高中数学函数典型例题
高中数学必修一第五章三角函数必须掌握的典型题(带答案)
高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。
高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高中数学一元二次函数方程和不等式经典大题例题
(每日一练)高中数学一元二次函数方程和不等式经典大题例题单选题1、某次全程马拉松比赛中,选手甲前半程以速度a匀速跑,后半程以速度b匀速跑;选手乙前一半时间以速度a匀速跑,后一半时间以速度b匀速跑(注:速度单位m s⁄),若a≠b,则()A.甲先到达终点B.乙先到达终点C.甲乙同时到达终点D.无法确定谁先到达终点答案:B解析:设马拉松全程为x,得到甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,做差比较大小可得答案.设马拉松全程为x,所以甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,因为a≠b,所以12(xa+xb)−2xa+b=bx(a+b)+ax(a+b)−4abx2ab(a+b)=(a−b)2xab(a+b)>0,所以12(xa+xb)>2xa+b,则乙先到达终点.故选:B.小提示:比较大小的方法有:(1)根据单调性比较大小;(2)作差法比较大小;(3)作商法比较大小;(4)中间量法比较大小.2、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba+2b =2−a a+2b=2a+2b−1≥3,当且仅当a =b =1时等号成立;故选:D3、下列命题中,是真命题的是( )A .如果a >b ,那么ac >bcB .如果a >b ,那么ac 2>bc 2C .如果a >b ,那么ac >bc D .如果a >b ,c <d ,那么a −c >b −d 答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、当0<x <2时,x(2−x)的最大值为( ) A .0B .1C .2D .4 答案:B分析:利用基本不等式直接求解.∵0<x <2,∴2−x >0,又x +(2−x)=2 ∴x(2−x)≤[x+(2−x)]24=1,当且仅当x =2−x ,即x =1时等号成立,所以x(2−x)的最大值为1 故选:B5、若不等式ax 2+bx −2<0的解集为{x|−2<x <1},则a +b =( ) A .−2B .0C .1D .2 答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案. 不等式ax 2+bx −2<0的解集为{x|−2<x <1},则方程ax 2+bx −2=0根为−2、1, 则{−ba =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D6、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( ) A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2 答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围. 不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意; 当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0 ,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2]. 故选:A.7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x +600x−30)元(试剂的总产量为x 单位,50≤x ≤200),则要使生产每单位试剂的成本最低,试剂总产量应为( ) A .60单位B .70单位C .80单位D .90单位 答案:D分析:设生产每单位试剂的成本为y ,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y ,然后利用基本不等式求解最值即可. 解:设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元,职工的工资总额为7500+20x 元,后续保养总费用为x (x +600x−30)元,则y =50x+7500+20x+x 2−30x+600x=x +8100x+40≥2√x ⋅8100x+40=220,当且仅当x =8100x,即x =90时取等号,满足50≤x ≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.8、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A9、已知正实数a,b 满足4a+b+1b+1=1,则a +2b 的最小值为( )A .6B .8C .10D .12 答案:B分析:令a +2b =a +b +b +1−1,用a +b +b +1分别乘4a+b +1b+1=1两边再用均值不等式求解即可. 因为4a+b+1b+1=1,且a,b 为正实数所以a +b +b +1=(a +b +b +1)(4a+b +1b+1)=4+a+bb+1+4(b+1)a+b+1≥5+2√a+b b+1×4(b+1)a+b=9,当且仅当a+b b+1=4(b+1)a+b即a =b +2时等号成立.所以a +2b +1≥9,a +2b ≥8.10、权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当a x=b y时等号成立.根据权方和不等式,函数f(x)=2x+91−2x(0<x <12)的最小值为( ) A .16B .25C .36D .49 答案:B分析:将给定函数式表示成已知不等式的左边形式,再利用该不等式求解作答.因a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当ax =by 时等号成立,又0<x <12,即1−2x >0, 于是得f(x)=222x+321−2x≥(2+3)22x+(1−2x)=25,当且仅当22x=31−2x,即x =15时取“=”,所以函数f(x)=2x +91−2x (0<x <12)的最小值为25. 故选:B 填空题11、正实数x,y 满足:2x +y =1,则2x +1y 的最小值为_____. 答案:9解析:根据题意,可得2x +1y =(2x +1y )(2x +y )=5+2y x+2x y,然后再利用基本不等式,即可求解.2x+1y =(2x +1y )(2x +y )=5+2y x+2x y≥5+2√2yx ⋅2x y≥5+2√4=9,当且仅当x =y =13 时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.12、已知三个不等式:①ab >0,②ca >db ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.13、已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},则c2+5a+b的取值范围为________________.答案:[4√5,+∞)分析:由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把b,c用a表示,化待求式为一元函数,再利用基本不等式得结论.由不等式解集知a<0,由根与系数的关系知{−ba=3+4=7, ca=3×4=12,∴b=−7a,c=12a,则c2+5a+b =144a2+5−6a=−24a+5−6a≥2√(−24a)×5−6a=4√5,当且仅当−24a=5−6a ,即a=−√512时取等号.所以答案是:[4√5,+∞).小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______.答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x +y 的最小值为2. 所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、设a >0,b >0,给出下列不等式:①a 2+1>a ; ②(a +1a )(b +1b )≥4; ③(a +b )(1a +1b )≥4; ④a 2+9>6a .其中恒成立的是________(填序号). 答案:①②③分析:利用做差法判断①,利用基本不等式判断②③,特殊值代入判断④即可得出结论.由于a 2+1-a =(a −12)2+34>0,故①恒成立;由于(a +1a )(b +1b )=ab +1ab +ba +ab ≥2√ab ⋅1ab +2√ba ⋅ab=4,当且仅当{ab =1ab b a=a b即a =b =1时等号成立,故②恒成立; 由于(a +b )(1a +1b )=2+b a +a b ≥2+2√b a ×a b =4.当且仅当a b =ba , 那么a =b =1时等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.所以答案是:①②③.小提示:本题主要考查了利用做差法和基本不等式以及特殊值代入的方法,判断不等式是否成立的问题.属于较易题.17、 设x ∈R ,使不等式3x 2+x −2<0成立的x 的取值范围为__________. 答案:(−1,23)分析:通过因式分解,解不等式. 3x 2+x −2<0, 即(x +1)(3x −2)<0,即−1<x <23,故x 的取值范围是(−1,23).小提示:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合. 18、不等式2x−7x−1≤1的解集是________. 答案:(1,6]分析:把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集. 不等式2x−7x−1≤1得x−6x−1≤0 ,故{(x −1)(x −6)≤0x −1≠0⇒1<x ≤6 ,所以答案是:(1,6].19、已知a ∈Z 关于x 的一元二次不等式x 2−8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是________(写出任何一个满足条件的值即可).答案:13,14,15(写出任何一个值即可)分析:根据题意,先表示出关于x的一元二次不等式x2−8x+a≤0的解集,再结合数轴分析即可得到a的值. 因为关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以Δ=64−4a>0,即a<16,由x2−8x+a=0,解得x=4±√16−a,故关于x的一元二次不等式x2−8x+a≤0的解集为[4−√16−a,4+√16−a],因关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以1≤√16−a<2,即12<x≤15,又因a∈Z,所以a=13,14或15都满足.所以答案是:13,14,15(写出任何一个值即可).>0的解集为______________.20、不等式x+3x−1答案:{x|x<−3或x>1}分析:由题可得(x−1)(x+3)>0,进而即得.>0,得(x−1)(x+3)>0,由x+3x−1所以x<−3或x>1,故不等式得解集为{x|x<−3或x>1}.所以答案是:{x|x<−3或x>1}.解答题<0,k≠021、已知关于x的不等式2kx2+kx−38(1)若k =18,求不等式的解集; (2)若不等式的解集为R ,求k 的取值范围.答案:(1)(−32,1);(2)(−3,0) 分析:(1)将k =18代入不等式,根据一元二次不等式的解法即可求解.(2)根据关于x 的不等式2kx 2+kx −38<0的解集为R .又因为k ≠0 ,利用判别式法求解. (1)将k =18代入不等式,可得14x 2+18x −38<0,即2x 2+x −3<0 所以−32和1是方程2x 2+x −3=0的两个实数根, 所以不等式的解集为{x |−32 <x <1}即不等式的解集为(−32,1). (2)因为关于x 的不等式2kx 2+kx −38<0的解集为R .因为k ≠0所以{2k <0,Δ=k 2+3k <0,解得−3<k <0, 故k 的取值范围为(−3,0).22、(1)已知a >b,c <d ,求证:a −c >b −d ;(2)已知a >b,ab >0,求证:1a <1b ;(3)已知a >b >0,0<c <d ,求证:a c >b d . 答案:(1)证明见解析;(2)证明见解析;(3)证明见解析.分析:(1)根据c <d 不等号左右两边同时乘以一个负数,不等号方向改变得到 −c >−d , 再用同向可加性法则即可得出结果.(2)根据正数的倒数大于0可得1ab>0,再用同向同正可乘性得出结果.(3)因为0<c<d,根据(2)的结论,得1c >1d>0,再用同向同正可乘性得出结果.证明:(1)因为a>b,c<d,所以a>b,−c>−d. 则a−c>b−d.(2)因为ab>0,所以1ab>0.又因为a>b,所以a⋅1ab >b⋅1ab,即1b >1a,因此1a<1b.(3)因为0<c<d,根据(2)的结论,得1 c >1d>0.又因为a>b>0,则a⋅1c >b⋅1d,即ac >bd.小提示:本题考查不等式的基本性质与不等关系,是基础题.。
人教版高中数学必修一函数及其性质典型例题
(每日一练)人教版高中数学必修一函数及其性质典型例题单选题1、已知函数f(x)=x2−|x2−a2x−4|在区间(−∞,−2),(√3,+∞)上都单调递增,则实数a的取值范围是()A.0<a≤2√3B.0<a≤4C.0<a≤4√3D.0<a≤8√3答案:D解析:设g(x)=x2−a2x−4的零点为x1,x2且x1<x2,讨论区间范围写出f(x)的分段函数形式,讨论参数a结合f(x)各区间的函数性质判断单调性,根据已知区间的单调性求参数范围即可.设g(x)=x2−a2x−4,其判别式Δ=a24+16>0,∴函数g(x)一定有两个零点,设g(x)的两个零点为x1,x2且x1<x2,由x2−a2x−4=0,得x1=a2−√a24+162,x2=a2+√a24+162,∴f(x)={a2x+4,x<x12x2−a2x−4,x1≤x≤x2a 2x+4,x>x2,①当a≤0时,f(x)在(−∞,x1)上单调递减或为常函数,从而f(x)在(−∞,−2)不可能单调递增,故a>0;②当a>0时,g(−2)=a>0,故x1>−2,则−2<x1<0,∵f(x)在(−∞,x1)上单调递增,∴f(x)在(−∞,−2)上也单调递增,g(√3)=−√32a −1<0,√3<x 2, 由f(x)在[a 8,x 2]和(x 2,+∞)上都单调递增,且函数的图象是连续的,∴f(x)在[a 8,+∞)上单调递增,欲使f(x)在(√3,+∞)上单调递增,只需a 8≤√3,得a ≤8√3,综上:实数a 的范围是0<a ≤8√3.故选:D.小提示:关键点点睛:先研究绝对值部分的零点,进而写出f(x)的分段函数表达式,再讨论参数a ,根据函数性质及已知区间单调性求参数的范围.2、对于函数f (x )=x|x|+x +1,下列结论中正确的是( )A .f (x )为奇函数B .f (x )在定义域上是单调递减函数C .f (x )的图象关于点(0,1)对称D .f (x )在区间(0,+∞)上存在零点答案:C解析:把f (x )=x|x|+x +1转化为分段函数f (x )={−x 2+x +1,x ⩽0x 2+x +1,x >0 ,画出图像,即可得解.如图,f(x)={−x 2+x+1,x⩽0x2+x+1,x>0由图象可知,图象关于点(0,1)对称,因此不是奇函数,在定义域内函数为增函数,在(−∞,0)上有零点,故选:C.小提示:本题考查了利用函数解析式求函数相关性质,考查了分类讨论思想和数形结合思想,本题主要是数形结合,根据函数图像,直观的看出函数相关性质,属于简单题.3、若f(x)=|sinx|⋅e|x|,x,y∈[−π2,π2]且f(x)>f(y),则下列不等式一定成立的是()A.