】解:∵AB=,A=45°,C=75°,由正弦定理得:,∴.故选A.6.(5分)(2007•重庆)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为()A.B. C.D.【分析】由题意知本题是一个古典概型,满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出的三张门票的价格均不相同5×3×2=30种取法,试验发生的所有事件总的取法有C103,用对立事件概率得到结果.【解答】解:由题意知本题是一个古典概型,∵满足条件的事件包含的结果比较多,可以从它的对立事件来考虑,取出的三张门票的价格均不相同5×3×2=30种取法,试验发生的所有事件总的取法有(10×9×8)÷(3×2×1)=120种,三张门票的价格均不相同的概率是=,∴至少有2张价格相同的概率为P=1﹣=.故选C.7.(5分)(2007•重庆)若a是1+2b与1﹣2b的等比中项,则的最大值为()A.B.C.D.【分析】由a是1+2b与1﹣2b的等比中项得到4|ab|≤1,再由基本不等式法求得.【解答】解:a是1+2b与1﹣2b的等比中项,则a2=1﹣4b2⇒a2+4b2=1≥4|ab|.∴.∵a2+4b2=(|a|+2|b|)2﹣4|ab|=1.∴≤===∵∴,∴.故选B.8.(5分)(2007•重庆)设正数a,b满足,则=()A.0 B.C.D.1【分析】由题目中的已知式化简,得到a,b的关系,再代入化简求值.【解答】解:∵=4⇒4+2a﹣b=4⇒2a=b,∴.∴故选B.9.(5分)(2007•重庆)已知定义域为R的函数f(x)在(8,+∞)上为减函数,且函数y=f(x+8)函数为偶函数,则()A.f(6)>f(7)B.f(6)>f(9)C.f(7)>f(9)D.f(7)>f(10)【分析】根据y=f(x+8)为偶函数,则f(x+8)=f(﹣x+8),即y=f(x)关于直线x=8对称.又f(x)在(8,+∞)上为减函数,故在(﹣∞,8)上为增函数,故可得答案.【解答】解:∵y=f(x+8)为偶函数,∴f(x+8)=f(﹣x+8),即y=f(x)关于直线x=8对称.又∵f(x)在(8,+∞)上为减函数,∴f(x)在(﹣∞,8)上为增函数.由f(8+2)=f(8﹣2),即f(10)=f(6),又由6<7<8,则有f(6)<f(7),即f(7)>f(10).故选D.10.(5分)(2007•重庆)如图,在四边形ABCD中,++=4,•=•=0,•+•=4,则(+)•的值为()A.2 B.C.4 D.【分析】先根据++=4,•+•=4,求出+=2,,再由•=•=0,确定∥,再由向量的点乘运算可解决.【解答】解:∵++=4,•+•=4,∴+=2,,由已知•=•=0,知⊥⊥,∴∥,作如图辅助线∴=+=,即三角形AEC是等腰直角三角形,∠CAE=45°|,∴(+)•=||cos∠CAE=2×=4,故选C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2007•重庆)复数的虚部为.【分析】把复数整理变形,先变分母,再分子和分母同乘以分母的共轭复数,分子上要进行复数的乘法运算,最后写出代数形式,指出虚部【解答】解:.故答案为:.12.(4分)(2007•重庆)已知x,y满足,则函数z=x+3y的最大值是7.【分析】先画出可行域,再把目标函数变形为直线的斜截式,由截距的最值即可求得.【解答】解:画出可行域,如图所示解得C(1,2),函数z=x+3y可变形为,可见当直线过点C 时z取得最大值,所以z max=1+6=7.故答案为:7.13.(4分)(2007•重庆)若函数的定义域为R,则实数a 的取值范围是0≤a≤1.【分析】利用被开方数非负的特点列出关于a的不等式,转化成x2﹣2ax+a≥0在R上恒成立,然后建立关于a的不等式,求出所求的取值范围即可.【解答】解:函数的定义域为R,∴﹣1≥0在R上恒成立即x2﹣2ax+a≥0在R上恒成立该不等式等价于△=4a2﹣4a≤0,解出0≤a≤1.故实数a的取值范围为0≤a≤1故答案为:0≤a≤114.(4分)(2007•重庆)设{a n}为公比q>1的等比数列,若a2004和a2005是方程4x2﹣8x+3=0的两根,则a2006+a2007=18.【分析】通过解方程可以求出a2004和a2005的值,进而求出q,根据等比数列的通项公式,a2006+a2007=a2004q2+a2005q2=(a2004+a2005)q2,从而问题得解.【解答】解:∵a2004和a2005是方程4x2﹣8x+3=0的两根,∴或.∴q=3或,∵q>1,∴q=3;∴a2006+a2007=a2004q2+a2005q2=(a2004+a2005)×9=18.故答案为:18.15.(4分)(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有25种.(以数字作答)【分析】从7门课程中选修4门,其中甲、乙两门课程不能都选,可从反面解决,分别求出从7门课程中选修4门的种数和两门都选的方法种数,做差即可;也可按分类原理分为两类:一类甲、乙两门课程都不选,另一类只选一门.【解答】解:所有的选法数为C74,两门都选的方法为C22C52,故共有选法数为C74﹣C22C52=35﹣10=25.故答案为:2516.(4分)(2007•重庆)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为.【分析】先由点斜式写出直线方程,设出两个交点坐标,再由弦长公式计算,作出解答.【解答】解:∵,.∴.代入x2﹣y2=4得:.设P(x1,y1),Q(x2,y2).⇒x1+x2=.又|FP|=,|FQ|=,∴==,故答案为:.三、解答题(共6小题,满分76分)17.(13分)(2007•重庆)设f(x)=6cos2x﹣sin2x,(1)求f(x)的最大值及最小正周期;(2)若锐角α满足f(α)=3﹣2,求tanα的值.【分析】(I)利用三角函数的二倍角公式及公式化简为只含一个角一个函数名的三角函数,利用有界性及周期公式求出最大值最小正周期.(II)列出关于α的三角方程,求出α,求出正切值.【解答】解:(Ⅰ)===故f(x)的最大值为;最小正周期(Ⅱ)由得,故又由得,故,解得.从而.18.(13分)(2007•重庆)某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金、对在一年内发生此种事故的每辆汽车,单位获9000元的赔偿(假设每辆车最多只赔偿一次).设这三辆车在一年内发生此种事故的概率分别为,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列与期望.【分析】(1)设A k表示第k辆车在一年内发生此种事故,k=1,2,3、由题意知A1,A2,A3之间相互独立,正难则反,该单位一年内获赔的对立事件是A1,A2,A3都不发生,用对立事件的概率做出结果.(2)由题意知ξ的所有可能值为0,9000,18000,27000,看出这四个数字对应的事件,做出事件的概率,写出分布列,求出期望,概率在解时情况比较多,要认真.【解答】解:(1)设A k表示第k辆车在一年内发生此种事故,k=1,2,3,由题意知A1,A2,A3独立,且P(A1)=,P(A2)=,P(A3)=∵该单位一年内获赔的对立事件是A1,A2,A3都不发生,∴该单位一年内获赔的概率为.(Ⅱ)ξ的所有可能值为0,9000,18000,27000,===,===,P(ξ=27000)=P(A1A2A3)=P(A1)P(A2)P(A3)=,综上知,ξ的分布列为ζ090001800027000P设ξk表示第k辆车一年内的获赔金额,k=1,2,3,则ξ1有分布列ζ109000P∴同理得,综上有Eξ=Eξ1+Eξ2+Eξ3≈1000+900+818.18=2718.18(元)19.(13分)(2007•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AA1=2,AB=1,∠ABC=90°;点D、E分别在BB1,A1D上,且B1E⊥A1D,四棱锥C﹣ABDA1与直三棱柱的体积之比为3:5.(1)求异面直线DE与B1C1的距离;(2)若BC=,求二面角A1﹣DC1﹣B1的平面角的正切值.【分析】(1)因B1C1⊥A1B1,且B1C1⊥BB1,进而可推断B1C1⊥面A1ABB1,进而推断B1E是异面直线B1C1与DE的公垂线,设BD的长度为x,则四棱椎C﹣ABDA1的体积V1为,里用体积公式表示出V1,表示出四棱椎C﹣ABDA1的体积V1,同时直三棱柱ABC﹣A1B1C1的体积V2,根据V1:V2=3:5求得x,从而求得B1D,直角三角形A1B1D中利用勾股定理求得A1D进而利用三角形面积公式求得B1E.(2)过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1.由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角,先利用勾股定理求得C11D,进而求得BF,进而可求tan求得∠A1FB1.【解答】解:(Ⅰ)因B1C1⊥A1B1,且B1C1⊥BB1,故B1C1⊥面A1ABB1,从而B1C1⊥B1E,又B1E⊥DE,故B1E是异面直线B1C1与DE的公垂线设BD的长度为x,则四棱椎C﹣ABDA1的体积V1为而直三棱柱ABC﹣A1B1C1的体积V2为由已知条件V1:V2=3:5,故,解之得从而在直角三角形A1B1D中,,又因,故(Ⅱ)如图1,过B1作B1F⊥C1D,垂足为F,连接A1F,因A1B1⊥B1C1,A1B1⊥B1D,故A1B1⊥面B1DC1.由三垂线定理知C1D⊥A1F,故∠A1FB1为所求二面角的平面角在直角△C1B1D中,,又因,故,所以.20.(13分)(2007•重庆)已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.【分析】(1)因为x=1时函数取得极值得f(x)=﹣3﹣c求出b,然后令导函数=0求出a即可;(2)解出导函数为0时x的值讨论x的取值范围时导函数的正负决定f(x)的单调区间;(3)不等式f(x)≥﹣2c2恒成立即f(x)的极小值≥﹣2c2,求出c的解集即可.【解答】解:(1)由题意知f(1)=﹣3﹣c,因此b﹣c=﹣3﹣c,从而b=﹣3又对f(x)求导得=x3(4alnx+a+4b)由题意f'(1)=0,因此a+4b=0,解得a=12(2)由(I)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1当0<x<1时,f'(x)<0,此时f(x)为减函数;当x>1时,f'(x)>0,此时f(x)为增函数因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞)(3)由(II)知,f(x)在x=1处取得极小值f(1)=﹣3﹣c,此极小值也是最小值,要使f(x)≥﹣2c2(x>0)恒成立,只需﹣3﹣c≥﹣2c2即2c2﹣c﹣3≥0,从而(2c﹣3)(c+1)≥0,解得或c≤﹣1所以c的取值范围为(﹣∞,﹣1]∪21.(12分)(2007•重庆)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.【分析】(1)先根据题设求得a1,进而根据a n+1=S n+1﹣S n整理得(a n+1+a n)(a n+1﹣a n﹣3)=0求得a n+1﹣a n=3,判断出{a n}是公差为3,首项为2的等差数列,则数列的通项公式可得.(2)把(1)中的a n代入可求得b n,进而求得前n项的和T n,代入到3T n+1﹣log2(a n+3)中,令,进而判断出f(n+1)>f(n),从而推断出3T n+1﹣log2(a n+3)=log2f(n)>0,原式得证.【解答】解:(1)由,解得a1=1或a1=2,由假设a1=S1>1,因此a1=2,又由,+a n)(a n+1﹣a n﹣3)=0,得(a n+1即a n﹣a n﹣3=0或a n+1=﹣a n,因a n>0,故a n+1=﹣a n不成立,舍去+1﹣a n=3,从而{a n}是公差为3,首项为2的等差数列,因此a n+1故{a n}的通项为a n=3n﹣1(2)证明:由可解得;从而因此令,则因(3n+3)3﹣(3n+5)(3n+2)2=9n+7>0,故f(n+1)>f(n)特别地,从而3T n+1﹣log2(a n+3)=log2f(n)>0即3T n+1>log2(a n+3)22.(12分)(2007•重庆)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x=12.(1)求椭圆的方程;(2)在椭圆上任取三个不同点P1,P2,P3,使∠P1FP2=∠P2FP3=∠P3FP1,证明:++为定值,并求此定值.【分析】(Ⅰ)设椭圆方程为,由题意知a=6,,故所求椭圆方程为.(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),假设,且,,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3).由此入手能够推导出++为定值,并能求出此定值.【解答】解:(Ⅰ)设椭圆方程为因焦点为F(3,0),故半焦距c=3又右准线l的方程为,从而由已知,因此a=6,故所求椭圆方程为(Ⅱ)记椭圆的右顶点为A,并设∠AFP i=αi(i=1,2,3),不失一般性,假设,且,又设点P i在l上的射影为Q i,因椭圆的离心率,从而有|FP i|=|P i Q i|•e==(i=1,2,3)解得=(i=1,2,3)因此++=,而=,故++为定值.。
2013年重庆高考数学试题理科10题
磕. 若I — O P l < , 则 I l 的 取 值
由
上A B 2 得 一[ ( c o s 0 1 +c 0 s 2 ) c o s 0+
( s i n 0 1 +s i n 0 2 ) s i n 0 ] R十C O S ( 0 l 一0 2 ) =0 ①.
2 0 1 3 年 重庆 高考数学试题理科 1 O 题
重庆 市 第八 中学校 4 0 0 0 3 0 郑军委 陶兴模
题目 在平面 上, 上 磕, I — O B 1 I = l — O B 2 I
: 1, :A — BI +
A B 2 =( C O S 0 2一R e o s 0 , s i n 0 2一R s i n 0 ) .
代入 ② 得 ,
O — — B ・ O — — B , =O —} A・ ( O — — P +O — — A)一o — — a
=O — — — A — ■ ・ 0 — — — p③. 即O — — — B 0 ・ O — — — B — + ,=O — — — A・ — }O — — — P — - } .
将 ① 式平方得
—— — —— ——’ ————
+
+2 一 0 P. =
解法 3 不等式法
根 据条件 知 , B , P, B :
构成一个 矩形 A B 。 P B : ,以
口2 — P
+ OB. +2 DB ・D B,
即
+
=2 , 由 0≤I
.
( , ) , 则 点 P的坐标 为 ( 口 , 6 ) , 由J O — B I = I
1得
解i n 0 ) , P ( r c o s , r s i n ) , B t ( C O S 0 1 , s i n 0 1 ) , B 2 ( C O S 0 2 , s i n 0 2 ) . 由题 意 可 知 : 0
重庆市高考数学试卷(理科)答案与解析
2011年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=()A.B.C.D.【考点】复数代数形式的混合运算.【专题】计算题.【分析】利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数====故选C【点评】题考查复数代数形式的混合运算,考查计算能力,是基础题.2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.【解答】解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.【点评】本题考查充分条件、必要条件和充要条件的应用.3.(3分)(2011•重庆)已知,则a=()A.1 B.2 C.3 D.6【考点】极限及其运算.【专题】计算题.【分析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.【解答】解:原式==(分子分母同时除以x2)===2∴a=6故选:D.【点评】关于高中极限式的运算,一般要先化简再代值取极限,本题中运用到的分子分母同时除以某个数或某个式子,是极限运算中常用的计算技巧.4.(3分)(2011•重庆)(1+3x )n (其中n ∈N 且n≥6)的展开式中x 5与x 6的系数相等,则n=( ) A .6 B .7 C .8 D .9 【考点】二项式系数的性质. 【专题】计算题.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x 5与x 6的系数,列出方程求出n . 【解答】解:二项式展开式的通项为T r+1=3r C n r x r ∴展开式中x 5与x 6的系数分别是35C n 5,36C n 6 ∴35C n 5=36C n 6 解得n=7 故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.5.(3分)(2011•重庆)下列区间中,函数f (x )=|lg (2﹣x )|在其上为增函数的是( ) A .(﹣∞,1]B .C .D .(1,2)【考点】对数函数的单调性与特殊点.【分析】根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.【解答】解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据“同增异减”的原则确定每一段函数的单调性是解答本题的关键.6.(3分)(2011•重庆)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B.C.1 D.【考点】余弦定理.【专题】计算题;解三角形.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab 即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.【点评】本题考查余弦定理,考查代换与运算的能力,属于基本知识的考查.7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【考点】基本不等式.【专题】计算题.【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C【点评】本题主要考查了基本不等式求最值.注意把握好一定,二正,三相等的原则.8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.【考点】圆的标准方程;两点间的距离公式.【专题】数形结合;直线与圆.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B.【点评】此题考查学生掌握垂径定理及勾股定理的应用,灵活运用两点间的距离公式化简求值,是一道中档题.学生做题时注意对角线垂直的四边形的面积等于对角线乘积的一半.9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A. B. C.1 D.【考点】点、线、面间的距离计算;球内接多面体.【专题】计算题;压轴题.【分析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD 的中心与顶点S之间的距离.【解答】解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O 的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1 故选C【点评】本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13【考点】二次函数的性质.【专题】计算题;压轴题.【分析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.【解答】解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.【点评】此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.二、填空题(共5小题,每小题3分,满分15分) 11.(3分)(2011•重庆)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= 74 . 【考点】等差数列的性质. 【专题】计算题.【分析】根据等差数列的性质所有下标之和相同的两项之和相等,看出第三项与第七项的和等于第四项与第六项的和等于第二项与第八项的和,得到结果.【解答】解:等差数列{a n }中,a 3+a 7=37, ∵a 3+a 7=a 2+a 8=a 4+a 6=37 ∴a 2+a 4+a 6+a 8=37+37=74, 故答案为:74【点评】本题考查等差数列的性质,这是经常用到的一个性质的应用,注意解题要灵活,不要出现数字运算的错误是一个送分题目.12.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|=.【考点】平面向量数量积的坐标表示、模、夹角. 【专题】计算题.【分析】利用向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模.【解答】解:===5﹣4cos60°=3∴故答案为【点评】本题考查求向量的模常利用向量模的平方等于向量的平方、考查向量的数量积公式.13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.【考点】n次独立重复试验中恰好发生k次的概率.【专题】计算题.【分析】本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括三种情况,正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,写出概率,得到结果.【解答】解:由题意知本题是一个n次独立重复试验中恰好发生k 次的概率,正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,∴正面出现的次数比反面出现的次数多的概率是++==故答案为:【点评】本题考查n次独立重复试验中恰好发生k次的概率,考查互斥事件的概率,是一个基础题,解题的关键是看清题目所给的条件符合什么规律,在按照规律解题.14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为﹣.【考点】二倍角的余弦;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.【解答】解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣【点评】此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点(2,0).【考点】圆与圆锥曲线的综合.【专题】计算题;压轴题.【分析】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.【解答】解:抛物线y2=8x的焦点F(2,0),准线方程为x+2=0,故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,所以F在圆上.故答案为:(2,0).【点评】主要考查知识点:抛物线,本小题主要考查圆与抛物线的综合、抛物线的定义等基础知识,考查运算求解能力,考查数形结合思想.属于基础题.三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的最值.【专题】计算题.【分析】利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.【解答】解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;【点评】本题是中档题,考查三角函数的化简,二倍角公式的应用,三角函数的求值,函数的单调性、最值,考查计算能力,常考题型.17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【专题】计算题;压轴题.【分析】(I)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C222,得到概率.4(II)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.【解答】解:(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C2224∴根据等可能事件的概率公式得到P==(II)由题意知ξ的可能取值是1,2,3P(ξ=1)=,P(ξ=2)=,P(ξ=3)=∴ξ的分布列是:ξ 1 2 3P∴Eξ=【点评】本题考查等可能事件的概率,考查离散型随机变量的分布列和期望,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;综合题;转化思想.【分析】(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.【解答】解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣3【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及方程组的求解等有关问题,属于中档题.19.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积.【专题】计算题;综合题;数形结合.【分析】(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积;(Ⅱ)利用三垂线定理找出二面角C﹣AB﹣D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD 与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值.【解答】解:(I)设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=,在Rt△ABC中,因AC=2AF=2,AB=2BC,由勾股定理易知BC=,AB=.故四面体ABCD的体积V==.(II)设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB,又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB,所以∠DEF为二面角C﹣AB﹣D的平面角,由题设知∠DEF=60°.设AD=a,则DF=AD•sin∠CAD=,在Rt△DEF中,EF=DF•cotDEF==,取BD的中点M,连EM,FM,由中位线定理得,∠MEF为异面直线AD,BC所成的角或其补角,EM=FM=,由余弦定理得cos∠MEF===.【点评】此题是个中档题.考查棱锥的体积公式和异面直线所成角问题,求解方法一般是平移法,找二面角的平面角时注意三垂线定理及其逆定理的应用,体现了数形结合和转化的思想.20.(12分)(2011•重庆)如图,椭圆的中心为原点O ,离心率e=,一条准线的方程为x=2. (Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P 满足,其中M ,N 是椭圆上的点.直线OM 与ON 的斜率之积为﹣.问:是否存在两个定点F 1,F 2,使得|PF 1|+|PF 2|为定值.若存在,求F 1,F 2的坐标;若不存在,说明理由.【考点】椭圆的简单性质;椭圆的定义.【专题】计算题;压轴题.【分析】(Ⅰ)根据离心率和准线方程求得a 和c ,则b 可得,则椭圆的方程可得.(Ⅱ)设出P ,M ,N 的坐标,根据题设等式建立等式,把M ,N 代入椭圆方程,整理求得x 2+2y 220+4(x 1x 2+2y 1y 2),设出直线OM ,ON 的斜率,利用题意可求得x 1x 2+2y 1y 2=0,进而求得x 2+2y 2的值,利用椭圆的定义可推断出|PF 1|+|PF 2|为定值求得c ,则两焦点坐标可得.【解答】解:(Ⅰ)由e==,=2,求得a=2,c=∴b==∴椭圆的方程为:(Ⅱ)设P (x ,y ),M (x 1,y 1),N (x 2,y 2), 则由,得(x ,y )=(x 1,y 1)+2(x 2,y 2), 即x=x 1+2x 2,y=y 1+2y 2, ∵点M ,N 在椭圆上,所以,故x 2+2y 2=(x 12+4x 22+4x 1x 2)+2(y 12+4y 22+4y 1y 2)=20+4(x 1x 2+2y 1y 2) 设k 0M ,k ON 分别为直线OM ,ON 的斜率,根据题意可知k 0M k ON =﹣∴x 1x 2+2y 1y 2=0 ∴x 2+2y 2=20所以P 在椭圆上;设该椭圆的左,右焦点为F 1,F 2,由椭圆的定义可推断出|PF 1|+|PF 2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)【点评】本题主要考查了椭圆的简单性质.考查了学生分析问题和解决问题的能力.21.(12分)(2011•重庆)设实数数列{a n }的前n 项和S n 满足S n+1=a n+1S n (n ∈N *).(Ⅰ)若a 1,S 2,﹣2a 2成等比数列,求S 2和a 3.(Ⅱ)求证:对k≥3有0≤a k ≤. 【考点】数列与不等式的综合;数列递推式.【专题】综合题;压轴题.【分析】(Ⅰ)由题意,得S 22=﹣2S 2,由S 2是等比中项知S 2=﹣2,由此能求出S 2和a 3.(Ⅱ)由题设条件知S n +a n+1=a n+1S n ,S n ≠1,a n+1≠1,且,,由此能够证明对k≥3有0≤a n ﹣1≤. 【解答】解:(Ⅰ)由题意,得S 22=﹣2S 2, 由S 2是等比中项知S 2≠0,∴S 2=﹣2.由S 2+a 3=a 3S 2,解得. (Ⅱ)证明:因为S n+1=a 1+a 2+a 3+…+a n +a n+1=a n+1+S n ,由题设条件知S n +a n+1=a n+1S n ,∴S n ≠1,a n+1≠1,且,从而对k≥3 有a k ===①因,且, 要证,由①,只要证即证,即,此式明显成立,因此.【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.。
