机械振动实验报告分析

合集下载

试验报告

试验报告

振动环境数据实测与试验剖面设计实验报告试验一正弦振动的环境测量和处理1试验目的:(1)通过本实验连接并掌握正弦机械振动信号测量的基本方法。

(2)应用Matlab编制相关程序,计算正弦信号的峰值、有效值、频率。

2试验原理:振动测试包括两种方式:一是测量机械或结构在工作状态下的振动,如振动位移、速度、加速度、频率和相位等,了解被测对象的振动状态,评定等级和寻找振源,对设备进行监测、分析、诊断和故障预测。

二是机械设备或结构施加某种激励,测量其受迫振动,以便求得被测对象的振动力学参量或动态性能,如固有频率、阻尼、刚度、频率响应和模态等。

振动的幅值、频率和相位时振动的三个基本参数,成为振动三要素。

幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。

频率:不同的频率成分反应系统内不同的振源。

通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。

压电传感器的力学模型可简化为一个单自由度质量-弹簧系统。

根据压电效应的原理,当晶体上受到振动作用力后,将产生电荷量,该电荷量与作用力成正比,这就是压电传感器完成机电转换的工作原理。

压电式加速度传感器在振动测试领域中应用广泛,可以测量各种环境中的振动量。

实验设备与振动测量实验装置图1所示,将加速度传感器通过配套的磁座吸附在振动实验台底座上,然后将其输出端和数据采集仪的输入端相连,通过USB接口和PC机相连,在通过软件将计算完成的信号数据呈现在显示器上。

图1 实验设备与振动测量实验装置傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。

在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

最初傅里叶分析是作为热过程的解析分析的工具被提出的。

f(t)满足傅立叶积分定理条件时,下图①式的积分运算称为f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。

工厂振动测试实验报告(3篇)

工厂振动测试实验报告(3篇)

第1篇一、引言随着工业自动化程度的不断提高,工厂生产过程中产生的振动问题日益受到重视。

振动不仅会影响设备的正常运行,还会对操作人员的安全和健康造成威胁。

为了确保工厂生产的安全和高效,本报告对工厂振动进行了系统测试,以了解振动源、振动传播路径以及振动对设备的影响,为振动控制提供科学依据。

二、实验目的1. 了解工厂振动产生的来源及传播路径。

2. 测量不同区域的振动强度和频率。

3. 分析振动对设备的影响。

4. 为振动控制提供科学依据。

三、实验设备与仪器1. 振动测试仪:用于测量振动强度和频率。

2. 激光测距仪:用于测量设备与振动源的距离。

3. 摄像头:用于观察振动现象。

4. 计算机软件:用于数据处理和分析。

四、实验方法1. 确定测试点:根据工厂布局,选取具有代表性的测试点,包括振动源附近、振动传播路径上以及设备附近。

2. 测试振动强度和频率:使用振动测试仪分别测量各个测试点的振动强度和频率。

3. 测量设备与振动源的距离:使用激光测距仪测量设备与振动源的距离。

4. 观察振动现象:使用摄像头观察振动现象,记录振动形态和频率。

5. 数据处理和分析:将测试数据输入计算机软件,进行数据处理和分析。

五、实验结果与分析1. 振动源:通过测试发现,工厂振动的主要来源为机械设备运行、物料运输以及空气流动等。

2. 振动传播路径:振动主要沿地面、墙壁以及设备本身传播。

3. 振动强度和频率:不同区域的振动强度和频率存在差异,振动源附近振动强度较大,频率较高;振动传播路径上振动强度逐渐减弱,频率降低;设备附近振动强度较小,频率较低。

4. 振动对设备的影响:振动可能导致设备疲劳、磨损,甚至损坏。

长期处于高振动环境下,设备的使用寿命将大大缩短。

六、振动控制措施1. 优化设备布局:将振动源与设备保持一定距离,减少振动传播。

2. 使用减振设备:在振动源附近安装减振垫、减振器等,降低振动强度。

3. 改善物料运输方式:采用低速、平稳的运输方式,减少物料运输过程中的振动。

机械振动实验报告

机械振动实验报告

机械振动实验报告1. 实验目的本实验旨在通过对机械振动的实验研究,掌握机械振动的基本原理和特性,深入了解振动系统的参数对振动现象的影响。

2. 实验原理(1)简谐振动:当物体在受到外力作用下,沿着某一方向做来回运动时,称为简谐振动。

其数学表达式为x(t) = A*sin(ωt + φ),其中A 为振幅,ω为角频率,φ为初相位。

(2)受迫振动:在外力的作用下振动的振幅不断受到调节,导致振幅和相位角与外力作用间存在一定的关联关系。

(3)自由振动:在无外力作用下,振动系统的振幅呈指数幅度减小的振动现象。

3. 实验内容(1)测量弹簧振子的简谐振动周期并绘制振幅-周期曲线。

(2)通过改变绳长和质量对受迫振动的谐振频率进行测量。

(3)观察受外力激励时的自由振动现象。

4. 实验数据与结果(1)弹簧振子简谐振动周期测量结果如下:振幅(cm)周期(s)0.5 0.81.0 1.21.5 1.62.0 1.9(2)受迫振动的谐振频率测量结果如下:绳长(m)质量(kg)谐振频率(Hz)0.5 0.1 2.50.6 0.2 2.00.7 0.3 1.80.8 0.4 1.5(3)外力激励下的自由振动现象结果呈现出振幅逐渐减小的趋势。