|x|>|y|B.|x|<|y| C.x<y D.x>y答案:A解析:利用奇偶性定义可证f(x)在x∈[−π2,π2]上是偶函数,应用导数研究f(x)在x∈(0,π2]上的单调性,进而可得x∈[−π2,0)上的单调性,根据题设条件即可得结论.∵f(−x)=|sin(−x)|⋅e|(−x)|=|sinx|⋅e|x|=f(x),∴在x∈[−π2,π2]上f(x)是偶函数.当x∈(0,π2]时,f(x)=e x sinx,则f′(x)=e x(sinx+cosx)>0,故f(x)单调递增;∴当x∈[−π2,0)时,f(x)单调递减;由x,y∈[−π2,π2]且f(x)>f(y),则必有|x|>|y|.故选:A填空题4、函数f(x)是定义域为R的奇函数,满足f(π2−x)=f(π2+x),且当x∈[0,π)时,f(x)=sinxx2−πx+π,给出下列四个结论:① f(π)=0;② π是函数f(x)的周期;③ 函数f(x)在区间(−1,1)上单调递增;④ 函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π. 其中,正确结论的序号是___________.答案:① ③ ④解析:由f(π2−x)=f(π2+x)可得f(π)=f(0)直接计算f(0)即可判断① ;根据函数f(x)的奇偶性和对称性即可求得周期,从而可判断② ;先判断f(x)在(0,1)的单调性,再根据奇函数关于原点对称的区间单调性相同即可判断③ ;根据对称性以及函数图象交点的个数即可判断④.对于①:由f(π2−x)=f(π2+x)可得f(π)=f(0)=sin0π=0,故①正确;对于② :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,因为f(x)是定义域为R的奇函数,所以f(π+x)=f(−x)=−f(x)所以f(2π+x)=−f(x+π)=f(x),所以函数f(x)的周期为2π,故② 不正确;对于③ :当0<x<1时,y=sinx单调递增,且y=sinx>0,y=x2−πx+π=(x−π2)2+π−π24在0<x<1单调递减,且y>1−π+π=1,所以f(x)=sinxx2−πx+π在0<x<1单调递增,因为f(x)是奇函数,所以函数f(x)在区间(−1,1)上单调递增;故③ 正确;对于④ :由f(π2−x)=f(π2+x)可得f(x)关于直线x=π2对称,作出示意图函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和即为函数y=f(x)与y=sin1两个函数图象交点的横坐标之和,当x∈[−π2,3π2]时,两图象交点关于x=π2对称,此时两根之和等于π,当x∈(3π2,10]时两图象交点关于x=5π2对称,此时两根之和等于5π,当x∈[−5π2,−π2)时两图象交点关于x=−3π2对称,此时两根之和等于−3π,x∈[−10,−5π2)时两图象无交点,所以函数g(x)=f(x)−sin1(x∈[−10,10])所有零点之和为3π.故④ 正确;所以答案是:① ③ ④小提示:求函数零点的方法:画出函数f(x)的图象,函数f(x)的图象与x轴交点的个数就是函数f(x)的零点个数;将函数f(x)拆成两个函数,ℎ(x)和g(x)的形式,根据f(x)=0⇔ℎ(x)=g(x),则函数f(x)的零点个数就是函数y=ℎ(x)和y=g(x)的图象交点个数;零点之和即为两个函数图象交点的横坐标之和.5、已知定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为__________.答案:(0,12)∪(2,+∞)解析:根据函数奇偶性,以及已知区间的单调性,先确定f(x)在(0,+∞)上单调递增,将所求不等式化为log2x>1或log2x<−1,求解,即可得出结果.因为定义域为R的偶函数f(x)在(−∞,0]上是减函数,且f(1)=2,所以f(x)在(0,+∞)上单调递增,且f(−1)=f(1)=2,因此不等式f(log2x)>2可化为f(log2x)>f(1),,所以log2x>1或log2x<−1,解得x>2或0<x<12)∪(2,+∞).即不等式f(log2x)>2的解集为(0,12)∪(2,+∞).所以答案是:(0,12。
高中数学函数图象专题例题+练习
高中数学函数图象例1.作图:(1)y =a |x -1|,(2)y =log |(x -1)|a ,(3)y =|log a (x -1)|(a >1).例2.函数y =ln 1|2x -3|的图象为( )例3.函数f (x )=11+|x |的图象是( )例4.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是________.例5.已知函数f (x )=|x 2-4x +3|(1)求函数f (x )的单调区间,并指出其增减性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.1、设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )2、函数||log 2x y =的图象大致是 ( )3、当1>a 时,在同一坐标系中函数xa y -=与xy a log =的图像( )4、 .函数y =1-11-x 的图象是( )5、已知下图①的图象对应的函数为y =f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )A .y =f(|x|)B .y =|f(x)|C .y =f(-|x|)D .y =-f(|x|)6、二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为( )7、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11118、当a ≠0时,函数y a x b=+和y b a x=的图象只可能是 ( )9.函数y=2x+1的图象是( )10、函数lg ||x y x=的图象大致是 ( )。
高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)
高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。
高中数学 函数的定义 范例例题
下一题
主题 3 合成函数
例题 4 合成函数
若 f(x)=2x-1,g(x)=x2-x,试求:
(1)(f。g)(1)。
(2)(g。f)(1)。
(3)(f。g)(x)。
(4)(g。f)(x)。
解■ (1)(f。g)(1)=f(g(1)) =f(0)=-1 (2)(g。f)(1)=g(f (1))=g(1)=0 (3)(f。g)(x)=f(g(x)) =2(x2-x)-1=2x2-2x-1 (4)(g。f)(x)=g(f (x)) =(2x-1)2-(2x-1)=4x2-6x+2
但 4x-x2 0 0 4x-x2 2 故值域为{ y│y ℝ ,0 y 2 }
例题 2 函数的定义域与值域
试求下列各函数的定义域与值域:
(2) f (x)= x。 x
解■ (2)分式的分母必须不为 0
∴x=\ 0,故定义域为{ x│x ℝ ,x=\ 0 } ① 若 x 为正实数,则 f (x)= x =x=1
xx ② 若 x 为负实数,则 f (x)= x =-x=-1
xx ∴值域为{-1 , 1 }
上一题 下一题
主题 2 函数的四则运算
例题 3 函数的四则运算
已知 f(x)=2x+1, g(x)=2x2+3x+1 ,试求下列各式: x-1
(1)(g+f )(x)。 (2)(g-f)(x)。
解■ f(x)的定义域为 ℝ,g(x)的定义域为{ x│x ℝ,x =\1}
上一题 下一题
主题 4 函数的图形
例题 5 函数的图形
绘出下列各函数的图形: (1) y= x-2 +1。
解■ (1) y= x-2 +1 的圖形為
y= x 的圖形向右平移 2 單位,向上平移1單位 故图形如右图所示
高中数学第四章指数函数与对数函数典型例题(带答案)
高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
高中数学例题:函数的概念
高中数学例题:函数的概念例 1.已知集合{}1,2,3A =,{}4,5B =,则从A 到B 的函数()f x 有 个.【答案】8【解析】抓住函数的“取元的任意性,取值的唯一性”,利用列表方法确定函数的个数.由表可知,这样的函数有8个,故填8.【总结升华】函数的定义(特别是它的“取元任意性,取值唯一性”)是解决某些问题的关键.举一反三:【变式1】下列各问的对应关系是否是给出的实数集R 上的一个函数?为什么?(1):f x →2,0,x x R x≠∈; (2):g x →y ,2,,y x x N y R =∈∈;(3):h *A B N ==,对任意的,x A ∈|3|x x →-.【解析】(1)对于任意一个非零实数2,x x被x 唯一确定,所以当0x ≠时,x →2x 是函数,可表示为2()(0)f x x x=≠. (2)当4x =时,24y =,得2y =或2y =-,不是有唯一值和x 对应,所以x →y (2y x =)不是函数.(3)不是,因为当3x =时,在集合B 中不存在数值与之对应.例2.下列函数f (x )与g (x )是否表示同一个函数,为什么?(1)0)1x ()x (f -=;1)x (g =(2)x )x (f =;2x )x (g =(3)2x )x (f =;2)1x ()x (g +=(4)|x |)x (f =;2x )x (g =【思路点拨】对于根式、分式、绝对值式,要先化简再判断,在化简时要注意等价变形,否则等号不成立.【答案】(1)不是(2)不是(3)不是(4)是【解析】(1) ()()f x g x 与的定义域不同,前者是{}|1,x x x R ≠∈,后者是{}|0,x x x R ≠∈,因此是不同的函数;(2)()||g x x =,因此()()f x g x 与的对应关系不同,是不同的函数;(3) ()()f x g x 与的对应关系不同,因此是不相同的函数;(4) ()()f x g x 与的定义域相同,对应关系相同,是同一函数.【总结升华】函数概念含有三个要素,即定义域,值域和对应法则f ,其中核心是对应法则f ,它是函数关系的本质特征.只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:(1)定义域不同,两个函数也就不同;(2)对应法则不同,两个函数也是不同的.(3)即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.举一反三:【变式1】判断下列命题的真假(1)y=x-1与1x 1x y 2+-=是同一函数; (2)2x y =与y=|x|是同一函数; (3)233)x (y )x (y ==与是同一函数;(4)⎪⎩⎪⎨⎧<+≥-=)0x (x x )0x (x x )x (f 22与g(x)=x 2-|x|是同一函数. 【解析】从函数的定义及三要素入手判断是否是同一函数,有(1)、(3)是假命题,(2)、(4)是真命题.。
高中数学必修一第二章一元二次函数方程和不等式知识总结例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式知识总结例题单选题1、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( ) A .4×x 0.5≥100B .4×x 0.5≤100C .4×x0.5>100D .4×x0.5<100 答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x0.5秒,人在此时间内跑的路程为4×x 0.5m .由题意可得4×x 0.5>100.故选:C.2、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( ) A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞) 答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A3、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 答案:D分析:设f(x)=x2−6x+11,由题意可得a>f(x)min,从而可求出实数a的取值范围设f(x)=x2−6x+11,开口向上,对称轴为直线x=3,所以要使不等式x2−6x+11−a<0在区间(2,5)内有解,只要a>f(x)min即可,即a>f(3)=2,得a>2,所以实数a的取值范围为(2,+∞),故选:D4、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.5、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A6、已知使不等式x2+(a+1)x+a≤0成立的任意一个x,都满足不等式3x−1≤0,则实数a的取值范围为()A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13,当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.7、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1,∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .8、已知二次函数y =ax 2+bx +c 的图象如图所示,则不等式ax 2+bx +c >0的解集是( )A .{x|−2<x <1}B .{x|x <−2或x >1}C .{x|−2≤x ≤1}D .{x|x ≤−2或x ≥1} 答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 由二次函数图象知:ax 2+bx +c >0有−2<x <1. 故选:A 多选题9、若正实数a ,b 满足a +b =1,则下列说法正确的是( ) A .ab 有最大值14B .√a +√b 有最大值√2C .1a+1b有最小值4D .a 2+b 2有最小值√22答案:ABC分析:由已知结合基本不等式及相关结论分别分析各选项即可判断.解:因为正实数a ,b 满足a +b =1,所以1=a +b ≥2√ab ,当且仅当a =b =12时取等号,所以ab ≤14,故ab 有最大值14,故A 正确;(√a +√b)2=a +b +2√ab =1+2√ab ≤1+2√14=2,当且仅当a =b =12时取等号,故√a +√b ≤√2,即√a +√b 有最大值√2,故B 正确;1a+1b=a+b ab=1ab≥4,当且仅当a =b =12时取等号,故1a+1b有最小值4,故C 正确;a 2+b 2=(a +b )2−2ab =1−2ab ≥12,当且仅当a =b =12时取等号,所以a 2+b 2有最小值12,故D 错误. 故选:ABC .10、若−1<a <b <0,则( )A .a 2+b 2>2abB .1a <1b C .a +b >2√ab D .a +1a >b +1b 答案:AD分析:应用作差法判断B 、D ,根据重要不等式判断A ,由不等式性质判断C. A :由重要不等式知:a 2+b 2≥2ab ,而−1<a <b <0,故a 2+b 2>2ab ,正确; B :由−1<a <b <0,则1a −1b =b−a ab>0,故1a >1b ,错误;C :由−1<a <b <0,则a +b <0<2√ab ,错误;D :(a +1a)−(b +1b)=a −b +1a−1b=a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a>b +1b,正确.故选:AD11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4,当且仅当{ab =1aba b=b a,即a =b =1时取等号,故D 正确. 故选:ACD. 填空题12、不等式x+3x−1>0的解集为______________. 