2013年四川省高考数学试卷(理科)答案与解析
2013年四川省高考数学试卷(理科)参考答案与试题解析一、选择题:本答题共有10小题,每小题5分.在每小题给出的四个选项中,只有一个是符合题目要求的.22.(5分)(2013•四川)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()3.(5分)(2013•四川)一个几何体的三视图如图所示,则该几何体的直观图可以是()B4.(5分)(2013•四川)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,5.(5分)(2013•四川)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()BT=时取得最大值,得到+.由此即可得到本题的答案.时取得最大值,x==﹣==x=+,可得+=﹣6.(5分)(2013•四川)抛物线y2=4x的焦点到双曲线的渐近线的距离是()B±,化成一般式得:,可得=1又∵双曲线的方程为b=±±x.d=7.(5分)(2013•四川)函数的图象大致是()B8.(5分)(2013•四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,,所以从,种排法,,9.(5分)(2013•四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔B=10.(5分)(2013•四川)设函数(a∈R,e为自然对数的底数),若曲时,,此是一个增函数,且函数值恒非负,故只研究是一个增函数,可得出>时,此函数是一个增函数,=0二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2013•四川)二项式(x+y)5的展开式中,含x2y3的项的系数是10(用数字作答).x的项的系数是=1012.(5分)(2013•四川)在平行四边形ABCD中,对角线AC与BD交于点O,,则λ=2.依题意,+,而=2,从而可得答案.+==2+=2+λ,13.(5分)(2013•四川)设sin2α=﹣sinα,α∈(,π),则tan2α的值是.,,=,,=故答案为:14.(5分)(2013•四川)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是(﹣7,3).15.(5分)(2013•四川)设P1,P2,…P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…P n的距离之和最小,则称点P为P1,P2,…P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A、B、C、D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是①④(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(12分)(2013•四川)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项,公差及前n项和.=17.(12分)(2013•四川)在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB ﹣sin(A﹣B)sinB+cos(A+C)=﹣.(Ⅰ)求cosA的值;(Ⅱ)若a=4,b=5,求向量在方向上的投影.,,(Ⅱ)由正弦定理,,所以,B=在方向上的投影:.18.(12分)(2013•四川)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(I)分别求出按程序框图正确编程运行时输出y的值为i的概率p i(i=1,2,3);(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.=;===的概率为的概率为,输出的;输出y值为1的频率输出y值为2的频率输出====,,0 2 3=19.(12分)(2013•四川)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(Ⅰ)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(Ⅱ)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.AP=,====,可得=的余弦值等于20.(13分)(2013•四川)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(Ⅰ)求椭圆C的离心率:(Ⅱ)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.的坐标表示出:(.=2e==…的方程为,设点)=…①中,得(>=,><(﹣,[,(﹣,(21.(14分)(2013•四川)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.时,∵,即时,∵,即.处的切线重合的充要条件是得.∵函数在。
(完整版)2012年重庆市高考数学试卷(理科)答案与解析
2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的1.(5分)(2012•重庆)在等差数列{a n}中,a2=1,a4=5,则{a n}的前5项和S5=()A.7B.15 C.20 D.25考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质,可得a2+a4=a1+a5=6,再利用等差数列的求和公式,即可得到结论.解答:解:∵等差数列{a n}中,a2=1,a4=5,∴a2+a4=a1+a5=6,∴S5=(a1+a5)=故选B.点评:本题考查等差数列的性质,考查等差数列的求和公式,熟练运用性质是关键.2.(5分)(2012•重庆)不等式≤0的解集为()A.B.C.D.考点:其他不等式的解法.专题:计算题.分析:由不等式可得,由此解得不等式的解集.解答:解:由不等式可得,解得﹣<x≤1,故不等式的解集为,故选A.点评:本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于中档题.3.(5分)(2012•重庆)对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.(5分)(2012•重庆)的展开式中常数项为()A.B.C.D.105考点:二项式定理的应用.专题:计算题.分析:在的展开式通项公式中,令x的幂指数等于零,求出r的值,即可求得展开式中常数项.解答:解:的展开式通项公式为T r+1==,令=0,r=4.故展开式中常数项为=,故选B.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为()A.﹣3 B.﹣1 C.1D.3考点:两角和与差的正切函数;根与系数的关系.专题:计算题.分析:由tanα,tanβ是方程x2﹣3x+2=0的两个根,利用根与系数的关系分别求出tanα+tanβ及tanαtanβ的值,然后将tan(α+β)利用两角和与差的正切函数公式化简后,将tanα+tanβ及tanαtanβ的值代入即可求出值.解答:解:∵tanα,tanβ是方程x2﹣3x+2=0的两个根,∴tanα+tanβ=3,tanαtanβ=2,则tan(α+β)===﹣3.故选A点评:此题考查了两角和与差的正切函数公式,以及根与系数的关系,利用了整体代入的思想,熟练掌握公式是解本题的关键.6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A.B.C.D.10考点:数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.专题:计算题.分析:由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.解答:解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.点评:本题主要考查两个向量共线的性质,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题.7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的()A.既不充分也不必要的条件B.充分而不必要的条件C.必要而不充分的条件D.充要条件考点:必要条件、充分条件与充要条件的判断;奇偶性与单调性的综合.专题:函数的性质及应用;简易逻辑.分析:由题意,可由函数的性质得出f(x)为[﹣1,0]上是减函数,再由函数的周期性即可得出f(x)为[3,4]上的减函数,由此证明充分性,再由f(x)为[3,4]上的减函数结合周期性即可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数即可得出f(x)为[0,1]上的增函数,由此证明必要性,即可得出正确选项解答:解:∵f(x)是定义在R上的偶函数,∴若f(x)为[0,1]上的增函数,则f(x)为[﹣1,0]上是减函数,又∵f(x)是定义在R上的以2为周期的函数,且[3,4]与[﹣1,0]相差两个周期,∴两区间上的单调性一致,所以可以得出f(x)为[3,4]上的减函数,故充分性成立.若f(x)为[3,4]上的减函数,同样由函数周期性可得出f(x)为[﹣1,0]上是减函数,再由函数是偶函数可得出f(x)为[0,1]上的增函数,故必要性成立.综上,“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的充要条件.故选D.点评:本题考查充分性与必要性的判断,解题的关键是理解充分性与必要性证明的方向,即由那个条件到那个条件的证明是充分性,那个方向是必要性,初学者易搞不清证明的方向导致表述上出现逻辑错误.8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)考点:函数在某点取得极值的条件;函数的图象.专题:计算题.分析:利用函数的图象,判断导函数值为0时,左右两侧的导数的符号,即可判断极值.解答:解:由函数的图象可知,f′(﹣2)=0,f′(2)=0,并且当x<﹣2时,f′(x)>0,当﹣2<x<1,f′(x)<0,函数f(x)有极大值f(﹣2).又当1<x<2时,f′(x)<0,当x>2时,f′(x)>0,故函数f(x)有极小值f(2).故选D.点评:本题考查函数与导数的应用,考查分析问题解决问题的能力,函数的图象的应用.9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是()A.(0,)B.(0,)C.(1,)D.(1,)考点:异面直线的判定;棱锥的结构特征.专题:计算题;压轴题.分析:先在三角形BCD中求出a的范围,再在三角形AED中求出a的范围,二者相结合即可得到答案.解答:解:设四面体的底面是BCD,BC=a,BD=CD=1,顶点为A,AD=在三角形BCD中,因为两边之和大于第三边可得:0<a<2 (1)取BC中点E,∵E是中点,直角三角形ACE全等于直角DCE,所以在三角形AED中,AE=ED=∵两边之和大于第三边∴<2得0<a<(负值0值舍)(2)由(1)(2)得0<a<.故选:A.点评:本题主要考察三角形三边关系以及异面直线的位置.解决本题的关键在于利用三角形两边之和大于第三边这一结论.10.(5分)(2012•重庆)设平面点集,则A∩B所表示的平面图形的面积为()A.B.C.D.考点:二元一次不等式(组)与平面区域;交集及其运算.专题:计算题;压轴题.分析:先分别画出集合A与集合B表示的平面区域,再画出它们的公共部分,最后利用圆的面积公式及图形的对称性,计算所求面积即可解答:解:∵⇔或其表示的平面区域如图,(x﹣1)2+(y﹣1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π∴A∩B所表示的平面图形为上述两区域的公共部分,如图阴影区域,由于圆和y=均关于y=x对称,故阴影部分面积为圆的面积的一半,即故选:D.点评:本题主要考查了二元不等式表示平面区域的知识和延伸,准确的画出两集合表示的平面区域是解决本题的关键,属基础题二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:由条件可得a+bi=1+3i,根据两个复数相等的充要条件求出a和b的值,即可求得a+b 的值.解答:解:∵(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,∴a+bi=1+3i,∴a=1,b=3,∴a+b=1+3=4,故答案为4.点评:本题主要考查两个复数代数形式的乘除法,两个复数相等的充要条件,属于基础题.12.(5分)(2012•重庆)=.考点:极限及其运算.专题:计算题.分析:把要求的式子化为,即,再利用极限及其运算法则求得所求式子的值.解答:解:由于====,故答案为:.点评:本题主要考查极限及其运算法则的应用,把要求的式子化为,是解题的关键,属于基础题.13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.考点:余弦定理;正弦定理.专题:计算题.分析:由A和B都为三角形的内角,且根据cosA及cosB的值,利用同角三角函数间的基本关系分别求出sinA和sinB的值,将sinC中的角C利用三角形的内角和定理变形后,将各自的值代入求出sinC的值,由sinC,b及sinB的值,利用正弦定理即可求出c 的值.解答:解:∵A和B都为三角形的内角,且cosA=,cosB=,∴sinA==,sinB==,∴sinC=sin(A+B)=sinAcosB+cosAsinB=×+×=,又b=3,∴由正弦定理=得:c===.故答案为:点评:此题考查了同角三角函数间的基本关系,诱导公式,两角和与差的正弦函数公式,以及正弦定理,熟练掌握定理及公式是解本题的关键.14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.考点:抛物线的简单性质.专题:计算题;压轴题.分析:设出点的坐标与直线的方程,利用抛物线的定义表示出|AF|、|BF|再联立直线与抛物线的方程利用根与系数的关系解决问题,即可得到答案.解答:解:由题意可得:F(,0),设A(x1,y1),B(x2,y2).因为过抛物线y2=2x的焦点F作直线l交抛物线于A、B两点,所以|AF|=+x1,|BF|=+x2.因为,所以x1+x2=设直线l的方程为y=k(x﹣),联立直线与抛物线的方程可得:k2x2﹣(k2+2)x+=0,所以x1+x2=.∴∴k2=24∴24x2﹣26x+6=0,∴,∴|AF|=+x1=故答案为:点评:解决此类问题的关键是熟练掌握抛物线的定义,以及掌握直线与抛物线位置关系,并且结合准确的运算也是解决此类问题的一个重要方面15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).考点:等可能事件的概率.专题:概率与统计.分析:三门文化课排列,中间有两个空,若每个空各插入1节艺术课,则排法种数为,若两个空中只插入1节艺术课,则排法种数为•(•)•=216,三门文化课中相邻排列,则排法种数为=144,而所有的排法共有=720种,由此求得所求事件的概率.解答:解:把语文、数学、外语三门文化课排列,有种方法,这三门课中间存在两个空,在两个空中,①若每个空各插入1节艺术课,则排法种数为=72,②若两个空中只插入1节艺术课,则排法种数为•(•)•=216,③若语文、数学、外语三门文化课相邻排列,把三门文化课捆绑为为一个整体,然后和三门艺术课进行排列,则排法种数为=144,而所有的排法共有=720种,故在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为=,故答案为.点评:本题主要考查等可能事件的概率,体现了分类讨论的数学思想,属于基础题.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,可得f′(1)=0,从而可求a的值;(Ⅱ)由(Ⅰ)知,(x>0),=,确定函数的单调性,即可求得函数f(x)的极值.解答:解:(Ⅰ)求导函数可得∵曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.∴f′(1)=0,∴,∴a=﹣1;(Ⅱ)由(Ⅰ)知,(x>0)=令f′(x)=0,可得x=1或x=(舍去)∵0<x<1时,f′(x)<0,函数递减;x>1时,f′(x)>0,函数递增∴x=1时,函数f(x)取得极小值为3.点评:本题考查导数知识的运用,考查导数的几何意义,函数的单调性与极值,正确求导是关键.17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:计算题.分析:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P(),利用互斥事件的概率公式即可求解;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3,求出相应的概率,即可得到ξ的分布列与期望.解答:解:设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=,P(B k)=(k=1,2,3)(Ⅰ)记“甲获胜”为事件C,则P(C)=P(A1)+P()+P()=×+=;(Ⅱ)投篮结束时甲的投篮次数ξ的可能值为1,2,3P(ξ=1)=P(A1)+P()=P(ξ=2)=P()+P()== P((ξ=3)=P()==ξ的分布列为ξ 1 2 3P期望Eξ=1×+2×+3×=.点评:本题考查互斥事件概率的求解,考查离散型随机变量的分布列与期望,解题的关键是确定变量的取值,理解变量取值的含义,属于中档题.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的定义域和值域;正弦函数的单调性.专题:计算题;转化思想.分析:(I)由题意,可由三角函数的恒等变换公式对函数的解析式进行化简得到f(x)=sin2ωx+1,由此易求得函数的值域;(II)f(x)在区间上为增函数,此区间必为函数某一个单调区间的子集,由此可根据复合三角函数的单调性求出用参数表示的三角函数的单调递增区间,由集合的包含关系比较两个区间的端点即可得到参数ω所满足的不等式,由此不等式解出它的取值范围,即可得到它的最大值.解答:解:f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π)=4(cosωx+sinωx)sinωx+cos2ωx=2cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx=sin2ωx+1,∵﹣1≤sin2ωx≤1,所以函数y=f(x)的值域是[](II)因y=sinx在每个区间[],k∈z上为增函数,令,又ω>0,所以,解不等式得≤x≤,即f(x)=sin2ωx+1,(ω>0)在每个闭区间[,],k∈z上是增函数又有题设f(x)在区间上为增函数所以⊆[,],对某个k∈z成立,于是有.解得ω≤,故ω的最大值是.点评:本题考查三角恒等变换的运用及三角函数值域的求法,解题的关键是对所给的函数式进行化简,熟练掌握复合三角函数单调性的求法,本题考查了转化的思想,计算能力,属于中等难度的题19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题;点、线、面间的距离计算.专题:综合题;转化思想.分析:(I)由题意,由于可证得CD⊥平面A1ABB1.故点C到平面的距离即为CD的长度,易求;(II)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1,然后在直角三角形A1D1D中求出二面角的余弦;解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1,在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y 轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.解答:解:(I)由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.故CD⊥平面A1ABB1.所以点C到平面A1ABB1的距离为CD==(II)解法一:如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.又由(I)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB 互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=AD•A1B1=8,得AA1=2,从而A1D==2.所以Rt△A1D1D中,cos∠A1DD1===解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0,,0),C1(0,,h),从而=(4,0,h),=(2,,﹣h)由AB1⊥A1C,可得8﹣h2=0,h=2,故=(﹣2,0,2),=(0,0,2),=(0,,0)设平面A1CD的法向量为=(x1,y1,z1),则有⊥,⊥∴•=0且•=0,即,取z1=1,则=(,0,1)设平面C1CD的法向量为=(x2,y2,z2),则⊥,⊥,即且=0,取x 2=1,得=(1,0,0),所以cos<,>===,所以二面角A1﹣CD﹣C1的平面角的余弦值点评:本题考查二面角的求法及点到面距离的求法,点到面的求法一般是作垂线,垂线段的长度即所求,二面角的余弦值的求法有两种,一种是几何法,找到二面角平面角所在的三角形,解三角形求出角的余弦值,第二种方法是现在比较常用的方法向量法,其特征是思维量小,计算量大,作题时对这两种方法要根据题设灵活选用20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求,又S=|B1B2||OA|==4,故可求椭圆标准方程;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求直线l的方程.解答:解:(Ⅰ)设椭圆的方程为,F2(c,0)∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=∵S=4,∴b2=4,∴a2=5b2=20∴椭圆标准方程为;(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16=0①设P(x1,y1),Q(x2,y2),∴,∵,∴=∵PB2⊥QB2,∴∴,∴m=±2所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查向量知识的运用,考查三角形的面积计算,综合性强.21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.考点:数列与不等式的综合;等比数列的前n项和;等比关系的确定;数列与函数的综合.专题:综合题;压轴题.分析:(Ⅰ)根据S n+1=a2S n+a1,再写一式,两式相减,即可证得{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立,设n≥3,a2>﹣1,且a2≠0,由(I)知a1=1,,所以要证的不等式可化为(n≥3),即证(n≥2),a2=1时,等号成立;再证明a2>﹣1且a2≠1时,()()>0,即可证得结论.解答:证明:(Ⅰ)∵S n+1=a2S n+a1,①∴S n+2=a2S n+1+a1,②②﹣①可得:a n+2=a2a n+1∵a2≠0,∴∵S n+1=a2S n+a1,∴S2=a2S1+a1,∴a2=a2a1∵a2≠0,∴a1=1∴{a n}是首项为1的等比数列;(Ⅱ)当n=1或2时,等号成立设n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1,,所以要证的不等式可化为(n≥3)即证(n≥2)a2=1时,等号成立当﹣1<a2<1时,与同为负;当a2>1时,与同为正;∴a2>﹣1且a2≠1时,()()>0,即上面不等式n分别取1,2,…,n累加可得∴综上,,等号成立的充要条件是n=1或2或a2=1.点评:本题考查等比数列的证明,考查不等式的证明,考查叠加法的运用,需要一定的基本功,属于中档题.。
2012年重庆市高考数学试卷(理科)答案与解析
2012年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共计50分.在每小题给出的四个备选选项中,只有一个是符合题目要求的(2.(5分)(2012•重庆)不等式≤0的解集为()....由不等式可得,解得﹣的解集为224.(5分)(2012•重庆)的展开式中常数项为()B的展开式通项公式中,令的展开式通项公式为=0=5.(5分)(2012•重庆)设tanα,tanβ是方程x2﹣3x+2=0的两个根,则tan(α+β)的值为==6.(5分)(2012•重庆)设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()B,以及|=,==)且⊥,∥,则有,故|=7.(5分)(2012•重庆)已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为8.(5分)(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()9.(5分)(2012•重庆)设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的,,,AE=ED=.10.(5分)(2012•重庆)设平面点集B∵或y=故阴影部分面积为圆的面积的一半,即二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2012•重庆)若(1+i)(2+i)=a+bi,其中a,b∈R,i为虚数单位,则a+b=4.12.(5分)(2012•重庆)=.把要求的式子化为,即,再利用极限及其运算法===,故答案为:.把要求的式子化为13.(5分)(2012•重庆)设△ABC的内角A,B,C的对边分别为a,b,c,且,则c=.cosA=,cosB==,sinB===sinAcosB+cosAsinB=×+×==得:==故答案为:14.(5分)(2012•重庆)过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若,则|AF|=.,+x|BF|=,所以)x+|AF|==故答案为:15.(5分)(2012•重庆)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课程表上的相邻两节文化课之间最多间隔1节艺术课的概率为(用数字作答).节艺术课,则排法种数为()=216三门文化课中相邻排列,则排法种数为=720解:把语文、数学、外语三门文化课排列,有••=144而所有的排法共有=三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(13分)(2012•重庆)设,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值.由(Ⅰ)知,(,确定函数的单调性,即可求得函,∴由(Ⅰ)知,(17.(13分)(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.=(((=(((×+;()(=(=×+2×+3×=.18.(13分)(2012•重庆)设f(x)=4cos(ωx﹣)sinωx﹣cos(2ωx+π),其中ω>0.(Ⅰ)求函数y=f(x)的值域(Ⅱ)若f(x)在区间上为增函数,求ω的最大值.)在区间﹣cos sin[][所以,解不等式得=[)在区间上为增函数⊆[.解得,故的最大值是19.(12分)(2012•重庆)如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点(Ⅰ)求点C到平面A1ABB1的距离;(Ⅱ)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.CD===2D==2,,从而,,h=2=,=2,的法向量为,则有⊥,⊥••,即,取=,的法向量为,则⊥,⊥,即=0=<,>=,20.(12分)(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.,为直角,从而|B||OA|=(Ⅰ)设椭圆的方程为,∴S=∴椭圆标准方程为;=,∴21.(12分)(2012•重庆)设数列{a n}的前n项和S n满足S n+1=a2S n+a1,其中a2≠0.(Ⅰ)求证:{a n}是首项为1的等比数列;(Ⅱ)若a2>﹣1,求证,并给出等号成立的充要条件.时,等号成立,设(,∴等号成立,,所以要证的不等式可化为(时,时,与(即,等号成立的充要条件是。
