二次函数与几何综合(讲义和习题)含答案

合集下载

二次函数与几何综合典题(含答案详解)

二次函数与几何综合典题(含答案详解)

二次函数(h ánsh ù)与几何(j ǐ h é)综合典题题例1.已知抛物线的顶点(d ǐngdi ǎn)坐标为(3,-2),且与轴两交点(ji āodi ǎn)间的距离为4,求其解析(ji ě x ī)式。

例2.已知二次函数)0(2≠++=a c bx ax y 的图像与x 轴交于不同的两点A 、B ,点A 在点B 的左边,与轴交于点C ,若△AOC 与△BOC 的面积之和为6,且这个二次函数的图像的顶点坐标为(2,-a ),求这个二次函数的解析式。

例3.已知二次函数)0(2≠++=a c bx ax y 的图像过点E (2,3),对称轴为x =1,它的图像与x 轴交于两点A 。

(1)求二次函数的解析式;(2)在(1)中抛物线上是否存在点P ,使△POA 的面积等于△EOB 的面积?若存在,求出P 点的坐标;若不存在,说明理由。

例4.如图,抛物线)0(2≠++=a c bx ax y 与x 轴、轴分别相交于A (-1,0)、B (3,0)、C(0,3)三点,其顶点为D 。

(1)求经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积;(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似请说明理由。

例5:如图,已知抛物线的图像(tú xiànɡ)与X轴交于A、C两点。

l的解析(jiě xī)式;(1)若抛物线与关于(guānyú)x轴对称,求2l上一动(yīdòng)点(B不与A,C重合(chónghé)),以(2)若点B是抛物线1AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点记为D,求l上;证:点D在2l在x轴上、下两部分的图像上时,平行四边形(3)探索:当点B分别位于1ABCD的面积是否存在最大值或最小值?若存在,判断它们是何种特殊平行四边形并求出它的面积;若不存在,请说明理由。

二次函数与几何综合

二次函数与几何综合

二次函数与几何综合(讲义)一、知识点睛“二次函数与几何综合”思考流程:①研究函数表达式,二次函数关注四点一线,一次函数关注k、b;②关键点坐标转线段长,找特殊图形、特殊位置关系,寻求边和角度信息.二、精讲精练1. 如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M 的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.(1)求抛物线的解析式;(2)点E在抛物线的对称轴上,点F在抛物线上,且以B、A、F、E四点为顶点的四边形为平行四边形,求点F的坐标.3.已知抛物线2y ax bx c =++的对称轴为直线2x =,且与x 轴交于A 、B 两点,与y 轴交于点C ,其中A (1,0),C (0,-3). (1)求抛物线的解析式;(2)若点P 在抛物线上运动(点P 异于点A ),①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标; ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.4. 如图,在平面直角坐标系中,直线3342y x=-与抛物线214y x bx c=-++交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.5.已知,抛物线212y ax ax b=-+经过A(-1,0),C(2,32)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ2y,求y2与x的函数关系式,并直接写出自变量x的取值范围.6.抛物线y=ax2+bx+c与x轴的交点为A(m-4,0)和B(m,0),与直线y=-x+p 相交于点A和点C(2m-4,m-6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A、C以及另一点Q为顶点的平行四边形ACQP的面积为12,求P、Q两点的坐标;(3)在(2)的条件下,若点M是x轴下方抛物线上的一动点,当△PQM的面积最大时,请求出△PQM的最大面积及点M的坐标.令x=0,则y=-3a,∴C(0,3-a),∴OC=3a∵D为抛物线223y ax ax a=--的顶点,∴D(1,-4a)过点D 作DM ⊥y 轴于点M ,则∠AOC =∠CMD =90°, 又∵∠ACD +∠MCD =∠AOC +∠1,∠ACD =∠AOC =90°∴∠MCD =∠1 , ∴△AOC ∽△CMD ,∴OA OCCM DM=, ∵D (1,-4a ),∴DM =1,OM =4a ,∴CM =a ∴331a a =,∴21a =,∵a >0,∴a =1 ∴抛物线的解析式为:223y x x =-- (2)当AB 为平行四边形的边时, 则BA ∥EF ,并且EF = BA =4由于对称轴为直线x =1,∴点E 的横坐标为1 ∴点F 的横坐标为5或者-3 将x =5代入223y x x =--得y =12, ∴F (5,12).将x =-3代入223y x x =--得y =12, ∴F (-3,12).当AB 为平行四边形的对角线时,点F 即为点D , ∴F (1,-4).综上所述,点F 的坐标为(5,12),(-3,12)或(1,-4). 3.解:(1)由题意,得0322a b c c ba⎧⎪++=⎪=-⎨⎪⎪-=⎩,解得143a b c =-⎧⎪=⎨⎪=-⎩∴抛物线的解析式为243y x x =-+-.(2)①令2430x x -+-=,解得1213x x ==, ∴B (3, 0)则直线BC 的解析式为3y x =- 当点P 在x 轴上方时,如图1,过点A 作直线BC 的平行线交抛物线于点P , ∴设直线AP 的解析式为y x n =+, ∵直线AP 过点A (1,0),∴直线AP 的解析式为1y x =-,交y 轴于点(01)E -,. 解方程组2143y x y x x =-⎧⎨=-+-⎩,得12121201x x y y ==⎧⎧⎨⎨==⎩⎩,∴点1(21)P , 当点P 在x 轴下方时,如图1,根据点(01)E -,,可知需把直线BC 向下平移2个单位, 此时交抛物线于点23P P 、, 得直线23P P 的解析式为5y x =-,解方程组2543y x y x x =-⎧⎨=-+-⎩,得1212x x y y ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩∴23P P , 综上所述,点P 的坐标为:1(21)P ,,23P P , ②过点B 作AB 的垂线,交CP 于点F .如图2,∵(30)(03)B C -,,, ∴OB =OC ,∴∠OCB =∠OBC =45° ∴∠CBF =∠ABC =45° 又∵∠PCB =∠BCA ,BC =BC ∴△ACB ≌△FCB∴BF =BA =2,则点F (3,-2) 又∵CP 过点F ,点C ∴直线CP 的解析式为133y x =-.4.解:(1)对于3342y x =-,当y =0,x =2;当x =-8时,y =-152.∴A 点坐标为(2,0),B 点坐标为15(8)2--, 由抛物线214y x bx c =-++经过A 、B 两点,得012151682b c b c =-++⎧⎪⎨-=--+⎪⎩ 解得3452b c ⎧=-⎪⎪⎨⎪=⎪⎩ 2135.442y x x ∴=--+(2)设直线3342y x =-与y 轴交于点M 当x =0时,y =32-. ∴OM =32.∵点A 的坐标为(2,0),∴OA =2,∴AM 5.2=∴OM :OA :AM =3:4:5.由题意得,∠PDE =∠OMA ,∠AOM =∠PED =90°,∴△AOM ∽△PED . ∴DE :PE :PD =3:4:5∵点P 是直线AB 上方的抛物线上一动点,∴PD 213533()()44242x x x =--+--=213442x x --+∴21213(4)542l x x =--+231848555x x =--+23(3)155l x ∴=-++由题意知:82x -<<315.x l ∴=-=最大时,5.解:(1) ∵拋物线y 1=ax 2-2ax +b 经过A (-1,0),C (0,23)两点,∴⎪⎩⎪⎨⎧==++2302b b a a ,∴1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴拋物线的解析式为y 1= -21x 2+x +23(2)解法一:过点M 作MN ⊥AB 交AB 于点N ,连接AM 由y 1= -21x 2+x +23可知顶点M (1,2) ,A (-1,0),B (3,0),N (1,0) ∴AB =4,MN =BN=AN =2,AM =MB =∴△AMN 和△BMN 为等腰直角三角形. ∵∠MP A +∠QPB =∠MP A +∠PMA =135° ∴∠QPB =∠PMA 又∵∠QBP =∠P AM =45° ∴△QPB ∽△PMA∴=AP BQAM BP将AM =AP =x +1,BP =3-x,BQ=22-y 代入,223y x=--,即2215=+22y x x -. ∵点P 为线段OB 上一动点 (不与点B 重合) ∴0≤x <3则y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3) 解法二:过点M 作MN ⊥AB 交AB 于点N .由y 1= -21x 2+x +23易得M (1,2),N (1,0),A (-1,0),B (3,0), ∴AB =4,MN =BN =2,MB =22,∠MBN =45︒. 根据勾股定理有BM 2-BN 2=PM2-PN 2. ∴(()22222=1PM x ---…①,又∠MPQ =45︒=∠MBP , ∴△MPQ ∽△MBP , ∴2PM MQ MB =⨯=22y 2⨯22 由 、 得y 2=21x 2-x +25.∵0≤x <3,∴y 2与x 的函数关系式为y 2=21x 2-x +25(0≤x <3) 6.解:(1)如图1,过点C 作CE ⊥AB ,交AB 于点E . ∵点C (2m -4,m -6),∴点E (2m -4,0) ∴EC =6-m ,AE =OE +EA =m 又∵直线AC :y =-x +p ∴∠EAC =45°,AE =EC 即6-m =m ,m =3.∴A (-1,0),B (3,0),C (2,-3)可得抛物线解析式为y =x 2-2x-3,直线AC 解析式为y = -(2)如图2,AC =32,AC 所在直线的解析式为:y ∠BAC =45°∵平行四边形ACQP 的面积为12. ∴平行四边形ACQP 中AC 边上的高为2312=22过点D 作DK ⊥AC 与PQ 所在直线相交于点K ,DK = 22, 符合条件的点K 在直线AC 的两侧各有一个, ∴PQ 所在直线可能在直线AC 的两侧各有一条, 又∵∠OAD =45°,∴DN =4 ∴PQ 的解析式为y =-x +3或y =-x -5∴ 2233y x x y x ⎧=--⎨=-+⎩ ,解得1130x y =⎧⎨=⎩或2225x y =-⎧⎨=⎩2235y x x y x ⎧=--⎨=--⎩ 方程组无解. 即P 1(3,0), P 2(-2,5)∵ACPQ 是平行四边形 ,A (-1,0) C (2,-3) ∴当P (3,0)时,Q (6,-3) 当P (-2,5)时,Q (1,2)∴满足条件的P ,Q 点是P 1(3,0), Q 1(6,-3)或 P 2(-2,5),Q 2(1,2) (3)如图3,作直线l 平行于PQ 所在的直线(即BN ), 且使得l 与抛物线只有一个交点,这个交点即为M (此时以PQ 为底,高最大,面积最大) 设l 的表达式为y x b =-+,则223y x b y x x =-+⎧⎨=--⎩,得230x x b ---=,由△=0,得b =134-,∴213423y x y x x ⎧=--⎪⎨⎪=--⎩,解得12154x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴M (21,154-) 设l 与y 轴交点为点G ,过G 作GH ⊥BN 于点H , 易得∠NGH =45°,则在Rt △NGH 中,GHNG 又∵N (0,3),G (0,134-),∴NG =254∴GHNG = ∵PQ =AC=∴S=11752288PQ GH =⨯=1,154),最大面积为857.∴M(2。