答案:{x |x <−3或x >1}分析:由题可得(x −1)(x +3)>0,进而即得. 由x+3x−1>0,得(x −1)(x +3)>0, 所以x <−3或x >1,故不等式得解集为{x |x <−3或x >1}. 所以答案是:{x |x <−3或x >1}. 13、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0, 解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)14、若0<x <2,则y =√2x(2−x)的最大值为_______ 答案:√2分析:由基本不等式求最大值.∵0<x <2,∴2−x >0,∴y =√2⋅√x(2−x)≤√2⋅x+2−x 2=√2,当且仅当x =2−x 即x =1时取等号,∴当x =1时,有最大值√2. 所以答案是:√2. 解答题15、某汽车公司购买了4辆大客车用于长途客运,每辆200万元,预计每辆客车每年收入约100万元,每辆客车第一年各种费用约为16万元,从第二年开始每年比上一年所需费用要增加16万元.(1)写出4辆客车运营的总利润y(万元)与运营年数x(x∈N∗)的函数关系式:(2)这4辆客车运营多少年,可使年平均运营利润最大?最大利润是多少?答案:(1)y=16(−2x2+23x−50);(2)这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.分析:(1)由题知,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x),进而得利润的表达式y=16(−2x2+23x−50);(2)结合(1)得年平均运营利润为yx =16[23−2(x+25x)],再根据基本不等式求解即可得答案.解:(1)依题意得,每辆车x年总收入为100x万元,总支出为200+16×(1+2+3+⋅⋅⋅+x)=200+16×x(1+x)2=200+8x(x+1),所以4辆客车运营的总利润y=4[100x−200−8x(x+1)]=16(−2x2+23x−50).(2)年平均运营利润为yx =16(−2x+23−50x)=16[23−2(x+25x)],因为x∈N∗,所以x+25x ≥2√x⋅25x=10,当且仅当x=5时,等号成立,此时yx≤16×(23−2×10)=48,所以这4辆客车运营5年,可使年平均运营利润最大,最大利润为48万元.。
(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题
(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质知识总结例题单选题1、函数f(x)=−x2+2(1−m)x+3在区间(−3,4]上单调递增,则m的取值范围是()A.[−3,+∞)B.[3,+∞)C.(−∞,5]D.(−∞,−3]答案:D分析:首先求出函数的对称轴,根据二次函数的性质得到不等式,解得即可;解:因为函数f(x)=−x2+2(1−m)x+3,开口向下,对称轴为x=1−m,依题意1−m≥4,解得m≤−3,即m∈(−∞,−3]故选:D2、若函数f(x+1x )=x2+1x2,且f(m)=4,则实数m的值为()A.√6B.√6或−√6C.−√6D.3答案:B分析:令x+1x=t,配凑可得f(t)=t2−2,再根据f(m)=4求解即可令x+1x =t(t≥2或t≤−2),x2+1x2=(x+1x)2−2=t2−2,∴f(t)=t2−2,f(m)=m2−2=4,∴m=±√6.故选;B3、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.4、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C5、幂函数y=x a,y=x b,y=x c,y=x d在第一象限的图像如图所示,则a,b,c,d的大小关系是()A.a>b>c>d B.d>b>c>a C.d>c>b>a D.b>c>d>a答案:D分析:根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大,即可判断; 根据幂函数的性质,在第一象限内,x =1的右侧部分的图像,图像由下至上,幂指数增大, 所以由图像得:b >c >d >a , 故选:D6、已知幂函数y =x a 与y =x b 的部分图象如图所示,直线x =14,x =12与y =x a ,y =x b 的图象分别交于A 、B 、C 、D 四点,且|AB|=|CD|,则12a +12b =( )A .12B .1C .√2D .2 答案:B分析:把|AB |=|CD |用函数值表示后变形可得.由|AB |=|CD |得(14)a−(14)b=(12)a−(12)b,即[(12)a−(12)b][(12)a+(12)b]=(12)a−(12)b≠0,所以(12)a +(12)b=1, 故选:B .7、已知幂函数y =xm 2−2m−3(m ∈N ∗)的图象关于y 轴对称,且在(0,+∞)上单调递减,则满足(a +1)−m3<(3−2a )−m3的a 的取值范围为( )A .(0,+∞)B .(−23,+∞) C .(0,32)D .(−∞,−1)∪(23,32) 答案:D分析:由条件知m 2−2m −3<0,m ∈N ∗,可得m =1.再利用函数y =x −13的单调性,分类讨论可解不等式. 幂函数y =x m 2−2m−3(m ∈N ∗)在(0,+∞)上单调递减,故m 2−2m −3<0,解得−1<m <3.又m ∈N ∗,故m=1或2.当m =1时,y =x −4的图象关于y 轴对称,满足题意; 当m =2时,y =x −3的图象不关于y 轴对称,舍去,故m =1. 不等式化为(a +1)−13<(3−2a )−13,函数y =x −13在(−∞,0)和(0,+∞)上单调递减,故a +1>3−2a >0或0>a +1>3−2a 或a +1<0<3−2a ,解得a <−1或23<a <32. 故应选:D .8、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的( )条件 A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R ,则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立; “函数g (x )=2x −m 2⋅2−x 为奇函数”,则g(x)=−g(−x),即2x−m2⋅2−x=−(2−x−m2⋅2x)=m2⋅2x−2−x,解得:m=±1,故必要性不成立,故选:A.9、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.10、已知函数f(x+2)=x2+6x+8,则函数f(x)的解析式为()A.f(x)=x2+2x B.f(x)=x2+6x+8C.f(x)=x2+4x D.f(x)=x2+8x+6答案:A分析:利用配凑法(换元法)计算可得.解:方法一(配凑法)∵f(x+2)=x2+6x+8=(x+2)2+2(x+2),∴f(x)=x2+2x.方法二(换元法)令t=x+2,则x=t−2,∴f(t)=(t−2)2+6(t−2)+8=t2+2t,∴f(x)=x2+2x.故选:A填空题11、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1, 故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b. 解得a =32,b =1或b =3.∵ b >1,∴ b =3. ∴ a +b =32+3=92.所以答案是:92.12、已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.答案:7分析:根据题意直接求解即可 解:因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 所以答案是:713、设m 为实数,若函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,则m 的值为__________. 答案:0分析:根据函数的奇偶性的定义可得答案.解:因为函数f(x)=x 2−mx +m +2(x ∈R )是偶函数,所以f(−x)=f (x ), 所以(−x )2−m (−x )+m +2=x 2−mx +m +2,得2mx =0,所以m =0,14、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)15、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______.答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.解答题16、记函数f(x)=√2−x+3x+1的定义域为A,函数g(x)=√(x−a−1)(2a−x)(a<1)的定义域为B.(1)求A;(2)若B⊆A,求实数a的取值范围.答案:(−∞,−2]∪[12,1)解析:(1)求函数的定义域,就是求使得根式有意义的自变量x的取值范围,然后求解分式不等式即可;(2)因为a<1,所以一定有2a<a+1,从而得到B=(2a,a+1),要保证B⊆A,由它们的端点值的大小列式进行计算,即可求得结果.(1)要使函数f(x)有意义,则需2−x+3x+1≥0,即x−1x+1≥0,解得x<−1或x≥1,所以A=(−∞,−1)∪[1,+∞);(2)由题意可知,因为a<1,所以2a<a+1,由(x−a−1)(2a−x)>0,可求得集合B=(2a,a+1),若B⊆A,则有{a<1a+1≤−1或{a<12a≥1,解得a≤−2或12≤x<1,所以实数a的取值范围是(−∞,−2]∪[12,1).小提示:该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.17、已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+1x+1.(1)求f(x)在R上的解析式;(2)判断f(x)在(0,1)的单调性,并给出证明. 答案:(1)f(x)={x +1x +1,x >00,x =0x +1x −1,x <0; (2)f(x)在(0,1)上是减函数,证明见解析.分析:(1)根据奇函数的性质进行转化求解析式即可. (2)根据函数单调性的定义进行判断单调性. (1)∵f(x)是定义在R 上的奇函数,∴f(0)=0,又当x >0时,f(x)=x +1x +1.∴当x <0时,则−x >0,则f(−x)=−x −1x +1=−f(x),则f(x)=x +1x −1(x <0),综上,f(x) ={x +1x +1,x >00,x =0x +1x −1,x <0. (2)设0<x 1<x 2<1,则f(x 1)−f(x 2)=x 1+1x 1+1−x 2−1x 2−1=(x 1−x 2) +x 2−x 1x 1x 2= (x 1−x 2)(1−1x1x 2)=(x 1−x 2) ⋅x 1x 2−1x 1x 2,∵0<x 1<x 2<1,∴x 1−x 2<0,0<x 1x 2<1,x 1x 2−1<0,则f(x 1)−f(x 2)>0,即f(x 1)>f(x 2), ∴函数f(x)在(0,1)上是减函数. 18、已知幂函数f(x)=x −m 2+4m(m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值;(2)求满足不等式f(2a −1)<f(a +1)的实数a 的取值范围. 答案:(1)m =2(2)0<a<2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m2+4m>0,再验证其图象关于y轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f(x)=x−m2+4m在区间(0,+∞)上是严格增函数,所以−m2+4m>0,解得0<m<4,又因为m∈Z,所以m=1或m=2或m=3,当m=1或m=3时,f(x)=x3为奇函数,图象关于原点对称(舍);当m=2时,f(x)=x4为偶函数,图象关于y轴对称,符合题意;综上所述,m=2.(2)解:由(1)得f(x)=x4为偶函数,且在区间(0,+∞)上是严格增函数,则由f(2a−1)<f(a+1)得|2a−1|<|a+1|,即(2a−1)2<(a+1)2,即a2−2a<0,解得0<a<2,所以满足f(2a−1)<f(a+1)的实数a的取值范围为0<a<2.19、已知f(x),g(x)分别是R上的奇函数和偶函数,且f(x)+g(x)=3x2−x+1,试求f(x)和g(x)的表达式.答案:f(x)=−x,g(x)=3x2+1分析:本题考查函数的奇偶性的性质以及应用,关键是利用函数的奇偶性构造方程.解析:以-x代替条件等式中的x,则有f(−x)+g(−x)=3x2+x+1,又f(x),g(x)分别是R上的奇函数和偶函数,故−f(x)+g(x)=3x2+x+1.又f(x)+g(x)=3x2−x+1,联立可得f(x)=−x,g(x)=3x2+1.。
高中数学好题
高中数学好题在高中数学中,好题层出不穷,这些题目不仅考验着学生的数学基础和思维能力,同时也挑战着他们的耐心和毅力。
下面,就让我们来看看几道值得一做的高中数学好题吧!一、解析几何:题目如下:已知平面直角坐标系中,点A(1,1)和B(3,-1), 点P(x,y) 满足PA=2AB。
求x和y的值。
解析:这是一道非常典型的解析几何的好题。
建立坐标系后,根据两点坐标公式可以求得AB的长度为2√2。
接着,使用距离公式可以求得点P的坐标为(5,3)。
二、导数与微积分:题目如下:已知函数f(x)=x³-3x²+4x-1,问函数f(x)在x=1处的切线斜率是多少?解析:这是一道常规的导数与微积分的好题。
首先求得函数f(x)的一阶导数f'(x)=3x²-6x+4,接着将x=1代入一阶导数方程得到f'(1)=1。
由此可知在x=1处,函数f(x)的切线斜率为1。
三、三角函数:题目如下:已知角A和角B是补角,其中sinB=1/2,问sinA的值是多少?解析:这是一道典型的三角函数的好题。
因为角A和角B是补角,可以得出sinA=cosB。
根据题目中已知,可以列出方程cosB=1/2,由此解出角B的大小为π/3。
接着,再将角B代入cosB=cos(π/3)的公式里,就可以得出sinA的值为√3/2。
四、平面几何:题目如下:在平面直角坐标系中,已知A(-6,1)和B(2,3),点P(x,y) 到直线AB 的距离为4,求P点的坐标。
解析:这是一道典型的平面几何的好题。
首先,根据两点坐标公式可以求出直线AB的斜率为1/2。
然后,由于题目中已知点P到直线AB的距离为4,可以列出点P到直线AB的距离公式。
接着代入直线AB的方程组成的一元二次方程组里,可以得出两组解。
但是,由于题目中要求的点P要在直线AB的一侧,所以要通过绘制图形或逻辑判断方法,判断出正确的点P为(-1,5)。
从以上四道题目中不难看出,高中数学好题不仅能够加深学生对知识点的理解和掌握,同时还能够激发他们的思维能力和创新意识。
高中数学函数真题汇编(解析版)
高中数学专题20函数真题汇编与预赛典型例题1.已知正实数a满足,则的值为.【答案】【解析】由..2.设f(x)是定义在R上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足,则不等式组的解集为.【答案】【解析】由f(x)为偶函数及在[0,1]上严格递减知,f(x)在[-1,0]上严格递增,再结合f(x)以2为周期可知,[1,2]是f(x)的严格递增区间.注意到.所以.而,故原不等式组成立当且仅当.3.设为定义在R上的函数,对任意实数x有.当0≤x<7时,.则的值为____________。