2009年重庆市高考数学试卷(理科)及答案
2009年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.(5分)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i3.(5分)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.1604.(5分)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.5.(5分)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)6.(5分)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.7.(5分)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.8.(5分)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.69.(5分)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或210.(5分)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π二、填空题(共5小题,每小题5分,满分25分)11.(5分)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B=.12.(5分)若f(x)=a+是奇函数,则a=.13.(5分)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).14.(5分)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=.15.(5分)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是.三、解答题(共6小题,满分75分)16.(13分)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.17.(13分)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.18.(13分)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.19.(12分)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.20.(12分)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.21.(12分)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.2009年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•重庆)直线y=x+1与圆x2+y2=1的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离【分析】求出圆心到直线的距离d,与圆的半径r比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.【解答】解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B2.(5分)(2009•重庆)已知复数z的实部为﹣1,虚部为2,则=()A.2﹣i B.2+i C.﹣2﹣i D.﹣2+i【分析】由题意求出复数z,代入,复数分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,可得选项.【解答】解:因为由条件知z=﹣1+2i,则=,故选A.3.(5分)(2009•重庆)(x+2)6的展开式中x3的系数是()A.20 B.40 C.80 D.160【分析】利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中x3的系数.【解答】解:设含x3的为第r+1,则Tr+1=C6r x6﹣r•2r,令6﹣r=3,得r=3,故展开式中x3的系数为C63•23=160.故选D.4.(5分)(2009•重庆)已知||=1,||=6,•(﹣)=2,则向量与向量的夹角是()A.B.C.D.【分析】利用向量的运算法则及向量模的平方即是向量的平方求出,再利用向量的数量积公式求出向量的夹角余弦,求出向量夹角.【解答】解:∵==2.又,∴=3.即cos<a,b>=3=1×6cos<a,b>,得cos<a,b>=,∴a与b的夹角为,故选项为C.5.(5分)(2009•重庆)不等式|x+3|﹣|x﹣1|≤a2﹣3a对任意实数x恒成立,则实数a的取值范围为()A.(﹣∞,﹣1]∪[4,+∞)B.(﹣∞,﹣2]∪[5,+∞)C.[1,2] D.(﹣∞,1]∪[2,+∞)【分析】利用绝对值的几何意义,求出|x+3|﹣|x﹣1|的最大值不大于a2﹣3a,求出a的范围.【解答】解:因为|x+3|﹣|x﹣1|≤4对|x+3|﹣|x﹣1|≤a2﹣3a对任意x恒成立,所以a2﹣3a≥4即a2﹣3a﹣4≥0,解得a≥4或a≤﹣1.故选A.6.(5分)(2009•重庆)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同.从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为()A.B.C.D.【分析】本题考查的知识点是古典概型,我们计算出总的滔法种类,再计算满足条件“从中任意舀取4个汤圆,则每种汤圆都至少取到1个”所包含的基本事件个数,然后代入古典概型公式计算,即可得到答案.【解答】解:因为总的滔法C154,而所求事件的取法分为三类,即芝麻馅汤圆、花生馅汤圆、豆沙馅汤圆,取得个数分别按1,1,2;1,2,1;2,1,1三类,故所求概率P==.故选C.7.(5分)(2009•重庆)设△ABC的三个内角A,B,C,向量,,若=1+cos(A+B),则C=()A.B.C. D.【分析】利用向量的坐标表示可求=1+cos(A+B),结合条件C=π﹣(A+B)可得sin(C+=,由0<C<π可求C【解答】解:因为=又因为所以又C=π﹣(B+A)所以因为0<C<π,所以故选C.8.(5分)(2009•重庆)已知,其中a,b∈R,则a﹣b的值为()A.﹣6 B.﹣2 C.2 D.6【分析】先通分得,然后由极限的性质知,由此可以求出a﹣b的值.【解答】解:∵已知==2,∴,∴a=2,b=﹣4;∴a﹣b=6.故选D.9.(5分)(2009•重庆)三个互不重合的平面把空间分成六个部份时,它们的交线有()条.A.1 B.2 C.3 D.1或2【分析】三个互不重合的平面把空间分成六个部份有两种情形:一是其中两个平面平行,第三个平面都与它们相交;二是三个平面交于一条直线,考虑到两类即可解决.【解答】解:分两类:①当两个平面平行,第三个平面与它们相交时,有两条交线;②当三个平面交于一条直线时,有一条交线,故选D10.(5分)(2009•重庆)已知三角函数f(x)=sin2x﹣cos2x,其中x为任意的实数.求此函数的周期为()A.2πB.πC.4πD.﹣π【分析】首先由题目中已知三角函数f(x)=sin2x﹣cos2x求周期,需要把函数化为标准型,然后根据周期公式求解即可得到答案.【解答】解:因为f(x)=sin2x﹣cos2x=,所以函数的周期T=,故答案选择B.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2009•重庆)若A={x∈R||x|<3},B={x∈R|2x>1},则A∩B={x|0<x<3} .【分析】要求A与B的交集,先要求出两个集合的区间,解出绝对值不等式得到集合A,根据指数函数的增减性得到集合B,然后取两集合的公共部分即可得到交集.【解答】解:由|x|<3解得﹣3<x<3;由2x>1=20,根据指数函数y=2x为增函数得到x>0∴A={x|﹣3<x<3},B={x|x>0},则A∩B={x|0<x<3}.故答案为:{x|0<x<3}12.(5分)(2009•重庆)若f(x)=a+是奇函数,则a=﹣.【分析】充分不必要条件:若奇函数定义域为R(即x=0有意义),则f(0)=0.或用定义:f(﹣x)=﹣f(x)直接求a.【解答】解:函数的定义域为R,且为奇函数,则f(0)=a+=0,得a+=0,得a=﹣,检验:若a=﹣,则f(x)=+=,又f(﹣x)==﹣=﹣f(x)为奇函数,符合题意.故答案为﹣.13.(5分)(2009•重庆)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有36种(用数字作答).【分析】由题意知将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,需要先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果.【解答】解:∵将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,∴先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,共有C24A33=36.故答案为:3614.(5分)(2009•重庆)设a1=2,,b n=,n∈N+,则数列{b n}的通项公式b n=2n+1.【分析】由题设条件得b n====2b n,由此能+1够导出数列{b n}的通项公式b n.【解答】解:由条件得:b n====2b n+1且b1=4所以数列{b n}是首项为4,公比为2的等比数列,则b n=4•2n﹣1=2n+1.故答案为:2n+1.15.(5分)(2009•重庆)已知双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),若双曲线上存在一点P使,则该双曲线的离心率的取值范围是(1,).【分析】不防设点P(x o,y o)在右支曲线上并注意到x o>a.利用正弦定理求得,进而根据双曲线定义表示出|PF1|和|PF2|代入求得e 的范围.【解答】解:不防设点P(x o,y o)在右支曲线上并注意到x o>a.由正弦定理有,由双曲线第二定义得:|PF1|=a+ex o,|PF2|=ex o﹣a,则有=,得x o=>a,分子分母同时除以a2,易得:>1,解得1<e<+1故答案为(1,)三、解答题(共6小题,满分75分)16.(13分)(2009•重庆)设函数.(Ⅰ)求f(x)的最小正周期.(Ⅱ)若y=g(x)与y=f(x)的图象关于直线x=1对称,求当时y=g (x)的最大值.【分析】(1)利用两角差的正弦公式及二倍角公式及化简三角函数;再利用三角函数的周期公式求出周期.(2)在y=g(x)上任取一点,据对称行求出其对称点,利用对称点在y=f(x)上,求出g(x)的解析式,求出整体角的范围,据三角函数的有界性求出最值.【解答】解:(1)f(x)===故f(x)的最小正周期为T==8(2)在y=g(x)的图象上任取一点(x,g(x)),它关于x=1的对称点(2﹣x,g(x)).由题设条件,点(2﹣x,g(x))在y=f(x)的图象上,从而==当时,时,因此y=g(x)在区间上的最大值为17.(13分)(2009•重庆)某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:(1)两种大树各成活1株的概率;(2)成活的株数ξ的分布列与期望.【分析】(1)甲两株中活一株符合独立重复试验,概率为,同理可算乙两株中活一株的概率,两值相乘即可.(2)ξ的所有可能值为0,1,2,3,4,分别求其概率,列出分布列,再求期望即可.【解答】解:设A k表示甲种大树成活k株,k=0,1,2B l表示乙种大树成活1株,1=0,1,2则A k,B l独立.由独立重复试验中事件发生的概率公式有P(A k)=C2k()k()2﹣k,P(B l)=C21()l()2﹣l.据此算得P(A0)=,P(A1)=,P(A2)=.P(B0)=,P(B1)=,P(B2)=.(1)所求概率为P(A1•B1)=P(A1)•P(B1)=×=.(2)解法一:ξ的所有可能值为0,1,2,3,4,且P(ξ=0)=P(A0•B0)=P(A0)•P(B0)=×=,P(ξ=1)=P(A0•B1)+P(A1•B0)=×+×=,P(ξ=2)=P(A0•B2)+P(A1•B1)+P(A2•B0)=×+×+×=,P(ξ=3)=P(A1•B2)+P(A2•B1)=×+×=.P(ξ=4)=P(A2•B2)=×=.综上知ξ有分布列ξ01234P从而,ξ的期望为Eξ=0×+1×+2×+3×+4×=(株).解法二:分布列的求法同上,令ξ1,ξ2分别表示甲乙两种树成活的株数,则ξ1:B(2,),ξ2:B(2,)故有Eξ1=2×=,Eξ2=2×=1从而知Eξ=Eξ1+Eξ2=.18.(13分)(2009•重庆)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.(Ⅰ)求a,b的值;(Ⅱ)若函数,讨论g(x)的单调性.【分析】(Ⅰ)因为”函数在x=0处取得极值“,则有f'(0)=0,再由“曲线y=f(x)在(1,f(1))处的切线与直线x﹣2y+1=0相互垂直”,则有f'(1)=2,从而求解.(Ⅱ)由(Ⅰ)可得到:,令g'(x)=0,有x2﹣2x+k=0,因为还有参数k,由一元二次方程,分三种情况讨论,(1)当△=4﹣4k<0,函数g (x)在R上为增函数,(2)当△=4﹣4k=0,g(x)在R上为增函数(3)△=4﹣4k>0,方程x2﹣2x+k=0有两个不相等实根,则由其两根来构建单调区间.【解答】解:(Ⅰ)因f(x)=ax2+bx+k(k>0),故f'(x)=2ax+b又f(x)在x=0处取得极值,故f'(x)=0,从而b=0,由曲线y=f(x)在(1,f(1))处的切线与直线x+2y+1=0相互垂直可知该切线斜率为2,即f'(1)=2,有2a=2,从而a=1(6分)(Ⅱ)由(Ⅰ)知:、令g'(x)=0,有x2﹣2x+k=0(8分)(1)当△=4﹣4k<0,即当k>1时,g'(x)>0在R上恒成立,故函数g(x)在R上为增函数(10分)(2)当△=4﹣4k=0,即当k=1时,,K=1时,g(x)在R上为增函数(12分)(3)△=4﹣4k>0,即当0<k<1时,方程x2﹣2x+k=0有两个不相等实根当是g'(x)>0,故g(x)在上为增函数当时,g'(x)<0,故g(x)在上为减函数当时,g'(x)>0,故g(x)在上为增函数(14分)19.(12分)(2009•重庆)如图,在四棱锥S﹣ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=,求:(Ⅰ)点A到平面BCS的距离;(Ⅱ)二面角E﹣CD﹣A的大小.【分析】(Ⅰ)根据线面平行的判定定理可知AD∥平面BCS,则从而A点到平面BCS的距离等于D点到平面BCS的距离,从而DS为点A到平面BCS的距离,在Rt△ADS中求出DS即可;(Ⅱ)过E点作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,根据二面角平面角的定义可知∠EGH为二面角E﹣CD﹣A的平面角,过E点作EF ∥BC,交CS于点F,连接GF,在Rt△FEG中,求出此角即可.【解答】解:(Ⅰ)因为AD∥BC,且BC⊂平面BCS,所以AD∥平面BCS,从而A点到平面BCS的距离等于D点到平面BCS的距离.因为平面CSD⊥平面ABCD,AD⊥CD,故AD⊥平面CSD,从而AD⊥SD,由AD∥BC,得BC⊥DS,又由CS⊥DS知DS⊥平面BCS,从而DS为点A到平面BCS的距离,因此在Rt△ADS中(Ⅱ)如图,过E电作EG⊥CD,交CD于点G,又过G点作GH⊥CD,交AB于H,故∠EGH为二面角E﹣CD﹣A的平面角,记为θ,过E点作EF∥BC,交CS于点F,连接GF,因平面ABCD⊥平面CSD,GH⊥CD,易知GH⊥GF,故.由于E为BS边中点,故,在Rt△CFE中,,因EF⊥平面CSD,又EG⊥CD故由三垂线定理的逆定理得FG⊥CD,从而又可得△CGF~△CSD,因此而在Rt△CSD中,,在Rt△FEG中,可得,故所求二面角的大小为20.(12分)(2009•重庆)已知以原点O为中心的椭圆的一条准线方程为,离心率,M是椭圆上的动点(Ⅰ)若C,D的坐标分别是,求|MC|•|MD|的最大值;(Ⅱ)如题(20)图,点A的坐标为(1,0),B是圆x2+y2=1上的点,N是点M 在x轴上的射影,点Q满足条件:,、求线段QB的中点P 的轨迹方程.【分析】(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b >0).设,由准线方程.由此能够求出椭圆方程.从而得到点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(Ⅱ)设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+y y=4.因为,(1﹣x Q﹣y Q)•(1﹣x N﹣y n)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.由此可导出动点P的轨迹方程为.【解答】解:(Ⅰ)由题设条件知焦点在y轴上,故设椭圆方程为(a>b>0).设,由准线方程得.由得,解得a=2,c=,从而b=1,椭圆方程为.又易知C,D两点是椭圆的焦点,所以,|MC|+|MD|=2a=4从而|MC|•|MD|,当且仅当|MC|=|MD|,即点M的坐标为(±1,0)时上式取等号,|MC|•|MD|的最大值为4.(II)如图(20)图,设M(x m,y m),B(x B,y B)Q(x Q,y Q).因为,故x Q=2x N,y Q=y M,x Q2+y Q2=(2x M)2+(y M)2=4 ①因为,(1﹣x Q,﹣y Q)•(1﹣x N,﹣y N)=(1﹣x Q)(1﹣x N)+y Q y N=0,所以x Q x N+y Q y N=x N+x Q﹣1.②记P点的坐标为(x P,y P),因为P是BQ的中点所以2x P=x Q+x B,2y P=y Q+y B由因为x N2+y N2=1,结合①,②得===故动点P的轨迹方程为21.(12分)(2009•重庆)设m个不全相等的正数a1,a2,…,a m(m≥7)依次围成一个圆圈,(Ⅰ)若m=2009,且a1,a2,…,a1005是公差为d的等差数列,而a1,a2009,a2008,…,a1006是公比为q=d的等比数列;数列a1,a2,…,a m的前n项和S n(n≤m)满足:S3=15,S2009=S2007+12a1,求通项a n(n≤m);(Ⅱ)若每个数a n(n≤m)是其左右相邻两数平方的等比中项,求证:a1+…+a6+a72+…+a m2>ma1a2a m.【分析】(1)利用等比数列的性质,用a1、d表示出a2009、a2008,结合已知,列方程即可解出a1、d,进而求出a n.(2)通过探求数列的周期性或利用反证法求解.【解答】解:(I)因a1,a2009,a2008,a1006是公比为d的等比数列,从而a2009=a1d,a2008=a1d2,由S2009=S2007+12a1得a2008+a2009=12a1,解得d=3或d=﹣4(舍去).∴d=3,又S3=3a1+3d=15.解得a1=2从而当n≤1005时,a n=a1+(n﹣1)d=2+3(n﹣1)=3n﹣1当1006≤n≤2009时,由a1,a2009,a2008,a1006是公比为d的等比数列得a n=a1d2009﹣(n﹣1)=a1d2010﹣n(1006≤n≤2009)因此(II)由题意a n2=a n﹣12a n+12(1<n<m),a m2=a m﹣12a12,a12=a m2a22得有①得④由①,②,③得a1a2a n=(a1a2a n)2,故a1a2a n=1.⑤又,故有.⑥下面反证法证明:m=6k若不然,设m=6k+p,其中1≤p≤5若取p=1即m=6k+1,则由⑥得a m=a6k+1=a1,而由③得,得a2=1,由②得,而④及⑥可推得a n=1(1≤n≤m)与题设矛盾同理若P=2,3,4,5均可得a n=1(1≤n≤m)与题设矛盾,因此m=6k为6的倍数由均值不等式得由上面三组数内必有一组不相等(否则a1=a2=a3=1,从而a4=a5═a m=1与题设矛盾),故等号不成立,从而a1+a2+a3++a6>6又m=6k,由④和⑥得a72++a m2=(a72++a122)++(a6k﹣52++a6k2)=(k﹣1)(a12++a62)=因此由⑤得a1+a2+a3++a6+a72++a m2>6+6(k﹣1)=6k=m=ma1a2a3a m。
2015年重庆市高考数学试题及答案(理科)【解析版】
2015年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•重庆)已知集合A={1,2,3},B={2,3},则()A .A=B B.A∩B=∅C.A BD.B A考点:子集与真子集.专题:集合.分析:直接利用集合的运算法则求解即可.解答:解:集合A={1,2,3},B={2,3},可得A≠B,A∩B={2,3},B A,所以D正确.故选:D.点评:本题考查集合的基本运算,基本知识的考查.2.(5分)(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=()A .﹣1 B.0 C.1 D.6考点:等差数列的性质.专题:等差数列与等比数列.分析:直接利用等差中项求解即可.解答:解:在等差数列{a n}中,若a2=4,a4=2,则a4=(a2+a6)==2,解得a6=0.故选:B.点评:本题考查等差数列的性质,等差中项个数的应用,考查计算能力.3.(5分)(2015•重庆)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A .19 B.20 C.21.5 D.23考点:茎叶图.专题:概率与统计.分析:根据中位数的定义进行求解即可.解答:解:样本数据有12个,位于中间的两个数为20,20,则中位数为,故选:B点评:本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.4.(5分)(2015•重庆)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:解“(x+2)<0”,求出其充要条件,再和x>1比较,从而求出答案.解答:解:由“(x+2)<0”得:x+2>1,解得:x>﹣1,故“x>1”是“(x+2)<0”的充分不必要条件,故选:B.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A .B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.解答:解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.点评:本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.6.(5分)(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A .B.C.D.π考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量垂直的等价条件以及向量数量积的应用进行求解即可.解答:解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A点评:本题主要考查向量夹角的求解,利用向量数量积的应用以及向量垂直的等价条件是解决本题的关键.7.(5分)(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A .s≤B.s≤C.s≤D.s≤考点:循环结构.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k,S的值,当S>时,退出循环,输出k的值为8,故判断框图可填入的条件是S.解答:解:模拟执行程序框图,k的值依次为0,2,4,6,8,因此S=(此时k=6),因此可填:S.故选:C.点评:本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.8.(5分)(2015•重庆)已知直线l:x+ay﹣1=0(a∈R)是圆C:x2+y2﹣4x﹣2y+1=0的对称轴.过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A .2 B.C.6 D.考点:直线与圆的位置关系.专题:直线与圆.分析:求出圆的标准方程可得圆心和半径,由直线l:x+ay﹣1=0经过圆C的圆心(2,1),求得a的值,可得点A的坐标,再利用直线和圆相切的性质求得|AB|的值.解答:解:圆C:x2+y2﹣4x﹣2y+1=0,即(x﹣2)2+(y﹣1)2 =4,表示以C(2,1)为圆心、半径等于2的圆.由题意可得,直线l:x+ay﹣1=0经过圆C的圆心(2,1),故有2+a﹣1=0,∴a=﹣1,点A(﹣4,﹣1).由于AC==2,CB=R=2,∴切线的长|AB|===6,故选:C.点评:本题主要考查圆的标准方程,直线和圆相切的性质,属于基础题.9.(5分)(2015•重庆)若tanα=2tan,则=()A .1 B.2 C.3 D.4考点:三角函数的积化和差公式;三角函数的化简求值.专题:三角函数的求值.分析:直接利用两角和与差的三角函数化简所求表达式,利用同角三角函数的基本关系式结合已知条件以及积化和差个数化简求解即可.解答:解:tanα=2tan,则========== ===3.故答案为:3.点评:本题考查两角和与差的三角函数,积化和差以及诱导公式的应用,考查计算能力.10.(5分)(2015•重庆)设双曲线=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D.若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是()A .(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣,0)∪(0,)D.(﹣∞,﹣)∪(,+∞)考点:双曲线的简单性质.专题:计算题;创新题型;圆锥曲线的定义、性质与方程.分析:由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,求出c﹣x,利用D到直线BC的距离小于a+,即可得出结论.解答:解:由题意,A(a,0),B(c,),C(c,﹣),由双曲线的对称性知D在x轴上,设D(x,0),则由BD⊥AC得,∴c﹣x=,∵D到直线BC的距离小于a+,∴c﹣x=<a+,∴<c2﹣a2=b2,∴0<<1,∴双曲线的渐近线斜率的取值范围是(﹣1,0)∪(0,1).故选:A.点评:本题考查双曲线的性质,考查学生的计算能力,确定D到直线BC的距离是关键.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(5分)(2015•重庆)设复数a+bi(a,b∈R)的模为,则(a+bi)(a﹣bi)=3.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:将所求利用平方差公式展开得到a2+b2,恰好为已知复数的模的平方.解答:解:因为复数a+bi(a,b∈R)的模为,所以a2+b2==3,则(a+bi)(a﹣bi)=a2+b2=3;故答案为:3.点评:本题考查了复数的模以及复数的乘法运算;属于基础题.12.(5分)(2015•重庆)的展开式中x8的系数是(用数字作答).考点:二项式定理.专题:二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于8,求得r的值,即可求得展开式中的x8的系数.解答:解:由于的展开式的通项公式为T r+1=••,令15﹣=8,求得r=2,故开式中x8的系数是•=,故答案为:.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.考点:余弦定理的应用.专题:解三角形.分析:利用已知条件求出A,C,然后利用正弦定理求出AC即可.解答:解:由题意以及正弦定理可知:,即,∠ADB=45°,A=180°﹣120°﹣45°,可得A=30°,则C=30°,三角形ABC是等腰三角形,AC=2=.故答案为:.点评:本题考查正弦定理以及余弦定理的应用,三角形的解法,考查计算能力.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)(2015•重庆)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=2.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:利用切割线定理计算CE,利用相交弦定理求出BE即可.