5. 实验分析通过实验数据处理和结果分析,可以得出以下结论:(1)弹簧振子的振动周期与振幅呈线性关系,在一定范围内,振幅增大,周期相应增多。

(2)受迫振动的谐振频率随绳长和质量的增加而减小,表明振动系统的参数对谐振频率有一定的影响。

(3)外力激励下的自由振动现象符合指数幅度减小的规律,振幅随时间的增长呈现递减趋势。

6. 实验总结本实验通过测量和观察机械振动的不同现象,探究了振动系统的基本原理和特性。

实验结果表明振动系统的参数对振动现象产生了明显的影响,为进一步深入研究振动学提供了基础。

通过本次实验,我对机械振动的原理和特性有了更深入的了解,对实验数据处理和分析方法也有了更加熟练的掌握。

希望通过不断的实验学习,能够进一步提升自己对振动学理论的理解水平,为未来的科研工作打下坚实基础。

振动测试实验报告

振动测试实验报告

振动测试实验报告振动测试实验报告引言:振动测试是一种常用的实验方法,用于评估物体在振动环境中的性能和可靠性。

本文将介绍一次振动测试实验的过程和结果,并对实验结果进行分析和讨论。

实验目的:本次实验的目的是评估一款新型电动牙刷在振动环境下的性能。

通过对电动牙刷进行振动测试,我们可以了解其在振动环境下的工作状态和可靠性,为产品的改进和优化提供参考。

实验装置:本次实验使用了一台专业的振动测试设备,该设备能够模拟不同频率和幅度的振动环境。

同时,还配备了传感器和数据采集系统,用于测量和记录电动牙刷在振动环境下的振动情况。

实验过程:1. 准备工作:将电动牙刷固定在振动测试设备上,并确保其稳定性和安全性。

2. 参数设置:根据实验要求,设置振动测试设备的振动频率和振动幅度。

3. 数据采集:启动振动测试设备,并开始采集电动牙刷在振动环境下的振动数据。

4. 实验记录:记录电动牙刷在不同振动条件下的振动情况,包括振动幅度、频率和持续时间等。

5. 数据分析:对采集到的振动数据进行分析,评估电动牙刷在振动环境下的性能和可靠性。

实验结果:经过振动测试,我们得到了以下实验结果:1. 振动幅度对电动牙刷的性能影响较大:当振动幅度较小时,电动牙刷的工作正常,但振动幅度过大时,电动牙刷的工作效果明显下降。

2. 振动频率对电动牙刷的性能影响较小:在一定范围内,振动频率对电动牙刷的工作效果没有显著影响。

3. 振动时间对电动牙刷的性能影响较小:电动牙刷在短时间内的振动环境下工作正常,但在长时间振动后,可能出现性能下降或故障。

结果分析:根据实验结果,我们可以得出以下结论:1. 电动牙刷的振动幅度应控制在合理范围内,过大或过小都会影响其工作效果。

2. 振动频率对电动牙刷的性能影响较小,可以在一定范围内进行调整。

3. 长时间的振动可能会导致电动牙刷的性能下降或故障,因此在设计和生产过程中需要考虑其耐振性能。

结论:通过本次振动测试实验,我们对电动牙刷在振动环境下的性能进行了评估。

振动实验报告讲解

振动实验报告讲解

振动实验报告讲解振动与控制系列实验姓名:李⽅⽴学号:201520000111电⼦科技⼤学机械电⼦⼯程学院实验1 简⽀梁强迫振动幅频特性和阻尼的测量⼀、实验⽬的1、学会测量单⾃由度系统强迫振动的幅频特性曲线。

2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼⽐。

⼆、实验装置框图图3.1表⽰实验装置的框图图3-1 实验装置框图KCX图3-2 单⾃由度系统⼒学模型三、实验原理单⾃由度系统的⼒学模型如图3-2所⽰。

在正弦激振⼒的作⽤下系统作简谐强迫振动,设激振⼒F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分⽅程式为:扫频信号源动态分析仪计算机系统及分析软件打印机或绘图仪简⽀梁振动传感器激振器⼒传感器质量块M或 M F x dt dxdt x d M F x dt dx n dtx d FKx dt dx C dtx d M /2/222222222=++=++=++ωξωω(3-1)式中:ω—系统固有圆频率ω =K/Mn ---衰减系数 2n=C/M ξ---相对阻尼系数ξ=n/ωF ——激振⼒ )2sin(sin 0ft B t B F πω== ⽅程①的特解,即强迫振动为:)2sin()sin(0?π?ω-=-=f A A x (3-2)式中:A ——强迫振动振幅--初相位20222024)(/ωωωn M B A +-=(3-3)式(3-3)叫做系统的幅频特性。

将式(3-3)所表⽰的振动幅值与激振频率的关系⽤图形表⽰,称为幅频特性曲线(如图3-3所⽰):3-2 单⾃由度系统⼒学模型 3-3 单⾃由度系统振动的幅频特性曲线图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。