2019-2020年中考复习:二次函数与几何图形综合题含答案解析

2019-2020年中考复习:二次函数与几何图形综合题含答案解析

解:( 1)平移后以 C为顶点的抛物线解析式为 y
第 3 题图
2
x 1 +3 ,
则可知一种移动方式是:将 y x2 向右平移一个单位长度,再向上平移三个单
位长度; ( 2)由( 1)知移动后的抛物线解析式为: y
2
x 1 +3=
x2
2x
2.
令 x2 2x 2 =0,
解出 x1=1 3 , x2 =1+ 3 , 过点 P 作 PM⊥x 轴于点 M,
此时点 P 的坐标为( 5-1,2 5 -2 ) ;
②当△ PDO∽△ AOC时, PD
OD , 有 -x2 4
x ,
AO CO
24
解得 x3
1 65
4
, x4
1- 65 (不符合题意 , 舍去) ,
4
当x
1 65 时, y
1 (
65 )2 4
1 65 ,
4
4
8
此时,点 P 的坐标为( 1 65 , 1 65 ),
2019-2020 年中考复习:二次函数与几何图形综合题含答案解析
1. 如图,抛物线 y x2 4 与 x 轴交于 A、 B 两点,与 y 轴交于 C 点,点 P 是抛 物线上的一个动点且在第一象限,过点 P 作 x 轴的垂线,垂足为 D,交直线 BC 于点 E. ( 1)求点 A、B、C 的坐标和直线 BC的解析式; ( 2)求△ ODE面积的最大值及相应的点 E 的坐标; ( 3)是否存在以点 P、O、D为顶点的三角形与△ OAC相似?若存在,请求出点 P 的坐标;若不存在,请说明理由.
设点 P 的坐标为( x,- x 2 +4), 0<x<2,
∵△ OAC与△ OPD都是直角三角形,

第八讲 二次函数与几何图形的综合运用1(含答案)

第八讲 二次函数与几何图形的综合运用1(含答案)

第八讲 二次函数与几何图形的运用一、知识梳理二次函数与三角形的综合运用:1、求面积及最值2、与三角形的综合运用3、与相似三角形的综合运用4、与四边形的综合运用二、例题例1:如图,已知抛物线y=﹣x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.变式 1 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.例2、如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.例3:在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.例4:已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B 两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.例5、如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c (a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x ﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H 作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.三、课堂练习1、如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE.设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是 ( )A.y=32x2 B.y=3x2 C.y=23x2 D.y=33x22、已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.3、直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB 恒过一个定点,该定点坐标为.4、如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E 、B . (1)求二次函数y=ax 2+bx+c 的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行与y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M 在抛物线上,点N 在其对称轴上,使得以A 、E 、N 、M 为顶点的四边形是平行四边形,且AE 为其一边,求点M 、N 的坐标.六、课后作业1、已知抛物线y=ax 2﹣3x+c (a ≠0)经过点(﹣2,4),则4a+c ﹣1= .2、a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b c (用“>”或“<”号填空)3、已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y轴的直线。

九年级数学 中考二轮专项复习:二次函数与几何综合(含答案)

九年级数学 中考二轮专项复习:二次函数与几何综合(含答案)