解答:解:设CE=2x,ED=x,则∵过点A作圆O的切线与DC的延长线交于点P,∴由切割线定理可得PA2=PC•PD,即36=3×(3+3x),∵x=3,由相交弦定理可得9BE=CE•ED,即9BE=6×3,∴BE=2.故答案为:2.点评:本题考查切割线定理、相交弦定理,考查学生的计算能力,比较基础.15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为(2,π).考点:简单曲线的极坐标方程;直线的参数方程.专题:坐标系和参数方程.分析:求出直线以及曲线的直角坐标方程,然后求解交点坐标,转化我2极坐标即可.解答:解:直线l的参数方程为(t为参数),它的直角坐标方程为:x﹣y+2=0;曲线C的极坐标方程为,可得它的直角坐标方程为:x2﹣y2=4,x<0.由,可得x=﹣2,y=0,交点坐标为(﹣2,0),它的极坐标为(2,π).故答案为:(2,π).点评:本题考查曲线的极坐标方程直线的参数方程与普通方程的互化,基本知识的考查.16.(2015•重庆)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=﹣6或4.考点:带绝对值的函数.专题:创新题型;函数的性质及应用.分析:分类讨论a与﹣1的大小关系,化简函数f(x)的解析式,利用单调性求得f(x)的最小值,再根据f(x)的最小值等于5,求得a的值.解答:解:∵函数f(x)=|x+1|+2|x﹣a|,故当a<﹣1时,f(x)=,根据它的最小值为f(a)=﹣3a+2a﹣1=5,求得a=﹣6.当a=﹣1时,f(x)=3|x+1|,它的最小值为0,不满足条件.当a≥﹣1时,f(x)=,根据它的最小值为f(a)=a+1=5,求得a=4.综上可得,a=﹣6 或a=4,故答案为:﹣6或4.点评:本题主要考查对由绝对值的函数,利用单调性求函数的最值,体现了转化、分类讨论的数学思想,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)(2015•重庆)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据古典概型的概率公式进行计算即可;(Ⅱ)随机变量X的取值为:0,1,2,别求出对应的概率,即可求出分布列和期望.解答:解:(Ⅰ)令A表示事件“三种粽子各取到1个”,则由古典概型的概率公式有P(A)==.(Ⅱ)随机变量X的取值为:0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,X 0 1 2PEX=0×+1×+2×=个.点评:本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.考点:二倍角的余弦;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得f(x)的最小正周期和最大值.(Ⅱ)根据2x﹣∈[0,π],利用正弦函数的单调性,分类讨论求得f(x)在上的单调性.解答:解:(Ⅰ)函数f(x)=sin(﹣x)sinx﹣x=cosxsinx﹣(1+cos2x)=sin2x﹣sin2x﹣=sin(2x﹣)﹣,故函数的周期为=π,最大值为1﹣.(Ⅱ)当x∈时,2x﹣∈[0,π],故当0≤2x﹣≤时,即x∈[,]时,f(x)为增函数;当≤2x﹣≤π时,即x∈[,]时,f(x)为减函数.点评:本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.19.(13分)(2015•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间角.分析:(Ⅰ)由已知条件易得PC⊥DE,CD⊥DE,由线面垂直的判定定理可得;(Ⅱ)以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,易得,,的坐标,可求平面PAD的法向量,平面PCD的法向量可取,由向量的夹角公式可得.解答:(Ⅰ)证明:∵PC⊥平面ABC,DE⊂平面ABC,∴PC⊥DE,∵CE=2,CD=DE=,∴△CDE为等腰直角三角形,∴CD⊥DE,∵PC∩CD=C,DE垂直于平面PCD内的两条相交直线,∴DE⊥平面PCD(Ⅱ)由(Ⅰ)知△CDE为等腰直角三角形,∠DCE=,过点D作DF垂直CE于F,易知DF=FC=FE=1,又由已知EB=1,故FB=2,由∠ACB=得DF∥AC,,故AC=DF=,以C为原点,分别以,,的方向为xyz轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A(,0,0),E(0,2,0),D(1,1,0),∴=(1,﹣1,0),=(﹣1,﹣1,3),=(,﹣1,0),设平面PAD的法向量=(x,y,z),由,故可取=(2,1,1),由(Ⅰ)知DE⊥平面PCD,故平面PCD的法向量可取=(1,﹣1,0),∴两法向量夹角的余弦值cos<,>==∴二面角A﹣PD﹣C的余弦值为.点评:本题考查二面角,涉及直线与平面垂直的判定,建系化归为平面法向量的夹角是解决问题的关键,属难题.20.(12分)(2015•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.解答:解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.点评:本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.考点:椭圆的简单性质.专题:创新题型;圆锥曲线的定义、性质与方程.分析:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|,求出a,再根据2c=|F1F2|==2,求出c,进而求出椭圆的标准方程;(Ⅱ)由椭圆的定义和勾股定理,得|QF1|=|PF1|=4a﹣|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,再一次根据勾股定理可求出离心率.解答:解:(Ⅰ)由椭圆的定义,2a=|PF1|+|PF2|=2++2﹣=4,故a=2,设椭圆的半焦距为c,由已知PF2⊥PF1,因此2c=|F1F2|==2,即c=,从而b==1,故所求椭圆的标准方程为.(Ⅱ)连接F1Q,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a﹣2|PF1|,又由PQ⊥PF1,|PF1|=|PQ|,知|QF1|=|PF1|=4a﹣2|PF1|,解得|PF1|=2(2﹣)a,从而|PF2|=2a﹣|PF1|=2(﹣1)a,由PF2⊥PF1,知2c=|F1F2|=,因此e=====.点评:本题考查了椭圆的定义2a=|PF1|+|PF2|,椭圆的标准方程,直角三角形的勾股定理,属于中档题.22.(12分)(2015•重庆)在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k 0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.考点:数列与不等式的综合.专题:创新题型;等差数列与等比数列;不等式的解法及应用.分析:(Ⅰ)把λ=0,μ=﹣2代入数列递推式,得到(n∈N+),分析a n≠0后可得a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.从而可得数列的通项公式;(Ⅱ)把代入数列递推式,整理后可得(n∈N).进一步得到=,对n=1,2,…,k0求和后放缩可得不等式左边,结合,进一步利用放缩法证明不等式右边.解答:(Ⅰ)解:由λ=0,μ=﹣2,有(n∈N+).若存在某个n0∈N+,使得,则由上述递推公式易得,重复上述过程可得a1=0,此与a1=3矛盾,∴对任意n∈N+,a n≠0.从而a n+1=2a n(n∈N+),即{a n}是一个公比q=2的等比数列.故.(Ⅱ)证明:由,数列{a n}的递推关系式变为,变形为:(n∈N).由上式及a1=3>0,归纳可得3=a1>a2>...>a n>a n+1> 0∵=,∴对n=1,2,…,k0求和得:=>.另一方面,由上已证的不等式知,,得=2+.综上,2+<<2+.点评:本题考查了数列递推式,考查了等比关系的确定,训练了放缩法证明数列不等式属难度较大的题目.2015年重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•重庆)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A2.(5分)(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=()A.﹣1 B.0C.1D.63.(5分)(2015•重庆)重庆市2013年各月的平均气温(℃)数据的茎叶图如,则这组数据的中位数是()A.19 B.20 C.21.5 D.234.(5分)(2015•重庆)“x>1”是“(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件5.(5分)(2015•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.(5分)(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(5分)(2015•重庆)执行如图所示的程序框图,若输出k的值为8,则判断框图可填入的条件是()A .s ≤ B .s ≤ C .s ≤D .s ≤8.(5分)(2015•重庆)已知直线l :x+ay ﹣1=0(a ∈R )是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴.过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( ) A . 2 B . C . 6 D .9.(5分)(2015•重庆)若tan α=2tan ,则=( )A . 1B . 2C . 3D . 410.(5分)(2015•重庆)设双曲线=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a+,则该双曲线的渐近线斜率的取值范围是( )A . (﹣1,0)∪(0,1)B . (﹣∞,﹣1)∪(1,+∞)C . (﹣,0)∪(0,)D . (﹣∞,﹣)∪(,+∞)二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.(5分)(2015•重庆)设复数a+bi (a ,b ∈R )的模为,则(a+bi )(a ﹣bi )= .12.(5分)(2015•重庆)的展开式中x 8的系数是 (用数字作答).13.(5分)(2015•重庆)在△ABC中,B=120°,AB=,A的角平分线AD=,则AC=.三、考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.(5分)(2015•重庆)如题图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,PC=3,CE:ED=2:1,则BE=.15.(5分)(2015•重庆)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l与曲线C的交点的极坐标为.16.(2015•重庆)若函数f(x)=|x+1|+2|x﹣a|的最小值为5,则实数a=.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)(2015•重庆)端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(Ⅰ)求三种粽子各取到1个的概率;(Ⅱ)设X表示取到的豆沙粽个数,求X的分布列与数学期望.18.(13分)(2015•重庆)已知函数f(x)=sin(﹣x)sinx﹣x(Ⅰ)求f(x)的最小正周期和最大值;(Ⅱ)讨论f(x)在上的单调性.19.(13分)(2015•重庆)如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.20.(12分)(2015•重庆)设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.21.(12分)(2015•重庆)如题图,椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1(Ⅰ)若|PF 1|=2+|=2﹣,求椭圆的标准方程;(Ⅱ)若|PF1|=|PQ|,求椭圆的离心率e.22.(12分)(2015•重庆)在数列{a n}中,a1=3,a n+1a n+λa n+1+μa n2=0(n∈N+)(Ⅰ)若λ=0,μ=﹣2,求数列{a n}的通项公式;(Ⅱ)若λ=(k 0∈N+,k0≥2),μ=﹣1,证明:2+<<2+.。
简约平实重基础 融会贯通考真知——2013年高考数学重庆卷理科第9题赏析
命 题 感 悟
2 0 1 3 年 1 1 月
简约平 实重基础 融会 贯通 考真知
— —
2 O 1 3 年 高考数 学重庆卷理科 第9 题 赏析
⑩重 庆 市梁 平 实验 中 学 蒋 明 建
2 0 1 3 年 高考数学重庆卷理科 第9 题: 4 c o s 5 0 。 一 t a n 4 0 。 =
—
c o s 4 0。 2 c os l O ̄
.
— — — — —
-
s i n 4
—
0
— —
 ̄
— .
—
—
—
—
—
—
.
—
—
—
c o s 4 0 。
求 值 的 目的. 观察 本题 目, 发 现它有两 个特 征 : 一个特 征
是虽然4 0 。 、 5 0 。 不 是特殊角 , 它们 的和9 0 。 却 是特殊 角 , 根
C O s 4 0。 2 s i n 5 0  ̄ c o s 3 0 ̄
—
—
:
、 / 了.
c o s 4 0。
≤ 蘸
中・ ? 毒 《 : - ? 高 中 版
2 0 1 3年 1 1 月
命 题 感 悟
坛 线
评注 : 这 里 是 根 据 角 变换 的 “ 中 间 集 中” 原则 , 将8 0 o
8 0  ̄ 一 3 0 。 . 又 可逆 用 两 角 差 的 正 弦公 式 求 解 . 即
2 s i n 8 0  ̄ - c o s 5 0 。 2 s i n 8 0  ̄ - c o s ( 8 0  ̄ - 3 0 。 )
s i n 5 0 。 s i n 5 0 。
2013年重庆市高考数学试卷(理科)答案与解析
2013年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)(2013•重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)(2013•重庆)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.解答:解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8考点:茎叶图.专题:概率与统计.分析:求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.解答:解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.点评:本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240考点: 由三视图求面积、体积. 专题: 空间位置关系与距离. 分析:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积. 解答:解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选C .点评: 由三视图正确恢复原几何体是解题的关键. 6.(5分)(2013•重庆)若a <b <c ,则函数f (x )=(x ﹣a )(x ﹣b )+(x ﹣b )(x ﹣c )+(x ﹣c )(x ﹣a )的两个零点分别位于区间( ) A . (a ,b )和(b ,c )内 B . (﹣∞,a )和(a ,b )内 C . (b ,c )和(c ,+∞)内 D . (﹣∞,a )和(c ,+∞)内考点: 函数零点的判定定理. 专题: 函数的性质及应用. 分析: 由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点;又函数f (x )是二次函数,最多有两个零点,即可判断出. 解答: 解:∵a <b <c ,∴f (a )=(a ﹣b )(a ﹣c )>0,f (b )=(b ﹣c )(b ﹣a )<0,f (c )=(c ﹣a )(c ﹣b )>0,由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点; 又函数f (x )是二次函数,最多有两个零点, 因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 故选A . 点评: 熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键. 7.(5分)(2013•重庆)已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A . 5﹣4 B . 1 C . 6﹣2 D .考点: 圆与圆的位置关系及其判定;两点间的距离公式. 专题: 直线与圆. 分析: 求出圆C 1关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆C 2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.解答:解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:=5﹣4.故选A.点评:本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)(2013•重庆)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9考点:程序框图.专题:图表型.分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.解答:解:根据程序框图,运行结果如下:S k第一次循环log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.点评:本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)(2013•重庆)4cos50°﹣tan40°=()A.B.C.D.2﹣1考点:两角和与差的正弦函数;同角三角函数间的基本关系;诱导公式的作用;二倍角的正弦.专题:三角函数的求值.分析:原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.解答:解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C点评:此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)(2013•重庆)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]考点:向量在几何中的应用;平面向量的基本定理及其意义.专题:压轴题;平面向量及应用.分析:建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.解答:解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选D.点评:本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)(2013•重庆)已知复数z=(i是虚数单位),则|z|=.考点:复数求模.专题:计算题.分析:通过复数的分子与分母同时求模即可得到结果.解答:解:|z|===.故答案为:.点评:本题考查复数的模的求法,考查计算能力.12.(5分)(2013•重庆)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=64.考点:等差数列的前n项和;等比数列的前n项和.专题:计算题;压轴题;等差数列与等比数列.分析:依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.解答:解:∵{a n}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.点评:本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)(2013•重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).考点:排列、组合及简单计数问题.专题:压轴题;概率与统计.分析:不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.解答:解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种故答案为:590.点评:本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC 的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.考点:与圆有关的比例线段.专题:直线与圆.分析:利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.解答:解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.点评:熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)(2013•重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.考点:点的极坐标和直角坐标的互化;两点间的距离公式;参数方程化成普通方程.专题:压轴题;直线与圆.分析:先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.解答:解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.点评:本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].考点:绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.解答:解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].点评:本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.考点:利用导数研究函数的单调性;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.解答:解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.点评:本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值解答:解:(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元点评:本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.考点:用空间向量求平面间的夹角;点、线、面间的距离计算;二面角的平面角及求法.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..解答:解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD 的法向量为=(x 1,y 1,z 1),平面FAB 的法向量为=(x 2,y 2,z 2), ∵•=0且•=0,∴,取y 1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos <,>===因此,二面角B ﹣AF ﹣D 的正弦值等于=点评:本题在三棱锥中求线段PA 的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题. 20.(12分)(2013•重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+ab=c 2. (1)求C ; (2)设cosAcosB=,=,求tan α的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数. 专题:解三角形. 分析: (1)利用余弦定理表示出cosC ,将已知等式变形后代入求出cosC 的值,由C 为三角形的内角,利用特殊角的三角函数值即可求出C 的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B 的度数求出sin (A+B )的值,进而求出cos (A+B )的值,利用两角和与差的余弦函数公式化简cos (A+B ),将cosAcosB 的值代入求出sinAsinB 的值,将各自的值代入得到tan α的方程,求出方程的解即可得到tan α的值.解答:解:(1)∵a 2+b 2+ab=c 2,即a 2+b 2﹣c 2=﹣ab , ∴由余弦定理得:cosC===﹣,又C 为三角形的内角, 则C=;(2)由题意==,∴(cosA ﹣tan αsinA )(cosB ﹣tan αsinB )=,即tan 2αsinAsinB ﹣tan α(sinAcosB+cosAsinB )+cosAcosB=tan 2αsinAsinB ﹣tan αsin (A+B )+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin (A+B )=,cos (A+B )=cosAcosB ﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan 2α﹣tan α+=,即tan 2α﹣5tan α+4=0,解得:tan α=1或tan α=4.点评: 此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P'Q ,求圆Q 的标准方程.考点:圆锥曲线的综合.专题:压轴题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.解答:解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)(2013•重庆)对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.考点:集合中元素个数的最值;子集与交集、并集运算的转换.专题:集合.分析:(1)对于集合P7 ,有n=7.当k=4时,根据P n中有3个数与I n={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,P n不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.解答:解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,P n={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,P n对应有7个数,当k=3时,m=1,2,3…,7,P n对应有7个数,当k=4时,P n={|m∈I n,k∈I n}=P n={,1,,2,,3,}中有3个数(1,2,3)与k=1时P n中的数重复,当k=5时,m=1,2,3…,7,P n对应有7个数,当k=6时,m=1,2,3…,7,P n对应有7个数,当k=7时,m=1,2,3…,7,P n对应有7个数,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.假设当n≥15时,P n可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=P n⊇I n .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.点评:本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。
2010年重庆市高考数学试卷(理科)答案与解析