振幅为Amax 时的频率叫共振频率f 0。

在有阻尼的情况下,共振频率为:221ξ-=f f a (3-4) 当阻尼较⼩时,0f f a =故以固有频率0f 作为共振频率a f 。

机械振动实验报告

机械振动实验报告

机械振动实验报告机械振动实验报告引言:机械振动是物体围绕平衡位置做周期性的往复运动。

振动现象广泛存在于自然界和人类生活中,对于了解物体的动态特性和掌握工程实践中的振动控制具有重要意义。

本实验旨在通过对机械振动的实验研究,探究振动的基本特性和影响因素。

一、实验目的本实验的主要目的是:1. 了解机械振动的基本概念和特性;2. 掌握振动系统的参数测量和分析方法;3. 研究振动系统的自由振动和受迫振动。

二、实验装置和原理本实验使用了一台简单的机械振动装置,该装置由弹簧、质量块和振动台组成。

通过改变质量块的位置和振动台的振幅,可以调节振动系统的参数。

实验原理基于振动的力学模型,包括弹簧的胡克定律、质量块的运动方程和振动台的驱动力。

三、实验步骤和结果1. 自由振动实验首先,将质量块固定在振动台上,并将振动台拉到一侧,使其产生初位移。

然后,释放振动台,观察振动的周期、频率和振幅。

通过实验测量和计算,得到自由振动的周期和频率随振幅的变化关系。

2. 受迫振动实验在受迫振动实验中,我们通过改变振动台的驱动频率来激励振动系统。

首先,将振动台连接到一个电动机,调节电动机的转速,改变驱动频率。

然后,测量振动台的振幅和相位差,以及电动机的转速和驱动频率之间的关系。

3. 参数测量和分析在实验过程中,我们还测量了弹簧的劲度系数、质量块的质量和振动台的质量。

通过这些参数的测量和分析,我们可以计算出振动系统的固有频率、阻尼比和共振频率。

四、实验结果分析根据实验结果,我们可以得出以下结论:1. 自由振动的周期和频率与振幅呈正相关关系,即振幅越大,周期和频率越大。

2. 受迫振动的振幅和相位差与驱动频率之间存在一定的关系,即在共振频率附近,振幅最大,相位差为零。

3. 振动系统的固有频率、阻尼比和共振频率与系统参数有关,可以通过参数测量和分析得到。

五、实验结论通过本次机械振动实验,我们深入了解了振动的基本概念和特性。

实验结果表明,振动的周期、频率、振幅和相位差与系统参数和外界驱动力密切相关。

机械振动实验报告分析

机械振动实验报告分析

实验三:简谐振动幅值测量一、 实验目的1、了解振动位移、速度、加速度之间的关系。

2、学会用压电传感器测量简谐振动位移、速度、加速度幅值二、实验仪器安装示意图三、 实验原理由简谐振动方程:)sin()(ϕω-=t A t f简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V 、A :)sin(ϕω-=t X x)cos()cos(ϕωϕωω-=-==t V t X x v )sin()sin(2ϕωϕωω-=--==t A t X xa 式中:ω——振动角频率 ϕ——初相位所以可以看出位移、速度和加速度幅值大小的关系是:XV A X V 2ωωω===,。

振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。

在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD 卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大小。

DASP通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DASP 参数设置表中输入各通道的工程单位和标定值。

工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。

传感器灵敏度为K CH (PC/U )(PC/U 表示每个工程单位输出多少PC 的电荷,如是力,而且参数表中工程单位设为牛顿N ,则此处为PC/N ;如是加速度,而且参数表中工程单位设为m/s 2,则此处为PC/m/s 2);INV1601B 型振动教学试验仪输出增益为K E ;积分增益为K J (INV1601 型振动教学试验仪的一次积分和二次积分K J =1);INV1601B 型振动教学试验仪的输出增益:加速度:K E = 10(mV/PC)速度:K E = 1 位移:K E = 0.5则DASP 参数设置表中的标定值K 为:)/(U mV K K K K J E CH ⨯⨯=四、 实验步骤1、安装仪器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B 型振动教学试验放大仪的功放输出接口。

机械系统的振动特性分析

机械系统的振动特性分析

机械系统的振动特性分析在日常生活中,机械系统的振动特性是一个非常重要的问题。

无论是汽车发动机的振动,还是楼房的结构振动,都直接影响着机械系统的运行和安全性。

因此,深入了解机械系统的振动特性对于提高其性能和稳定性至关重要。

首先,我们先来了解一下机械系统的振动是如何产生的。

简单来说,任何物体都有一定的弹性,当外力作用于物体时,物体会发生形变。

而当外力突然消失时,物体会恢复到原来的形态,这种复原的过程会使物体产生振动。

这种振动可以是单纯的正弦振动,也可以是复杂的周期或非周期振动。

机械系统的振动特性分析主要是研究振动的幅值、频率、相位等参数。

机械系统的振动特性分析涉及到许多重要的概念。

首先是自由振动和强迫振动。

自由振动是指系统在没有外力作用下自行振动的情况,而强迫振动则是指系统在受到外力作用下振动的情况。

自由振动一般是由系统本身的固有特性所决定,而强迫振动则是受到外力的大小和频率影响。

这两种振动都可以通过分析系统的振动特性来进行研究和控制。

其次,机械系统的振动还与系统的固有频率密切相关。

固有频率是指机械系统在没有外力干扰的情况下,自由振动的频率。

当外力的频率接近系统的固有频率时,系统会发生共振现象。

共振会导致系统的振幅急剧增大,甚至超过系统原有的强度和稳定性。

因此,在设计和使用机械系统时,需要特别注意避免共振现象的发生,这可以通过调整系统的固有频率或调整外力的频率来实现。

此外,机械系统的振动还与系统的材料和结构参数有关。

不同的材料和结构参数会影响到系统的刚度和阻尼,从而影响到系统的振动特性。

例如,对于悬吊在弹簧上的质点系统,弹簧的刚度和质点的质量会影响到系统的振动频率和振幅。

因此,在设计机械系统时,需要根据实际情况选择合适的材料和结构参数,以满足系统对振动特性的要求。

在实际应用中,机械系统的振动特性分析可以通过实验和数值模拟两种方式来进行。

实验方法一般采用传感器来测量系统的振动参数,通过对实验数据的处理和分析,可以得到系统的振动特性。

振动实验报告1

振动实验报告1

振动实验报告1实验⼀振动系统固有频率的测试⼀、实验⽬的:1、学习振动系统固有频率的测试⽅法;2、学习共振动法测试振动固有频率的原理与⽅法;3、学习锤击法测试振动系统固有频率的原理与⽅法;⼆、实验原理1、简谐⼒激振1)幅值判别法在激振功率输出不变的情况下,由低到⾼调节激振器的激振频率,通过⽰波器,我们可以观察到在某⼀频率下,任⼀振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。

这种⽅法简单易⾏,但在阻尼较⼤的情况下,不同的测量⽅法得出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不⼀样,这样对于⼀种类型的传感器在某阶频率时不够敏感。

2)相位判别法相位判法是根据共振时特殊的相位值以及共振动前后相位变化规律所提出来的⼀种共振判别法。

在简谐⼒激振的情况下,⽤相位法来判定共振是⼀种较为敏感的⽅法,⽽且共振是的频率就是系统的⽆阻尼固有频率,可以排除阻尼因素的影响。

A.位移判别共振将激振动信号输⼊到采集仪的第⼀通道(即X 轴),位移传感器输出信号或通过ZJY-601A 型振动教学仪积分档输出量为位移的信号输⼊到第⼆通道(即Y 轴),此时两通道的信号分别为激振信号为:位移信号为:共振时,,X 轴信号和Y 轴信号的相位差为p / 2,根据利萨如图原理可知,屏幕上的图象将是⼀个正椭圆。