【答案】【解析】由题得,所以函数的周期为7,.故答案为:4.设正实数u、v、w均不等于1.若,则的值为________.【答案】【解析】令.则:.故. 从而,.5.设为不相等的实数.若二次函数满足,则的值为______.【答案】4 【解析】由已知条件及二次函数图像的轴对称性得.故答案为:46.若正数a ,b 满足2362log 3log log ()a b a b +=+=+,则11a b+= . 【答案】108 【解析】试题分析:设232362log 3log log ()2,3,6t t t a b a b t a b a b --+=+=+=⇒==+=⇒11a ba b ab++=23610823tt t --==•. 考点:指数与对数运算. 7.设集合中的最大、最小元素分别为M 、m ,则的值为___________.【答案】【解析】 由,知. 当时,取得最大元素.又,当时,取得最小元素.因此,.8.若函数()21f x x a x =--在[)0,+∞上单调递增,则实数a 的取值范围是 .【答案】[0,2] 【解析】试题分析:()[)()22,1,,,1x ax a x f x x ax a x ⎧-+∈+∞⎪=⎨+-∈-∞⎪⎩,[)1,x ∈+∞时,()f x =2x ax a -+=22a x ⎛⎫- ⎪⎝⎭24a a +-,(),1x ∈-∞时,()f x =2x ax a +-=2224a a x a ⎛⎫+-- ⎪⎝⎭.①当12a >即a >2时,()f x 在2a ⎛⎫1, ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞⎪⎝⎭上单调递增,不合题意;②当012a ≤≤即02a ≤≤时,符合题意;③当02a <即0a <时,不符合题意.综上,a 的取值范围是[]0,2.考点:绝对值定义、函数单调性、分类讨论. 9.设为实数,函数满足:对任意的,有.则的最大值为______.【答案】 【解析】 易知,则.当,即时,取最大值.10.设.则的最大值是______.【答案】.【解析】 不妨设.则.由.当且仅当时,上式等号同时成立.11.函数的值域为______.【答案】【解析】由题得x≠1,设.则.设.因为,所以,所以,则,且.故.故答案为:12.设为正实数,且.则______.【答案】【解析】由,得.又,即. ①于是,②再由式①中等号成立的条件,得.与式②联立解得故.故答案为:-113.函数的值域是________.【答案】【解析】易知,的定义域是,且上是增函数.从而,的值域为.14.函数在区间上的最大值为8.则它在这个区间上的最小值是________.【答案】【解析】试题分析:由题意得,令,因为,当时,则,则,所以当时,函数取得最大值,此时最大值为,解得,所以函数的最小值为;当时,则,则,所以当时,函数取得最大值,此时最大值为,解得,所以函数的最小值为,所以函数的最小值为.考点:函数的最值问题.【方法点晴】本题主要考查了函数的最值问题,其中解答中涉及到函数的单调性的应用、一元二次函数的图象与性质的应用、指数函数的图象与性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,同时考查了换元法和转化与化归思想的考查,属于中档试题,本题的解答中换元后,灵活应用二次函数的图象与性质是解答问题的关键.15.若函数,且.则______.【答案】【解析】因为,所以.故.16.若方程仅有一个实根,那么的取值范围是.【答案】【解析】当且仅当①②③对③由求根公式得④.(ⅰ)当时,由③得所以同为负根.又由④知所以原方程有一个解.(ⅱ)当时,原方程有一个解.(ⅲ)当时,由③得所以同为正根,且,不合题意,舍去.综上可得为所求.17.已知定义在R+上的函数f(x)为.设a,b,c是三个互不相同的实数,满足f(a)=f(b)=f(c),求abc的取值范围.【答案】(81,144).【解析】不妨假设a<b<c.由于f(x)在(0,3]上严格递减,在[3,9]上严格递增,在[9,+∞)上严格递减,且f(3) =0,f(9)=1,故结合图像可知:a∈(0,3),b∈(3,9),c∈(9,+∞),并且f(a)=f(b)=f(c)∈(0,1).由f(a)=f(b)得.即,因此ab=32=9.于是abc=9c.又,故c∈(9,16).进而abc=9c∈(81,144).所以,abc的取值范围是(81,144).18.已知为R上的奇函数,,且对任意,均有.求的值.【答案】【解析】设.则.在中,取.注意到,,及为奇函数.故.则. 19.求所有的正实数对,使得函数满足:对任意的实数.【答案】【解析】由题意得. ①先求所满足的必要条件.在式①中令,得.由于,故可取到任意大的正值,因此,必有,即.在式①中再令,得.②将式②左边记为.显然,.否则,由,知,此时,.则可取到负值,矛盾.故对一切实数成立.于是,,即.进一步,考虑到此时,再由,知.从而,求得满足的必要条件为.③下面证明,对满足条件③的任意实数对及任意非负实数,式①总成立,即.事实上,在条件③成立时,有.再结合,得.综上,所求的正实数对全体为.20.设是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数的取值范围是.【答案】【解析】略21.设函数,实数满足.求的值.【答案】【解析】由题设得.则.由,知.故①又由有意义,知.从而,.于是,.则.故.从而,.解得(舍去).把,代入式①解得.因此,.22.求函数的最大值和最小值.【答案】【解析】函数的定义域为.因为当时等号成立.故的最小值为.……………………………………………5分又由柯西不等式得所以.………………………………………………………………………………10分由柯西不等式等号成立的条件,得,解得.故当时等号成立.因此的最大值为.…………………………………………………………………………………15分23.设是正整数).证明:对满足的任意实数,数列中有无穷多项属于表示不超过实数的最大整数).【答案】(1)见解析(2)见解析【解析】证法1 (1)对任意,有.令.则.又令.则.从而,存在,使得.否则,存在,使得.于是,,与,矛盾.故一定存在,使得.(2)假设只有有限个正整数,使得.令.则.故不存在,使得,与(1)的结论矛盾.所以,数列中有无穷多项属于.综上,原命题成立.证法2 由证法1,知当充分大时,可以大于任何一个正数.令.则.当时,.同证法1可证,对于任何大于的正整数,总存在,使得,即.令.则.故一定存在,使得.从而,.这样的有无穷多个.所以,数列中有无穷多项属于.24.设是给定的正整数,.记.证明:存在正整数,使得为一个整数,其中,表示不小于实数的最小整数(如).【答案】见解析【解析】记表示正整数所含的2的幂次.则当时,为整数.下面对用数学归纳法.当时,为奇数,为偶数,此时,为整数.假设命题对成立对于,设的二进制表示具有形式,其中,或l,.故.①显然,中所含的2的幂次为.故由归纳假设知,经过次迭代得到整数.由式①知,是一个整数.1.已知a为正实数,且是奇函数,则的值域为________.【答案】【解析】由为奇函数可知,解得a= 2,即,由此得的值域为.2.函数的值域为________.【答案】【解析】由条件知.令.则,,,因为,所以,.3.函数的最小值为________.【答案】【解析】设log3x=t,则.∴.∴当时,f(x)取最小值.4.若函数f(x)=x2-2ax+a2-4在区间[a-2,a2](a>0)上的值域为[-4,0],则实数a的取值范围为________. 【答案】[1,2]【解析】∵f(x)=x2-2ax+a2-4=(x-a)2-4,f(a)=-4,f(a-2)=0,f(x)在区间[a-2,a2]上的值域为[-4,0],f(x)的图像为开口向上的拋物线.∴,解得-1≤a≤0或1≤a≤2.结合a>0,得1≤a≤2.∴a的取值范围为[1,2].5.设,期中表示的最大公约数,则的值为________.【答案】520【解析】如果,则,所以.又,所以.故答案为:5206.牛得亨先生、他的妹妹、他的儿子,还有他的女儿都是网球选手,这四人中有以下情况:①最佳选手的孪生同胞与最差选手性别不同;②最佳选手与最差选手年龄相同.则这四人中最佳选手是_______.【答案】牛得亨先生的女儿【解析】由题意知,最佳选手和最佳选手的孪生同抱年龄相同;由②,最佳选手和最差选手的年龄相同;由①,最佳选手的孪生同胞和最差选手不是间一个人.因此,四个人中有三个人的年龄相同.由于牛得亨先生的年龄肯定大于他的儿子和女儿,从而年龄相同的三个人必定是牛得亨先生的儿子、女儿和妹妹.由此,牛得亨先生的儿子和女儿必定是①中所指的孪生同胞.因此,牛得亨先生的儿子或女儿是最佳选手,而牛得亨先生的妹妹是最差选手.由①,最佳选手的孪生同胞一定是牛得亨先生的儿子,而最佳选手无疑是牛得亨先生的女儿.故答案为:牛得亨先生的女儿7.函数的最小值是______.【答案】【解析】因为此即为直线y=x上的点(x,y)到点(0,1)与到点(2,3)的距离之和,根据镜像原理,z的最小值应为点(1,0)到点(2,3)的距离.故答案为:8.若方程a x>x(a>0,a≠1)有两个不等实根,则实数a的取值范围是_______.【答案】【解析】由a x>x知x>0,故,令(x>0),则.当时,;当时,.所以在(0,e)上递增,在(e,+∞)上递减.故,即.故答案为:9.已知实数满足,则________.【答案】1【解析】化为对数,有,所以.10.已知函数满足,那么的值域为_______.【答案】【解析】设函数满足,.所以所求函数是,其图像如图,易知的值域是.11.设是由有限个正整数构成的集合,且,这里,2,…,20.并对任意的,都有,已知对任意的,若,则.求集合的元素个数的最小值.(这里,表示集合的元素个数)【答案】180【解析】记.不妨设,2,...,, (20)设,2,…,.因为对任意的,都有,所以,…,互不相同,,即.又对任意的,若,则,所以当,…,20时,.即,当,…,20时,.所以.若,则.若,则.所以总有.另一方面,取,其中,2, (20)则符合要求.此时,.综上所述,集合的元素个数的最小值为180.12.已知函数.(1)若对于任意的,均有,证明:;(2)当时,证明:对于任意的成立的充分必要条件为.【答案】(1)见解析;(2)见解析【解析】(1)因为恒成立,所以,.又,故.(2)必要性:对于任意的.则,即.又,得.从而,.因此,.充分性:由,且,则对于任意的,有.又,故.13.求方程的实数解.【答案】【解析】令.则.令.注意到,.则,即.又,当时,.故.于是,对任意的,有.从而,.综上,原方程的实数解构成的集合为.14.已知奇函数的定义域为,且在内递减,求满足:的实数的取值范围.【答案】【解析】由f(x)的定义域是[-2,2],知解得-1≤m≤.因为函数f(x)是奇函数,所以f(1-m)<-f(1-m2),即f(1-m)<f(m2-1).由奇函数f(x)在区间[-2,0]内递减,所以在[-2,2]上是递减函数,所以1-m>m2-1,解得-2<m<1.综上,实数m的取值范围是-1≤m<1.15.黑板上写有方程.证明:任取三个两两不同的整数能适当安放在方程的的位置(每颗星安放一个数),使得方程有实根.【答案】见解析【解析】设三个★的位置为.则原方程为①将任意三个两两不同的整数中最大的放在,设.则三个数中另外两个较小的数为.故.于是,若以放在左边第一个★的位置的二次方程为,则.从而,方程①有实根.因此,任意三个两两不同的整数,只要以其中最大的一个放在左边第一个★的位置,其余两个放在后两个★的位置,所得的方程就有实根.。
(典型题)高中数学必修一第二单元《函数》测试题(答案解析)
一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2 D .3,24⎡⎫⎪⎢⎣⎭3.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-14.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -5.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦6.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >7.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-8.若函数22,2 ()13,22x ax xf xa xx⎧-≤⎪=⎨->⎪⎩是R上的单调减函数,则实数a的取值范围为()A.115,24⎡⎤⎢⎥⎣⎦B.4,215⎡⎤⎢⎥⎣⎦C.41,152⎡⎤⎢⎥⎣⎦D.152,4⎡⎤⎢⎥⎣⎦9.设二次函数2()()f x x bx b=+∈R,若函数()f x与函数(())f f x有相同的最小值,则实数b的取值范围是()A.(,2]-∞B.(,0]-∞C.(,0][2,)-∞+∞D.[2,)+∞10.已知函数224()3f x xx=-+,()2g x kx=+,若对任意的1[1,2]x∈-,总存在2[1,3]x∈,使得12()()g x f x>,则实数k的取值范围是().A.1,12⎛⎫⎪⎝⎭B.12,33⎛⎫- ⎪⎝⎭C.1,12⎛⎫-⎪⎝⎭D.以上都不对11.已知函数()f x的定义域为R,(1)f x-是奇函数,(1)f x+为偶函数,当11x-≤≤时,()13131xxf x+-=+,则以下各项中最小的是()A.()2018f B.()2019f C.()2020f D.()2021f12.如图是定义在区间[]5,5-上的函数()y f x=的图象,则下列关于函数()f x的说法错误的是()A.函数在区间[]53-,-上单调递增B.函数在区间[]1,4上单调递增C.函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D.函数在区间[]5,5-上没有单调性二、填空题13.函数()2f x x a=-在区间[]1,1-上的最大值()M a的最小值是__________.14.已知函数(3)5,1()2,1a x xf x axx--≤⎧⎪=⎨->⎪⎩是R上的增函数,则a的取值范围是________.15.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________16.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.17.已知函数(31)4,2(),2a x a x f x ax x -+<⎧=⎨-≥⎩满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-,则a 的取值范围是______________.18.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________19.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.20.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式.23.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域; (3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 24.已知函数()0ky x k x=+>在区间(k 单调递减,在区间),k +∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围.25.已知二次函数()2f x ax bx =+满足()20f =,且方程()f x x =有两个相等实根.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使()f x 的定义域是[],m n ,值域是[]3,3m n .若存在,求,m n 的值,若不存在,请说明理由.26.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.3.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-,得出答案,属于中档题. 4.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.5.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
高中数学三角函数典型例题
(Ⅱ)
cos
A
+
sin
C
=
cos
A
+
sin
−
−
A
=
cos
A
+
sin
6
+
A
= cos A + 1 cos A + 3 sin A
2
2
=
3
sin
A
+
3
.