2010年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•重庆)在等比数列{a n}中,a2010=8a2007,则公比q的值为()A.2 B.3 C.4 D.8【考点】等比数列的性质.【专题】计算题.【分析】利用等比数列的通项公式,分别表示出a2010和a2007,两式相除即可求得q3,进而求得q.【解答】解:∴q=2故选A【点评】本题主要考查了等比数列的性质.属基础题.2.(5分)(2010•重庆)已知向量,满足•=0,||=1,||=2,则|2﹣|=()A.0 B. C.4 D.8【考点】向量的模.【专题】计算题.【分析】利用题中条件,把所求|2|平方再开方即可【解答】解:∵=0,||=1,||=2,∴|2|====2故选B.【点评】本题考查向量模的求法,考查计算能力,是基础题.3.(5分)(2010•重庆)=()A.﹣1 B.﹣C.D.1【考点】极限及其运算.【专题】计算题.【分析】先进行通分,然后消除零因子,可以把简化为,由此可得答案.【解答】解:===﹣,故选B.【点评】本题考查函数的极限,解题时要注意消除零因子.4.(5分)(2010•重庆)设变量x,y满足约束条件,则z=2x+y的最大值为()A.﹣2 B.4 C.6 D.8【考点】简单线性规划的应用.【专题】计算题.【分析】先根据约束条件画出可行域,利用几何意义求最值,只需求出直线z=2x+y过点B时,z最大值即可.【解答】解:不等式组表示的平面区域如图所示,设z=2x+y,∵直线z=2x+y过可行域内B(3,0)的时候z最大,最大值为6,故选C.【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.5.(5分)(2010•重庆)函数的图象()A.关于原点对称 B.关于直线y=x对称C.关于x轴对称 D.关于y轴对称【考点】奇偶函数图象的对称性.【专题】计算题.【分析】题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,【解答】解:,∴f(x)是偶函数,图象关于y轴对称故选D.【点评】考查函数的对称性,宜从奇偶性入手研究.6.(5分)(2010•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=1,φ= B.ω=1,φ=﹣C.ω=2,φ= D.ω=2,φ=﹣【考点】y=Asin(ωx+φ)中参数的物理意义;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;综合题.【分析】通过图象求出函数的周期,再求出ω,由(,1)确定φ,推出选项.【解答】解:由图象可知:T==π,∴ω=2;(,1)在图象上,所以2×+φ=,φ=﹣.故选D.【点评】本题考查y=Asin(ωx+φ)中参数的物理意义,由y=Asin(ωx+φ)的部分图象确定其解析式,考查视图能力,逻辑推理能力.7.(5分)(2010•重庆)已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是()A.3 B.4 C.D.【考点】基本不等式.【专题】计算题.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用代入已知条件,化简为函数求最值.【解答】解:考察基本不等式,整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4故选B.【点评】此题主要考查基本不等式的用法,对于不等式在求最大值最小值的问题中应用非常广泛,需要同学们多加注意.8.(5分)(2010•重庆)直线y=与圆心为D的圆(θ∈[0,2π))交与A、B两点,则直线AD与BD的倾斜角之和为()A. B. C. D.【考点】圆的参数方程;直线的倾斜角;直线和圆的方程的应用.【专题】计算题.【分析】根据题目条件画出圆的图象与直线的图象,再利用圆的性质建立两个倾斜角的等量关系,化简整理即可求出.【解答】解:数形结合,∠1=α﹣30°,∠2=30°+π﹣β,由圆的性质可知∠1=∠2,∴α﹣30°=30°+π﹣β,故α+β=,故选C.【点评】本题主要考查了圆的参数方程,以及直线的倾斜角和直线和圆的方程的应用,属于基础题.9.(5分)(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种【考点】排列及排列数公式;排列、组合的实际应用.【专题】压轴题.【分析】本题的要求比较多,有三个限制条件,甲、乙排在相邻两天可以把甲和乙看做一个元素,注意两者之间有一个排列,丙不排在10月1日,丁不排在10月7日,则可以甲乙排1、2号或6、7号,或是甲乙排中间,丙排7号或不排7号,根据分类原理得到结果.【解答】解:分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有2×种,然后排丁,有种,剩下其他四个人全排列有种,因此共有2×A22A41A44=384种方法第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后丙在7号,剩下四个人全排列有种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有4×种,然后排丙,丙不再1号和7号,有种,接着排丁,丁不排在10月7日,有种,剩下3个人全排列,有种,因此共有(4A22A44+4A22A31A31A33)=624种方法,故共有1008种不同的排法故选C.【点评】本题主要考查分类计数原理,分类要做到“不重不漏”.分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.本题限制条件比较多,容易出错,解题时要注意.10.(5分)(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线 B.椭圆 C.抛物线D.双曲线【考点】抛物线的定义;双曲线的标准方程.【专题】计算题;压轴题;分类讨论.【分析】先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.【解答】解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0 和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D【点评】本题主要考查了双曲线的方程.考查了学生分析归纳和推理的能力.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•重庆)已知复数z=1+i,则= ﹣2i .【考点】复数代数形式的乘除运算.【专题】计算题.【分析】把复数z=1+I代入要求的式子,应用复数相除的法则化简得到结果.【解答】解:=,故答案为﹣2i.【点评】本题考查复数代数形式的运算法则.12.(5分)(2010•重庆)设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m= ﹣3 .【考点】补集及其运算.【专题】计算题.【分析】由题意分析,得到A={0,3},后由根与系数直接间的关系求出m的值【解答】解;∵U={0,1,2,3}、∁U A={1,2},∴A={0,3},∴0、3是方程x2+mx=0的两个根,∴0+3=﹣m,∴m=﹣3,故答案为:﹣3.【点评】本题考查集合的运算即补集的运算及根与系数之间的关系,关键是由题意得出集合A.13.(5分)(2010•重庆)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为.【考点】互斥事件的概率加法公式.【分析】在两次罚球中至多命中一次的对立事件是两次都命中,设出命中的概率P,由对立事件的概率公式列出方程,求出命中一次的概率.【解答】解:设罚球的命中的概率为P,由两次罚球中至多命中一次的概率为,得∴,故答案为:.【点评】对立事件公式的应用经常在概率计算中出现,从正面做包含的事件较多,可以从反面来解决,注意区分互斥事件和对立事件之间的关系.14.(5分)(2010•重庆)已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点到准线的距离为.【考点】抛物线的简单性质;点到直线的距离公式;抛物线的定义.【专题】计算题;压轴题.【分析】设BF=m,由抛物线的定义知AA1和BB1,进而可推断出AC和AB,及直线AB的斜率,则直线AB 的方程可得,与抛物线方程联立消去y,进而跟韦达定理求得x1+x2的值,则根据抛物线的定义求得弦AB的中点到准线的距离.【解答】解:设BF=m,由抛物线的定义知AA1=3m,BB1=m∴△ABC中,AC=2m,AB=4m,直线AB方程为与抛物线方程联立消y得3x2﹣10x+3=0所以AB中点到准线距离为故答案为【点评】本题主要考查了抛物线的简单性质.考查了直线与抛物线的关系及焦点弦的问题.常需要利用抛物线的定义来解决.15.(5分)(2010•重庆)已知函数f(x)满足:,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2010)= .【考点】抽象函数及其应用;函数的周期性.【专题】计算题;压轴题.【分析】由于题目问的是f(2010),项数较大,故马上判断函数势必是周期函数,所以集中精力找周期即可;周期的寻找方法可以是不完全归纳推理出,也可以是演绎推理得出.【解答】解:取x=1,y=0得法一:根据已知知取x=1,y=1得f(2)=﹣取x=2,y=1得f(3)=﹣取x=2,y=2得f(4)=﹣取x=3,y=2得f(5)=取x=3,y=3得f(6)=猜想得周期为6法二:取x=1,y=0得取x=n,y=1,有f(n)=f(n+1)+f(n﹣1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)=﹣f(n﹣1)所以f(n)=﹣f(n+3)=f(n+6)所以函数是周期函数,周期T=6,故f(2010)=f(0)=故答案为:.【点评】准确找出周期是此类问题(项数很大)的关键,分别可以用归纳法和演绎法得出周期,解题时根据自己熟悉的方法得出即可.三、解答题(共6小题,满分75分)16.(13分)(2010•重庆)设函数f(x)=cos(x+π)+2cos2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=,求a的值.【考点】正弦函数的定义域和值域;正弦定理;余弦定理.【专题】计算题.【分析】(I)将f(x)=cos(x+π)+2化简,变形后可以用三角函数的有界性求值域.(II)由f(B)=1 求出∠B,利用余弦定理建立关于a的方程求出a.【解答】解:(I)f(x)=cos(x+π)+2=cosxcosπ﹣sinxsinπ+cosx+1=﹣cosx﹣sinx+cosx+1=cosx﹣sinx+1=sin(x+)+1因此函数f(x)的值域为[0,2](II)由f(B)=1 得sin(B+)+1=1,即sin(B+)=0,即B+=0或π,B=或﹣又B是三角形的内角,所以B=由余弦定理得b2=a2+c2﹣2accosB即1=a2+3﹣3a,整理a2﹣3a+2=0解得a=1或a=2答:(I)函数f(x)的值域为[0,2](II)a=1或a=2【点评】考查利用三角函数的有界性求值域与利用余弦定理解三角形,属基本题型,用来训练答题者熟练三角恒等变形公式与余弦定理.17.(13分)(2010•重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.【考点】等可能事件的概率;排列、组合及简单计数问题.【专题】计算题.【分析】(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,满足条件的事件是甲和乙的演出序号都是偶数,根据等可能事件的概率公式得到结果.(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,甲和乙两个单位的演出序号不相邻,的对立事件是甲和乙两个单位的演出序号相邻,根据对立事件的概率公式得到结果.【解答】解:(1)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设A表示甲和乙的演出序号都是偶数,共有A32=6种结果,∴所求的概率P(A)==(2)考虑甲和乙两个单位的排列,甲、乙两个单位可能排列在6个位置中的任两个,有A62=30种等可能的结果,设B表示甲和乙两个单位的演出序号不相邻,则表示甲和乙两个单位的演出序号相邻,共有5A22=10种结果∴P(B)=1﹣P()=1﹣=.【点评】本题主要考查古典概型和对立事件,正难则反是解题时要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加容易.18.(13分)(2010•重庆)已知函数,其中实数a≠1.(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.【考点】利用导数研究函数的单调性;导数的几何意义.【分析】首先求出函数的导数及在点f(0)处的值,然后求出在该点的切线方程,第二问根据函数的导数与极值的关系求出a的值,然后根据函数的导数与单调性的关系讨论函数的单调性.【解答】解:(1)=,当a=2时,f′(0)=,而f(0)=﹣,所以曲线在点(0,f(0))处的切线方程为:y﹣(﹣)=(x﹣0),即7x﹣4y﹣2=0.(2)因为a≠1,由(1)可知=;又因为f(x)在x=1处取得极值,所以,解得a=﹣3;此时,定义域(﹣1,3)∪(3,+∞);=,由f′(x)=0得x1=1,x2=7,当﹣1<x<1或x>7时f′(x)>0;当1<x<7且x≠3时f′(x)<0;由上讨论可知f(x)在(﹣1,1],[7,+∞)时是增函数,在[1,3),(3,7]上是减函数.【点评】掌握函数的导数与极值和单调性的关系.19.(12分)(2010•重庆)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,点E是棱PB的中点.(1)求直线AD与平面PBC的距离;(2)若AD=,求二面角A﹣EC﹣D的平面角的余弦值.【考点】点、线、面间的距离计算;与二面角有关的立体几何综合题.【专题】计算题;综合题;空间角.【分析】(1)先根据AD∥BC,推断出AD∥平面PBC,进而可知直线AD与平面PBC的距离为点A到平面PBC 的距离,根据PA⊥底面ABCD,判断出PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,进而可知AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,进而可推断出AE之长即为直线AD与平面PBC的距离.Rt△PAB中,根据PA和AB求得AE.(2)过点D作DF⊥CE,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而求得DE在Rt△CBE中,利用勾股定理求得CE,进而可知CE=CD推断出△CDE为等边三角形,求得DF,因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG 平行且等于AE的一半,从而求得FG,且G点为AC的中点,连接DG,则在Rt△ADC中,求得DG,最后利用余弦定理求得答案.【解答】解:(1)在矩形ABCD中,AD∥BC,从而AD∥平面PBC,故直线AD与平面PBC的距离为点A到平面PBC的距离,因PA⊥底面ABCD,故PA⊥AB,知△PAB为等腰直角三角形,又点E是棱PB的中点,故AE⊥PB,又在矩形ABCD中,BC⊥AB,而AB是PB的底面ABCD内的射影,由三垂线定理得BC⊥PB,从而BC⊥平面PAB,故BC⊥AE,从而AE⊥平面PBC,故AE之长即为直线AD与平面PBC的距离,在Rt△PAB中,PA=AB=,所以AE=PB==(2)过点D作DF⊥CE于F,过点F做FG⊥CE,交AC于G,则∠DFG为所求的二面角的平面角.由(1)知BC⊥平面PAB,又AD∥BC,得AD⊥平面PAB,故AD⊥AE,从而DE==在Rt△CBE中,CE==,由CD=,所以△CDE为等边三角形,故F为CE的中点,且DF=CD•s in=因为AE⊥平面PBC,故AE⊥CE,又FG⊥CE,知FG∥AE.且FG=AE,从而FG=,且G点为AC的中点,连接DG,则在Rt△ADC中,DG==,所以cos∠DFG==【点评】本题主要考查了点,线,面的距离计算.在求两面角问题时关键是找到两个面的平面角.20.(12分)(2010•重庆)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.【考点】直线与圆锥曲线的综合问题;双曲线的标准方程;双曲线的简单性质.【专题】计算题;压轴题.【分析】(1)设C的标准方程为(a>0,b>0),由题意知a=2,b=1,由此可求出C的标准方程和渐近线方程.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,则,设MN 与x轴的交战为Q,则,由此可求△OGH的面积.【解答】解:(1)设C的标准方程为(a>0,b>0),则由题意知,,∴a=2,b=1,∴C的标准方程为.∴C的渐近线方程为,即x﹣2y=0和x+2y=0.(2)由题意知,点E(x E,y E)在直线l1:x1x+4y1y=4和l2:x2x+4y2y=4上,因此有x E x+4y E y=4上,因此直线MN的方程为x E x+4y E y=4.设G,H分别是直线MN与渐近线x﹣2y=0及x+2y=0的交点,由方程组及,解得,设MN与x轴的交点为Q,则在直线x E x+4y E y=4k,令y=0得,∵x E2﹣4y E2=4,∴==.【点评】本题考查圆锥曲线的性质和应用,难度较大,解题时要认真审题,注意挖掘隐含条件,仔细解答.21.(12分)(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.【考点】数列递推式;数学归纳法.【专题】计算题;压轴题;探究型;归纳法.【分析】(1)根据a1,a2和a3猜测a n=(n2﹣1)c n+c n﹣1,进而用数学归纳法证明.(2)把(1)中求得的a n代入a2k>a zk﹣1,整理得(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0,分别表示c k和又c k',根据c k<<1求得c≥1,再根据c k'<0,判断出单调递增知c k'≥c1'求得<﹣,最后综合答案可得.【解答】解:(1)由a1=1,a2=ca1+c23=(22﹣1)c2+ca3=ca2+c3•5=(32﹣1)c3+c2,猜测a n=(n2﹣1)c n+c n﹣1,下面用数学归纳法证明,当n=1是,等式成立假设当n=k,等式成立即a k=(k2﹣1)c k+c k﹣1,则当n=k+1时a k+1=ca k+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2﹣1]c k+1+c k,综上a n=(n2﹣1)c n+c n﹣1,对任意n∈N都成立.(2)由a2k>a zk﹣1得[(2k)2﹣1]c2k+c2k﹣1>[(2k﹣1)2﹣1]c2k﹣1+c2k﹣2,因c2k﹣2>0,所以(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0解此不等式得c>c k,或c<c k',其中c k=c k'=易知c k=1又由<=4k2+1,知c k<<1因此由c>c k对一切k∈N成立得c≥1又c k'=<0,可知单调递增,故c k'≥c1'对一切k∈N*成立,因此由c<c k'对一切k∈N*成立得c<﹣从而c的取值范围是(﹣∞,﹣)∪[1,+∞]【点评】本题主要考查了数列的递推式.考查了学生综合运用所学知识和实际的运算能力.。
2013年重庆市高考数学真题(理科)及答案
2013年普通高等学校招生全国统一考试【重庆卷】数学试题卷【理工农医类】特别提醒:【14】、【15】、【16】三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个备选项中,只有一个选项是符合题目要求的、【1】已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B = ð【A 】{1,3,4} 【B 】{3,4} 【C 】{3} 【D 】{4} 【2】命题“对任意x R ∈,都有20x ≥”的否定为【A 】对任意x R ∈,使得20x < 【B 】不存在x R ∈,使得20x <【C 】存在0x R ∈,都有200x ≥ 【D 】存在0x R ∈,都有200x <【363a -≤≤】的最大值为【A 】9 【B 】92 【C 】3 【D 】2【4】以下茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩【单位:分】.x 、y 的值分别为【A 】2、5 【B 】5、5 【C 】5,8 【D 】8,8【5】某几何体的三视图如题【5】图所示,则该几何体的体积为【A 】5603 【B 】5803【C 】200 【D 】240【6】若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间【A 】(,)a b 和(,)b c 内 【B 】(,)a -∞和(,)a b 内【C 】(,)b c 和(,)c +∞内 【D 】(,)a -∞和(,)c +∞内【7】已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M 、N分别是圆1C 、2C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为【A 】4 【B 1 【C 】6-【D 【8】执行如题【8】图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是【A 】6k ≤ 【B 】7k ≤ 【C 】8k ≤ 【D 】9k ≤ 【9】004cos50tan 40-=【A 【B 【C 【D 】1 【10】在平面上,12AB AB ⊥ ,121OB OB == ,12AP AB AB =+ 、若12OP < ,则OA的取值范围是【A 】 【B 】 【C 】 【D 】二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分、把答案填写在答题卡相应位置上、【11】已知复数512iz i=+【i 是虚数单位】,则z = 、 【12】已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若1a 、2a 、5a 称等比数列,则8S = 、【13】从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 【用数字作答】、考生注意:【14】、【15】、【16】三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分、【14】如题【14】图,在△ABC 中,090C ∠=,060A ∠=,20AB =,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为 、【15】在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系、若极坐标方程为cos 4ρθ=的直线与曲线23x t y t⎧=⎨=⎩【t 为参数】相交于A 、B 两点,则AB = 、【16】若关于实数x 的不等式53x x a -++<无解,则实数a 的取值范围是 、 三、解答题:本大题共6小题,共75分、解答应写出文字说明、证明过程或演算步骤、 【17】【本小题满分13分,【Ⅰ】小问6分,【Ⅱ】小问7分】设2()(5)6ln f x a x x =-+,其中a R ∈,曲线()y f x =在点【1,(1)f 】处的切线与y 轴相较于点【0,6】、 【Ⅰ】确定a 的值;【Ⅱ】求函数()f x 的单调区间与极值、【18】【本小题满分13分,【Ⅰ】小问5分,【Ⅱ】小问8分】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个篮球与2个白球的袋中任意摸出1其余情况无奖且每次摸奖最多只能获得一个奖级、 【Ⅰ】求一次摸球恰好摸到1个红球的概率;【Ⅱ】求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X 、 【19】【本小题满分13分,【Ⅰ】小问5分,【Ⅱ】小问8分】如题【19】图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2BC CD ==,4AC =,3ACB ACD π∠=∠=,F 为PC 的中点,AF ⊥PB 、【Ⅰ】求PA 的长;【Ⅱ】求二面角B AF D --的余弦值、【20】【本小题满分12分,【Ⅰ】小问4分,【Ⅱ】小问8分】在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=、 【Ⅰ】求C ;【Ⅱ】设cos cos 5A B =,2cos()cos()cos 5A B ααα++=tan α的值、 【21】【本小题满分12分,【Ⅰ】小问4分,【Ⅱ】小问8分】如题【21】图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于A 、A '两点,4AA '=、【Ⅰ】求该椭圆的标准方程; 【Ⅱ】取垂直于x 轴的直线与椭圆相较于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外、若PQ ⊥P Q ',求圆Q 的标准方程、【22】【本小题满分12分,【Ⅰ】小问4分,【Ⅱ】小问8分】对正整数n ,记{1,2,3,n I =…,}n ,n n P I =∈,}n k I ∈、 【Ⅰ】求集合7P 中元素的个数;【Ⅱ】若n P 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”、求n 的最大值,使n P 能分成两个不相交的稀疏集的并、。
2013年江西省高考数学试卷(理科)答案与解析