当w 略⼤于n w 或略⼩于n w 时,图象都将由正椭圆变为斜椭圆,其变化过程如下图所⽰。

因此图象图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。

B.速度判别共振将激振信号输⼊到采集仪的第⼀通道(即X 轴),速度传感器输出信号或通过ZJY-601A 型振动教学仪积分档输出量为速度的信号输⼊到第⼆通道(即Y 轴),此时两通道的信号分别为:激振信号为:速度信号为:共振时,,X 轴信号和Y 轴信号的相位差为p / 2。

根据利萨如图原理可知,屏幕上的图象应是⼀条直线。

当w 略⼤于n w 或略⼩于n w 时,图象都将由直线变为斜椭圆,其变化过程如下图所⽰。

震动分析报告

震动分析报告

震动分析报告1. 引言震动分析是一种用来研究和评估结构或设备在震动环境下的性能和可靠性的方法。

通过对震动信号的采集和分析,可以得到结构或设备在不同工况下的振动特性,进而评估其是否满足设计要求。

本文将通过对某设备的震动分析,来探讨震动对设备性能的影响。

2. 背景我们对某机械设备进行了震动分析,该设备用于制造产品的关键工序。

为了确保该设备在工作过程中的稳定性和可靠性,我们需要通过对其进行震动测试和分析,评估其在震动环境下的性能。

3. 实验设计我们采用了以下实验设计来进行震动分析: - 设备参数记录:记录了设备的结构参数和工作状态,以及与该设备相关的环境参数。

- 震动采集:使用加速度传感器进行震动信号的采集,将信号传输给数据采集卡进行数字化处理。

- 数据分析:对采集到的震动信号进行时域分析、频域分析和时频域分析,获取设备在不同频段下的振动特性。

4. 数据分析结果4.1 时域分析时域分析是指对信号在时间域上的特性进行分析。

通过时域分析,我们可以获取到以下信息: - 设备的振动幅值:通过观察信号的振动幅值大小,可以评估设备在震动环境下的振动程度和结构的稳定性。

- 设备的振动周期:通过观察信号的周期性变化,可以评估设备在震动环境下的工作状态和振动频率。

4.2 频域分析频域分析是指对信号在频率域上的特性进行分析。

通过频域分析,我们可以得到以下信息: - 设备的主要频率成分:通过观察信号的频谱,可以确定设备在震动环境下的主要振动频率成分,评估其与工作频率的匹配程度。

- 设备的频率响应:通过观察信号在不同频率下的幅值响应,可以评估设备的振动特性、共振情况以及是否存在频率失配问题。

4.3 时频域分析时频域分析是指对信号在时域和频域上的特性进行联合分析。

通过时频域分析,我们可以得到以下信息: - 设备的振动时程:通过观察信号在时域上的变化,结合频域分析结果,可以评估设备的振动特性和是否存在异常振动行为。

- 设备的瞬时频率:通过观察信号在时频域上的变化,可以评估设备的振动频率和频率变化情况,进一步分析设备的工作状态和频率匹配情况。

振动系统固有频率实验报告

振动系统固有频率实验报告

汕头大学实验报告
五、实验现象
用相位判别法:
(1)位移判断:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
(2)速度判别法:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
(3)加速度判别法:
第一阶共振时的利萨如图:第二阶共振时的利萨如图:
第三阶共振时的利萨如图:
用传递函数判别法:
其实验数据表:
六、实验数据结果和分析
八、实验心得
通过本次实验,懂得了多种方法测量振动系统的固有频率,形象的把理论运用到操作中。

另外的是熟悉了DASP的软件界面,为接下来的实验操作奠定了基础。

振动测试实验报告(一)

振动测试实验报告(一)

振动测试实验报告(一)振动测试实验报告引言•介绍振动测试实验的背景和目的实验设备•列点介绍用于振动测试的设备和仪器实验过程•描述实验的具体步骤和操作流程•列出实验所使用的参数和测量方法实验结果•展示实验所得的振动数据和曲线图•列出实验的统计数据和分析结果实验讨论与分析•分析实验结果的差异和变化趋势•论述可能的原因和影响因素实验结论•总结实验结果和分析的关键点•概括实验的主要发现和结论实验改进和展望•提出对实验方法和设备的改进意见•展望进一步深入研究的方向和潜在应用领域参考文献•列出引用的相关文献以上是一份基于Markdown格式的振动测试实验报告的标题副标题形式的文章。

注意文章内不应包含HTML字符、网址、图片和电话号码等内容。

实验设备振动测试仪•型号:XYZ-123•产商:ABC公司•主要功能:用于测量和分析物体的振动特性加速度传感器•型号:123-Accel•产商:DEF公司•主要功能:测量物体在振动过程中的加速度变化数据采集系统•型号:DataLogger-456•产商:GHI公司•主要功能:用于实时采集和记录振动测试数据实验过程准备工作1.将振动测试仪和加速度传感器连接至数据采集系统。

2.确保设备之间的连接稳固可靠。

实验步骤1.将待测试物体放置在振动测试台上。

2.设置振动测试仪的参数,包括频率范围和振动幅值。

3.启动数据采集系统,开始记录振动测试数据。

4.逐步增加振动仪的频率,记录相应的加速度值。

5.按照设定的频率范围和步长进行振动测试,直至测试完成。

实验结果振动数据•频率(Hz) 加速度(m/s^2)•10 0.53•20 1.27•30 2.18•40 3.08•50 3.95振动曲线图振动曲线图振动曲线图实验讨论与分析结果分析•实验数据显示,随着振动频率的增加,加速度值也呈逐渐增大的趋势。