2 .在 ABC 中,角 A. B.C 的对边分别为 a、b、c,且满足(2a-c)cosB=bcos C.
(Ⅰ)求角 B 的大小;
(Ⅱ)设 m = (sin A,cos 2A) ,n = (4k,1)(k 1) ,且 m n 的最大值是 5,求 k 的值.
8
8
4
4
cos B = − cos(A + C) = sin Asin C − cos Acos C = 7 3 7 − 3 1 = 9
4 8 4 8 16
(2) BA BC = 27 ,ac cos B = 27 ,ac = 24 ①
2
2
又 a = c ,C = 2A,c = 2a cos A = 3 a ②
2
∵0<B<π,∴B= . 3
(II) m n =4ksinA+cos2A.
=-2sin2A+4ksinA+1,A∈(0, 2 ) 3
设 sinA=t,则 t∈ (0,1] .
则 m n =-2t2+4kt+1=-2(t-k)2+1+2k2,t∈ (0,1] .
∵k>1,∴t=1 时, m n 取最大值.
高中数学函数的性质典型例题及答案
第Ⅰ卷(选择题)一.选择题(共11小题)1.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x﹣3x.则f(﹣4)=()A.10B.﹣10C.﹣14D.142.定义在R上的奇函数f(x)满足f(1+x)=f(1﹣x),且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.﹣1B.﹣C.D.13.已知函数,则()A.y=f(x)的图象关于点(2,0)对称B.y=f(x)的图象关于直线x=2对称C.f(x)在(0,4)上单调递减D.f(x)在(0,2)上单调递减,在(2,4)上单调递增4.已知f(x)为定义在R上的偶函数,g(x)=f(x)+x2,且当x∈(0,+∞)时,g(x)单调递增,则不等式f(x+1)﹣f(x+2)<2x+3的解集为()A.(,+∞)B.(﹣,+∞)C.(﹣∞,﹣3)D.(﹣∞,3)5.定义在R上的偶函数f(x)满足:f(x)=f(x﹣2),若f(x)在区间[0,1]内单调递减,则的大小关系为()A.B.C.D.6.已知定义在R上的奇函数f(x)满足f(x+2)=f(2﹣x),当﹣2≤x<0时,f(x)=a x﹣1(a>0),且f(2)=﹣8,则f(1)+f(2)+f(3)+…+f(2019)=()A.﹣10B.﹣12C.4D.127.已知函数,则不等式f(a2﹣4)>f(3a)的解集为()A.(﹣4,1)B.(﹣1,4)C.(1,4)D.(0,4)8.已知函数f(x)=e|x|+cos x,若f(ln)+f(ln)﹣2f(1)>0,则的取值范围()A.(0,)∪(e,+∞)B.(0,)C.(e,+∞)D.(,e)9.已知函数f(x)=++4在[﹣8,8]上的最大值和最小值分别为M、m,则M+m=()A.8B.6C.4D.210.函数f(x)在[0,+∞)单调递减,且为偶函数.若f(2)=﹣1,则满足f(x﹣3)≥﹣1的x的取值范围是()A.[1,5]B.[1,3]C.[3,5]D.[﹣2,2]11.已知函数y=f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若实数m满足f(log3m)≥f(1),则m的取值范围为()A.(0,]B.[3,+∞)C.(0,]∪[3,+∞)D.[,3]第Ⅱ卷(非选择题)二.填空题(共5小题)12.设函数f(x)=则的值为.13.已知函数f(x)(a>0且a≠1),若f(2)+f(﹣2)=,则a=.14.已知x>1,函数y=+x的最小值是.15.函数y=(x2﹣3x+2)的单调增区间为.16.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=﹣x2﹣3x,则不等式f(x﹣1)>﹣x+4的解集是.三.解答题(共6小题)17.已知函数f(x)=.(Ⅰ)证明:函数f(x)在区间(0,+∞)上是增函数;(Ⅱ)求函数f(x)在区间[1,17]上的最大值和最小值.18.已知函数.(Ⅰ)如果函数的定义域为R,求m的范围;(Ⅱ)在(﹣∞,1)上为增函数,求实数m的取值范围.19.函数f(x)=是定义在(﹣2,2)上的奇函数,且f(1)=.(1)确定f(x)的解析式;(2)判断并证明f(x)在(﹣2,2)上的单调性;(3)解不等式f(t﹣1)+f(t)<0.20.已知函数f(x)=1﹣2a x﹣a2x(a>1)(Ⅰ)求函数f(x)的值域;(Ⅱ)若x∈[﹣2,1]时,函数f(x)的最小值为﹣7,求a的值和函数f(x)的最大值.21.已知函数f(x)=a•4x﹣a•2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1(1)求a,b的值;(2)若不等式f(x)﹣k•4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.22.f(x)是定义在R上的函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f (﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求f(x)在[﹣2,4]上的最值.一.选择题(共11小题)1.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=log2x﹣3x.则f(﹣4)=()A.10B.﹣10C.﹣14D.14【分析】根据题意,由函数的解析式求出f(4)的值,进而结合函数的奇偶性分析可得答案.【解答】解:根据题意,当x>0时,f(x)=log2x﹣3x,则f(4)=log24﹣12=﹣10,又由函数f(x)是定义在R上的奇函数,则f(﹣4)=﹣f(4)=10;故选:A.【点评】本题考查函数的奇偶性的性质以及应用,涉及函数的求值,属于基础题.2.定义在R上的奇函数f(x)满足f(1+x)=f(1﹣x),且当x∈[0,1]时,f(x)=x(3﹣2x),则f()=()A.﹣1B.﹣C.D.1【分析】根据题意,分析可得f(x+2)=﹣f(x),进而可得f(x+4)=﹣f(x+2)=f(x),即函数f (x)是周期为4的周期函数,据此结合函数的解析式分析可得答案.【解答】解:根据题意,函数f(x)满足f(1+x)=f(1﹣x),则有f(﹣x)=f(x+2),又由f(x)为奇函数,则f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,则f()=f(﹣+16)=f(﹣)=﹣f()=﹣[(3﹣2×)]=﹣1;故选:A.【点评】本题考查函数的奇偶性的性质以及应用,涉及函数值的计算,属于基础题.3.已知函数,则()A.y=f(x)的图象关于点(2,0)对称B.y=f(x)的图象关于直线x=2对称C.f(x)在(0,4)上单调递减D.f(x)在(0,2)上单调递减,在(2,4)上单调递增【分析】观察函数的特点,求出定义域,在定义域内根据选项代入特殊值判断函数的对称性和单调区间,再进一步证明.【解答】解:>0,则函数定义域为(0,4),f(1)=ln,f(3)=ln3,即f(3)=﹣f(1),有关于点(2,0)对称的可能,进而推测f(x+2)为奇函数,关于原点对称,f(x+2)=ln,定义域为(﹣2,2),奇函数且单调递增,∴f(x)为f(x+2)向右平移两个单位得到,则函数在(0,4)单调递增,关于点(2,0)对称,故选:A.【点评】本题考查函数图象平移,函数的基本性质,定义域、奇偶性、单调性、对称性,是中等题目.4.已知f(x)为定义在R上的偶函数,g(x)=f(x)+x2,且当x∈(0,+∞)时,g(x)单调递增,则不等式f(x+1)﹣f(x+2)<2x+3的解集为()A.(,+∞)B.(﹣,+∞)C.(﹣∞,﹣3)D.(﹣∞,3)【分析】根据题意,由函数奇偶性的定义分析可得函数g(x)为偶函数,进而分析可得f(x+1)﹣f(x+2)<2x+3⇒g(x+1)<g(x+2),结合g(x)的单调性分析可得|x+1|<|x+2|,解可得x的取值范围,即可得答案.【解答】解:根据题意,g(x)=f(x)+x2,且f(x)为定义在R上的偶函数,则g(﹣x)=f(﹣x)+(﹣x)2=f(x)+x2=g(x),即函数g(x)为偶函数,f(x+1)﹣f(x+2)<2x+3⇒f(x+1)+(x+1)2<f(x+2)+(x+2)2,即g(x+1)<g(x+2),又由g(x)为偶函数且在(0,+∞)上为增函数,则有|x+1|<|x+2|,解可得:x>﹣,即不等式的解集为(﹣,+∞);故选:B.【点评】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于基础题.5.定义在R上的偶函数f(x)满足:f(x)=f(x﹣2),若f(x)在区间[0,1]内单调递减,则的大小关系为()A.B.C.D.【分析】根据函数奇偶性和周期性的关系进行转化,结合函数单调性的性质进行比较即可得到结论.【解答】解:∵定义在R上的偶函数f(x)满足:f(x)=f(x﹣2),∴f(x+2)=f(x),则f(﹣)=f(﹣+2)=f(),f()=f(﹣2)=f(﹣)=f(),∵f(x)在区间[0,1]内单调递减,∴f()>f()>f(1),即f(﹣)>f()>f(1).故选:D.【点评】本题主要考查函数值的大小比较,根据函数奇偶性,周期性和单调性的关系进行转化是解决本题的关键,考查了函数思想和转化思想,属基础题.6.已知定义在R上的奇函数f(x)满足f(x+2)=f(2﹣x),当﹣2≤x<0时,f(x)=a x﹣1(a>0),且f(2)=﹣8,则f(1)+f(2)+f(3)+…+f(2019)=()A.﹣10B.﹣12C.4D.12【分析】根据f(x)是奇函数,以及f(x+2)=f(2﹣x)即可得出f(x+8)=f(x),即得出f(x)的周期为8,而根据f(2)=﹣8及﹣2≤x<0时,f(x)=a x﹣1(a>0)即可求出a=,从而得出f(3)=f(1)=﹣2,f(4)=f(8)=0,f(5)=﹣f(1),f(6)=﹣f(2),f(7)=﹣f(3),这样即可求出f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=0,而2019=3+252×8,从而得出f (1)+f(2)+f(3)+…+f(2019)=﹣12.【解答】解:∵f(x)是R上的奇函数,且f(x+2)=f(2﹣x);∴f(x+4)=f(﹣x)=﹣f(x);∴f(x+8)=f(x);∴f(x)的周期为8;f(2)=﹣8,且﹣2≤x<0时,f(x)=a x﹣1;∴f(﹣2)=a﹣2﹣1=8,且a>0;∴;∴﹣2≤x<0时,f(x)=;f(3)=f(1)=﹣f(﹣1)=﹣2,f(4)=f(0)=0,f(5)=﹣f(1),f(6)=﹣f(2),f(7)=﹣f(3),f(8)=f(0)=0;∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)=f(1)+f(2)+f(3)+0﹣f(1)﹣f (2)﹣f(3)+0=0;∵2019=3+252×8;∴f(1)+f(2)+f(3)+…+f(2019)=f(1)+f(2)+f(3)=﹣2﹣8﹣2=﹣12.故选:B.【点评】考查奇函数的定义,周期函数的定义,以及已知函数求值的方法,奇函数在原点有定义时,原点处的函数值为0.7.已知函数,则不等式f(a2﹣4)>f(3a)的解集为()A.(﹣4,1)B.(﹣1,4)C.(1,4)D.(0,4)【分析】可看出f(x)是R上的减函数,从而根据f(a2﹣4)>f(3a)得出a2﹣4<3a,解出a的范围即可.【解答】解:∵f(x)在R上单调递减;∴由f(a2﹣4)>f(3a)得,a2﹣4<3a;解得﹣1<a<4;∴原不等式的解集为(﹣1,4).故选:B.【点评】考查指数函数的单调性,以及减函数的定义,一元二次不等式的解法.8.已知函数f(x)=e|x|+cos x,若f(ln)+f(ln)﹣2f(1)>0,则的取值范围()A.(0,)∪(e,+∞)B.(0,)C.(e,+∞)D.(,e)【分析】根据条件判断函数的奇偶性,以及在x≥0上的单调性,结合函数奇偶性和单调性的性质将不等式进行转化求解即可.【解答】解:∵f(x)=e|x|+cos x,∴f(﹣x)=e|﹣x|+cos(﹣x)=e|x|+cos x=f(x),则函数f(x)是偶函数,由f(ln)+f(ln)﹣2f(1)>0得f(ln)+f(﹣ln)>2f(1),即2f(ln)>2f(1),得f(ln)>f(1),当x≥0时,f(x)=e x+cos x,f′(x)=e x﹣sin x≥0恒成立,即函数f(x)在[0,+∞)上为增函数,则不等式f(ln)>f(1),等价为f(|ln|)>f(1),则ln>1或ln<﹣1,得>e或0<<,即的取值范围(0,)∪(e,+∞),故选:A.【点评】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性是解决本题的关键.综合性较强,有一定的难度.9.已知函数f(x)=++4在[﹣8,8]上的最大值和最小值分别为M、m,则M+m=()A.8B.6C.4D.2【分析】构造函数,利用函数的极限,结合函数的最值转化求解即可.【解答】解:设F(x)=f(x)﹣4,因为奇函数,所以F(x)最大值+F(x)最小值=0,所以[f(x)最大值﹣4]+[f(x)最小值﹣4]=0,所以M+m=8.故选:A.【点评】本题考查对数的运算、函数的性质,命题意图是考查基础知识、基本运算能力及构造的思想方法.10.函数f(x)在[0,+∞)单调递减,且为偶函数.若f(2)=﹣1,则满足f(x﹣3)≥﹣1的x的取值范围是()A.[1,5]B.[1,3]C.[3,5]D.[﹣2,2]【分析】根据函数奇偶性和单调性的关系将不等式进行等价转化即可【解答】解:法一:因函数f(x)在[0,+∞)单调递减,且为偶函数,则函数f(x)在(﹣∞,0)单调递增,由f(2)=f(﹣2)=﹣1,则﹣2≤x﹣3≤2⇒1≤x≤5.法二:由f(x﹣3)≥﹣1得f(x﹣3)≥f(2),即f(|x﹣3|)≥f(2),即﹣2≤x﹣3≤2,得1≤x≤5.即x的取值范围是[1,5],故选:A.【点评】本题主要考查函数奇偶性和单调性的应用,根据奇偶性和单调性的性质将不等式进行转化是解决本题的关键.11.已知函数y=f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若实数m满足f(log3m)≥f(1),则m的取值范围为()A.(0,]B.[3,+∞)C.(0,]∪[3,+∞)D.[,3]【分析】根据函数奇偶性和单调性的性质,将不等式进行转化,结合对数不等式的解法进行求解即可.【解答】解:∵函数y=f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,∴f(log3m)≥f(1),等价为f(|log3m|)≥f(1),即|log3m|≤1.即﹣1≤log3m≤1,得≤m≤3,即实数m的取值范围是[,3],故选:D.【点评】本题主要考查不等式的求解,结合偶函数与单调性之间的关系进行转化是解决本题的关键.二.填空题(共5小题)12.设函数f(x)=则的值为.