2013年江西省高考数学试卷(理科)答案与解析2013年江西省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江西)已知集合M={1,2,zi},i 为虚数单位,N={3,4},M ∩N={4},则复数z=( ) A . ﹣2i B . 2i C . ﹣4i D . 4i考点:交集及其运算.专题:计算题.分析: 根据两集合的交集中的元素为4,得到zi=4,即可求出z 的值. 解答: 解:根据题意得:zi=4, 解得:z=﹣4i .故选C 点评: 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•江西)函数y=的定义域为( )A . (0,1)B . [0,1)C . (0,1]D . [0,1] 考点:函数的定义域及其求法.专题: 计算题;函数的性质及应用. 分析:由函数的解析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项 解答:解:由题意,自变量满足,解得0≤x <1,即函数y=的定义域为[0,1)故选B 点评:本题考查函数定义域的求法,理解相关函数的定义是解题的关键,本题是概念考查题,基础题.3.(5分)(2013•江西)等比数列x ,3x+3,6x+6,…的第四项等于( )A . ﹣24B . 0C . 12D . 24考点:等比数列的性质.专题:等差数列与等比数列.分析: 由题意可得(3x+3)2=x (6x+6),解x 的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项. 解答: 解:由于 x ,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x (6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24, 故选A . 点评: 本题主要考查等比数列的通项公式,等比数列的性质,属于基础题.4.(5分)(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( ) 7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481 A . 08 B . 07 C . 02 D . 01考点:简单随机抽样.专题:图表型.分析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论. 解答:解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01, 故第5个数为01. 故选:D . 点评: 本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.5.(5分)(2013•江西)(x 2﹣)5的展开式中的常数项为( ) A . 80 B . ﹣80 C . 40 D . ﹣40考点:二项式定理.专题:计算题;概率与统计. 分析:利用(x )5展开式中的通项公式T r+1=•x 2(5﹣r )•(﹣2)r •x ﹣3r ,令x 的幂指数为0,求得r 的值,即可求得(x )5展开式中的常数项.解答:解:设(x )5展开式中的通项为T r+1,则T r+1=•x 2(5﹣r )•(﹣2)r •x ﹣3r =(﹣2)r ••x 10﹣5r,令10﹣5r=0得r=2, ∴(x)5展开式中的常数项为(﹣2)2×=4×10=40.故选C . 点评: 本题考查二项式定理,着重考查二项展开式的通项公式,考查运算能力,属于中档题. 6.(5分)(2013•江西)若S 1=x 2dx ,S 2=dx ,S 3=e x dx ,则S 1,S 2,S 3的大小关系为( ) A . S 1<S 2<S 3B . S 2<S 1<S 3C . S 2<S 3<S 1D . S 3<S 2<S 1考点:微积分基本定理.专题:导数的概念及应用.分析: 先利用积分基本定理计算三个定积分,再比较它们的大小即可.解答: 解:由于S 1=x 2dx=|=,S 2=dx=lnx|=ln2, S 3=e x dx=e x |=e 2﹣e .且ln2<<e 2﹣e ,则S 2<S 1<S 3. 故选:B .点评: 本小题主要考查定积分的计算、不等式的大小比较等基础知识,考查运算求解能力.属于基础题.7.(5分)(2013•江西)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为( )A . S =2*i ﹣B . S =2*i ﹣C . S =2*iD . S =2*i+42 1考点:程序框图.专题:图表型.分析:题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s <10,我们模拟程序执行的过程,从而得到答案. 解答: 解:当空白矩形框中应填入的语句为S=2*I 时,程序在运行过程中各变量的值如下表示: i S 是否继续循环 循环前1 0/ 第一圈 2 5 是 第二圈 3 6 是 第三圈 4 9 是 第四圈 5 10 否故输出的i 值为:5,符合题意. 故选C . 点本题考查了程序框图中的当型循环,当型循评: 环是当条件满足时进入循环体,不满足条件算法结束,输出结果.8.(5分)(2013•江西)如果,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m+n=( )A . 8B . 9C . 10D . 11考点:平面的基本性质及推论.专题:计算题;空间位置关系与距离.分析:判断CE 与EF 与正方体表面的关系,即可推出正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,求出m+n 的值. 解解:由题意可知直线CE 与正方体的上底面答: 平行在正方体的下底面上,与正方体的四个侧面不平行,所以m=4,直线EF 与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8. 故选A . 点评: 本题考查直线与平面的位置关系,基本知识的应用,考查空间想象能力.9.(5分)(2013•江西)过点()引直线l与曲线y=相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的斜率等于( ) A . B . C .D .考点:直线与圆的位置关系;直线的斜率.专题:压轴题;直线与圆.分析: 由题意可知曲线为单位圆在x 轴上方部分(含与x 轴的交点),由此可得到过C 点的直线与曲线相交时k 的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值. 解答:解:由y=,得x 2+y 2=1(y ≥0). 所以曲线y=表示单位圆在x 轴上方的部分(含与x 轴的交点),设直线l 的斜率为k ,要保证直线l 与曲线有两个交点,且直线不与x 轴重合, 则﹣1<k <0,直线l 的方程为y ﹣0=,即.则原点O 到l 的距离d=,l 被半圆截得的半弦长为.则===. 令,则,当,即时,S△ABO有最大值为.此时由,解得k=﹣.故答案为B .点评:本题考查了直线的斜率,考查了直线与圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题.10.(5分)(2013•江西)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线l 1,l 2之间,l ∥l 1,l 与半圆相交于F ,G 两点,与三角形ABC 两边相交于E ,D 两点.设弧的长为x (0<x <π),y=EB+BC+CD ,若l 从l 1平行移动到l 2,则函数y=f (x )的图象大致是( )A .B .C .D .考点:函数的图象.专压轴题;函数的性质及应用.题: 分析: 由题意可知:随着l 从l 1平行移动到l 2,y=EB+BC+CD 越来越大,考察几个特殊的情况,计算出相应的函数值y ,结合考查选项可得答案.解答: 解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG 为正三角形,此时AM=OH=, 在正△AED 中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA ﹣(AE+AD )=3×﹣2×1=2﹣2.如图. 又当x=时,图中y 0=+(2﹣)=>2﹣2.故当x=时,对应的点(x ,y )在图中红色连线段的下方,对照选项,D 正确. 故选D .点评: 本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)(2013•江西)函数y=最小正周期T 为 π . 考点: 三角函数的周期性及其求法;两角和与差的正弦函数;二倍角的余弦.专题:三角函数的图像与性质.分析: 函数解析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期. 解答:解:y=sin2x+2×=sin2x ﹣cos2x+=2(sin2x ﹣cos2x )+=2sin (2x﹣)+, ∵ω=2,∴T=π. 故答案为:π 点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和与差的正弦函数公式,熟练掌握公式是解本题的关键.12.(5分)(2013•江西)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为 . 考点:平面向量数量积的运算.专题:平面向量及应用.分析: 根据题意求得的值,从而求得的值,再根据在上的射影为 ,运算求得结果.解答: 解:∵、为单位向量,且 和 的夹角θ等于,∴=1×1×cos =. ∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5.∴在上的射影为 =,故答案为 . 点评: 本题主要考查两个向量的数量积的运算,一个向量在另一个向量上的射影的定义,属于中档题.13.(5分)(2013•江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,则f ′(1)= 2 . 考点:导数的运算;函数的值.专题: 计算题;压轴题;函数的性质及应用;导数的概念及应用.分析: 由题设知,可先用换元法求出f (x )的解析式,再求出它的导数,从而求出f ′(1). 解答: 解:函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,令e x =t ,则x=lnt ,故有f (t )=lnt+t ,即f (x )=lnx+x ,∴f ′(x )=+1,故f ′(1)=1+1=2.故答案为:2. 点评: 本题考查了求导的运算以及换元法求外层函数的解析式,属于基本题型,运算型.14.(5分)(2013•江西)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线=1相交于A ,B 两点,若△ABF 为等边三角形,则p= 6 . 考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析: 求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p 即可.解答:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣, 准线方程与双曲线联立可得:,解得x=±,因为△ABF 为等边三角形,所以,即p 2=3x 2, 即,解得p=6.故答案为:6. 点评: 本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(2013•江西)(坐标系与参数方程选做题)设曲线C 的参数方程为(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 ρcos 2θ﹣sin θ=0 . 考点: 抛物线的参数方程;简单曲线的极坐标方程.专题:计算题;压轴题.分析: 先求出曲线C 的普通方程,再利用x=ρcos θ,y=ρsin θ代换求得极坐标方程.解答:解:由(t 为参数),得y=x 2, 令x=ρcos θ,y=ρsin θ,代入并整理得ρcos 2θ﹣sin θ=0. 即曲线C 的极坐标方程是ρcos 2θ﹣sin θ=0.故答案为:ρcos 2θ﹣sin θ=0. 点评: 本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcos θ,y=ρsin θ.16.(2013•江西)(不等式选做题)在实数范围内,不等式||x ﹣2|﹣1|≤1的解集为 [0,4] . 考点:绝对值不等式的解法.专题:计算题;压轴题;不等式的解法及应用.分析: 利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可.解答: 解:不等式||x ﹣2|﹣1|≤1的解集,就是﹣1≤|x ﹣2|﹣1≤1的解集,也就是0≤|x ﹣2|≤2的解集,0≤|x ﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x ≤4.所以不等式的解集为[0,4]. 故答案为:[0,4].点评: 本题考查绝对值不等式的解法,绝对值不等式的几何意义,注意不等式的等价转化是解题的关键.四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)(2013•江西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cosC+(cosA ﹣sinA )cosB=0. (1)求角B 的大小;(2)若a+c=1,求b 的取值范围.考点:余弦定理;两角和与差的余弦函数.专题:解三角形.分析: (1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA 不为0求出tanB 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB 的值代入表示出b 2,根据a 的范围,利用二次函数的性质求出b 2的范围,即可求出b 的范围. 解答: 解:(1)由已知得:﹣cos (A+B )+cosAcosB ﹣sinAcosB=0,即sinAsinB ﹣sinAcosB=0,∵sinA ≠0,∴sinB ﹣cosB=0,即tanB=, 又B 为三角形的内角, 则B=;(2)∵a+c=1,即c=1﹣a ,cosB=, ∴由余弦定理得:b 2=a 2+c 2﹣2ac •cosB ,即b 2=a 2+c 2﹣ac=(a+c )2﹣3ac=1﹣3a (1﹣a )=3(a ﹣)2+,∵0<a <1,∴≤b 2<1, 则≤b <1. 点评:此题考查了余弦定理,二次函数的性质,诱导公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.18.(12分)(2013•江西)正项数列{a n }的前n 项和S n 满足:S n 2 (1)求数列{a n }的通项公式a n ; (2)令b,数列{b n }的前n 项和为T n .证明:对于任意n ∈N *,都有T .考点:数列的求和;等差数列的通项公式.专题:计算题;证明题;等差数列与等比数列. 分析: (I )由S n 2可求s n ,然后利用a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1可求a n(II )由b==,利用裂项求和可求T n ,利用放缩法即可证明解答:解:(I )由S n 2 可得,[](S n +1)=0 ∵正项数列{a n },S n >0 ∴S n =n 2+n 于是a 1=S 1=2n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2﹣(n﹣1)=2n ,而n=1时也适合 ∴a n =2n (II )证明:由b ==∴]=点评: 本题主要考查了递推公式a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1在求解数列的通项公式中的应用及数列的裂项求和方法的应用.19.(12分)(2013•江西)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列和数学期望.考点: 离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析: (1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值 解答:解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种 X=0时,两向量夹角为直角共有8种情形 所以小波参加学校合唱团的概率P (X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形 X=1时有8种情形 X=﹣1时,有10种情形 X 的分布列为: X ﹣2 ﹣1 0 1PEX==点评:本题主要考查了古典概率的求解公式的应用及离散型随机变量的分布列及期望值的求解.20.(12分)(2013•江西)如图,四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,E 为BD 的中点,G 为PD 的中点,△DAB ≌△DCB ,EA=EB=AB=1,PA=,连接CE 并延长交AD 于F (1)求证:AD ⊥平面CFG ;(2)求平面BCP 与平面DCP 的夹角的余弦值.考点: 用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:计算题;空间位置关系与距离;空间角. 分析: (1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB ≌△DCB 得到△EAB ≌△ECB ,从而得到∠FED=∠FEA=,所以EF ⊥AD 且AF=FD ,结合题意得到FG 是△PAD 是的中位线,可得FG ∥PA ,根据PA ⊥平面ABCD 得FG ⊥平面ABCD ,得到FG ⊥AD ,最后根据线面垂直的判定定理证出AD ⊥平面CFG ;(2)以点A 为原点,AB 、AD 、PA 分别为x 轴、y 轴、z 轴建立如图直角坐标系,得到A 、B 、C 、D 、P 的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP 、平面DCP 的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP 与平面DCP 的夹角的余弦值. 解答: 解:(1)∵在△DAB 中,E 为BD 的中点,EA=EB=AB=1,∴AE=BD ,可得∠BAD=,且∠ABE=∠AEB=∵△DAB ≌△DCB ,∴△EAB ≌△ECB ,从而得到∠FED=∠BEC=∠AEB= ∴∠EDA=∠EAD=,可得EF ⊥AD ,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD 是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y 1,z1),则解得y 1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y 2,z2),则解得y 2=,z2=2,可得=(1,,2),∴cos <,>===因此平面BCP 与平面DCP 的夹角的余弦值等于|cos <,>|=.点评: 本题在三棱锥中求证线面垂直,并求平面与平面所成角的余弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题.21.(13分)(2013•江西)如图,椭圆C :经过点P (1,),离心率e=,直线l 的方程为x=4. (1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程. 专题: 压轴题;转化思想;圆锥曲线的定义、性质与方程.分析: (1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a ,b 用c 表示出来代入方程,解得c ,从而解得a ,b ,即可得到椭圆的标准方程; (2)方法一:可先设出直线AB 的方程为y=k (x ﹣1),代入椭圆的方程并整理成关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),利用根与系数的关系求得x 1+x 2=,,再求点M 的坐标,分别表示出k 1,k 2,k 3.比较k 1+k 2=λk 3即可求得参数的值;方法二:设B (x 0,y 0)(x 0≠1),以之表示出直线FB 的方程为,由此方程求得M 的坐标,再与椭圆方程联立,求得A 的坐标,由此表示出k 1,k 2,k 3.比较k 1+k 2=λk 3即可求得参数的值 解答:解:(1)椭圆C :经过点P (1,),可得①由离心率e=得=,即a=2c ,则b 2=3c 2②,代入①解得c=1,a=2,b= 故椭圆的方程为(2)方法一:由题意可设AB 的斜率为k ,则直线AB 的方程为y=k (x ﹣1)③ 代入椭圆方程并整理得(4k 2+3)x 2﹣8k 2x+4k 2﹣12=0设A (x 1,y 1),B (x 2,y 2), x 1+x 2=,④在方程③中,令x=4得,M 的坐标为(4,3k ),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k 1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k 1+k2=2k﹣×=2k﹣1又k 3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB 的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA 的斜率k 1=,直线PB 的斜率为k 2=所以k 1+k 2=+=2×=2k 3,故存在常数λ=2符合题意点评: 本题考查直线与圆锥曲线的综合问题,考查了分析转化的能力与探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能碸解答出.22.(14分)(2013•江西)已知函数f (x )=,a 为常数且a >0. (1)f (x )的图象关于直线x=对称; (2)若x 0满足f (f (x 0))=x 0,但f (x 0)≠x 0,则x 0称为函数f (x )的二阶周期点,如果f (x )有两个二阶周期点x 1,x 2,试确定a 的取值范围;(3)对于(2)中的x 1,x 2,和a ,设x 3为函数f (f (x ))的最大值点,A (x 1,f (f (x 1))),B (x 2,f (f (x 2))),C (x 3,0),记△ABC 的面积为S (a ),讨论S (a )的单调性. 考点: 利用导数研究函数的单调性;奇偶函数图象的对称性;函数的值.专题:压轴题;新定义.分析: (1)只要证明成立即可;(2)对a 分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x 3,得出三角形的面积,利用导数即可得出其单调性. 解答: (1)证明:∵==a (1﹣2|x|),=a (1﹣2|x|),∴,∴f (x )的图象关于直线x=对称. (2)解:当时,有f (f (x ))=.∴f (f (x ))=x 只有一个解x=0又f (0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x 2为函数f(x)的最大值点,∴,或.当时,S (a )=.求导得:S ′(a )=.∴当时,S (a )单调递增,当时,S (a )单调递减. 当时,S (a )=,求导得.∵,从而有.∴当时,S (a )单调递增.点评: 本题考查了新定义“二阶周期点”、利用导数研究函数的单调性、三角形的面积等基础知识,考查了推理能力和计算能力.。
重庆市2013年高考数学考纲解读及命题分析《不等式(理工农医类)》
重庆市2013年高考数学考纲解读及命题分析《不等式(理工农医类)》摘要:本文通过对2013年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)考试说明的解读和2006-2012年的历史命题分析来预测新课标之后重庆高考数学不等式板块的命题趋势。
并在此趋势下,根据课程大纲及考试大纲要求提出高考复习建议。
关键词:考纲解读、预测、趋势、复习建议不等式在高考中占据着十分重要的地位,新考纲颁布后,在每年的高考试卷中都有一个填空题选做5分,以及22题的最后一问也是数列不等式,而且不等式和立体几何这一类在高考中分数固定的知识点不一样的是不等式在高考中不仅仅局限于这两个题,而是其思想很有可能在很多选填题中体现。
填空题的这一个不等式题目与平面几何、极坐标与参数方程这两块之前从未涉及到的内容一起构成填空三选二的选做题。
从熟悉度和考纲要求两方面来说都是比较占优势的。
一、《不等式(理工农医类)》考纲解读◆运算求解能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件寻找或设计合理、简捷的运算途径;能根据要求对数据惊醒估计和近似运算。
1.绝对值不等式【考纲解读】(1)、理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:①|a+b|≤|a|+|b|②|a-b|≤|a-c|+|c-b|③会求解以下类型的不等式: |ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c(2)、会用上述不等式证明一些简单问题(3)、了解证明不等式的基本方法:比较法、综合法和分析法【命题规律及趋势】绝对值不等式在以前的教材中出现过,知识没有像现在这样单独列出来一个考点,这其实也不算是一个新增考点。
但是对于其几何意义以及其证明对于大家来说是比较陌生的,但是“距离”这一几何意义在考纲中是有要求的。
这也是数形结合的一种很好的体现。
考纲在抽象概括能力这一块高度要求舍弃事物非本质的属性,揭示其本质属性,就此处的绝对值不等式而言就是找到它的本质属性:距离。
2013年江西省高考数学试卷(理科)答案与解析
2013年江西省高考数学试卷(理科)参考答案和试题分析一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•江西)已知集合M={1,2,zi},i为虚数单位,N={3,4},M∩N={4},则复数z=()A.﹣2i B.2i C.﹣4i D.4i考点:交集及其运算.专题:计算题.分析:根据两集合的交集中的元素为4,得到zi=4,即可求出z的值.解答:解:根据题意得:zi=4,解得:z=﹣4i.故选C点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•江西)函数y=的定义域为()A.(0,1)B.[0,1)C.(0,1]D.[0,1]考点:函数的定义域及其求法.专题:计算题;函数的性质及使用.分析:由函数的分析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项解答:解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选B点评:本题考查函数定义域的求法,理解相关函数的定义是解题的关键,本题是概念考查题,基础题.3.(5分)(2013•江西)等比数列x,3x+3,6x+6,…的第四项等于()A.﹣24 B.0C.12 D.24 考点:等比数列的性质.专题:等差数列和等比数列.分析:由题意可得(3x+3)2=x(6x+6),解x的值,可得此等比数列的前三项,从而求得此等比数列的公比,从而求得第四项.解答:解:由于x,3x+3,6x+6是等比数列的前三项,故有(3x+3)2=x(6x+6),解x=﹣3,故此等比数列的前三项分别为﹣3,﹣6,﹣12,故此等比数列的公比为2,故第四项为﹣24,故选A.本题主要考查等比数列的通项公式,等比数列的性质,属于基础题.点评:4.(5分)(2013•江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481 A.08 B. 07 C. 02 D.01考点:简单随机抽样.专题:图表型.分析:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论.解答:解:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01.故选:D.点评:本题主要考查简单随机抽样.在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的.5.(5分)(2013•江西)(x2﹣)5的展开式中的常数项为()A.80 B.﹣80 C.40 D.﹣40 二项式定理.考点:计算题;概率和统计.专题:分利用(x)5展开式中的通项公式T r+1=•x2(5﹣r)•(﹣2)r•x﹣3r,令x的幂析:指数为0,求得r的值,即可求得(x)5展开式中的常数项.解解:设(x)5展开式中的通项为T r+1,答:则T r+1=•x2(5﹣r)•(﹣2)r•x﹣3r=(﹣2)r••x10﹣5r,令10﹣5r=0得r=2,∴(x)5展开式中的常数项为(﹣2)2×=4×10=40.故选C.点本题考查二项式定理,着重考查二项展开式的通项公式,考查运算能力,属于中档题.6.(5分)(2013•江西)若S1=x2dx,S2=dx,S3=e x dx,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1考点:微积分基本定理.专题:导数的概念及使用.分析:先利用积分基本定理计算三个定积分,再比较它们的大小即可.解答:解:由于S1=x2dx=|=,S2=dx=lnx|=ln2,S3=e x dx=e x|=e2﹣e.且ln2<<e2﹣e,则S2<S1<S3.故选:B.点评:本小题主要考查定积分的计算、不等式的大小比较等基础知识,考查运算求解能力.属于基础题.7.(5分)(2013•江西)阅读如下程序框图,如果输出i=5,那么在空白矩形框中应填入的语句为()A.S=2*i﹣2 B.S=2*i﹣1 C.S=2*i D.S=2*i+4考程序框图.专题:图表型.分析:题目给出了输出的结果i=5,让我们分析矩形框中应填的语句,根据判断框中内容,即s<10,我们模拟程序执行的过程,从而得到答案.解答:解:当空白矩形框中应填入的语句为S=2*I时,程序在运行过程中各变量的值如下表示:i S 是否继续循环循环前1 0/第一圈2 5 是第二圈3 6 是第三圈4 9 是第四圈5 10 否故输出的i值为:5,符合题意.故选C.点评:本题考查了程序框图中的当型循环,当型循环是当条件满足时进入循环体,不满足条件算法结束,输出结果.8.(5分)(2013•江西)如果,正方体的底面和正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面和直线CE,EF相交的平面个数分别记为m,n,那么m+n=()A.8B.9C.10 D.11考点:平面的基本性质及推论.专题:计算题;空间位置关系和距离.分析:判断CE和EF和正方体表面的关系,即可推出正方体的六个面所在的平面和直线CE,EF相交的平面个数分别记为m,n,求出m+n的值.解答:解:由题意可知直线CE和正方体的上底面平行在正方体的下底面上,和正方体的四个侧面不平行,所以m=4,直线EF和正方体的左右两个侧面平行,和正方体的上下底面相交,前后侧面相交,所以n=4,所以m+n=8.故选A.点评:本题考查直线和平面的位置关系,基本知识的使用,考查空间想象能力.9.(5分)(2013•江西)过点()引直线l和曲线y=相交于A,B两点,O 为坐标原点,当△ABO的面积取得最大值时,直线l的斜率等于()A.B.C.D.考直线和圆的位置关系;直线的斜率.专题:压轴题;直线和圆.分析:由题意可知曲线为单位圆在x轴上方部分(含和x轴的交点),由此可得到过C点的直线和曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.解答:解:由y=,得x2+y2=1(y≥0).所以曲线y=表示单位圆在x轴上方的部分(含和x轴的交点),设直线l的斜率为k,要保证直线l和曲线有两个交点,且直线不和x轴重合,则﹣1<k<0,直线l的方程为y﹣0=,即.则原点O到l的距离d=,l被半圆截得的半弦长为.则===.令,则,当,即时,S△ABO有最大值为.此时由,解得k=﹣.故答案为B.点评:本题考查了直线的斜率,考查了直线和圆的关系,考查了学生的运算能力,考查了配方法及二次函数求最值,解答此题的关键在于把面积表达式转化为二次函数求最值,是中档题.10.(5分)(2013•江西)如图,半径为1的半圆O和等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l和半圆相交于F,G两点,和三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题;函数的性质及使用.分析:由题意可知:随着l从l1平行移动到l2,y=EB+BC+CD越来越大,考察几个特殊的情况,计算出相应的函数值y,结合考查选项可得答案.解答:解:当x=0时,y=EB+BC+CD=BC=;当x=π时,此时y=AB+BC+CA=3×=2;当x=时,∠FOG=,三角形OFG为正三角形,此时AM=OH=,在正△AED中,AE=ED=DA=1,∴y=EB+BC+CD=AB+BC+CA﹣(AE+AD)=3×﹣2×1=2﹣2.如图.又当x=时,图中y0=+(2﹣)=>2﹣2.故当x=时,对应的点(x,y)在图中红色连线段的下方,对照选项,D正确.故选D.点本题考查函数的图象,注意理解图象的变化趋势是解决问题的关键,属中档题.