•在低频段时,加速度值的增长幅度较小,但在高频段时,加速度值的增长幅度明显加大。

影响因素讨论•物体的质量和刚度对振动特性有影响,可能导致加速度值的变化。

振动分析报告

振动分析报告

振动分析报告1. 引言振动分析是一种用于研究和评估机械系统振动特性和健康状况的方法。

通过分析机械系统的振动数据,可以识别出潜在的故障或异常状态,从而采取相应的维修或改进措施,确保系统的安全性和运行效率。

本报告旨在分析机械系统振动数据,并提供相应的结论和建议。

2. 数据采集与分析方法2.1 数据采集在本次振动分析中,我们采集了机械系统在运行过程中的振动数据。

通过安装振动传感器,可以实时监测机械系统的振动情况,并将数据采集到计算机中进行后续分析。

2.2 数据处理与分析采集到的振动数据可以通过振动分析软件进行处理和分析。

常用的振动参数包括振动加速度、振动速度和振动位移等。

通过分析这些参数的变化趋势和波形图,可以了解机械系统的振动特性。

3. 数据分析结果3.1 频谱分析通过对振动数据进行频谱分析,我们可以得到系统在不同频率下的振动幅值。

根据频谱图,我们可以判断是否存在异常频率分量,进而识别故障或异常情况。

3.2 振动时间历程分析振动时间历程图可以展示系统振动信号的时域波形。

通过观察时间历程图,我们可以判断振动信号是否存在周期性变化或突变现象,从而对机械系统的稳定性和可靠性进行评估。

3.3 振动相位分析振动相位分析可以分析不同频率的振动信号之间的相位关系。

通过观察相位图,我们可以判断不同振动组件之间的相互作用,进而对系统的动态响应进行评估。

4. 结论与建议通过对机械系统振动数据的分析,我们得到以下结论和建议:•在频谱分析中,我们观察到频率为X Hz的异常频率分量,提示机械系统可能存在故障或磨损情况,建议进行维修或更换相关部件。

•振动时间历程图显示系统振动信号存在周期性变化,可能是由于不平衡或轴承故障引起的,建议进行动平衡或轴承维修。

•振动相位分析显示不同频率的振动信号之间存在相位差,可能是由于机械系统的非线性特性引起的,建议进行系统优化或调整。

综上所述,通过振动分析,我们可以评估机械系统的振动特性和健康状况,并提供相应的维修或改进建议,以确保系统的正常运行和安全性。

振动测试实验报告

振动测试实验报告

竭诚为您提供优质文档/双击可除振动测试实验报告篇一:振动实验报告l机械振动实验报告1.测量简支梁的固有频率和振型1.1实验目的用激振法测量简支梁的固有频率和固有振型。

掌握多自由度系统固有频和振型的简单测量方法。

1.2实验原理共振法测量振动系统的固有频率是比较常用的方法之一。

共振是指当激振频率达到某一特定值时,振动量的振动幅值达到极大值的现象。

本次试验主要利用调整激振频率使简支梁达到位移振动幅值的方法来测量简支梁的一阶,二阶以及三阶固有频率以及从计算机上读取其当时的振型!1.3实验内容与结果分析(1)将激振器通过顶杆连接到简支梁上(注意确保顶杆与激振器的中心线在一直线上),激振点位于简支梁中心偏左50mm处(已有安装螺孔),将信号发生器输出端分别与功率放大器和数据采集仪的输入端连接,并将功率放大器与激振器相连接。

(2)用双面胶纸(或传感器磁座)将加速度传感器A粘贴在简支梁上5#测点(实验时固定不动,用于与其他测点比较相位),将加速度传感器连接,将电荷放大器输出端与数据采集仪的输入端连接。

(3)将信号发生器和功率放大器的幅值旋钮调至最小,打开所有仪器电源。

打开控制计算机,打开做此次试验所需的测试软件,进入页面设置好各项参数。

通过调节激振频率,观察简支梁位置幅值振动情况。

可以通过放在简支梁上的装有一定量塑质小球的小型透明容器直观的观察里面小球的振动情况,小球振动越厉害,也就说明简支梁振动的位移幅值越大;还可以通过分辨简支梁在不同激振频率下的发出的振动声音,声音越大,说明振动幅值越大!(4)通过(3)中的方法,可以测量出在简支梁在某一激振频率范围内的振动幅值,则此激振频率就是我们需要测量的一阶,二阶以及三阶固有频率,在测出固有频率的同时将计算机上画出的各阶振型的图像保存,以便结果的分析。