【分析】本题是分段函数求值,规律是先内而外逐层求值,先求f(2)值,再根据的取值范围判断应该用那一段上的函数解析式,代入求值即为的值.【解答】解:由于2>1,故f(2)=22+2﹣2=4 故=≤1故=1﹣=故答案为.【点评】本题考点是求函数的值,本题是一个分段复合型函数,此类题易出错,错因在解析式选用不当.13.已知函数f(x)(a>0且a≠1),若f(2)+f(﹣2)=,则a=2或.【分析】化简f(2)=a2,f(﹣2)=+1,从而可得a2+=,从而求得.【解答】解:f(2)=a2,f(﹣2)=+1,故f(2)+f(﹣2)=a2++1=,则a2+=,故a2=4或a2=,故a=2或a=,故答案为:2或.【点评】本题考查了分段函数的应用及分类讨论的思想应用.14.已知x>1,函数y=+x的最小值是5.【分析】把式子变形为y=+x=+x﹣1+1,利用均值定理可得:+x﹣1+1≥2+1=5,当x=3时,等号成立.【解答】解:因为x>1,所以y=+x=+x﹣1+1≥2+1=5,当x=3时,等号成立,故最小值为5.【点评】考查了均值不等式的应用,难点是对式子合理变形,使得式子积为定值.15.函数y=(x2﹣3x+2)的单调增区间为(﹣∞,1).【分析】求出原函数的定义域,求出内函数的减区间,则原复合函数的增区间可求.【解答】解:由x2﹣3x+2>0,得x<1或x>2.∴函数y=(x2﹣3x+2)的定义域为(﹣∞,1)∪(2,+∞).当x∈(﹣∞,1)时,内函数为减函数,当x∈(2,+∞)时,内函数为增函数,而外函数为减函数,∴函数y=(x2﹣3x+2)的单调递增区间为(﹣∞,1).故答案为:(﹣∞,1).【点评】本题考查了复合函数的单调性,关键是注意原函数的定义域,是中档题.16.已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=﹣x2﹣3x,则不等式f(x﹣1)>﹣x+4的解集是(4,+∞).【分析】首先,根据函数f(x)是奇函数,求解当x>0时,函数的解析式,然后,分别令x﹣1≤0和x﹣1>0两种情形进行讨论,求解不等式的解集.【解答】解:∵函数f(x)是奇函数,令x>0,则﹣x<0,∴f(﹣x)=﹣(﹣x)2+3x=﹣x2+3x=﹣f(x),∴f(x)=x2﹣3x,∴,当x﹣1≤0,即x≤1,f(x﹣1)=﹣(x﹣1)2﹣3(x﹣1)=﹣x2﹣x+2,∵f(x﹣1)>﹣x+4,∴x2<﹣2(舍去)当x﹣1>0,即x>1,f(x﹣1)=(x﹣1)2﹣3(x﹣1)=x2﹣5x+4,∵f(x﹣1)>﹣x+4 ∴x2﹣4x>0∴x<0或x>4,又x>1,∴x>4.故答案为:(4,+∞).【点评】本题重点考察了函数为奇函数,且解析式为分段函数问题,不等式的性质等知识,考查比较综合,属于中档题.三.解答题(共6小题)17.已知函数f(x)=.(Ⅰ)证明:函数f(x)在区间(0,+∞)上是增函数;(Ⅱ)求函数f(x)在区间[1,17]上的最大值和最小值.【分析】(Ⅰ)先分离常数得出,然后根据增函数的定义,设任意的x1>x2>0,然后作差,通分,得出,只需证明f(x1)>f(x2)即可得出f(x)在(0,+∞)上是增函数;(Ⅱ)根据f(x)在(0,+∞)上是增函数,即可得出f(x)在区间[1,17]上的最大值为f(17),最小值为f(1),从而求出f(17),f(1)即可.【解答】解:(Ⅰ)证明:;设x1>x2>0,则:=;∵x1>x2>0;∴x1﹣x2>0,x1+1>0,x2+1>0;∴;∴f(x1)>f(x2);∴f(x)在区间(0,+∞)上是增函数;(Ⅱ)∵f(x)在(0,+∞)上是增函数;∴f(x)在区间[1,17]上的最小值为f(1)=,最大值为.【点评】考查分离常数法的运用,反比例函数的单调性,增函数的定义,根据增函数的定义证明一个函数是增函数的方法,根据函数单调性求函数在闭区间上的最值的方法.18.已知函数.(Ⅰ)如果函数的定义域为R,求m的范围;(Ⅱ)在(﹣∞,1)上为增函数,求实数m的取值范围.【分析】(Ⅰ)由题意利用复合函数的单调性,可得x2﹣2mx+3>0恒成立,故有△=4m2﹣12<0,由此求得m的范围.(Ⅱ)令u(x)=x2﹣2mx+3,则u(x)=x2﹣2mx+3在(﹣∞,1)递减,且恒为正,故有u(1)=4﹣2m≥0,且m≥1,由此求得实数m的取值范围.【解答】解:(I)要使函数函数的定义域为R,必须x2﹣2mx+3>0恒成立,∴△=4m2﹣12<0,解得﹣<m<,(II)令,则此函数在(0,+∞)单调递减,要f(x)在(﹣∞,1)上为增函数,则u(x)=x2﹣2mx+3在(﹣∞,1)递减,且恒为正,u(1)=4﹣2m≥0,且m≥1,求得1≤m≤2,故实数m的取值范围为[1,2].【点评】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.19.函数f(x)=是定义在(﹣2,2)上的奇函数,且f(1)=.(1)确定f(x)的解析式;(2)判断并证明f(x)在(﹣2,2)上的单调性;(3)解不等式f(t﹣1)+f(t)<0.【分析】(1)利用奇函数的性质f(0)=0求解验证即可.(2)利用函数的单调性的定义证明即可.(3)利用函数的单调性的性质,列出不等式求解即可.【解答】解:(1)由函数是定义在(﹣2,2)上的奇函数知,所以b=0,经检验,b=0时是(﹣2,2)上的奇函数,满足题意.又,解得a=1,故,x∈(﹣2,2).(2)f(x)是(﹣2,2)上增函数.证明如下:在(﹣2,2)任取x1,x2且x1<x2,则x2﹣x1>0,4+x1x2>0,,,所以>0即f(x2)>f(x1)所以f(x)是(﹣2,2)上增函数.(3)因为f(x)是(﹣2,2)上的奇函数,所以由f(t﹣1)+f(t)<0得,f(t﹣1)<﹣f(t)<f(﹣t),又f(x)是(﹣2,2)上增函数,所以解得,从而原不等式的解集为.【点评】本题考查函数的单调性的定义的应用,考查转化思想以及计算能力.20.已知函数f(x)=1﹣2a x﹣a2x(a>1)(Ⅰ)求函数f(x)的值域;(Ⅱ)若x∈[﹣2,1]时,函数f(x)的最小值为﹣7,求a的值和函数f(x)的最大值.【分析】(Ⅰ)先进行换元,还原以后写出新变量t的取值范围,则函数变化为关于t的二次函数,问题转化为二次函数的单调性和值域,根据二次函数的性质,得到结果.(Ⅱ)根据所给的x的范围,写出t的范围,根据二次函数的性质,写出函数在定义域上的最值,根据最小值的结果,做出a的值,进而得到函数的最大值.【解答】解:(Ⅰ)设a x=t>0∴y=﹣t2﹣2t+1=﹣(t+1)2+2∵t=﹣1∉(1,+∞),∴y═﹣t2﹣2t+1在(0,+∞)上是减函数∴y<1,所以f(x)的值域为(﹣∞,1);(Ⅱ)∵x∈[﹣2,1]a>1∴t∈[,a]由t=﹣1∉[,a]∴y=﹣t2﹣2t+1在[,a]上是减函数﹣a2﹣2a+1=﹣7∴a=2或a=﹣4(不合题意舍去)当t==时y有最大值,即y max=﹣()2﹣2×+1=.【点评】本题考查函数的最值,考查二次函数的性质,考查指数函数的定义域,是一个综合题目,这种题目可以作为压轴题目的一部分.21.已知函数f(x)=a•4x﹣a•2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1(1)求a,b的值;(2)若不等式f(x)﹣k•4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.【分析】(1)令t=2x∈[2,4],依题意知,y=at2﹣2at+1﹣b,t∈[2,4],由即可求得a、b的值.(2)设2x=t,k≤=1﹣+,求出函数1﹣+的大值即可【解答】解:(1)令t=2x∈[2,4],则y=at2﹣2at+1﹣b,t∈[2,4],对称轴t=1,a>0,∴t=2时,y min=4a﹣4a+1﹣b=1,t=4时,y max=16a﹣8a+1﹣b=9,解得a=1,b=0,(2)4x﹣2•2x+1﹣k•4x≥0在x∈[﹣1,1]上有解设2x=t,∵x∈[﹣1,1],∴t∈[,2],∵f(2x)﹣k.2x≥0在x∈[﹣1,1]有解,∴t2﹣2t+1﹣kt2≥0在t∈[,2]有解,∴k≤=1﹣+,再令=m,则m∈[,2],∴k≤m2﹣2m+1=(m﹣1)2令h(m)=m2﹣2m+1,∴h(m)max=h(2)=1,∴k≤1,故实数k的取值范围(﹣∞,1].【点评】本题考查函数的单调性质的应用,考查等价转化思想与运算求解能力,属于中档题.22.f(x)是定义在R上的函数,对x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f (﹣1)=2.(1)求证:f(x)为奇函数;(2)求证:f(x)是R上的减函数;(3)求f(x)在[﹣2,4]上的最值.【分析】(1)赋值法:令x=y=0,可求得f(0),令y=﹣x,可得f(﹣x)与f(x)的关系,由奇函数定义即可得证;(2)利用单调性的定义:设x2>x1,通过作差证明f(x2)<f(x1)即可;(3)由(2)知:f(x)max=f(﹣2),f(x)min=f(4),根据条件及奇偶性即可求得f(﹣2),f(4).【解答】证明:(1)f(x)的定义域为R,令x=y=0,则f(0)=f(0)+f(0),∴f(0)=0,令y=﹣x,则f(x﹣x)=f(x)+f(﹣x),∴f(﹣x)+f(x)=f(0)=0,∴f(﹣x)=﹣f(x),∴f(x)是奇函数.(2)设x2>x1,则f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1),∵x2﹣x1>0,∴f(x2﹣x1)<0,∴f(x2)﹣f(x1)<0,即f(x2)<f(x1),∴f(x)在R上为减函数.(3)∵f(﹣1)=2,∴f(﹣2)=f(﹣1)+f(﹣1)=4,又f(x)为奇函数,∴f(2)=﹣f(﹣2)=﹣4,∴f(4)=f(2)+f(2)=﹣8,∵f(x)在[﹣2,4]上为减函数,∴f(x)max=f(﹣2)=4,f(x)min=f(4)=﹣8.【点评】本题考查抽象函数奇偶性、单调性的证明及应用,抽象函数的奇偶性、单调性的判断一般采取定义解决,而求最值则及解抽象不等式往往借助单调性.。
高中数学必修一第四章指数函数与对数函数典型例题(带答案)
高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。
(典型题)高中数学必修一第四单元《函数应用》测试题(含答案解析)
一、选择题 1.设()31x f x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( )A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞ B .(],2-∞- C .(),2-∞-D .()2,+∞ 3.已知函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩,若()f x 恰有两个零点,则λ的取值范围是( )A .[)[)1,23,-+∞B .[)[)1,23,+∞C .[)()1,22,⋃+∞D .[)1,+∞4.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006 B .1007C .2016D .2017 5.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( )A .(﹣4,0]B .(-∞,﹣9)C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]6.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米 7.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h8.已知函数321()232x f x ax bx c =+++的两个极值分别为1()f x 和2()f x ,若1x 和2x 分别在区间(0,1)与(1,2)内,则21b a --的取值范围是( ) A .(1,14)B .1[,1]4C .1(,)(1,)4-∞+∞D .1(,][1,)4-∞+∞ 9.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩ 有且只有一个零点的充分不必要条件是( ) A .a<0 B .0<a< C . <a<1 D .a≤0或a>1 10.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .π B .2π C .3π D .4π11.已知定义在R 上的函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-⎪⎩,若函数()()k x f x ax =-恰有2个零点,则实数a 的取值范围是( )A .()1,11,0e ⎛-⎫ ⎪⎝⎭B .()1,1,1e ⎛⎫-∞- ⎪⎝⎭C .(){}1,1,10e ⎛⎫-∞- ⎪⎝⎭D .(){}11,00,1e ⎛⎫- ⎪⎝⎭12.已知函数21,0()log ,0x x f x x x ⎧+≤=⎨>⎩,若123123()()(),(,,f x f x f x x x x ==互不相等),则123x x x ++的取值范围是( ) A .(2,0]-B .(1,0)-C .(1,0]-D .(2,0)- 二、填空题13.设()f x 是定义域在R 上的偶函数,对x R ∀∈,都有()()11f x f x +=-,且当1[]0x ∈-,时,1()12xf x ⎛⎫=- ⎪⎝⎭,若在区间[]1,3-内关于x 的方程2()(1)0f x a x --=有4个不同的实数根,则实数a 的取值范围是_________. 14.已知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为 _________15.已知函数()2,0lg ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,则方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是__________.16.若函数()23x f x x --+=的零点为0x ,满足()01x k k ∈+,且k ∈Z ,则k =_____.17.设函数212,2()1,2x x f x x x lnx x ⎧⎪⎪=⎨⎪-->⎪⎩,若函数()()F x f x a =+恰有2个零点,则实数a 的取值范围是__. 18.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.19.已知函数254,0()22,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若函数()y f x a x =-恰有4个零点,则实数a 的取值范围是________.20.密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠劵一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是__________元.三、解答题21.2009年淘宝开始做“双十一”活动,历经11载,每年双十一成交额都会出现惊人的增长,极大拉动消费内需,促进经济发展.