中考数学 二轮专项复习:二次函数与几何综合(含答案)1.如图,已知直线y 1=21x +b 和抛物线y 2=-45x 2+ax +b 都经过点B (0,1)和点C ,过点C 作CM ⊥x轴于点M ,且CM =25.第1题图(1)求出抛物线的解析式;(2)动点P 从点O 出发,以每秒1个单位长度的速度,沿OM 向点M运动,过点P 作PE ⊥x 轴分别交抛物线和直线于点E ,F .当点P 运动多少秒时,四边形EFMC 为菱形?(3)在(2)的条件下,在直线AC 上是否存在一点Q ,使得以点E 、F 、Q 为顶点的三角形与△AMC 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.解:(1)把B (0,1)代入y 1=21x +b ,得b =1,∴y 1=21x +1,把y =25代入y 1=21x +1得x =3, ∴C (3,25),把B (0,1),C (3,25)代入y 2=-45x 2+ax +b 得,⎪⎩⎪⎨⎧=++-=2534451b a b ,解得⎪⎩⎪⎨⎧==4171a b , ∴y 2=-45x 2+417x +1.(2)∵四边形EFMC 为菱形, 则EF =FM =CM =25, 设P (t ,0),则EP =-45t 2+417t +1,FP =21t +1,MP =3-t ,则EF =EP -FP =-45t 2+417t +1-21t -1=-45t 2+415t , FM =10545222+-=+t t PM PF ,∴-45t 2+415t=25①,105452+-t t =25②, 解①得t =1或t =2,解②得t =1或t =3,要使①,②同时成立,则t =1, 当点P 运动1秒时,四边形EFMC 为菱形; (3)存在,点Q 的坐标为(2,2)或(6,4). 【解法提示】由(2)可知t =1,∴点F 的横坐标为1, 将x =1代入y 1=21x +1中,得y 1=23, 将x =1代入y 2=-45x 2+417x +1中,得y 2=4. ∴点E (1,4),F (1,23), 将y =0代入y 1=21x +1中,得x =-2,∴点A 的坐标为(-2,0), ①如解图,过点E 作EQ 1⊥CF ,∵四边形EFMC 为菱形,∴∠ECF =∠ACM ,FE =EC ,∴∠EFC =∠ECF =∠ACM ,又∵∠EQ 1F =∠AMC =90°,∴△EQ 1F ∽△AMC ,∵EF =EC ,EQ 1⊥CF ,∴Q 1为CF 的中点,∵F (1,23),C (3,25), ∴点Q 1的坐标为(2,2);第1题解图②如解图,过点E 作EQ 2//x 轴,交直线BC 于点Q 2,∵EQ 2//x 轴,∴∠EQ 2F =∠CAM ,∠Q 2EF =∠FP A =90°,∴∠Q 2EF =∠AMC =90°,∴△EQ 2F ∽△MAC ,又∵E (1,4),∴设Q 2(x ,4), 将y =4代入y 1=21x +1,得x =6, ∴点Q 2的坐标为(6,4);综上所述,点Q 的坐标为(2,2)或(6,4).2.如图,一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ,二次函数y =21x 2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0).第2题图(1)求二次函数的解析式;(2)若抛物线上存在点P ,使S △BDC =S △PBC ,求出P 点坐标(不与已知点重合);(3)在x 轴上存在点N ,平面内存在点M ,使得B 、N 、C 、M 为顶点构成矩形,请直接写出M 点坐标.解:(1)将x =0代入y =21x +1中,得:y =1, ∴B (0,1),将B (0,1),D (1,0)的坐标代入y =21x 2+bx +c 得:⎪⎩⎪⎨⎧=++=0211c b c ,解得⎪⎩⎪⎨⎧=-=123c b , ∴二次函数的解析式为y =21x 2-23x +1; (2)如解图①,过点D 作DF ∥y 轴交AC 于点F ,过点P 作PG ∥y 轴交AC 于点G ,第2题解图①将x =1代入直线BC 的解析式得:y =23,即F (1,23), 设点P (x ,21x 2-23x +1), 则G (x ,21x +1), ∴GP =⎪⎭⎫⎝⎛+--+123211212x x x =x x 2212+-.∵△PBC 的面积=△DBC 的面积, ∴DF =GP ,即x x 2212+-=23, 当x x 2212+-=-23时,解得x =2+7或x =2-7,∴点P 的坐标为(2+7,277+)或(2-7,277-), 当x x 2212+-=23时,解得x =3或x =1(舍去),∴点P 的坐标为(3,1),综上所述,点P 的坐标为(3,1)或(2+7,277+)或(2-7,277-); (3)点M 的坐标为(3,4),(1,4),(23,-2)或(29,2). 【解法提示】如解图②所示:当∠CBN =90°时,则BN 的解析式为y =-2x +1,将直线BC 的解析式与抛物线的解析式联立得:⎪⎪⎩⎪⎪⎨⎧+-=+=123211212x x y x y ,解得⎩⎨⎧==10y x ,或⎩⎨⎧==34y x ,∴点C 的坐标为(4,3),将y =0代入直线BN 的解析式得:-2x +1=0,解得x =21,∴点N 的坐标为(21,0),设点M 的坐标为(x ,y ), ∵四边形BNMC 为矩形,∴202421x +=+,21230y +=+, 解得x =29,y =2,∴点M 的坐标为(29,2);第2题解图②如解图③所示:当∠CNM =90°时,第2题解图③设CN 的解析式为y =-2x +n ,将点C 的坐标代入得:-8+n =3, 解得n =11,∴CN 的解析式为y =-2x +11, 将y =0代入得-2x +11=0, 解得x =211, ∴点N 的坐标为(211,0), 设点M 的坐标为(x ,y ), ∵四边形BMNC 为矩形, ∴2422110x +=+,23201y +=+,解得x =23,y =-2,∴点M 的坐标为(23,-2); 如解图④所示:当∠BNC =90°时,过点C 作CF ⊥x 轴,垂足为F ,第2题解图④设ON =a ,则NF =4-a ,∵∠BNO +∠OBN =90°,∠BNO +∠CNF =90°,∴∠OBN =∠CNF , 又∵∠BON =∠CFN , ∴△BON ∽△NFC , ∴NF OB CF ON =,即3a =a-41,解得:a =1或a =3, 当a =1时,点N 的坐标为(1,0),设点M 的坐标为(x ,y ), ∵四边形BNCM 为矩形, ∴21240x +=+,20231y+=+, 解得x =3,y =4, ∴点M 的坐标为(3,4);当a =3时,点N 的坐标为(3,0 ),设点M 的坐标为(x ,y ), ∵四边形BNCM 为矩形, ∴23240x +=+,20231y+=+, 解得x =1,y =4, ∴点M 的坐标为(1,4),综上所述,点M 的坐标为(3,4),(1,4),(23,-2)或(29,2).3. 如图,在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2-bx +5与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交点为C ,直线y =-x -2经过点A ,交抛物线于点D ,交y 轴于点E ,连接CD ,并且∠ADC =45°.第3题图(1)求抛物线的解析式;(2)过点A 的直线AF 与抛物线的另一个交点为F ,sin ∠BAF =55,求点F 的坐标; (3)在(2)的条件下,点P 是直线AF 下方抛物线上一点,过点P 作PQ ⊥AF ,垂足为Q ,若PE =EQ ,求点P 的坐标.解:(1)当x =0时,y =ax 2+bx-5=-5,则C (0,-5), 当y =0时,-x -2=0,则A (-2,0), 当x =0时,y =-x -2=0,则E (0,-2), ∴OA =OE ,∴△OAE 为等腰直角三角形,∴∠OAE =45°, ∵∠ADC =45°, ∴CD //x 轴,∴△CDE 为等腰直角三角形, ∴CD =CE =3,∴D (3,-5),把A (-2,0),D (3,-5)代入y =ax 2+bx -5,得⎩⎨⎧-=-+=--55390524b a b a ,解得⎪⎪⎩⎪⎪⎨⎧-==2321b a ,∴抛物线的解析式为y =21x 2-23x -5;(2)设直线AF 交y 轴于G ,如解图①, 在Rt △AOG 中,sin ∠OAG =5155==AG OG ,第3题解图①G设OG=t,AG=5t,∴OA=22)5(tt-=2t,∴2t=2,解得t=1,∴G(0,1),易得直线AG的解析式为y=21x+1,联立⎪⎪⎩⎪⎪⎨⎧--=+=523211212xxyxy,解得⎩⎨⎧==⎩⎨⎧=-=462yxyx或,∴点F的坐标为(6,4);(3)作EM⊥PQ于M,如解图②,∵PQ⊥AF,∴设PQ的解析式为y=-2x+m,第3题解图②∵EM//AF,∴EM的解析式为y=21x-2,联立⎪⎩⎪⎨⎧+-=+=mxyxy2121,解得⎪⎪⎩⎪⎪⎨⎧+=-=54515252mymx,则Q (54515252+-m m ,),设点P 的坐标为(a ,b ),∵EQ =EP ,∴QM =PM ,∴M 点的坐标为[21(a +52m -52),21(b +5451+m )], 把M [21(a +52m -52),21(b +5451+m )]代入y =21x -2 得41(a +52m -52)-2=21(b +5451+m ), ∴b =21a -5,即P (a ,21a -5),把P (a ,21a -5)代入y =21x 2-23x -5得21a 2-23a -5=21a -5,解得a 1=0,a 2=4, ∴P 点坐标为(0,-5)或(4,-3).类型二 等腰三角形的存在性问题4. 如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D .第4题图(1)求抛物线的解析式; (2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中,得 ⎩⎨⎧-12-b +c =0c =2,解得⎩⎨⎧b =32c =2, ∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0, 解得x 1=-1,x 2=4, ∴点B 的坐标为(4,0),在Rt △BOC 中,BC =22OB OC +=2242+=52, ∴sin ∠ABC =BC OC=522=55;(3)存在,点P 坐标为(23,25)或(23,-25)或(23,4).【解法提示】由抛物线y =-21x 2+23x +2得对称轴为直线x =23, ∴点D 的坐标为(23,0). ∴CD =22OD OC +=22232⎪⎭⎫⎝⎛+=25.∵点P 在对称轴x =23上,且△PCD 是以CD 为腰的等腰三角形, ∴当点D 为顶点时,有DP =CD =25, 此时点P 的坐标为(23,25)或(23,-25);当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG , ∵DG =2, ∴PG =2,PD =4, ∴点P 的坐标为(32,4).第4题解图综上所述,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,25)或(32,-25)或(32,4).5.如图①,在平面直角坐标系中,抛物线()02≠++=a c bx ax y 与直线3333+=x y 交于A 和E ⎪⎪⎭⎫⎝⎛3354,两点,与x 轴交于点B (3,0),与y 轴交于点C (0,3-),对称轴与x 轴交于点D ,顶点为点H .(1)求抛物线的解析式;(2)点P 为抛物线上的一动点,且位于直线AE 下方,过点P 作PM ∥y 轴交直线AE 于点M ,求线段PM 的最大值;(3)如图②,连接CD ,将(1)中抛物线沿射线CD 平移得到新抛物线y ’,y ’经过点D ,y ’的顶点为点F ,在直线HF 上,是否存在点Q ,使△DHQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.图① 图②第5题图解::(1)将点B (3,0)、C (0,3-)、E (4,335)的坐标代入c bx ax y ++=2中,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=++-==++3354163039c b a c c b a ,解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-==333233c b a , ∴抛物线的解析式为3332332--=x x y ; (2)令y =0,即03332332=--x x ,解得x 1=-1,x 2=3, ∴点A (-1,0),设直线AE 的解析式为t kx y +=,将点A 、E 的坐标代入得⎪⎩⎪⎨⎧=+=+-33540t k t k ,解得⎪⎪⎩⎪⎪⎨⎧==3333t k , ∴直线AE 的解析式为3333+=x y , 设点P 的坐标为(m ,3332332--m m ), 则点M 的坐标为(m ,3333+m ),且-1<m <4. ∴PM =(3333+m )-(3332332--m m ) =3343332++-m m =1232523332+⎪⎭⎫ ⎝⎛--m , ∵33-<0,1<m <4. ∴当m =23时,PM 有最大值,其最大值为12325;(1)存在,由(1)易得H (1,334-),D (1,0), ∵将(1)中抛物线沿射线CD 平移得到新抛物线y',y'经过点D ,y'的顶点为点F , ∴F (2,33-), 易得直线HF 的解析式为3373-=x y ,设点Q 的坐标为(n ,3373-n ), ∴DQ 2=()35216433731222+-=⎪⎪⎭⎫ ⎝⎛-+-n n n n , HQ 2=()48433433731222+-=⎪⎪⎭⎫ ⎝⎛+-+-n n n n , DH 2=3163342=⎪⎪⎭⎫ ⎝⎛-,当DQ =HQ 时,DQ 2=HQ 2,则3521642+-n n =4842+-n n , 解得35=n ,∴点Q (33235-,); 当DQ =DH 时,DQ 2=DH 2,则3521642+-n n =316, 解得n =3或1, ∵点H 与点Q 不重合, ∴n =1(舍去),∴Q (3323,);当HQ =DH 时,HQ 2=DH 2,则4842+-n n =316, 解得n =3321+或3321-, ∴Q (3321+,3342-)或Q (3321-,3342--); 综上所述,存在点Q ,使得△DHQ 为等腰三角形,点Q 的坐标为(33235-,)或(3323,)或(3321+,3342-)或(3321-,3342--). 