评:二.第Ⅱ卷填空题:本大题共4小题,每小题5分,共20分11.(5分)(2013•江西)函数y=最小正周期T为π.考点:三角函数的周期性及其求法;两角和和差的正弦函数;二倍角的余弦.专题:三角函数的图像和性质.分析:函数分析式第二项利用二倍角的余弦函数公式化简,整理后利用两角和和差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式即可求出函数的最小正周期.解答:解:y=sin2x+2×=sin2x﹣cos2x+=2(sin2x﹣cos2x)+=2sin (2x﹣)+,∵ω=2,∴T=π.故答案为:π点评:此题考查了三角函数的周期性及其求法,涉及的知识有:二倍角的余弦函数公式,两角和和差的正弦函数公式,熟练掌握公式是解本题的关键.12.(5分)(2013•江西)设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为.考点:平面向量数量积的运算.专题:平面向量及使用.分析:根据题意求得的值,从而求得的值,再根据在上的射影为,运算求得结果.解答:解:∵、为单位向量,且和的夹角θ等于,∴=1×1×cos=.∵=+3,=2,∴=(+3)•(2)=2+6=2+3=5.∴在上的射影为=,故答案为.点评:本题主要考查两个向量的数量积的运算,一个向量在另一个向量上的射影的定义,属于中档题.13.(5分)(2013•江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)= 2.考点:导数的运算;函数的值.专题:计算题;压轴题;函数的性质及使用;导数的概念及使用.分析:由题设知,可先用换元法求出f(x)的分析式,再求出它的导数,从而求出f′(1).解答:解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.点评:本题考查了求导的运算以及换元法求外层函数的分析式,属于基本题型,运算型.14.(5分)(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线和双曲线=1相交于A,B两点,若△ABF为等边三角形,则p=6.考点:抛物线的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质和方程.分析:求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线和双曲线的交点坐标,利用三角形是等边三角形求出p即可.解答:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程和双曲线联立可得:,解得x=±,因为△ABF为等边三角形,所以,即p2=3x2,即,解得p=6.故答案为:6.点评:本题考查抛物线的简单性质,双曲线方程的使用,考查分析问题解决问题的能力以及计算能力.三.第Ⅱ卷选做题:请在下列两题中任选一题作答,若两道题都做,按第一题评卷计分.本题共5分.15.(5分)(2013•江西)(坐标系和参数方程选做题)设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为ρcos2θ﹣sinθ=0.考点:抛物线的参数方程;简单曲线的极坐标方程.专题:计算题;压轴题.分析:先求出曲线C的普通方程,再利用x=ρcosθ,y=ρsinθ代换求得极坐标方程.解答:解:由(t为参数),得y=x2,令x=ρcosθ,y=ρsinθ,代入并整理得ρcos2θ﹣sinθ=0.即曲线C的极坐标方程是ρcos2θ﹣sinθ=0.故答案为:ρcos2θ﹣sinθ=0.点评:本题主要考查极坐标方程、参数方程及直角坐标方程的转化.普通方程化为极坐标方程关键是利用公式x=ρcosθ,y=ρsinθ.16.(2013•江西)(不等式选做题)在实数范围内,不等式||x﹣2|﹣1|≤1的解集为[0,4].考点:绝对值不等式的解法.专题:计算题;压轴题;不等式的解法及使用.分析:利用绝对值不等式的等价形式,利用绝对值不等式几何意义求解即可.解答:解:不等式||x﹣2|﹣1|≤1的解集,就是﹣1≤|x﹣2|﹣1≤1的解集,也就是0≤|x﹣2|≤2的解集,0≤|x﹣2|≤2的几何意义是数轴上的点到2的距离小于等于2的值,所以不等式的解为:0≤x≤4.所以不等式的解集为[0,4].故答案为:[0,4].点评:本题考查绝对值不等式的解法,绝对值不等式的几何意义,注意不等式的等价转化是解题的关键.四.第Ⅱ卷解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•江西)在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣sinA)cosB=0.(1)求角B的大小;(2)若a+c=1,求b的取值范围.考点:余弦定理;两角和和差的余弦函数.专题:解三角形.分析:(1)已知等式第一项利用诱导公式化简,第二项利用单项式乘多项式法则计算,整理后根据sinA不为0求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(2)由余弦定理列出关系式,变形后将a+c及cosB的值代入表示出b2,根据a的范围,利用二次函数的性质求出b2的范围,即可求出b的范围.解答:解:(1)由已知得:﹣cos(A+B)+cosAcosB﹣sinAcosB=0,即sinAsinB﹣sinAcosB=0,∵sinA≠0,∴sinB﹣cosB=0,即tanB=,又B为三角形的内角,则B=;(2)∵a+c=1,即c=1﹣a,cosB=,∴由余弦定理得:b2=a2+c2﹣2ac•cosB,即b2=a2+c2﹣ac=(a+c)2﹣3ac=1﹣3a(1﹣a)=3(a﹣)2+,∵0<a<1,∴≤b2<1,则≤b<1.点评: 此题考查了余弦定理,二次函数的性质,诱导公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键. 18.(12分)(2013•江西)正项数列{a n }的前n 项和S n 满足:S n 2(1)求数列{a n }的通项公式a n ; (2)令b,数列{b n }的前n 项和为T n .证明:对于任意n ∈N *,都有T .考点: 数列的求和;等差数列的通项公式. 专题: 计算题;证明题;等差数列和等比数列. 分析: (I )由S n2可求s n ,然后利用a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1可求a n (II )由b==,利用裂项求和可求T n ,利用放缩法即可证明 解答: 解:(I )由S n2可得,[](S n +1)=0∵正项数列{a n },S n >0∴S n =n 2+n 于是a 1=S 1=2n ≥2时,a n =S n ﹣S n ﹣1=n 2+n ﹣(n ﹣1)2﹣(n ﹣1)=2n ,而n=1时也适合 ∴a n =2n (II )证明:由b==∴]=点评: 本题主要考查了递推公式a 1=s 1,n ≥2时,a n =s n ﹣s n ﹣1在求解数列的通项公式中的使用及数列的裂项求和方法的使用. 19.(12分)(2013•江西)小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列和数学期望.考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望和方差.专题:计算题;概率和统计.分析:(1)先求出从8个点中任意取两个点为向量的终点的不同取法,而X=0时,即两向量夹角为直角,求出结果数,代入古典概率的求解公式可求(2)先求出两向量数量积的所有可能情形及相应的概率,即可求解分布列及期望值解答:解:(1)从8个点中任意取两个点为向量的终点的不同取法有=28种X=0时,两向量夹角为直角共有8种情形所以小波参加学校合唱团的概率P(X=0)==(2)两向量数量积的所有可能情形有﹣2,﹣1,0,1X=﹣2时有2种情形X=1时有8种情形X=﹣1时,有10种情形X的分布列为:X ﹣2 ﹣1 0 1PEX==点评:本题主要考查了古典概率的求解公式的使用及离散型随机变量的分布列及期望值的求解.20.(12分)(2013•江西)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F(1)求证:AD⊥平面CFG;(2)求平面BCP和平面DCP的夹角的余弦值.考点:用空间向量求平面间的夹角;直线和平面垂直的判定;二面角的平面角及求法.专题:计算题;空间位置关系和距离;空间角.分析:(1)利用直角三角形的判定得到∠BAD=,且∠ABE=∠AEB=.由△DAB≌△DCB得到△EAB≌△ECB,从而得到∠FED=∠FEA=,所以EF⊥AD 且AF=FD,结合题意得到FG是△PAD是的中位线,可得FG∥PA,根据PA⊥平面ABCD得FG⊥平面ABCD,得到FG⊥AD,最后根据线面垂直的判定定理证出AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,得到A、B、C、D、P的坐标,从而得到、、的坐标,利用垂直向量数量积为零的方法建立方程组,解出=(1,﹣,)和=(1,,2)分别为平面BCP、平面DCP的法向量,利用空间向量的夹角公式算出、夹角的余弦,即可得到平面BCP和平面DCP的夹角的余弦值.解答:解:(1)∵在△DAB中,E为BD的中点,EA=EB=AB=1,∴AE=BD,可得∠BAD=,且∠ABE=∠AEB=∵△DAB≌△DCB,∴△EAB≌△ECB,从而得到∠FED=∠BEC=∠AEB=∴∠EDA=∠EAD=,可得EF⊥AD,AF=FD又∵△PAD中,PG=GD,∴FG是△PAD是的中位线,可得FG∥PA∵PA⊥平面ABCD,∴FG⊥平面ABCD,∵AD⊂平面ABCD,∴FG⊥AD又∵EF、FG是平面CFG内的相交直线,∴AD⊥平面CFG;(2)以点A为原点,AB、AD、PA分别为x轴、y轴、z轴建立如图直角坐标系,可得A(0,0,0),B(1,0,0),C(,,0),D(0,,0),P(0,0,)∴=(,,0),=(﹣,﹣,),=(﹣,,0)设平面BCP的法向量=(1,y1,z1),则解得y1=﹣,z1=,可得=(1,﹣,),设平面DCP的法向量=(1,y2,z2),则解得y2=,z2=2,可得=(1,,2),∴cos<,>===因此平面BCP和平面DCP的夹角的余弦值等于|cos<,>|=.点评:本题在三棱锥中求证线面垂直,并求平面和平面所成角的余弦值.着重考查了空间线面垂直的判定和性质,考查了利用空间向量研究平面和平面所成角等知识,属于中档题.21.(13分)(2013•江西)如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB和直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由.考点:直线和圆锥曲线的关系;椭圆的标准方程.专题:压轴题;转化思想;圆锥曲线的定义、性质和方程.分析:(1)由题意将点P (1,)代入椭圆的方程,得到,再由离心率为e=,将a,b用c表示出来代入方程,解得c,从而解得a,b,即可得到椭圆的标准方程;(2)方法一:可先设出直线AB的方程为y=k(x﹣1),代入椭圆的方程并整理成关于x的一元二次方程,设A(x1,y1),B(x2,y2),利用根和系数的关系求得x1+x2=,,再求点M的坐标,分别表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值;方法二:设B(x0,y0)(x0≠1),以之表示出直线FB的方程为,由此方程求得M的坐标,再和椭圆方程联立,求得A的坐标,由此表示出k1,k2,k3.比较k1+k2=λk3即可求得参数的值解答:解:(1)椭圆C:经过点P (1,),可得①由离心率e=得=,即a=2c,则b2=3c2②,代入①解得c=1,a=2,b=故椭圆的方程为(2)方法一:由题意可设AB的斜率为k,则直线AB的方程为y=k(x﹣1)③代入椭圆方程并整理得(4k2+3)x2﹣8k2x+4k2﹣12=0设A(x1,y1),B(x2,y2),x1+x2=,④在方程③中,令x=4得,M的坐标为(4,3k),从而,,=k﹣注意到A,F,B共线,则有k=k AF=k BF,即有==k所以k1+k2=+=+﹣(+)=2k﹣×⑤④代入⑤得k1+k2=2k﹣×=2k﹣1又k3=k﹣,所以k1+k2=2k3故存在常数λ=2符合题意方法二:设B(x0,y0)(x0≠1),则直线FB的方程为令x=4,求得M(4,)从而直线PM的斜率为k3=,联立,得A(,),则直线PA的斜率k1=,直线PB的斜率为k2=所以k1+k2=+=2×=2k3,故存在常数λ=2符合题意点评:本题考查直线和圆锥曲线的综合问题,考查了分析转化的能力和探究的能力,考查了方程的思想,数形结合的思想,本题综合性较强,运算量大,极易出错,解答时要严谨运算,严密推理,方能碸解答出.22.(14分)(2013•江西)已知函数f(x)=,a为常数且a>0.(1)f(x)的图象关于直线x=对称;(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则x0称为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;(3)对于(2)中的x1,x2,和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性.考点:利用导数研究函数的单调性;奇偶函数图象的对称性;函数的值.专题:压轴题;新定义.分析:(1)只要证明成立即可;(2)对a分类讨论,利用二阶周期点的定义即可得出;(3)由(2)得出x3,得出三角形的面积,利用导数即可得出其单调性.解答:(1)证明:∵==a(1﹣2|x|),=a(1﹣2|x|),∴,∴f(x)的图象关于直线x=对称.(2)解:当时,有f(f(x))=.∴f(f(x))=x只有一个解x=0又f(0)=0,故0不是二阶周期点.当时,有f(f(x))=.∴f(f(x))=x有解集,{x|x},故此集合中的所有点都不是二阶周期点.当时,有f(f(x))=,∴f(f(x))=x有四个解:0,,,.由f(0)=0,,,.故只有,是f(x)的二阶周期点,综上所述,所求a的取值范围为.(3)由(2)得,.∵x2为函数f(x)的最大值点,∴,或.当时,S(a)=.求导得:S′(a)=.∴当时,S(a)单调递增,当时,S(a)单调递减.当时,S(a)=,求导得.∵,从而有.∴当时,S(a)单调递增.点评:本题考查了新定义“二阶周期点”、利用导数研究函数的单调性、三角形的面积等基础知识,考查了推理能力和计算能力.。
重庆市历年高考理科数学真题及答案详解(2004-2012)
重庆市历年高考理科数学真题及答案详解(2004-2012)2004年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟. 第Ⅰ部分(选择题 共60分)参考公式: 如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k knnP P Ck P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =的定义域是:( )A .[1,)+∞B .23(,)+∞C .23[,1] D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -= ( )A .–3B .3C .-3iD .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞U B .(,1)(0,1)-∞-UC .(1,0)(0,1)-UD .(,1)(1,)-∞-+∞U5.sin163sin 223sin 253sin313+=oooo( ) A .12- B.12C .D 6.若向量r r a 与b的夹角为60o,||4,(2).(3)72b a b a b =+-=-r r r r r,则向量ar的模为 ( )A .2B . 4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( ) A .0a < B .0a > C .1a <- D .1a >8.设P 是60o的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为 ( ) A .B . C .D . 9. {}na 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0nS >成立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为: ( )A .43B .53C .2D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140D .1120 12.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是 ( )(A )(B )(C )(D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x=-=-与在交点处切线的夹角是______,(用幅度数作答)15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为nS ,则lim ______nx S →∞=.16.对数K ,直线:y kx b =+椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44=+-的最小正周期和最小y x x x xsin cos cos值;并写出该函数在[0,]π上的单调递增区间。
2011年重庆市高考数学试卷(理科)及答案
2011年重庆市高考数学试卷(理科)一、选择题(共10小题,每小题3分,满分30分)1.(3分)复数=()A.B.C. D.2.(3分)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(3分)已知,则a=()A.1 B.2 C.3 D.64.(3分)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6 B.7 C.8 D.95.(3分)下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C. D.(1,2)6.(3分)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B. C.1 D.7.(3分)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.58.(3分)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.9.(3分)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为()A.B.C.1 D.10.(3分)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13二、填空题(共5小题,每小题3分,满分15分)11.(3分)在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=.12.(3分)已知单位向量,的夹角为60°,则|2﹣|=.13.(3分)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.14.(3分)已知sinα=+cosα,且α∈(0,),则的值为.15.(3分)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点.三、解答题(共6小题,满分75分)16.(13分)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.17.(13分)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.18.(13分)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.19.(12分)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.20.(12分)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.21.(12分)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.2011年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2011•重庆)复数=()A.B.C. D.【分析】利用i的幂的运算法则,化简分子,然后复数的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式,即可.【解答】解:复数====故选C2.(3分)(2011•重庆)“x<﹣1”是“x2﹣1>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x<﹣1,知x2﹣1>0,由x2﹣1>0知x<﹣1或x>1.由此知“x<﹣1”是“x2﹣1>0”的充分而不必要条件.【解答】解:∵“x<﹣1”⇒“x2﹣1>0”,“x2﹣1>0”⇒“x<﹣1或x>1”.∴“x<﹣1”是“x2﹣1>0”的充分而不必要条件.故选A.3.(3分)(2011•重庆)已知,则a=()A.1 B.2 C.3 D.6【分析】先将极限式通分化简,得到,分子分母同时除以x2,再取极限即可.【解答】解:原式==(分子分母同时除以x2)===2∴a=6故选:D.4.(3分)(2011•重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6 B.7 C.8 D.9【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x5与x6的系数,列出方程求出n.=3r C n r x r【解答】解:二项式展开式的通项为T r+1∴展开式中x5与x6的系数分别是35C n5,36C n6∴35C n5=36C n6解得n=7故选B5.(3分)(2011•重庆)下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C. D.(1,2)【分析】根据零点分段法,我们易将函数f(x)=|lg(2﹣x)|的解析式化为分段函数的形式,再根据复合函数“同增异减”的原则我们易求出函数的单调区间进而得到结论.【解答】解:∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D6.(3分)(2011•重庆)△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A.B. C.1 D.【分析】将(a+b)2﹣c2=4化为c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,再利用余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab即可求得答案.【解答】解:∵△ABC的边a、b、c满足(a+b)2﹣c2=4,∴c2=(a+b)2﹣4=a2+b2+2ab﹣4,又C=60°,由余弦定理得c2=a2+b2﹣2abcosC=a2+b2﹣ab,∴2ab﹣4=﹣ab,∴ab=.故选:A.7.(3分)(2011•重庆)已知a>0,b>0,a+b=2,则的最小值是()A.B.4 C.D.5【分析】利用题设中的等式,把y的表达式转化成()()展开后,利用基本不等式求得y的最小值.【解答】解:∵a+b=2,∴=1∴=()()=++≥+2=(当且仅当b=2a时等号成立)故选C8.(3分)(2011•重庆)在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径,根据图形可知,过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦BD,根据两点间的距离公式求出ME的长度,根据垂径定理得到E为BD的中点,在直角三角形BME中,根据勾股定理求出BE,则BD=2BE,然后利用AC与BD的乘积的一半即可求出四边形ABCD的面积.【解答】解:把圆的方程化为标准方程得:(x﹣1)2+(y﹣3)2=10,则圆心坐标为(1,3),半径为,根据题意画出图象,如图所示:由图象可知:过点E最长的弦为直径AC,最短的弦为过E与直径AC垂直的弦,则AC=2,MB=,ME==,所以BD=2BE=2=2,又AC⊥BD,所以四边形ABCD的面积S=AC•BD=×2×2=10.故选B.9.(3分)(2011•重庆)高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S 之间的距离为()A.B.C.1 D.【分析】由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.【解答】解:由题意可知ABCD所在的圆是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心O的距离为1,所以底面ABCD的中心O'与顶点S之间的距离为1故选C10.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8 B.8 C.12 D.13【分析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.【解答】解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,z=m+k取得最小值,即z min=13.故选D.二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2011•重庆)在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=74.【分析】根据等差数列的性质所有下标之和相同的两项之和相等,看出第三项与第七项的和等于第四项与第六项的和等于第二项与第八项的和,得到结果.【解答】解:等差数列{a n}中,a3+a7=37,∵a3+a7=a2+a8=a4+a6=37∴a2+a4+a6+a8=37+37=74,故答案为:7412.(3分)(2011•重庆)已知单位向量,的夹角为60°,则|2﹣|=.【分析】利用向量模的平方等于向量的平方,将已知等式平方,利用向量的数量积公式及将已知条件代入,求出模.【解答】解:===5﹣4cos60°=3∴故答案为13.(3分)(2011•重庆)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为.【分析】本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括三种情况,正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,写出概率,得到结果.【解答】解:由题意知本题是一个n次独立重复试验中恰好发生k次的概率,正面出现的次数比反面出现的次数多包括正面出现4次,反面出现2次;正面出现5次,反面出现1次;正面出现6次,共有三种情况,这三种情况是互斥的,∴正面出现的次数比反面出现的次数多的概率是++==故答案为:14.(3分)(2011•重庆)已知sinα=+cosα,且α∈(0,),则的值为﹣.【分析】由已知的等式变形后,记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据α为锐角,联立①②求出sinα和cosα的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.【解答】解:由sinα=+cosα,得到sinα﹣cosα=①,又sin2α+cos2α=1②,且α∈(0,),联立①②解得:sinα=,cosα=,∴cos2α=cos2α﹣sin2α=﹣,sin(α﹣)=(sinα﹣cosα)=,则==﹣.故答案为:﹣15.(3分)(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点(2,0).【分析】先由抛物线的标准方程写出其焦点坐标,准线方程,再结合抛物线的定义得出焦点必在动圆上,从而解决问题.【解答】解:抛物线y2=8x的焦点F(2,0),准线方程为x+2=0,故圆心到直线x+2=0的距离即半径等于圆心到焦点F的距离,所以F在圆上.故答案为:(2,0).三、解答题(共6小题,满分75分)16.(13分)(2011•重庆)设α∈R,f(x)=cosx(asinx﹣cosx)+cos2(﹣x)满足,求函数f(x)在上的最大值和最小值.【分析】利用二倍角公式化简函数f(x),然后,求出a的值,进一步化简为f(x)=2sin(2x﹣),然后根据x的范围求出2x﹣,的范围,利用单调性求出函数的最大值和最小值.【解答】解:f(x)=cosx(asinx﹣cosx)+cos2(﹣x)=asinxcosx﹣cos2x+sin2x=由得解得a=2所以f(x)=2sin(2x﹣),所以x∈[]时2x﹣,f(x)是增函数,所以x∈[]时2x﹣,f(x)是减函数,函数f(x)在上的最大值是:f()=2;又f()=,f()=;所以函数f(x)在上的最小值为:f()=;17.(13分)(2011•重庆)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:(Ⅰ)恰有2人申请A片区房源的概率;(Ⅱ)申请的房源所在片区的个数的ξ分布列与期望.