已知今年小明在网上买了一部华为手机,据了解手机是从150千米处的地方发出,运货卡车以每小时x 千米的速度匀速行驶,中途不停车.按交通法规限制60120x ≤≤(单位:千米/时).假设汽油的价格是每升5元,而卡车运输过程中每小时耗油25400x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时20元. (1)求这次行车总费用y (单位:元)关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低?并求出最低费用.22.已知函数()()1f x x x a x R =--+∈.(1)当2a =时,求函数()()g x f x x =-的零点;(2)对于给定的正数,a 有一个最大的正数()M a ,使()0,x M a ∈⎡⎤⎣⎦时,都有()2f x ≤,试求出这个正数()M a ,并求它的取值范围.23.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a =--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021l k 计算)②当t 为何值时,l 取到最小值?最小值是多少?24.某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用,约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为20km 时,折旧费为0.1元.现设一次载客的路程为x km. (1)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(2)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每千米的收益y 取得最大值?(每千米收益计算公式为)F C y x-= 25.已知1a >,函数()log (3)log (1)a a f x x x =-++.(1)求函数()f x 的定义域;(2)求函数()f x 的零点;(3)若函数()f x 的最大值为2,求a 的值.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围.【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解,∴()f x t =必须有两解,由图象知01t <<.故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.C解析:C【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】 由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=-- , 若关于x 的方程2||10x a x ++=有4个不同的解,则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减,所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-,故选:C【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.A解析:A【分析】分别求出函数223y x x =--和()ln 1y x =-的零点,然后作出函数223y x x =--与函数()ln 1y x =-的图象,结合函数()f x 恰有两个零点,可得出实数λ的取值范围.【详解】解方程2230x x --=,解得11x =-,23x =,解方程()ln 10x -=,解得2x =.作出函数223y x x =--与函数()ln 1y x =-的图象如下图所示:要使得函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩恰有两个零点,则12λ-≤<或3λ≥. 因此,实数λ的取值范围是[)[)1,23,-+∞.故选:A.【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4.D解析:D【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=,故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+,即有()()f x f x -=,1()02f =, 1()02f ∴-=, 再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点,即函数()f x 在每两个整数之间都有一个零点,()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D .【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.5.C解析:C【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,? 0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解.【详解】令()()0g x f x x a =+-=,得24,? 06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,? 0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点,由图象可得:a <﹣9或﹣4<a ≤0,故选:C【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.6.D解析:D【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-,即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米).故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.7.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】解:3sin ϕ-==,98.7210∴⨯=,即8.72=,8.721560340148.0090.04v ⨯∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.8.A解析:A 【分析】由极值点的所在区间即可知()f x 的导函数2()2f x x ax b '=++的零点区间,应用根的分布可得1310a b ->>-⎧⎨>>⎩,结合目标式的几何意义即可求其范围.【详解】由题意知:2()2f x x ax b '=++,而()f x 两个极值点1x 和2x 分别在区间(0,1)与(1,2)内,∴方程220x ax b ++=两个根在(0,1)与(1,2)内,()'f x 开口向上,∴012020b a b a b >⎧⎪++<⎨⎪++>⎩,可得1310a b ->>-⎧⎨>>⎩,即214122a b ->->-⎧⎨->->-⎩,∴令1,2x a y b =-=-,问题转化为在24,12x y ->>-->>-的可行域内的点与原点所成直线斜率yx的取值范围,如下图示:有1(,1)4y x ∈, 故选:A 【点睛】本题考查了根据函数极值点的所在区间求目标式的范围,应用了极值点与导数关系、根的分布、不等式的性质,结合线性规划及目标式的几何意义求范围,属于中档题.9.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.10.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称. 函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.11.C解析:C 【分析】把函数交点有两个零点转化为函数图象与直线有两个交点,作出对应函数图象和直线,利用导数求出相应切线的斜率,由图象观察出a 的范围. 【详解】()0f x ax -=()f x ax ⇒=,所以函数()y f x =的图象与直线y ax =有两个交点,作出函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-≤⎪⎩的图象,如下图,由()ln f x x =得1()f x x'=,设直线y ax =与()ln f x x =图象切点为00(,)P x y ,则00000ln 1y x a x x x ===,0x e =,所以11a x e ==. 由2()f x x x =-得()12f x x '=-,(0)1f '=,y ax =与2yx x 在原点相切时,1a =,由2()f x x x =-得()21f x x '=-,(0)1f '=-,y ax =与2yx x 在原点相切时,1a =-,所以直线y x =,yx =-,1ey x =与曲线()f x 相切,由直线y ax =与曲线()y f x =的位置关系可得:当(){}1,1,10e a ⎛⎫∈-∞- ⎪⎝⎭时有两个交点,即函数()y k x =恰有两个零点.故选:C . 【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.12.C解析:C 【分析】做出函数图像,由图象得出三个交点的横坐标关系,以及交点横坐标的取值范围,即可求解. 【详解】做出函数()f x 的图象如图,设()()()123===f x f x f x a ,则01a <≤, 因此12232(1)2,0log 1+=⨯-=-<≤x x x ,得312<≤x 于是12310-<++≤x x x , 故选:C.【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题.二、填空题13.【分析】首先结合已知条件判断函数的周期由已知可得函数的周期作出函数的图象数形结合得答案【详解】由得又是定义域在上的偶函数可得是周期为2的周期函数当时作出函数在区间内的图象如图方程有4个不同的实数根即解析:10,4⎛⎤⎥⎝⎦【分析】首先结合已知条件,判断函数的周期,由已知可得函数的周期,作出函数的图象,数形结合得答案. 【详解】由()()11f x f x -=+,得()()2f x f x -=+,又()1f 是定义域在R 上的偶函数,()()()2f x f x f x ∴+=-=, 可得()f x 是周期为2的周期函数.当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, ∴作出函数()f x 在区间[]1,3-内的图象如图,方程()()210f x a x --=有4个不同的实数根,即()y f x =与()21y a x =-的图象在区间[]1,3-内有4个不同交点.当()21y a x =-过()3,1时,解得14a =, 又随着a 的减小抛物线()21y a x =-的开口变大,可得若在区间[]1,3-内关于x 的方程()()210f x a x --=有4个不同的实数根,则实数a 的取值范围是10,4⎛⎤⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦.【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.14.【分析】先将函数有四个不同的零点转化为函数有四个不同的交点利用数形结合得到a 的范围再根据为方程的两根为方程的两根利用韦达定理建立的函数再利用函数的单调性求解【详解】因为函数有四个不同的零点所以函数有 解析:(]3,3e +【分析】先将函数()y f x a =-有四个不同的零点,转化为函数(),y f x y a ==有四个不同的交点,利用数形结合得到a 的范围,再根据1x ,2x 为方程()21x e a +=的两根,3x ,4x 为方程43x a x+-=的两根,利用韦达定理建立1234x x x x -++的函数,再利用函数的单调性求解.【详解】因为函数()y f x a =-有四个不同的零点, 所以函数(),y f x y a ==有四个不同的交点, 如图所示:由图知:1a e <≤,设1x ,2x 为方程()21x e a +=的两根,即221ln 0x x a ++-=的两根, 所以121ln =-x x a , 设3x ,4x 为方程43x a x+-=的两根,即()2340x a x -++=的两根, 所以343x x a +=+,所以1234ln 13ln 2x x x x a a a a -++=-++=++, 因为ln ,2y a y a ==+在()0,∞+上递增, 所以ln 2y a a =++在()0,∞+上递增, 所以1234(3,3]x x x x e ∈-+++, 故答案为:(]3,3e + 【点睛】关键点点睛:本题关键是利用利用数形结合法确定a 的范围,进而利用函数法求解.15.【分析】解方程可得或然后分和解方程或由此可得出结论【详解】解方程可得或当时由可得解得由可得解得(舍);当时由可得则解得或由可得则解得或综上所述方程实根的个数是故答案为:【点睛】方法点睛:判定函数的零 解析:5【分析】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =,然后分0x ≤和0x >解方程()2f x =或()12f x =,由此可得出结论. 【详解】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =.当0x ≤时,由()2f x =可得22x -=,解得1x =-,由()12f x =可得122x-=,解得1x =(舍);当0x >时,由()2f x =可得lg 2x =,则lg 2x =±,解得100x =或1100x =,由()12f x =可得1lg 2x =,则1lg 2x =±,解得x =或x =. 综上所述,方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是5. 故答案为:5. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.16.【分析】根据题意得到函数为减函数进而求得的值利用零点的存在定理即可求解【详解】由题意函数分析可得函数为减函数又由则根据零点的存在定理可得函数的零点在区间上所以故答案为【点睛】本题主要考查了函数与方程 解析:3【分析】根据题意,得到函数()f x 为减函数,进而求得()()3,4f f 的值,利用零点的存在定理,即可求解. 【详解】由题意,函数()23xf x x --+=,分析可得函数()f x 为减函数, 又由()31323308f -=+=>-,()4154243016f --=+=-<, 则()()340f f ⋅<,根据零点的存在定理,可得函数()f x 的零点在区间()3,4上, 所以3k =. 故答案为3. 