类型三 直角三角形的存在性问题6. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .第6题图(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式;(2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.解:(1)由题意得⎪⎪⎩⎪⎪⎨⎧==++-=-3012c c b a a b,解得⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0), ∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得⎩⎨⎧==+-303n n m ,解得⎩⎨⎧==31n m , ∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第6题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2. ∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t =-2; ②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4; ③若P 为直角顶点,则PB 2+PC 2=BC 2,即:4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).7. 如图,抛物线y =-43x 2+bx +c 经过A (3,0),C (-1,0)两点,与y 轴交于B 点.第7题图备用图(1)求抛物线的解析式;(2) D 为第一象限抛物线上的一点,连接CD 交AB 于点E ,当CE =2ED 时,求点D 的坐标; (3)点P 以每秒3个单位长度的速度从点O 出发,沿O →B →A 匀速运动,同时点Q 以每秒1个单位长度的速度从点C 出发,沿C →A 匀速运动,运动时间为t 秒,当一个点到达终点时,另一个点也随之停止运动,是否存在t ,使以A 、P 、Q 为顶点的三角形为直角三角形,若存在,直接写出t 的值;若不存在,说明理由.解:(1)∵抛物线y =c bx x ++-234经过A (3,0)、C (-1,0)两点,∴⎪⎪⎩⎪⎪⎨⎧=+--=++⨯-034033342c b c b ,解得⎪⎩⎪⎨⎧==438c b ,∴抛物线的解析式为y =438342++-x x ; (2)如解图,作DF ∥AC 交AB 于点F ,第7题解图∴∠EAC =∠EFD ,∠ECA =∠EDF , ∴△ACE ∽△FDE , ∴FD AC =DE CE =DE 2DE =12, ∵AC =4,∴FD =2,设D (x ,y ),则F (x -2,y ), 令x =0,得y =4, ∴B (0,4),过点F 作FM ⊥x 轴于点M , ∴△AMF ∽△AOB , ∴AM OA =FM OB , ∴3-(x -2)3=y 4=-43x 2+83x +44,解得x 1=1,x 2=2, ∴y 1=163,y 2=4, ∴D 1(1,163),D 2(2,4);(3)存在.t 1=-1+136,t 2=1,t 3=74,t 4=114. 【解法提示】∵当P 在OB 上时,OP =3t ,CQ =t , ∴AQ =4-t ,要使△APQ 是直角三角形,则需①∠AQP =90°,此时点Q 与点O 重合,CQ =1,则t =1; ②∠APQ =90°,此时△PQO ∽△APO , ∴OQ OP =OPOA ,即(3t )2=(1-t )·3,解得t 1=13-16,t 2=-13-16(负根舍去).当点P 在AB 上,在Rt △AOB 中,OA =3,OB =4,易得AB =5, 则此时AP =9-3t ,AQ =4-t , ③当∠PQA =90°时,则PQ ⊥AO ,∴cos ∠P AQ =QA AP =OA AB ,即4-t 9-3t =35,解得t =74;④当∠QP A=90°时,则△APQ∽△AOB,∴APAO=AQAB,即9-3t3=4-t5,解得t=114.综上所述,t的值为1或13-16或74或114.8.如图,抛物线cbxaxy++=2与x轴交于点A(-3,0),B(1,0),与y轴交于点C(0,3),顶点为D.(1)求抛物线的表达式及点D的坐标;(2)如图①,在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图②,F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.图①图②第8题图解:(1)∵A,B,C三点在抛物线上,∴,321339⎪⎩⎪⎨⎧=-=-=⎪⎩⎪⎨⎧=++=+-=cbaccbacba,解得∴抛物线的表达式y=-x2-2x+3,∵y=-x2-2x+3=()412++-x,∴点D的坐标为(-1,4);(2)如解图①,作点C关于x轴的对称点M,则M(0,-3),连接DM,DM与x轴的交点为E,连接CE,此时△CDE的周长最小,第8题解图①设直线DM 的解析式为y =kx +b (k ≠0),将D (-1,4),M (0,-3)代入y =kx +b ,得⎩⎨⎧-==+-34b b k ,解得⎩⎨⎧-=-=37b k , ∴直线DM 的解析式为y =-7x -3, 令y =0,则y =-7x -3=0, 解得x =-37,∴点E 的坐标为(-37,0). (3)存在.由(1)知,OA =OC =3,∠AOC =90°, ∴∠CAB =45°,如解图②,第8题解图②①当∠AFP =90°时,即∠AF 1P 1=90°,∴点P 1既在x 轴上,又在抛物线上,则点P 1与点B 重合,点P 1的坐标为(1,0); ②当∠F AP =90°时,即∠F 2AP 2=90°,则∠P 2AO =45°,设AP 2与y 轴的交点为点N ,∴OA =ON =3,则N (0,-3), ∴直线AP 2的解析式为y =-x -3,联立抛物线与直线AP 2的解析式,得方程组⎩⎨⎧+--=--=3232x x y x y , 解得⎩⎨⎧=-=03y x 或⎩⎨⎧-==52y x ,∵A (-3,0), ∴P 2(2,-5);③当∠APF =90°时,即∠AP 3F 3=90°,点P 3既在x 轴上,又在抛物线上,则点P 3与点B 重合,点P 3的坐标为(1,0).综上所述,抛物线上存在点P ,使得△AFP 为等腰直角三角形,其坐标为P (1,0)或(2,-5).类型四 特殊四边形的存在性问题9. 如图,抛物线y =ax 2+bx +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴x =1与抛物线交于点D ,与直线BC 交于点E . (1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F ,使四边形ABFC 的面积为17?若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条直线l 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标.第9题图解:(1)∵点A (-2,0)与点B 关于直线x =1对称,∴B (4,0),将点A ,B ,C 的坐标代入函数解析式,得⎪⎩⎪⎨⎧==++=+-40416024c c b a c b a ,解得⎪⎪⎩⎪⎪⎨⎧==-=4121c b a ,∴抛物线的解析式为y =21-x 2+x +4;(2)不存在点F ,使四边形ABFC 的面积为17,理由如下:∵B (4,0),C (0,4), ∴BC 的解析式为y =-x +4,如解图,过点F 作x 轴垂线,交BC 于G ,设F 点的坐标为(m ,21-m 2+m +4),则G (m ,-m +4),∴FG =(21-m 2+m +4)-(-m +4)=21-m 2+2m ,∴S 四边形ABFC =S △ABC +S △BCF =21AB ·y C +21FG ·(x B -x C )=21×6×4+12×4(21-m 2+2m )=17,整理得m 2-4m +5=0, ∵b 2-4ac =16-4×1×5=-4<0. ∴方程无解, ∴F 点不存在;第9题解图(3)当x =1时,21-x 2+x +4=29,即D (1,29).当x =1时,-x +4=3,即E (1,3), ∴DE =92-3=32.设Q 点坐标为(m ,-12m 2+m +4),则P (m ,-m +4). ∴|PQ |=|(-12m 2+m +4)-(-m +4)|=|-12m 2+2m |. 由PQ ∥DE ,PQ =DE 得|-12m 2+2m |=32,∴-12m 2+2m =32或-12m 2+2m =-32,解得m 1=1(PQ 与DE 重合,舍去),m 2=3或m 3=2+7,m 4=2-7.∴P 点坐标为(3,1)或(2+7,2-7)或(2-7,2+7).10.如图,经过点A (3,3)的抛物线bx ax y +=2与x 轴交于点B (4,0)和原点O ,P 为二次函数上一动点,过P 作x 轴垂线,垂足为D (x',0)(x'>0),并与直线OA 交于点C .(1)求抛物线的表达式;(2)当点P 在线段OA 上方时,过P 作x 轴的平行线与线段OA 相交于点E ,求△PCE 周长的最大值及此时P 点的坐标;(3)当PC =CO 时,求P 点坐标.第10题图解:(1)∵A (3,3),B (4,0)两点在抛物线bx ax y +=2上,∴,4160393⎩⎨⎧+=+=b a b a 解得,41⎩⎨⎧=-=b a ∴抛物线的表达式为x x y 42+-=;(2)如解图①,设点P 的坐标为(x ,-x 2+4x ),第10题解图①∵点A 坐标为(3,3);∴∠AOB =45°,∴OD =CD =x ,∴PC =PD -CD =-x 2+4x -x =-x 2+3x ,∵PE ∥x 轴,∴△PCE是等腰直角三角形,∴当PC取最大值时,△PCE周长最大.∵PE与线段OA相交,∴0≤x≤1,由PC=-x2+3x=-(x-32)2+94可知,抛物线的对称轴为直线x=32,且在对称轴左侧PC随x的增大而增大,∴当x=1时,PC最大,PC的最大值为-1+3=2,∴PE=2,CE=2,∴△PCE的周长为CP+PE+CE=4+2,∴△PCE周长的最大值为4+2,把x=1代入y=-x2+4x,得y=-1+4=3,∴点P的坐标为(1,3);(3)设点P坐标为(x,-x2+4x),则点C坐标为(x,x),如解图②,D2第10题解图②①当点P在点C上方时,P1C1=-x2+4x-x=-x2+3x,OC12x,∵P1C1=OC1,∴-x2+3x2x,解得x1=32x2=0(舍去).把x=32代入y=-x2+4x得,y=-(32)2+4(32)=1+2,∴P1(32,1+2),②当点P在点C下方时,P2C2=x-(-x2+4x)=x2-3x,OC22x,∵P2C2=OC2,∴x2-3x2x,解得x1=32x2=0(舍去),把x =3+2代入y =-x 2+4x 得y =-(3+2)2+4(3+2)=1-22,∴P 2(3+2,1-22).综上所述,P 点坐标为(3-2,1+22)或(3+2,1-22).11.如图,抛物线y =ax 2+bx +c 的图象与x 轴分别交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0)、C (0,5)、D (1,8)在抛物线上,M 为抛物线的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积;(3)在抛物线上是否存在点P ,使△P AB 的面积等于△MCB 的面积?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.第11题图解:(1)∵A (-1,0),C (0,5),D (1,8)三点在抛物线y =ax 2+bx +c 上,∴⎪⎩⎪⎨⎧++==+-=c b a c c b a 850,解得⎪⎩⎪⎨⎧==-=541c b a , ∴抛物线的解析式为y =-x 2+4x +5;(2)如解图,过点M 作MN ∥y 轴交BC 于点N , ∴S △MCB =S △MCN +S △MNB =12MN ·OB .∵y=-x2+4x+5=-(x-5)(x+1)=-(x-2)2+9,∴M(2,9),B(5,0),由B,C两点的坐标易求得直线BC的解析式为:y=-x+5,当x=2时,y=-2+5=3,则N(2,3),则MN=9-3=6,则S△MCB=12×6×5=15;第11题解图(3)在抛物线上存在点P,使△P AB的面积等于△MCB的面积.∵A(-1,0),B(5,0),∴AB=6,∵S△P AB=S△MCB,∴12×6×|y P|=15,∴|y P|=5,即y P=±5.当y P=5时,-x2+4x+5=5,解得x1=0,x2=4;当y P=-5时,-x2+4x+5=-5,解得x3=2+14,x4=2-14.故在抛物线上存在点P1(0,5),P2(4,5),P3(2+14,-5),P4(2-14,-5),使△P AB的面积等于△MCB的面积.精品Word 可修改欢迎下载。