(5)在完成所有的试验内容之后,通过记录下的实验数据分析实验的结果。

所得的实验结果如下:测得的简支梁的一阶、二阶以及三阶的固有频率为?=35.42hZ,?=131.54hZ,?3=258.01hZ。

机械摆钟的实验报告

机械摆钟的实验报告

机械摆钟的实验报告
钟摆的摆动,秋千的荡动,心脏的跳动,小鸟飞开引起的树枝颤动等等,都是围绕一个中心位置不断地往复运动,这种运动叫振动。

用一根细线把小钢球悬挂起来,这叫单摆,是最简单的振动系统。

如:将小球稍微推离平衡位置,然后放手,它就开始摆动。

假如没有空气阻力,小球将一直摆动下去,永不停止,这种运动叫无阻尼振动。

实际上由于空气阻力,小球最终要停止在平衡位置上。

仔细观察摆动过程,可以发现小球来回摆动一次所需的时间总是一样的,这是单摆的等时性。

这个时间称为振动的周期。

一秒钟内物体振动的次数叫振动的频率,单位是赫兹,如一秒钟内完成10次振动,它的频率是10赫兹,一次振动所用时间为1/10秒,周期就是1/10秒。

小球摆动时偏离平衡位置的最大距离叫振幅。

实验表明,单摆的周期取决于悬挂小球的细线长度,与小球质量、摆动振幅无关。

单摆的振动是最简单的,实际的振动现象要复杂得多,不仅有机械振动,还有电磁振动、原子振动、它们都遵循相同的振动规律。

《振动测试实验》实验报告 - DyTACN-Modal Modal

《振动测试实验》实验报告 - DyTACN-Modal Modal
《振动测试实验》实验报告
实验名称
使用动态信号分析仪测试结构的频率响应函数
姓名
学号
同组实验者
指导教师
实验日期
南京航空航天大学
机械结构力学及控制国家重点实验室
二○一一年
一、
1.了解动态信号分析仪的功能,掌握动态信号分析仪的使用
2.掌握使用动态信号分析仪以随机激励测量结构频率响应函数的方法
3.掌握使用动态信号分析仪以锤击激励测量结构频率响应函数的方法
sx1201123王小二三班01doc振动测试实验实验报告掌握从频率响应函数中读取结构近似模态参数的方法二实验原理图仔细观察试验设备并将下列原理图中的测试仪器正确连线使用虚拟动态信号分析仪测量结构频率响应函数随机激励电脑力传感器加速度传感器激振器南京航空航天大学机械结构力学及控制国家重点实验室使用35670动态信号分析仪测量结构频率响应函数随机激励使用35670动态信号分析仪测量结构频率响应函数锤击激励加速度传感器35670动态信号分析仪sourceinput35670动态信号分析仪sourceinput力传感器加速度传感器激振器振动测试实验实验报告详述使用35670动态信号分析仪随机信号激励测量双简支梁频率响应函数时设置的主要参数并给出具体数值
四、实验Байду номын сангаас据
1.请绘出一条试验得到的典型频响的相频图与幅频图
图4测得的典型频率响应函数
2.记录以下数据
近似固有频率:第1阶Hz,第2阶Hz,第3阶Hz。
近似振型数据:
阶次
测点
1
2
3
4
5
6
7
8
9
10
11
1
幅值
相位
2
幅值

局部振动实验报告范文(3篇)

局部振动实验报告范文(3篇)

第1篇一、实验目的1. 了解局部振动的概念和产生原因。

2. 掌握局部振动实验的方法和步骤。

3. 分析局部振动的特征,研究振动对结构的影响。

二、实验原理局部振动是指结构或构件在特定位置产生的振动,通常由外部激励或内部缺陷引起。

局部振动实验旨在研究振动对结构的影响,以及振动传递和衰减规律。

三、实验仪器与材料1. 实验台:用于放置实验样品。

2. 激振器:用于产生外部激励。

3. 振动传感器:用于测量振动信号。

4. 数据采集系统:用于实时记录和分析振动数据。

5. 实验样品:如梁、板等结构构件。

四、实验步骤1. 准备实验样品:将实验样品放置在实验台上,确保样品稳固。

2. 连接仪器:将激振器、振动传感器和数据采集系统连接好。

3. 调整激振器:调节激振器的频率和振幅,使其产生所需的外部激励。

4. 测量振动信号:启动数据采集系统,记录实验样品在不同位置的振动信号。

5. 分析振动数据:对振动信号进行时域、频域分析,研究振动特征和传递规律。

6. 实验重复:改变激振器频率和振幅,重复实验步骤,验证实验结果的可靠性。

五、实验结果与分析1. 实验结果(1)时域分析:通过时域分析,可以观察到实验样品在不同位置的振动曲线,分析振动幅值、频率和相位等信息。

(2)频域分析:通过频域分析,可以提取实验样品的固有频率、共振频率和振动能量分布等信息。

2. 分析(1)振动幅值:实验结果表明,实验样品在不同位置的振动幅值存在差异,这与实验样品的结构和激振器的频率有关。

(2)固有频率:实验样品的固有频率与实验样品的结构和质量分布有关,可通过频域分析得到。

(3)共振频率:当激振器的频率接近实验样品的固有频率时,实验样品会产生共振现象,振动幅值显著增大。

(4)振动传递规律:实验结果表明,振动在实验样品中传递时,振幅逐渐减小,这与实验样品的材料和结构有关。

六、结论1. 本实验成功研究了局部振动的特征,验证了振动对结构的影响。

2. 通过实验,掌握了局部振动实验的方法和步骤,为今后类似实验提供了参考。

机械故障共振实验报告

机械故障共振实验报告

一、实验目的1. 了解机械共振现象及其危害。

2. 掌握共振频率的计算方法。

3. 通过实验验证机械系统在不同激振频率下的响应,分析故障共振原因。

4. 探讨共振故障的预防和处理方法。

二、实验原理共振是指系统在外界周期性激振力作用下,当激振力的频率接近或等于系统的固有频率时,系统会产生较大的振动幅值的现象。

共振现象在机械系统中普遍存在,若不能有效预防和处理,可能导致机械结构损坏、设备性能下降等问题。

本实验采用单自由度机械系统,通过改变激振频率,观察系统在不同频率下的振动响应,从而分析故障共振原因。

三、实验设备1. 单自由度机械振动实验台2. 频率发生器3. 振幅传感器4. 数据采集器5. 计算机四、实验步骤1. 将单自由度机械振动实验台安装在实验台上,连接好频率发生器、振幅传感器和数据采集器。

2. 调整实验台,使其处于水平状态。

3. 启动频率发生器,逐渐增加激振频率,同时记录振幅传感器输出的振动幅值。

4. 当激振频率接近系统固有频率时,观察振动幅值的变化,找出共振频率。

5. 在共振频率附近,观察系统在不同频率下的振动响应,分析故障共振原因。

6. 根据实验数据,绘制振动幅值与激振频率的关系曲线。

五、实验结果与分析1. 实验数据激振频率(Hz) | 振动幅值(mm)------------------|----------------10 | 0.120 | 0.230 | 0.340 | 0.550 | 0.860 | 1.270 | 1.680 | 2.090 | 2.5100 | 3.0110 | 3.5120 | 4.0130 | 4.5140 | 5.0150 | 5.5160 | 6.0170 | 6.5180 | 7.0190 | 7.5200 | 8.02. 分析根据实验数据,当激振频率为80Hz时,振动幅值达到最大值,说明该频率为系统的共振频率。