【点睛】本题主要考查了函数与方程的应用,其中解答中熟记函数零点的概念,以及熟练应用零点的存在定理进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.【分析】令求出函数的导数判断函数的单调性结合函数的图象推出结果即可【详解】解:令则令得或(舍去)当时;当时所以在上是减函数在上是增函数又(1)而在上是增函数且作出函数的图象如图由得所以当即时函数与的解析:[2-,12]4ln -. 【分析】令2()g x x x lnx =--,12x >,求出函数的导数,判断函数的单调性,结合函数的图象,推出结果即可. 【详解】解:令2()g x x x lnx =--,12x >, 则2121(21)(1)()21x x x x g x x x x x--+-'=--==, 令()0g x '=,得1x =或12x =-(舍去)当112x <<时,()0g x '<;当1x >时,()0g x '>, 所以()g x 在1(,1)2上是减函数,在(1,)+∞上是增函数,又11()224g ln =-+,g (1)0=,而2x y =在1(,)2-∞上是增函数,且022x<,作出函数()f x 的图象如图,由()0F x =得()f x a =-,所以当1224ln a-+-即1224aln --时,函数()y f x =与y a =-的图象有两个交点.故答案为:1[2,2]4ln --.【点睛】本题考查函数的零点与方程的根的关系,函数的导数的应用,考查转化思想以及计算能力,是中档题.18.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3 【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =. 答案:319.【分析】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象利用数形结合思想进行求解即可【详解】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象如下图所示:由图象可知 解析:(1,3)【分析】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可. 【详解】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数a 的取值范围是13a <<.故答案为:(1,3)【点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想. 20.201【分析】根据题意构造函数由函数的值域即可容易求得【详解】设标价为则当时优惠金额;当时优惠券2的优惠金额优惠券3的优惠金额故当标价在之间只能用优惠券1故不满足题意;当标价超过100时若满足题意且 解析:201【分析】根据题意,构造函数,由函数的值域即可容易求得.【详解】设标价为x ,则当50x >时,优惠金额10x y =; 当100x >时,优惠券2的优惠金额20y =,优惠券3的优惠金额()910050y x =-. 故当标价在(]50,100之间,只能用优惠券1,故不满足题意;当标价超过100时,若满足题意,2010x >,且()91001050x x >-, 解得200225x <<. 则答案不唯一,只需在区间()200,225内任取一个元素即可.本题中选取标价为201. 故答案为:201.【点睛】本题考查实际问题中函数模型的应用,属中档题.三、解答题21.(1)y 6750158x x =+,[]60,120x ∈;(2)当x 为60时,这次行车的总费用最低,最低费用是225元.【分析】(1)总费用由油耗、司机工资费用组成,分别用x 表示两部分费用加总即可; (2)由(1)所得函数表达式,利用基本不等式求最小值即可.【详解】解:(1)货车行驶的时间为150x小时,由题意得: 21501505520400x y x x⎛⎫=⨯+⨯+⨯ ⎪⎝⎭6750158x x =+,[]60,120x ∈;(2)6750152258x y x =+≥=当且仅当6750158x x =,即60x =时取等号 所以当x 为60时,这次行车的总费用最低,最低费用是225元.【点睛】易错点睛:利用基本不等式求最值时,必须满足的三个条件--“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件.22.(135;(2)答案见解析. 【分析】(1)可令()0g x =,解含有绝对值的方程,对x 进行讨论,最后得出符合条件的x 的值. (2)因为()0,x ∈+∞时,()max 1f x =,故问题只需在给定的区间内()2f x ≥-恒成立,再按照22a f ⎛⎫<-⎪⎝⎭和22a f ⎛⎫≥- ⎪⎝⎭两种情况分类讨论,即可得到结论. 【详解】(1)令()()0g x f x x =-=,得()21f x x x x =--+=,当2x ≥时,方程化简为:210x x --=,解得:x =(舍)或x =(舍), 当2x <时,方程化简为:2310x x -+=,解得:x =x =,x ∴=. (2)当()0,x ∈+∞时,()max 1f x =,故问题只需要在给定的区间内()2f x ≥-恒成立,由2124a a f ⎛⎫=- ⎪⎝⎭分两种情况讨论:当2124a -<-时,即a >()M a 是方程212x ax -+=-的较小根()2a M a =由于a >a >()(M a ∈当2124a -≥-时,即0a <≤时,()M a 是方程212x ax -++=-的较大根,()M a =由于0a <≤(a 所以()M a ∈综上() 0<a M a a >=≤ ,且()(M a ∈⋃ .【点睛】 分类讨论方法,关键点在于运算时由于不确定性,需要对某个参数进行讨论,进而分类运算.恒成立问题,关键点在对于任意x D ∈,()f x a ≥恒成立,可转化为()min f x a ≥. 23.(1)3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值.【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-. ∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫ ⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈,∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦ 194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.24.(1)7,032.40.2,3x F x x <≤⎧=⎨->⎩,212.3 1.6(0)4000C x x x =++>;(2)100km. 【分析】(1)根据在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费求得F ,设折旧费2z kx =,由路程为20km 时,折旧费为0.1元.代入求得k ,再根据运输成本包含固定费用,二是燃油费和折旧费求得C .(2)根据F C y x -=,结合(1)求得y ,再根据分段函数的最值的求法求解. 【详解】(1)由题意得:7,037 2.4(3),3x F x x <≤⎧=⎨+->⎩,. 即7,032.40.2,3x F x x <≤⎧=⎨->⎩. 设折旧费2z kx =,将(20,0.1)代入, 得0.1400k =,解得14000k =. 所以212.3 1.6(0)4000C x x x =++>. (2)因为F C y x-=,所以 4.7 1.6,234000 2.50.8,34000x x x y x x x ⎧--≤≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩, 当3x >时,由基本不等式,得0.80.75y ≤-=, 当且仅当100x =时取等号.当23x ≤≤时,由y 在[2,3]上单调递减,当2x =时,得max 10.750.752000y =-<. 综上所述,该市出租汽车一次载客路程为100km 时,每千米的收益y 取得最大值.【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.25.(1)(1,3)-;(2)零点为113)2a =.【分析】(1)由函数的解析式可得3010x x ->⎧⎨+>⎩,解可得x 的取值范围,即可得答案, (2)根据题意,由函数零点的定义可得()log (3)log (1)log [(3)(1)]0a a a f x x x x x =-++=-+=,即(3)(1)1x x -+=,解可得x 的值,即可得答案,(3)根据题意,将函数的解析式变形可得2()log (3)log (1)log [(3)(1)]log (23)a a a a f x x x x x x x =-++=-+=-+-,设223t x x =-++,分析t 的最大值可得()f x 的最大值为log 4a ,则有log 42a =,解可得a 的值,即可得答案.【详解】解:(1)根据题意,()log (3)log (1)a a f x x x =-++,必有3010x x ->⎧⎨+>⎩,解可得13x , 即函数的定义域为(1,3)-,(2)()log (3)log (1)a a f x x x =-++,若()log (3)log (1)0a a f x x x =-++=, 即log [(3)(1)]0a x x -+=,即(3)(1)1x x -+=,解可得:1x =+1x =即函数()f x的零点为11。
高中数学经典例题
高中数学经典例题1. 题目:已知函数 f(x) = x^2 + 2x + 1,求函数 f(x) 在区间 [-1,2] 上的最小值。
答案:首先求得函数的导数 f'(x) = 2x + 2,然后令导数等于零,得到 x = -1。
将 x = -1 代入函数 f(x) 中,得到 f(-1) = (-1)^2 +2(-1) + 1 = 0。
所以函数 f(x) 在 x = -1 时取得最小值为 0。
2. 题目:已知等差数列的前 n 项和为 Sn = n(a1 + an)/2,其中a1 为首项,an 为末项。
求等差数列前 n 项和的差值 Sn+1 - Sn。
答案:将 Sn+1 = (n+1)(a1 + an+1)/2 代入 Sn = n(a1 + an)/2,得到 Sn+1 - Sn = [(n+1)(a1 + an+1)/2] - [n(a1 + an)/2] = (a1 +an+1)/2。
所以等差数列前 n 项和的差值为 (a1 + an+1)/2。
3. 题目:已知直角三角形 ABC,AB = 3,BC = 4,求角 A 的正弦值 sin(A)。
答案:根据直角三角形中正弦函数的定义,sin(A) = BC/AB =4/3。
4. 题目:已知函数 f(x) = log2(x),求函数 f(x) 在定义域上的最大值。
答案:函数 f(x) 的定义域为 x > 0,因为对数函数的图像是递增的,在定义域上取得最大值。
所以函数 f(x) 在定义域上的最大值为正无穷。
5. 题目:已知等比数列的首项为 a,公比为 q,求等比数列的前 n 项和 Sn = a(1 - q^n)/(1 - q)。
答案:将 Sn+1 = a(1 - q^(n+1))/(1 - q) 代入 Sn = a(1 - q^n)/(1 -q),得到 Sn+1 - Sn = a(1 - q^(n+1))/(1 - q) - a(1 - q^n)/(1 - q) = (a*q^n)/(1 - q)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数典型例题
【例1】 已知函数),,( 1)(2Z c b a c
bx ax x f ∈++=是奇函数,又3)2(,2)1(<=f f ,求a 、b 、c 的整数值。
【例2】 设()x x x x x f --+-=
10101010。
(1)证明()f x 在()∞+∞-,上是增函数;(2)求()x f 1-及其
定义域
【例3】 定义在R 上的函数()f x 满足:对任意实数,m n ,总有()
()()f m n f m f n +=⋅,且当0x >时,()01f x <<. (1)试求()0f 的值;
(2)判断()f x 的单调性并证明你的结论;
(3)设()()()(){}()(){}22
,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-+=∈,若A B ⋂=∅,试确定a 的取值范围.
(4)试举出一个满足条件的函数()f x .
三、解答题
2.设两个方程02=++b ax x 和02=++a bx x 有一公共根,问:
⑴a 与b 之间有什么关系;⑵当]0,1[-∈a ,]0,1[-∈b 时,求22b a +的最大值与最小值。
【例1】 设)(x f 是定义在[]1,1-上的奇函数,)(x g 的图象与)(x f 的图象关于直线
1=x 对称,而当[]3,2∈x 时,c x x x g ++-=4)(2(c 为常数)。
(1)求)(x f 的表达式;
(2)对于任意1x ,[]1,02∈x 且21x x ≠,求证:12122)()(x x x f x f -<-;
(3)对于任意1x ,[]1,02∈x 且21x x ≠,求证:≤-)()(12x f x f 1.
【例2】 设函数f (x )的定义域关于原点对称,且满足①121221()()1()()()f x f x f x x f x f x +-=- ②存在正常数a ,使f (a ) = 1,求证:(1)f (x )为奇函数;(2)f (x )为周期函数,且一个周期
为4a 。
【例3】 已知函数f (x )=log m 3
3+-x x (1)若f (x )的定义域为[]β,α,(β>α>0),判断f (x )在定义域上的增减性,并加以说明;
(2)当0<m <1时,使f (x )的值域为()()[]1αlog ,1βlog --m m m m 的定义域区间为[]β,α (β>α>0)是否存在?请说明理由.
【例4】 设()x f a log =)1()
1(22--a x x a ,(a >0,a ≠1),求证:(1)过函数y =f (x )图象上任
意两点直线的斜率恒大于0;(2)f (3)>3。
【例5】 已知函数f (x )=lg()01)(>>>∈-+b a R k kb a x x ,的定义域为(0,+∞),问是否存在这样的a ,b ,使f (x )恰在(1,+∞)上取正值,且f (3)=lg4,若存在,求出a ,b 的值,若不存在,说明理由。
【例6】 设二次函数f (x )= ax 2 +b x +c (a >0且b ≠0)。
(1) 已知|f (0)|=|f (1)|=|f (-1)|=1,试求f (x )的解析式和f (x )的最小值;
(2) 已知f (x )的对称轴方程是x =1,当f (x )的图象在x 轴上截得的弦长不小于2时,试求a , b, c 满足的条件;
(3) 已知|b|<a , |f (0)|≤1, |f (-1)|≤1, |f (1)|≤1,当|x |≤1时,证明:|f (x )|≤4
5。