解答题压轴题二次函数与几何图形综合(解析版)

解答题压轴题二次函数与几何图形综合(解析版)

周日解答题压轴题二次函数与几何图形综合一模块一2022中考真题集训类型一二次函数中的最值问题(1)自变量范围与最值问题1.(2022•绍兴)已知函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(0,-3),(-6,-3).(1)求b ,c 的值.(2)当-4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.思路引领:(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x 的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x =-3,结合二次函数图象的性质,分类讨论得出m 的取值范围即可.解:(1)把(0,-3),(-6,-3)代入y =-x 2+bx +c ,得b =-6,c =-3.(2)∵y =-x 2-6x -3=-(x +3)2+6,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为-m 2-6m -3,∴-m 2-6m -3+(-3)=2,∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴-(m +3)2+6=-4,∴m =-3-10或m =-3+10(舍去).综上所述,m =-2或-3-10.总结提升:此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m 的取值范围是解题关键.2.(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12 ,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;周日②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.思路引领:(1)设函数y =2x +1的和谐点为(x ,x ),可得2x +1=x ,求解即可;(2)将点52,52代入y =ax 2+6x +c ,再由ax 2+6x +c =x 有且只有一个根,Δ=25-4ac =0,两个方程联立即可求a 、c 的值;②由①可知y =-x 2+6x -6=-(x -3)2+3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,则3≤m ≤5时满足题意.解:(1)存在和谐点,理由如下,设函数y =2x +1的和谐点为(x ,x ),∴2x +1=x ,解得x =-1,∴和谐点为(-1,-1);(2)①∵点52,52是二次函数y =ax 2+6x +c (a ≠0)的和谐点,∴52=254a +15+c ,∴c =-254a -252,∵二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点,∴ax 2+6x +c =x 有且只有一个根,∴Δ=25-4ac =0,∴a =-1,c =-254;②由①可知y =-x 2+6x -6=-(x -3)2+3,∴抛物线的对称轴为直线x =3,当x =1时,y =-1,当x =3时,y =3,当x =5时,y =-1,∵函数的最大值为3,最小值为-1;当3≤m ≤5时,函数的最大值为3,最小值为-1.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,理解定义,并与二次函数的性质结合解题是关键.(2)胡不归问题3.(2022•淮安)如图(1),二次函数y =-x 2+bx +c 的图象与x 轴交于A 、B 两点,与y 轴交于C 点,点B 的坐标为(3,0),点C 的坐标为(0,3),直线l 经过B 、C 两点.(1)求该二次函数的表达式及其图象的顶点坐标;(2)点P 为直线l 上的一点,过点P 作x 轴的垂线与该二次函数的图象相交于点M ,再过点M 作y 轴的垂线与该二次函数的图象相交于另一点N ,当PM =12MN 时,求点P 的横坐标;(3)如图(2),点C 关于x 轴的对称点为点D ,点P 为线段BC 上的一个动点,连接AP ,点Q 为线段AP 上一点,且AQ =3PQ ,连接DQ ,当3AP +4DQ 的值最小时,直接写出DQ 的长.周日思路引领:(1)用待定系数法求函数的解析式即可;(2)设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),则PM=|t2-3t|,MN=|2-2t|,由题意可得方程|t2-3t|=12|2-2t|,求解方程即可;(3)由题意可知Q点在平行于BC的线段上,设此线段与x轴的交点为G,由QG∥BC,求出点G(2,0),作A点关于GQ的对称点A',连接A'D与AP交于点Q,则3AP+4DQ=4DQ+34AP=4 (DQ+AQ)≥4A'D,利用对称性和∠OBC=45°,求出A'(2,3),求出直线DA'的解析式和直线QG的解析式,联立方程组y=-x+2y=3x-3,可求点Q54,34,再求DQ=5104.解:(1)将点B(3,0),C(0,3)代入y=-x2+bx+c,∴-9+3b+c=0c=3,解得b=2c=3,∴y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点坐标(1,4);(2)设直线BC的解析式为y=kx+b,∴3k+b=0b=3,解得k=-1b=3,∴y=-x+3,设P(t,-t+3),则M(t,-t2+2t+3),N(2-t,-t2+2t+3),∴PM=|t2-3t|,MN=|2-2t|,∵PM=12MN,∴|t2-3t|=12|2-2t|,解得t=1+2或t=1-2或t=2+3或t=2-3,∴P点横坐标为1+2或1-2或2+3或2-3;(3)∵C(0,3),D点与C点关于x轴对称,∴D(0,-3),令y=0,则-x2+2x+3=0,解得x=-1或x=3,周日∴A (-1,0),∴AB =4,∵AQ =3PQ ,∴Q 点在平行于BC 的线段上,设此线段与x 轴的交点为G ,∴QG ∥BC ,∴AQ AP =AG BA ,∴34=AG 4,∴AG =3,∴G (2,0),∵OB =OC ,∴∠OBC =45°,作A 点关于GQ 的对称点A ',连接A 'D 与AP 交于点Q ,∵AQ =A 'Q ,∴AQ +DQ =A 'Q +DQ ≥A 'D ,∴3AP +4DQ =4DQ +34AP =4(DQ +AQ )≥4A 'D ,∵∠QGA =∠CBO =45°,AA '⊥QG ,∴∠A 'AG =45°,∵AG =A 'G ,∴∠AA 'G =45°,∴∠AGA '=90°,∴A '(2,3),设直线DA '的解析式为y =kx +b ,∴b =-32k +b =3,解得k =3b =-3 ,∴y =3x -3,同理可求直线QG 的解析式为y =-x +2,联立方程组y =-x +2y =3x -3 ,解得x =54y =34,∴Q 54,34 ,∴DQ =5104.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,利用轴对称求最短距离的方法,解绝对值方程,待定系数法求函数的解析式是解题的关键.4.(2022•梧州)如图,在平面直角坐标系中,直线y =-43x -4分别与x ,y 轴交于点A ,B ,抛物线y =518x 2+bx +c 恰好经过这两点.周日(1)求此抛物线的解析式;(2)若点C 的坐标是(0,6),将△ACO 绕着点C 逆时针旋转90°得到△ECF ,点A 的对应点是点E .①写出点E 的坐标,并判断点E 是否在此抛物线上;②若点P 是y 轴上的任一点,求35BP +EP 取最小值时,点P 的坐标.思路引领:(1)根据直线解析式可得点A 、B 的坐标,代入二次函数解析式,解方程即可;(2)①由旋转的性质可得E (6,3),当x =6时,y =518×62-12×6-4=3,可知点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,sin ∠ABO =AO AB=HP BP =35,则HP =35BP ,得35BP +EP =HP +PE ,可知HP +PE 的最小值为EH 的长,从而解决问题.解:(1)∵直线y =-43x -4分别与x ,y 轴交于点A ,B ,∴当x =0时,y =-4;当y =0时,x =-3,∴A (-3,0),B (0,-4),∵抛物线y =518x 2+bx +c 恰好经过这两点.∴518×(-3)2-3b +c =0c =-4,解得b =-12c =-4,∴y =518x 2-12x -4;(2)①∵将△ACO 绕着点C 逆时针旋转90°得到△ECF ,∴∠OCF =90°,CF =CO =6,EF =AO =3,EF ∥y 轴,∴E (6,3),当x =6时,y =518×62-12×6-4=3,∴点E 在抛物线上;②过点E 作EH ⊥AB ,交y 轴于P ,垂足为H ,周日∵A(-3,0),B(0,-4),∴OA=3,OB=4,∴AB=5,∵sin∠ABO=AOAB =HPBP=35,∴HP=35BP,∴35BP+EP=HP+PE,∴当E,P,H三点共线时,HP+PE有最小值,最小值为EH的长,作EG⊥y轴于G,∵∠GEP=∠ABO,∴tan∠GEP=tan∠ABO,∴PG EG =AO BO,∴PG6=34,∴PG=92,∴OP=92-3=32,∴P0,-32.总结提升:本题是二次函数综合题,主要考查了待定系数法求函数解析式,旋转的性质,三角函数,两点之间、线段最短等知识,利用三角函数将35BP转化为HP的长是解题的关键.5.(2022•济南)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.思路引领:(1)用待定系数法求函数的解析式即可求解;周日(2)作PM ⊥x 轴交于M ,可求PM =14m 2-114m +6,AM =m -3,通过证明△COA ∽△AMP ,利用OA OC =PMAM,求m 的值即可求P 点坐标;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,通过证明△PQN ∽△BOC ,求出QN =35PN ,PQ =45PN ,再由△CNE ∽△CBO ,求出CN =54EN =54m ,则CQ +12PQ =CN +PN =-14m -132 2+16916,即可求解.