在共振频率附近,振动幅值较大,容易导致机械结构损坏。

机械震动总结报告范文

机械震动总结报告范文

机械震动总结报告范文摘要:本报告旨在总结机械震动的特性、产生原因、评价与控制方法等方面的研究成果,并提出针对性的改进建议。

通过实验、理论分析以及相关文献的综合研究,本报告对机械震动进行了全面的分析。

一、引言机械震动是机械系统运行中普遍存在的问题,它不仅影响机械设备的寿命与运行可靠性,还对人员安全与舒适性产生负面影响。

因此,深入研究机械震动的特性与控制方法具有重要意义。

二、机械震动的特性机械震动可分为结构振动与运动不平衡引起的震动两个方面。

结构振动可以进一步细分为弹性振动、固有频率振动、共振振动和自由振动等。

运动不平衡震动是指机械系统在高速旋转时由于质量不平衡而产生的振动。

机械震动具有周期性、随机性和冲击性等特点。

三、机械震动的产生原因机械震动的产生原因很多,包括机械系统的设计、制造与安装等方面因素,如结构刚度不足、轴承损坏、未能正确安装等。

同时,运行过程中的外力扰动、机械系统的故障以及材料疲劳等也是机械震动产生的原因。

四、机械震动的评价方法机械震动的评价方法包括振动参数测量与分析、人体感受评价和影响分析等。

振动参数测量与分析可以通过加速度传感器、速度传感器等获取振动信号,并利用频率谱分析、阶次分析等方法对振动信号进行处理与评估。

人体感受评价主要通过实验与人员主观感受相结合来进行。

而影响分析则通过对机械震动引起的噪声、振动等对周围环境与设备的影响进行分析与预测。

五、机械震动的控制方法机械震动的控制方法包括设计改进、结构增强、材料优化等方面的措施。

在设计阶段,应考虑结构刚度、惯性力的平衡等因素,同时合理选择材料与制造工艺。

在运行阶段,可以通过动平衡、振动隔离、减振措施等来控制机械震动。

六、改进建议综合以上研究成果,本报告提出以下改进建议:1. 加强机械震动的设计与制造规范,提高机械系统的耐震性能;2. 在设计阶段加大对结构刚度、质量平衡等的考虑;3. 加强结构优化设计,减少共振现象的发生;4. 提高材料的抗疲劳与抗震性能;5. 加强振动监测与预警,及时发现并解决机械系统中的故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x x 实验三:简谐振动幅值测量一、 实验目的1、了解振动位移、速度、加速度之间的关系。

2、学会用压电传感器测量简谐振动位移、速度、加速度幅值二、实验仪器安装示意图三、 实验原理由简谐振动方程:f (t ) = A sin(ωt - ϕ )简谐振动信号基本参数包括:频率、幅值、和初始相位,幅值的测试主要有三个物理量,位移、速度和加速度,可采取相应的传感器来测量,也可通过积分和微分来测量,它们之间的关系如下:根据简谐振动方程,设振动位移、速度、加速度分别为x 、v 、a ,其幅值分别为X 、V、A :x = X sin(ωt - ϕ )v = &= ωX cos(ωt - ϕ) = V cos(ωt - ϕ)a = &= -ω 2X sin(ωt - ϕ ) = A sin(ωt - ϕ )式中: ω ——振动角频率ϕ ——初相位所以可以看出位移、速度和加速度幅值大小的关系是:V= ωX , A = ωV = ω 2X 。

振动信号的幅值可根据位移、速度、加速度的关系,用位移传感器或速度传感器、加速度传感器进行测量,还可采用具有微积分功能的放大器进行测量。

在进行振动测量时,传感器通过换能器把加速度、速度、位移信号转换成电信号,经过放大器放大,然后通过AD 卡进行模数转换成数字信号,采集到的数字信号为电压变化量,通过软件在计算机上显示出来,这时读取的数值为电压值,通过标定值进行换算,就可计算出振动量的大小。

DASP软件参数设置中的标定通过示波调整好仪器的状态(如传感器档位、放大器增益、是否积分以及程控放大倍数等)后,要在DASP参数设置表中输入各通道的工程单位和标定值。

工程单位随传感器类型而定,或加速度单位,或速度单位,或位移单位等等。

传感器灵敏度为K CH(PC/U)(PC/U表示每个工程单位输出多少PC的电荷,如是力,而且参数表中工程单位设为牛顿N,则此处为PC/N;如是加速度,而且参数表中工程单位设为m/s2,则此处为PC/m/s2);INV1601B型振动教学试验仪输出增益为K E;积分增益为K J(INV1601型振动教学试验仪的一次积分和二次积分K J=1);INV1601B型振动教学试验仪的输出增益:加速度:K E=10(mV/PC)速度:K E=1位移:K E=0.5则DASP参数设置表中的标定值K为:K=K CH⨯K E⨯K J(mV/U)四、实验步骤1、安装仪器把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B型振动教学试验放大仪的功放输出接口。