【分析】(I)本题是一个等可能事件的概率,试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C4222,得到概率.(II)由题意知变量ξ的可能取值是1,2,3,结合变量对应的事件和第一问的做法写出变量对应的概率,写出分布列,做出变量的期望值.【解答】解:(I)由题意知本题是一个等可能事件的概率试验发生包含的事件是4个人中,每一个人有3种选择,共有34种结果,满足条件的事件是恰有2人申请A片区房源,共有C4222∴根据等可能事件的概率公式得到P==(II)由题意知ξ的可能取值是1,2,3P(ξ=1)=,P(ξ=2)=,P(ξ=3)=∴ξ的分布列是:ξ123P∴Eξ=18.(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.【分析】(I)根据已知中f(x)=x3+ax2+bx+1,我们根据求函数导函数的公式,易求出导数f'(x),结合f'(1)=2a,f'(2)=﹣b,计算出参数a,b的值,然后求出f(1)及f'(1)的值,然后代入点斜式方程,即可得到曲线y=f(x)在点(1,f(1))处的切线方程.(II)根据g(x)=f′(x)e﹣1求出函数g(x)的解析式,然后求出g(x)的导数g'(x)的解析式,求出导函数零点后,利用零点分段法,分类讨论后,即可得到函数g(x)的极值.【解答】解:(I)∵f(x)=x3+ax2+bx+1∴f'(x)=3x2+2ax+b.令x=1,得f'(1)=3+2a+b=2a,解得b=﹣3令x=2,得f'(2)=12+4a+b=﹣b,因此12+4a+b=﹣b,解得a=﹣,因此f(x)=x3﹣x2﹣3x+1∴f(1)=﹣,又∵f'(1)=2×(﹣)=﹣3,故曲线在点(1,f(1))处的切线方程为y﹣(﹣)=﹣3(x﹣1),即6x+2y﹣1=0.(II)由(I)知g(x)=(3x2﹣3x﹣3)e﹣x从而有g'(x)=(﹣3x2+9x)e﹣x令g'(x)=0,则x=0或x=3∵当x∈(﹣∞,0)时,g'(x)<0,当x∈(0,3)时,g'(x)>0,当x∈(3,+∞)时,g'(x)<0,∴g(x)=(3x2﹣3x﹣3)e﹣x在x=0时取极小值g(0)=﹣3,在x=3时取极大值g(3)=15e﹣319.(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.【分析】(I)要求四面体ABCD的体积,必须确定它的高和底面,由已知,△ABC 作为底面,高易作,根据线段的长度,即可求得四面体ABCD的体积;(Ⅱ)利用三垂线定理找出二面角C﹣AB﹣D的平面角,根据该角为60°,找到各边之间的关系,利用平移的方法找出异面直线AD与BC所成角,解三角形,即可求得异面直线AD与BC所成角的余弦值.【解答】解:(I)设F为AC的中点,由于AD=CD,所以DF⊥AC.故由平面ABC⊥平面ACD,知DF⊥平面ABC,即DF是四面体ABCD的面ABC上的高,且DF=ADsin30°=1,AF=ADcos30°=,在Rt△ABC中,因AC=2AF=2,AB=2BC,由勾股定理易知BC=,AB=.故四面体ABCD的体积V==.(II)设E为边AB的中点,则EF∥BC,由AB⊥BC,知EF⊥AB,又由(I)有DF⊥平面ABC,故由三垂线定理知DE⊥AB,所以∠DEF为二面角C﹣AB﹣D的平面角,由题设知∠DEF=60°.设AD=a,则DF=AD•sin∠CAD=,在Rt△DEF中,EF=DF•cotDEF==,取BD的中点M,连EM,FM,由中位线定理得,∠MEF为异面直线AD,BC所成的角或其补角,EM=FM=,由余弦定理得cos∠MEF===.20.(12分)(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.【分析】(Ⅰ)根据离心率和准线方程求得a和c,则b可得,则椭圆的方程可得.(Ⅱ)设出P,M,N的坐标,根据题设等式建立等式,把M,N代入椭圆方程,整理求得x2+2y220+4(x1x2+2y1y2),设出直线OM,ON的斜率,利用题意可求得x1x2+2y1y2=0,进而求得x2+2y2的值,利用椭圆的定义可推断出|PF1|+|PF2|为定值求得c,则两焦点坐标可得.【解答】解:(Ⅰ)由e==,=2,求得a=2,c=∴b==∴椭圆的方程为:(Ⅱ)设P(x,y),M(x1,y1),N(x2,y2),则由,得(x,y)=(x1,y1)+2(x2,y2),即x=x1+2x2,y=y1+2y2,∵点M,N在椭圆上,所以,故x2+2y2=(x12+4x22+4x1x2)+2(y12+4y22+4y1y2)=20+4(x1x2+2y1y2)设k0M,k ON分别为直线OM,ON的斜率,根据题意可知k0M k ON=﹣∴x1x2+2y1y2=0∴x2+2y2=20所以P在椭圆上;设该椭圆的左,右焦点为F1,F2,由椭圆的定义可推断出|PF1|+|PF2|为定值,因为c=,则这两个焦点坐标是(﹣,0)(,0)21.(12分)(2011•重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*).(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.(Ⅱ)求证:对k≥3有0≤a k≤.【分析】(Ⅰ)由题意,得S22=﹣2S2,由S2是等比中项知S2=﹣2,由此能求出S2和a3.(Ⅱ)由题设条件知S n+a n+1=a n+1S n,S n≠1,a n+1≠1,且,,由此能够证明对k≥3有0≤a n≤.﹣1【解答】解:(Ⅰ)由题意,得S22=﹣2S2,由S2是等比中项知S2≠0,∴S2=﹣2.由S2+a3=a3S2,解得.(Ⅱ)证明:因为S n=a1+a2+a3+…+a n+a n+1=a n+1+S n,+1由题设条件知S n+a n+1=a n+1S n,∴S n≠1,a n+1≠1,且,从而对k≥3 有a k===①因,且,要证,由①,只要证即证,即,此式明显成立,因此.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)(2013•重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4} B.{3,4} C.{3} D.{4}考点:交、并、补集的混合运算.专题:计算题.分析:根据A与B求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.解答:解:∵A={1,2},B={2,3},∴A∪B={1,2,3},∵全集U={1,2,3,4},∴∁U(A∪B)={4}.故选D点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.(5分)(2013•重庆)命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0考点:命题的否定;全称命题.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出命题的否定命题即可.解答:解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.(5分)(2013•重庆)(﹣6≤a≤3)的最大值为()A.9B.C.3D.考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,利用二次函数的性质求得函数f(a)的最大值,即可得到所求式子的最大值.解答:解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f (a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.4.(5分)(2013•重庆)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,8考点:茎叶图.专题:概率与统计.分析:求乙组数据的平均数就是把所有乙组数据加起来,再除以5.找甲组数据的中位数要把甲组数据按从小到大的顺序排列,位于最中间的一个数为中位数.据此列式求解即可.解答:解:乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.点评:本题考查了中位数和平均数的计算.平均数是指在一组数据中所有数据之和再除以数据的个数.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.5.(5分)(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.200 D.240考点: 由三视图求面积、体积. 专题: 空间位置关系与距离. 分析:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,据此即可计算出体积. 解答:解:如图所示,该几何体是棱长分别为4,8,10的长方体砍去两个小三棱柱得到一个四棱柱,由图知V==200.故选C .点评: 由三视图正确恢复原几何体是解题的关键. 6.(5分)(2013•重庆)若a <b <c ,则函数f (x )=(x ﹣a )(x ﹣b )+(x ﹣b )(x ﹣c )+(x ﹣c )(x ﹣a )的两个零点分别位于区间( ) A . (a ,b )和(b ,c )内 B . (﹣∞,a )和(a ,b )内 C . (b ,c )和(c ,+∞)内 D . (﹣∞,a )和(c ,+∞)内考点: 函数零点的判定定理. 专题: 函数的性质及应用. 分析: 由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点;又函数f (x )是二次函数,最多有两个零点,即可判断出. 解答: 解:∵a <b <c ,∴f (a )=(a ﹣b )(a ﹣c )>0,f (b )=(b ﹣c )(b ﹣a )<0,f (c )=(c ﹣a )(c ﹣b )>0,由函数零点存在判定定理可知:在区间(a ,b ),(b ,c )内分别存在一个零点; 又函数f (x )是二次函数,最多有两个零点, 因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 故选A . 点评: 熟练掌握函数零点存在判定定理及二次函数最多有两个零点的性质是解题的关键. 7.(5分)(2013•重庆)已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值为( ) A . 5﹣4 B . 1 C . 6﹣2 D .考点: 圆与圆的位置关系及其判定;两点间的距离公式. 专题: 直线与圆. 分析: 求出圆C 1关于x 轴的对称圆的圆心坐标A ,以及半径,然后求解圆A 与圆C 2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.解答:解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:=5﹣4.故选A.点评:本题考查圆的对称圆的方程的求法,两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力.8.(5分)(2013•重庆)执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9考点:程序框图.专题:图表型.分析:根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.解答:解:根据程序框图,运行结果如下:S k第一次循环log23 3第二次循环log23•log34 4第三次循环log23•log34•log45 5第四次循环log23•log34•log45•log56 6第五次循环log23•log34•log45•log56•log67 7第六次循环log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.点评:本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题.9.(5分)(2013•重庆)4cos50°﹣tan40°=()A.B.C.D.2﹣1考点:两角和与差的正弦函数;同角三角函数间的基本关系;诱导公式的作用;二倍角的正弦.专题:三角函数的求值.分析:原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.解答:解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C点评:此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.10.(5分)(2013•重庆)在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]考点:向量在几何中的应用;平面向量的基本定理及其意义.专题:压轴题;平面向量及应用.分析:建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.解答:解:根据条件知A,B1,P,B2构成一个矩形AB1PB2,以AB1,AB2所在直线为坐标轴建立直角坐标系,设|AB1|=a,|AB2|=b,点O的坐标为(x,y),则点P的坐标为(a,b),由=1,得,则∵||<,∴∴∴∵(x﹣a)2+y2=1,∴y2=1﹣(x﹣a)2≤1,∴y2≤1同理x2≤1∴x2+y2≤2②由①②知,∵||=,∴<||≤故选D.点评:本题考查向量知识的运用,考查学生转化问题的能力,考查学生的计算能力,属于难题.二、填空题:本大题共3小题,考生作答5小题,每小题5分,共25分,把答案填写在答题卡相应位置上.11.(5分)(2013•重庆)已知复数z=(i是虚数单位),则|z|=.考点:复数求模.专题:计算题.分析:通过复数的分子与分母同时求模即可得到结果.解答:解:|z|===.故答案为:.点评:本题考查复数的模的求法,考查计算能力.12.(5分)(2013•重庆)已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=64.考点:等差数列的前n项和;等比数列的前n项和.专题:计算题;压轴题;等差数列与等比数列.分析:依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.解答:解:∵{a n}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2﹣2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.点评:本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.(5分)(2013•重庆)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是590(用数字作答).考点:排列、组合及简单计数问题.专题:压轴题;概率与统计.分析:不同的组队方案:选5名医生组成一个医疗小组,要求其中骨科、脑外科和内科医生都至少有1人,方法共有6类,他们分别是:3名骨科、1名脑外科和1名内科医生;1名骨科、3名脑外科和1名内科医生,…,在每一类中都用分步计数原理解答.解答:解:直接法:3名骨科、1名脑外科和1名内科医生,有C33C41C51=20种,1名骨科、3名脑外科和1名内科医生,有C31C43C51=60种,1名骨科、1名脑外科和3名内科医生,有C31C41C53=120种,2名骨科、2名脑外科和1名内科医生,有C32C42C51=90种,1名骨科、2名脑外科和2名内科医生,有C31C42C52=180种,2名骨科、1名脑外科和2名内科医生,有C32C41C52=120种,共计20+60+120+90+180+120=590种故答案为:590.点评:本题主要考查了排列、组合及简单计数问题,解答关键是利用直接法:先分类后分步.14,15,16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分:14.(5分)(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC 的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.考点:与圆有关的比例线段.专题:直线与圆.分析:利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.解答:解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.点评:熟练掌握直角三角形的边角关系、弦切角定理、切割线定理是解题的关键.15.(5分)(2013•重庆)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,则|AB|=16.考点:点的极坐标和直角坐标的互化;两点间的距离公式;参数方程化成普通方程.专题:压轴题;直线与圆.分析:先将直线极坐标方程ρcosθ=4化成直角坐标方程,再代入曲线(t为参数)中得A,B两点的直角坐标,最后利用两点间的距离公式即可得出|AB|.解答:解:将直线极坐标方程ρcosθ=4化成直角坐标方程为x=4,代入曲线(t为参数)中得A,B两点的直角坐标为(4,8),(4,﹣8),则|AB|=16.故答案为:16.点评:本题考查参数方程、极坐标方程、直角坐标方程间的转化,两点间的距离公式,考查转化、计算能力.16.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是(﹣∞,8].考点:绝对值不等式的解法.专题:压轴题;不等式的解法及应用.分析:利用绝对值的意义求得|x﹣5|+|x+3|最小值为8,由此可得实数a的取值范围.解答:解:由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].点评:本题主要考查绝对值的意义,绝对值不等式的解法,求得|x﹣5|+|x+3|最小值为8,是解题的关键,属于中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(13分)(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.考点:利用导数研究函数的单调性;函数在某点取得极值的条件;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)先由所给函数的表达式,求导数fˊ(x),再根据导数的几何意义求出切线的斜率,最后由曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6)列出方程求a的值即可;(2)由(1)求出的原函数及其导函数,求出导函数的零点,把函数的定义域分段,判断导函数在各段内的符号,从而得到原函数的单调区间,根据在各区间内的单调性求出极值点,把极值点的横坐标代入函数解析式求得函数的极值.解答:解:(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),令x=1,得f(1)=16a,f′(1)=6﹣8a,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),由切线与y轴相交于点(0,6).∴6﹣16a=8a﹣6,∴a=.(2)由(I)得f(x)=(x﹣5)2+6lnx,(x>0),f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.点评:本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、函数的极值及其几何意义等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于中档题.18.(13分)(2013•重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级摸出红、蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(1)从7个小球中取3的取法为,若取一个红球,则说明第一次取到一红2白,根据组合知识可求取球的种数,然后代入古典概率计算公式可求(2)先判断随机变量X的所有可能取值为200,50,10,0根据题意求出随机变量的各个取值的概率,即可求解分布列及期望值解答:解:(1)设A i表示摸到i个红球,B i表示摸到i个蓝球,则Ai与Bi相互独立(i=0,1,2,3)∴P(A1)==(2)X的所有可能取值为0,10,50,200P(X=200)=P(A3B1)=P(A3)P(B1)=P(X=50)=P(A3)P(B0)==P(X=10)=P(A2)P(B1)==P(X=0)=1﹣=∴X的分布列为x 0 10 50 200PEX==4元点评:本题主要考查了古典概型及计算公式,互斥事件、离散型随机变量的分布列及期望值的求解,考查了运用概率知识解决实际问题的能力.19.(13分)(2013•重庆)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B﹣AF﹣D的正弦值.考点:用空间向量求平面间的夹角;点、线、面间的距离计算;二面角的平面角及求法.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)连接BD交AC于点O,等腰三角形BCD中利用“三线合一”证出AC⊥BD,因此分别以OB、OC分别为x轴、y轴建立空间直角坐标系如图所示.结合题意算出A、B、C、D各点的坐标,设P(0,﹣3,z),根据F为PC边的中点且AF⊥PB,算出z=2,从而得到=(0,0,﹣2),可得PA的长为2;(II)由(I)的计算,得=(﹣,3,0),=(,3,0),=(0,2,).利用垂直向量数量积为零的方法建立方程组,解出=(3,,﹣2)和=(3,﹣,2)分别为平面FAD、平面FAB的法向量,利用空间向量的夹角公式算出、夹角的余弦,结合同角三角函数的平方关系即可算出二面角B﹣AF﹣D的正弦值..解答:解:(I)如图,连接BD交AC于点O∵BC=CD,AC平分角BCD,∴AC⊥BD以O为坐标原点,OB、OC所在直线分别为x轴、y轴,建立空间直角坐标系O﹣xyz,则OC=CDcos=1,而AC=4,可得AO=AC﹣OC=3.又∵OD=CDsin=,∴可得A(0,﹣3,0),B(,0,0),C(0,1,0),D(﹣,0,0)由于PA⊥底面ABCD,可设P(0,﹣3,z)∵F为PC边的中点,∴F(0,﹣1,),由此可得=(0,2,),∵=(,3,﹣z),且AF⊥PB,∴•=6﹣=0,解之得z=2(舍负)因此,=(0,0,﹣2),可得PA的长为2;(II)由(I)知=(﹣,3,0),=(,3,0),=(0,2,),设平面FAD 的法向量为=(x 1,y 1,z 1),平面FAB 的法向量为=(x 2,y 2,z 2), ∵•=0且•=0,∴,取y 1=得=(3,,﹣2),同理,由•=0且•=0,解出=(3,﹣,2),∴向量、的夹角余弦值为cos <,>===因此,二面角B ﹣AF ﹣D 的正弦值等于=点评:本题在三棱锥中求线段PA 的长度,并求平面与平面所成角的正弦值.着重考查了空间线面垂直的判定与性质,考查了利用空间向量研究平面与平面所成角等知识,属于中档题. 20.(12分)(2013•重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+ab=c 2. (1)求C ; (2)设cosAcosB=,=,求tan α的值.考点:余弦定理;同角三角函数间的基本关系;两角和与差的余弦函数. 专题:解三角形. 分析: (1)利用余弦定理表示出cosC ,将已知等式变形后代入求出cosC 的值,由C 为三角形的内角,利用特殊角的三角函数值即可求出C 的度数;(2)已知第二个等式分子两项利用两角和与差的余弦函数公式化简,再利用同角三角函数间的基本关系弦化切,利用多项式乘多项式法则计算,由A+B 的度数求出sin (A+B )的值,进而求出cos (A+B )的值,利用两角和与差的余弦函数公式化简cos (A+B ),将cosAcosB 的值代入求出sinAsinB 的值,将各自的值代入得到tan α的方程,求出方程的解即可得到tan α的值.解答:解:(1)∵a 2+b 2+ab=c 2,即a 2+b 2﹣c 2=﹣ab , ∴由余弦定理得:cosC===﹣,又C 为三角形的内角, 则C=;(2)由题意==,∴(cosA ﹣tan αsinA )(cosB ﹣tan αsinB )=,即tan 2αsinAsinB ﹣tan α(sinAcosB+cosAsinB )+cosAcosB=tan 2αsinAsinB ﹣tan αsin (A+B )+cosAcosB=,∵C=,A+B=,cosAcosB=,∴sin (A+B )=,cos (A+B )=cosAcosB ﹣sinAsinB=﹣sinAsinB=,即sinAsinB=,∴tan 2α﹣tan α+=,即tan 2α﹣5tan α+4=0,解得:tan α=1或tan α=4.点评: 此题考查了余弦定理,两角和与差的余弦函数公式,同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.21.(12分)(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P'Q ,求圆Q 的标准方程.考点:圆锥曲线的综合.专题:压轴题;圆锥曲线中的最值与范围问题.分析:(Ⅰ)利用点A(﹣c,2)在椭圆上,结合椭圆的离心率,求出几何量,即可求得椭圆的标准方程;(Ⅱ)设出圆Q的圆心坐标及半径,由PQ⊥P'Q得到P的坐标,写出圆的方程后和椭圆联立,化为关于x的二次方程后由判别式等于0得到关于t与r的方程,把P点坐标代入椭圆方程得到关于t与r的另一方程,联立可求出t与r的值,经验证满足椭圆上的其余点均在圆Q外,结合对称性即可求得圆Q的标准方程.解答:解:(Ⅰ)由题意知点A(﹣c,2)在椭圆上,则,即①∵离心率,∴②联立①②得:,所以b2=8.把b2=8代入②得,a2=16.∴椭圆的标准方程为;(Ⅱ)设Q(t,0),圆Q的半径为r,则圆Q的方程为(x﹣t)2+y2=r2,不妨取P为第一象限的点,因为PQ⊥P'Q,则P()(t>0).联立,得x2﹣4tx+2t2+16﹣2r2=0.由△=(﹣4t)2﹣4(2t2+16﹣2r2)=0,得t2+r2=8又P()在椭圆上,所以.整理得,.代入t2+r2=8,得.解得:.所以,.此时.满足椭圆上的其余点均在圆Q外.由对称性可知,当t<0时,t=﹣,.故所求圆Q的标准方程为.点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查方程组的解法,考查学生的计算能力,属于中档题.22.(12分)(2013•重庆)对正整数n,记I n={1,2,3…,n},P n={|m∈I n,k∈I n}.(1)求集合P7中元素的个数;(2)若P n的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并集.考点:集合中元素个数的最值;子集与交集、并集运算的转换.专题:集合.分析:(1)对于集合P7 ,有n=7.当k=4时,根据P n中有3个数与I n={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数.(2)先用反证法证明证当n≥15时,P n不能分成两个不相交的稀疏集的并集,再证P14满足要求,从而求得n的最大值.解答:解:(1)对于集合P7 ,有n=7.当k=1时,m=1,2,3…,7,P n={1,2,3…,7},7个数,当k=2时,m=1,2,3…,7,P n对应有7个数,当k=3时,m=1,2,3…,7,P n对应有7个数,当k=4时,P n={|m∈I n,k∈I n}=P n={,1,,2,,3,}中有3个数(1,2,3)与k=1时P n中的数重复,当k=5时,m=1,2,3…,7,P n对应有7个数,当k=6时,m=1,2,3…,7,P n对应有7个数,当k=7时,m=1,2,3…,7,P n对应有7个数,由此求得集合P7中元素的个数为7×7﹣3=46.(2)先证当n≥15时,P n不能分成两个不相交的稀疏集的并集.假设当n≥15时,P n可以分成两个不相交的稀疏集的并集,设A和B为两个不相交的稀疏集,使A∪B=P n⊇I n .不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾.再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集.事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都是稀疏集,且A1∪B1=I14.当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}.当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}.最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9 }中的数的分母都是无理数,它与P n中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14.综上可得,n的最大值为14.点评:本题主要考查新定义,集合间的包含关系,体现了分类讨论的数学思想,属于中档题.。