解:(1)将B (8,0)代入y =ax 2+114x -6,∴64a +22-6=0,∴a =-14,∴y =-14x 2+114x -6,当y =0时,-14t 2+114t -6=0,解得t =3或t =8(舍),∴t =3,∵B (8,0)在直线y =kx -6上,∴8k -6=0,解得k =34;(2)作PM ⊥x 轴交于M ,∵P 点横坐标为m ,∴P m ,-14m 2+114m -6 ,∴PM =14m 2-114m +6,AM =m -3,在Rt △COA 和Rt △AMP 中,∵∠OAC +∠PAM =90°,∠APM +∠PAM =90°,∴∠OAC =∠APM ,∴△COA ∽△AMP ,∴OA OC =PM AM,即OA •MA =CO •PM ,3(m -3)=614m 2-114m +6 ,解得m =3(舍)或m =10,∴P 10,-72;(3)作PN ⊥x 轴交BC 于N ,过点N 作NE ⊥y 轴交于E ,∴PN =-14m 2+114m -6-34m -6 =-14m 2+2m ,∵PN ⊥x 轴,∴PN ∥OC ,∴∠PNQ =∠OCB ,周日∴Rt△PQN∽Rt△BOC,∴PN BC =NQOC=PQOB,∵OB=8,OC=6,BC=10,∴QN=35PN,PQ=45PN,由△CNE∽△CBO,∴CN=54EN=54m,∴CQ+12PQ=CN+NQ+12PQ=CN+PN,∴CQ+12PQ=54m-14m2+2m=-14m2+134m=-14m-1322+16916,当m=132时,CQ+12PQ的最大值是16916.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质是解题的关键.类型二二次函数中的面积问题1.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D-2,-52两点,与x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)思路引领:(1)用待定系数法求函数的解析式即可;(2)作直线BC,过M点作MN∥y轴交BC于点N,求出直线BC的解析式,设M m,-12m2+m+32,则N m,-12m+32,可得S△MBC=12•MN•OB=-34m-322+2716,再求解即可;(3)设Q(0,t),P m,-12m2+m+32,分三种情况讨论:①当AB为平行四边形的对角线时;②当AQ为平行四边形的对角线时;③当AP为平行四边形的对角线时;根据平行四边形的对角线互相平分,利用中点坐标公式求解即可.解:(1)将B(3,0),D-2,-5 2代入y=ax2+x+c,周日∴9a +3+c =04a -2+c =-52,解得a =-12c =32 ,∴y =-12x 2+x +32,令x =0,则y =32,∴C 0,32;(2)作直线BC ,过M 点作MN ∥y 轴交BC 于点N ,设直线BC 的解析式为y =kx +b ,∴3k +b =0b =32,解得k =-12b =32 ,∴y =-12x +32设M m ,-12m 2+m +32 ,则N m ,-12m +32 ,∴MN =-12m 2+32m ,∴S △MBC =12•MN •OB =-34m -32 2+2716,当m =32时,△MBC 的面积有最大值2716,此时M 32,158;(3)令y =0,则-12x 2+x +32=0,解得x =3或x =-1,∴A (-1,0),设Q (0,t ),P m ,-12m 2+m +32,①当AB 为平行四边形的对角线时,m =3-1=2,∴P 2,32;②当AQ 为平行四边形的对角线时,3+m =-1,解得m =-4,∴P -4,-212;③当AP 为平行四边形的对角线时,m -1=3,解得m =4,Y our Text07周日∴P 4,-52;综上所述:P 点坐标为2,32 或-4,-212 或4,-52.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,平行四边形的性质,分类讨论是解题的关键.2.(2022•淄博)如图,抛物线y =-x 2+bx +c 与x 轴相交于A ,B 两点(点A 在点B 的左侧),顶点D(1,4)在直线l :y =43x +t 上,动点P (m ,n )在x 轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P 作PM ⊥x 轴于点M ,PN ⊥l 于点N ,当1<m <3时,求PM +PN 的最大值;(3)设直线AP ,BP 与抛物线的对称轴分别相交于点E ,F ,请探索以A ,F ,B ,G (G 是点E 关于x 轴的对称点)为顶点的四边形面积是否随着P 点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.思路引领:(1)利用顶点式求解,可得结论;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),推出四边形DTBP 的面积最大时,PM +PN 的值最大,求出四边形DTBP 的面积的最大值,可得结论;(3)四边形AFBG 的面积不变.如图,设P (m ,-m 2+2m +3),求出直线AP ,BP 的解析式,可得点E ,F 的坐标,求出FG 的长,可得结论.解:(1)∵抛物线的顶点D (1,4),∴可以假设抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(2)如图,设直线l 交x 轴于点T ,连接PT ,BD ,BD 交PM 于点J .设P (m ,-m 2+2m +3).点D (1,4)在直线l :y =43x +t 上,∴4=43+t ,∴t =83,周日∴直线DT 的解析式为y =43x +83,令y =0,得到x =-2,∴T (-2,0),∴OT =2,∵B (3,0),∴OB =3,∴BT =5,∵DT =32+42=5,∴TD =TB ,∵PM ⊥BT ,PN ⊥DT ,∴四边形DTBP 的面积=△PDT 的面积+△PBT 的面积=12×DT ×PN +12×TB ×PM =52(PM +PN ),∴四边形DTBP 的面积最大时,PM +PN 的值最大,∵D (1,4),B (3,0),∴直线BD 的解析式为y =-2x +6,∴J (m ,-2m +6),∴PJ =-m 2+4m -3,∵四边形DTBP 的面积=△DTB 的面积+△BDP 的面积=12×5×4+12×(-m 2+4m -3)×2=-m 2+4m +7=-(m -2)2+11∵-1<0,∴m =2时,四边形DTBP 的面积最大,最大值为11,∴PM +PN 的最大值=25×11=225;解法二:延长MP 交直线l 与点H ,易得直线l :y =43x +83,∴H m ,43m +83设直线l 交x 轴于点C ,交y 轴于点L ,∴C (-2,0),L 0,83,∴CL =103,∴sin ∠CLO =35,由LO ∥HM ,∴∠NHM =∠CLO ,∴sin ∠NHM =35,∴PH =43m +83+m 2-2m -3=m 2-23m -13,∴PN =35PH ,周日∴PM +PN =-m 2+2m +3+35m 2-23m -13 =-25(m -2)2+225,∵-25<0,∴m =2时,PM +PN 的值最小,最小值为225;(3)四边形AFBG 的面积不变.理由:如图,设P (m ,-m 2+2m +3),∵A (-1,0),B (3,0),∴直线AP 的解析式为y =-(m -3)x -m +3,∴E (1,-2m +6),∵E ,G 关于x 轴对称,∴G (1,2m -6),∴直线PB 的解析式y =-(m +1)x +3(m +1),∴F (1,2m +2),∴GF =2m +2-(2m -6)=8,∴四边形AFBG 的面积=12×AB ×FG =12×4×8=16.∴四边形AFBG 的面积是定值.总结提升:本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数解决问题,属于中考压轴题.类型三二次函数与角度问题1.(2022•菏泽)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (-2,0)、B (8,0)两点,与y 轴交于点C (0,4),连接AC 、BC .(1)求抛物线的表达式;(2)将△ABC 沿AC 所在直线折叠,得到△ADC ,点B 的对应点为D ,直接写出点D 的坐标,并求出四边形OADC 的面积;(3)点P 是抛物线上的一动点,当∠PCB =∠ABC 时,求点P 的坐标.思路引领:(1)利用待定系数法解答即可;(2)过点D 作DE ⊥x 轴于点E ,利用轴对称的性质和三角形的中位线的性质定理求得线段OE ,DE ,则点D 坐标可得;利用四边形OADC 的面积=S △OAC +S △ACD ,S △ADC =S △ABC ,利用三角形的面积公式即可求得结论;周日(3)利用分类讨论的思想方法分两种情况讨论解答:①当点P在BC上方时,利用平行线的判定与性质可得点C,P的纵坐标相等,利用抛物线的解析式即可求得结论;②当点P在BC下方时,设PC交x 轴于点H,设HB=HC=m,利用等腰三角形的判定与性质和勾股定理求得m值,则点H坐标可求;利用待定系数法求得直线PC的解析式,与抛物线解析式联立即可求得点P坐标;解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0)、B(8,0)两点,与y轴交于点C(0,4),∴4a-2b+c=064a+8b+c=0c=4,解得:a=-14b=32c=4.∴抛物线的表达式为y=-14x2+32x+4;(2)点D的坐标为(-8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(-2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵OA OC =12,OCOB=12,∴OA OC =OC OB.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(-8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC=S△OAC+S△ABC=12×OC•OA+12×AB•OC=12×4×2+12×10×4=4+20 =24;周日(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则-14x2+32x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB-HB=8-m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8-m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴n=43k+n=0,解得:k=-43n=4.