把带磁座的加速度传感器放在简支梁的中部,输出信号接到INV1601B型振动教学试验仪的加速度传感器输入端,功能档位拔到加速度计档的a加速度。

2、打开INV1601B型振动教学试验仪的电源开关,开机进入DASP2006标准版软件的主界面,选择单通道按钮。

进入单通道示波状态进行波形示波。

3、在采样参数设置菜单下输入标定值K和工程单位m/s2,设置采样频率为4000Hz,程控倍数1倍。

4、调节INV1601B型振动教学试验仪频率旋钮到40Hz左右,使梁产生共振。

5、在示波窗口中按数据列表进入数值统计和峰值列表窗口,读取当前振动的最大值。

6、改变档位v(mm/s)、d(mm)进行测试记录。

7、更换速度和电涡流传感器分别测量a(m/s2)、v(mm/s)、d(mm)。

五、实验结果1、实验数据2、根据实测位移x,速度v,加速度a,按公式计算出另外两个物理量。

六、实验分析实验数据反映出,在实验过程中,由于标定值设置的不当,导致出现较大范围的偏差。

而根据实验原理,在相同的振动条件下,加速度、速度传感器和电涡流位移计测出的加速度、速度和位移值应该比较接近。

T ⎰0实验四:简谐波幅域统计参数的测定一、 实验目的1、学习幅域各统计参量及其相互关系;2、学会对振动波形幅域的测试和分析。

二、 实验仪器安装示意图三、 实验原理每一个振动量对时间坐标作出的波形,可以得到峰值、峰峰值、有效值和平均值等量值, 它们之间存在一定的关系。

振动量的描述常用峰值表示,但在研究比较复杂的波形时,只用峰 值描述振动过程是不够的,因为峰值只能描述振动大小的瞬时值,不能反应产生振动的时间过 程。

平均绝对值和有效(均方根)值可描述时间过程。

这些参量都与幅值密切相关。

峰值定义为:x 均 = x m即从波形的基线位置到波峰的距离,也可称为振幅。

峰峰值是正峰到负峰间的距离。

平均绝对值的定义为:x 均均= 1 Tx (t )dt有效值定义为:x 均均=平均绝对值的使用价值较小,而有效值因与振动的能量有直接关系,所以使用价值较大, 特别是对随机振动的研究,使用价值更大。

简谐振动波形的峰值、有效值和平均绝对值示于图 2。

各量之间的关系为:x 均均 = π 2 2x 均均= 1 2x 均这些关系式更通用的形式为:x 均均 = F f x 均均=1 F cx 均F f 称为波形因数, F f =F c 称为波峰因数, F c =x 均均 x 均均x 均 x 均均F f 和 F c 给出了所研究振动波形的指标,对正弦振动,F f =1.11≈1 分贝,F c =1.414≈3 分贝。

关于波形峰值、有效值和平均绝对值之关系的分析,对位移、速度、加速度和各种迅号波形都是适用的,但各种不同波形的 F f 和 F c 值是不一样的,有时有很大的差别。

例如正弦波、三角波和方波,其 F f 和 F c 值分别列于表1—1。

四、 实验步骤1、 安装仪器六、 实验分析把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支 梁有一定的预压力(不要露出激振杆上的红线标识),用专用连接线连接激振器和INV1601B 型 振动教学试验放大仪的功放输出接口。

把带磁座的加速度传感器放在简支梁的中部,输出信号 接到INV1601B型振动教学试验仪的加速度传感器输入端,功能档位拔到加速度计档的a 加速度。

2、 打开INV1601B 型振动教学试验仪的电源开关,开机进入DASP2006 标准版软件的主界面,选 择单通道按钮。

进入单通道示波状态进行波形示波。

3、 在采样参数设置菜单下输入标定值K 和工程单位m/s 2 ,设置采样频率为4000Hz ,程控倍数 1倍。

4、 调节INV1601B 型振动教学试验仪频率旋钮到40Hz 左右,适当调节激振器使梁产生共振。

5、 在示波窗口中按数据列表进入数值统计和峰值列表窗口,读取当前振动的最大值。

6、 根据公式计算其它统计参数。

五、 实验结果该实验主要是为了测定幅域统计参数之间的关系,不考虑其实际的物理意义,对信号波形 来说作为电信号来处理,单位为(mv )通过本次实验,得出了不同频率下测得的响应,并对相关幅域统计参数进行计算,并求出了波形系数和波峰系数这两个重要参数。

这些统计量对后期的实验有重要价值。

机械振动实验报告五、实验结果机械振动实验报告六、实验分析本次实验用双踪试波法测传感器的灵敏度。

所得的灵敏度数据31.61与真实数据33.33非常接近,从而证实了实验方法的正确性,并为实践中的测试提供理论基础。

五、实验数据机械振动系统固有频率测量结果六、实验结果分析通过本次实验,可以得出以下结论:1、幅值判别法和相位判别法在测量高阶频率时较为精确。

2、传函判别法和自谱分析法因为方法简单,在测试系统主频率时较为实用。

五、实验结果1、锤击法测量2、简支梁等效质量m(梁的均布质量折合到梁的中部的质量)和等效刚度k的计算梁的质量m0=1kg把测得和数据代入方程联立解得:k=80.16kN/mm=1.03kg折合到梁中部的集中等效质量与梁质量的比值:m/m0六、实验分析在本次实验中,对单自由度的简支梁系统进行建模。

先用锤击法测出系统在不同条件下的响应频率,再通过理论假设和相关计算得出梁的等效刚度和等效质量。

率率率H z 率1、 记录测试数据 注:由于实验条件的限制,“加电机和两块半配重”这一项实验未能进行。

五、 实验结果2、绘制出频率与质量的变化曲线率 率 率 kg 率质量-频率变化曲线六、 实验分析由于实验条件所限,“加电机和两块半配重”项的测量无法进行。

通过测绘出的质量-频 率变化曲线来看,基本反映了系统在负载影响下的频率变化情况。

尤其是附着式的传感器(如 实验中的加速度传感器和速度传感器)在测量时自身的质量对系统带来负面影响,因此在高精机械振动实验报告度测量中,尽量选用费附着式的传感器(如实验中的电涡流位移计)。

机械振动实验报告五、实验结果第一阶模态图第二阶模态图第三阶模态图第四阶模态图第五阶模态图六、实验分析(见实验26的实验分析)机械振动实验报告五、实验结果2、打印出各阶模态振型投影图。

第一阶模态图第二阶模态图第三阶模态图第四阶模态图第五阶模态图六、实验分析(见实验26的实验分析)1、记录模态参数2、打印出各阶模态振型投影图。

五、 实验结果第一阶模态 图第二阶模态图第三阶模态图第四阶模态图第五阶模态图六、实验分析在实验24、25、26,分别对等宽度梁、等强度梁和圆盘进行了模态分析。

通过各阶模态图可以看出系统各阶的频率、阻尼比、模态质量、模态刚度和模态阻尼。

由于实验时间所限,划分的网格比较稀疏,这无疑影响了系统模态分析的质量。

相关文档
最新文档