∴y=-43x+4.∴y=-43x+4y=-14x2+32x+4,解得:x1=0y1=4,x2=343y2=-1009.∴P343,-100 9.综上,点P的坐标为(6,4)或343,-1009.总结提升:本题主要考查了二次函数图象的性质,待定系数法,一次函数图象的性质,抛物线上点的坐标的特征,一次函数图象上点的坐标的特征,勾股定理,相似三角形的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.2.(2022•鞍山)如图,抛物线y=-12x2+bx+c与x轴交于A(-1,0),B两点,与y轴交于点C(0,2),连接BC.(1)求抛物线的解析式.(2)点P是第三象限抛物线上一点,直线PB与y轴交于点D,△BCD的面积为12,求点P的坐标.(3)在(2)的条件下,若点E是线段BC上点,连接OE,将△OEB沿直线OE翻折得到△OEB',当直线周日EB'与直线BP相交所成锐角为45°,时,求点B'的坐标.思路引领:(1)用待定系数法求函数的解析式即可;(2)先由△BDC的面积求出OD的长,从而确定D点坐标为(0,-4),再由待定系数法求出直线BD的解析式,直线BD与抛物线的交点即为所求;(3)当B'在第一象限时,由∠ODB=45°,可知EB'∥CD,求出直线BC的解析式,可设E t,-12t+2,在Rt△OHB'中,B'H=16-t2,则BE=16-t2+12t-2,在Rt△BHE中,由勾股定理得16-t2+12t-22=(4-t)2+-12t+22,求出t的值即可求B'坐标;当B'在第二象限时,B'G∥x轴,可得四边形B'OBE是平行四边形,则B't-4,-12t+2,由折叠的性质可判断平行四边形OBEB'是菱形,再由BE=OB,可得(4-t)2+-12t+22=4,求出t的值即可求B'坐标.解:(1)将A(-1,0),C(0,2)代入y=-12x2+bx+c,∴c=2-12-b+c=0 ,解得b=32c=2 ,∴y=-12x2+32x+2;(2)令y=0,则-12x2+32x+2=0,解得x=-1或x=4,∴B(4,0),∴OB=4,∴S△BCD=12×4×(2+OD)=12,∴OD=4,∴D(0,-4),设直线BD的解析式为y=kx+b,∴b=-44k+b=0 ,周日解得k =1b =-4 ,∴y =x -4,联立方程组y =x -4y =-12x 2+32x +2,解得x =-3y =-7 或x =4y =0 ,∴P (-3,-7);(3)如图1,当B '在第一象限时,设直线BC 的解析式为y =k 'x +b ',∴b '=24k '+b '=0,解得k '=-12b '=2,∴y =-12x +2,设E t ,-12t +2 ,∴OH =t ,EH =-12t +2,∵D (0,-4),B (4,0),∴OB =OD ,∴∠ODB =45°,∵直线EB '与直线BP 相交所成锐角为45°,∴EB '∥CD ,由折叠可知,OB '=BO =4,BE =B 'E ,在Rt △OHB '中,B 'H =16-t 2,∴B 'E =16-t 2--12t +2 =16-t 2+12t -2,∴BE =16-t 2+12t -2,在Rt △BHE 中,16-t 2+12t -2 2=(4-t )2+-12t +2 2,解得t =±455,∵0≤t ≤4,∴t =455,∴B '455,855 ;如图2,当B '在第二象限,∠BGB '=45°时,∵∠ABP =45°,∴B 'G ∥x 轴,周日∵将△OEB 沿直线OE 翻折得到△OEB ',∴BE =B 'E ,OB =OB ',∠BOE =∠B 'OE ,∴∠BOE =∠B 'EO ,∴B 'E ∥B 'O ,∵B 'E =BO ,∴四边形B 'OBE 是平行四边形,∴B 'E =4,∴B 't -4,-12t +2 ,由折叠可知OB =OB '=4,∴平行四边形OBEB '是菱形,∴BE =OB ,∴(4-t )2+-12t +2 2=4,解得t =4+855或t =4-855,∵0≤t ≤4,∴t =4-855,∴B '-855,455;综上所述:B '的坐标为455,855 或-855,455.方法2:在Rt △BCO 中,BC =25,CO :OB :BC =1:2:5,∵BP 与x 轴和y 轴的夹角都是45°,BP 与B 'E 的夹角为45°,∴B 'E ∥x 轴或B 'E ∥y 轴,当B 'E ∥y 轴时,延长B 'E 交x 轴于F ,∴B 'F ⊥OB ,∵∠CBA =∠OB 'E ,∴△OB 'F ∽△CBO ,∴OF :FB ':B 'O =1:2:5,∵OB =OB '=4,∴FO =455,B 'F =855,∴B '455,855 ;当B 'E ∥x 轴时,过B '作B 'F ⊥x 中交于F ,∴B 'F ⊥OF ,B 'E ∥OB ,∵B 'E 和BE 关于OE 对称,OB 和OB '关于OE 对称,∴BE ∥OB ',∵∠FOB '=∠OBC ,∴△OB 'F ∽△BCO ,∴B 'F :FO :OB '=1:2:5,∵OB =OB '=4,周日∴B 'F =455,OF =855,∴B '-855,455;综上所述:B '坐标为455,855 或-855,455.总结提升:本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,直角三角形的性质,折叠的性质,勾股定理的应用是解题的关键.类型四二次函数与圆综合1.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且AB =8dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC =8dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.思路引领:(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH =2OG 计算H 的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H t ,-12t 2+8 (t >0),表示矩形EFGH 的周长,再根据二次函数的性质求出最值即可;(3)解法一:设半径为3dm 的圆与AB 相切,并与抛物线相交,设交点为N ,求出点N 的坐标,并计算点N 是圆M 与抛物线在y 轴右侧的切点即可.解法二:计算MN 2,配方法可得结论.解法三:同解法二得MN 2,利用换元法可解答.解:(1)如图1,由题意得:A (-4,0),B (4,0),C (0,8),设抛物线的解析式为:y =ax 2+8,把B (4,0)代入得:0=16a +8,∴a =-12,∴抛物线的解析式为:y =-12x 2+8,∵四边形EFGH 是正方形,∴GH =FG =2OG ,设H t ,-12t 2+8 (t >0),周日∴-12t2+8=2t,解得:t1=-2+25,t2=-2-25(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(-2+25)2=(96-325)dm2;(2)如图2,由(1)知:设H t,-12t2+8(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2-12t2+8=-t2+4t+16=-(t-2)2+20,∵-1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)解法一:若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M上一点,也是抛物线上一点,过N作⊙M的切线交y轴于Q,连接MN,过点N作NP⊥y轴于P,则MN=OM=3,NQ⊥MN,设N m,-12m2+8,由勾股定理得:PM2+PN2=MN2,∴m2+-12m2+8-32=32,解得:m1=22,m2=-22(舍),∴N(22,4),∴PM=4-3=1,∵cos∠NMP=PMMN =MNQM=13,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴b=1222k+b=4 ,∴k=-22 b=12,∴QN的解析式为:y=-22x+12,-1 2x2+8=-22x+12,12x2-22x+4=0,Δ=(-22)2-4×12×4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.解法二:如图3,取点M(0,3),在抛物线上取点N m,-12m2+8,且0<m<4,周日则MN 2=m 2+-12m 2+8-3 2=14(m 2-8)2+9,∴当m =22时,MN 有最小值为3,此时抛物线上除了点N ,N '(点N ,N '关于y 轴对称)外,其余各点均在以点M (0,3)为圆心,3dm 为半径的圆外(铁皮底部边缘中点O 也在该圆上),∴若切割成圆,能切得半径为3dm 的圆.解法三:如图3,取点M (0,m ),在抛物线上取点N a ,-12a 2+8 ,且0<a <4,则MN 2=a 2+-12a 2+8-m 2,令y =a 2,则MN 2=y +-12y +8-m 2=14(y +2m -14)2+15-2m ,∴MN 2的最小值是15-2m ,当MN 的最小值=OM =m 时,⊙O 与抛物线相切,此时⊙M 最大,∴15-2m =m ,∴m =-5(舍)或3,∴若切割成圆,能切得半径为3dm 的圆.总结提升:本题是二次函数与圆,四边形的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,圆的切线的性质,矩形和正方形的性质,二次函数的最值问题,综合性较强,并与方程相结合解决问题是本题的关键.2.(2022•盐城)【发现问题】小明在练习簿的横线上取点O 为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O 为原点,过点O 的横线所在直线为x 轴,过点O 且垂直于横线的直线为y 轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为(-3,4)或(3,4).【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P (0,m ),m 为正整数,以OP 为直径画⊙M ,是否存在所描的点在⊙M 上.若存在,求m 的值;若不存在,说明理由.周日思路引领:【分析问题】根据题意可知:该点的纵坐标为4,利用勾股定理,即可求出该点的横坐标,进而可得出点的坐标;【解决问题】设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),利用勾股定理可得出该点的坐标为(-2n -1,n -1)或(2n -1,n -1),结合点横、纵坐标间的关系,可得出该点在二次函数y =12x 2-12的图象上,进而可证出小明的猜想正确;【深度思考】设该点的坐标为(±2n -1,n -1),结合⊙M 的圆心坐标,利用勾股定理,即可用含n 的代数式表示出m 的值,再结合m ,n 均为正整数,即可得出m ,n 的值.【分析问题】解:根据题意,可知:所描的点在半径为5的同心圆上时,其纵坐标y =5-1=4,∵横坐标x =±52-42=±3,∴点的坐标为(-3,4)或(3,4).【解决问题】证明:设所描的点在半径为n (n 为正整数)的同心圆上,则该点的纵坐标为(n -1),∴该点的横坐标为±n 2-(n -1)2=±2n -1,∴该点的坐标为(-2n -1,n -1)或(2n -1,n -1).∵(±2n -1)2=2n -1,n -1=2n -1-12,∴该点在二次函数y =12(x 2-1)=12x 2-12的图象上,∴小明的猜想正确.【深度思考】解:设该点的坐标为(±2n -1,n -1),⊙M 的圆心坐标为0,12m ,∴(±2n -1-0)2+n -1-12m 2=12m ,∴m =n 2n -1=(n -1+1)2n -1=(n -1)2+2(n -1)+1n -1=n -1+2+1n -1.又∵m ,n 均为正整数,∴n -1=1,∴m =1+2+1=4,∴存在所描的点在⊙M 上,m 的值为4.总结提升:本题考查了勾股定理、二次函数图象上点的坐标特征以及与圆有关的位置关系,解题的关键是:【分析问题】利用勾股定理,求出该点的横坐标;【解决问题】根据点的横、纵坐标间的关系,找出点在二次函数y =12x 2-12的图象上;【深度思考】利用勾股定理,用含n 的代数式表示出m 的值.周日类型五二次函数中的定值问题1.(2022•巴中)如图1,抛物线y =ax 2+2x +c ,交x 轴于A 、B 两点,交y 轴于点C ,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,当y ≥0时,-1≤x ≤3.(1)求抛物线的表达式;(2)点P 是线段BE 上的动点(除B 、E 外),过点P 作x 轴的垂线交抛物线于点D .①当点P 的横坐标为2时,求四边形ACFD 的面积;②如图2,直线AD ,BD 分别与抛物线对称轴交于M 、N 两点.试问,EM +EN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.思路引领:(1)由当y ≥0时,-1≤x ≤3,可知x 1=-1,x 2=3是ax 2+2x +c =0的两根,代入方程可得a ,c ,从而得解;(2)①把x =2代入抛物线解析式可得D 点坐标,再将x =0代入抛物线解析式可得C 点坐标,从而得知线段CD ∥x 轴,利用配方法可知点F 坐标,从而利用S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )求面积;②设D (m ,-m 2+2m +3)(1<m <3),用待定系数法求出直线AD 与直线BD 的解析式,再令x =1得y M ,y N ,从而得出ME ,NE 的长,从而得到NE +ME 是定值8.解:(1)∵当y ≥0时,-1≤x ≤3,∴x 1=-1,x 2=3是ax 2+2x +c =0的两根,A (-1,0),B (3,0),∴a -2+c =09a +6+c =0,解得:a =-1c =3 ,∴抛物线的表达式为:y =-x 2+2x +3;(2)①把x =2代入y =-x 2+2x +3得:y =3,∴D (2,3).又当x =0,y =3,∴C (0,3),∴线段CD ∥x 轴.∵y =-x 2+2x +3=-(x -1)2+4,∴F (1,4),S 四边形ACFD =S △FCD +S △ACD =12CD (y F -y A )=4;②设D (m ,-m 2+2m +3)(1<m <3),周日直线AD :y =k 1x +b 1,BD :y =k 2x +b 2,因此可得:0=-k 1+b 1-m 2+2m +3=k 1m +b 1或0=3k 2+b 2-m 2+2m +3=k 2m +b 2,解得:k 1=3-m b 1=3-m 或k 2=-1-mb 2=3m +3 ,∴直线AD :y =(3-m )x +(3-m ),BD :y =-(m +1)x +3(m +1).令x =1得y M =6-2m ,y N =2m +2,∴ME =6-2m ,NE =2m +2,∴NE +ME =8.总结提升:本题考查二次函数与一次函数综合,涉及四边形的面积求法,待定系数法等知识,掌握待定系数法和面积求法是解题的关键.类型六二次函数中几何图形的存在性问题1.(2022•枣庄)如图①,已知抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当△OPE 面积最大时,求出P 点坐标;(3)将抛物线L 向上平移h 个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE 的边界),求h 的取值范围;(4)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.思路引领:(1)利用待定系数法可得抛物线的解析式;(2)过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),根据OE 的解析式表示点G 的坐标,表示PG 的长,根据面积和可得△OPE 的面积,利用二次函数的最值可得其最大值;(3)求出原抛物线的对称轴和顶点坐标以及对称轴与OE 的交点坐标、与AE 的交点坐标,用含h 的代数式表示平移后的抛物线的顶点坐标,列出不等式组求出h 的取值范围;(4)存在四种情况:作辅助线,构建全等三角形,证明△OMP ≌△PNF ,根据|OM |=|PN |,列方程可得点P 的坐标;同理可得其他图形中点P 的坐标.解:(1)∵抛物线L :y =x 2+bx +c 经过点A (0,3),B (1,0),∴1+b +c =0c =3,解得b =-4c =3 ,周日∴抛物线的解析式为:y =x 2-4x +3;(2)如图,过P 作PG ∥y 轴,交OE 于点G ,设P (m ,m 2-4m +3),∵OE 平分∠AOB ,∠AOB =90°,∴∠AOE =45°,∴△AOE 是等腰直角三角形,∴AE =OA =3,∴E (3,3),∴直线OE 的解析式为:y =x ,∴G (m ,m ),∴PG =m -(m 2-4m +3)=-m 2+5m -3,∴S △OPE =S △OPG +S △EPG=12PG •AE =12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,此时,P 点坐标为52,-34;(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则E (3,3),∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,周日∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52(舍)或5-52,∴P 的坐标为5-52,1-52 ;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52(舍)或m 2=3-52,∴P 的坐标为3-52,5+12 ;③当P 在对称轴的右边,且在x 轴下方时,如图,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52(舍);P 的坐标为3+52,1-52 ;④当P 在对称轴的右边,且在x 轴上方时,如图,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52或3-52,5+12或3+52,1-52 或5+52,5+12 .方法二:作直线DE :y =x -2,E (1,-1)是D 点(2,0)绕O 点顺时针旋转45°并且OD 缩小2倍得到,易知直线DE 即为对称轴上的点绕O 点顺时针旋转45°,且到O 点距离缩小2倍的轨迹,联立直线DE 和抛物线解析式得x 2-4x +3=x -2,周日解得x 1=5+52,x 2=5-52,同理可得x 3=3+52或x 4=3-52;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12 或3+52,1-52 或5+52,5+12 .总结提升:本题属于二次函数综合题,主要考查了二次函数的综合应用,二次函数的图象与性质及图形的平移,全等三角形的判定与性质以及解一元二次方程的方法,运用分类讨论思想和方程的思想解决问题的关键.2.(2022•攀枝花)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于O (O 为坐标原点),A 两点,且二次函数的最小值为-1,点M (1,m )是其对称轴上一点,y 轴上一点B (0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P ,连结PA ,PB ,设点P 的横坐标为t ,△PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点N ,使得以A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N 的坐标,若不存在,请说明理由.思路引领:(1)根据题意知,二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点B (0,0)代入得,a -1=0,即可得出答案;(2)连接OP ,根据题意得点A 的坐标,则S =S △AOB +S △OAP -S △OBP ,代入化简即可;(3)设N (n ,n 2-2n ),分AB 或AN 或AM 分别为对角线,利用平行四边形的性质和中点坐标公式,分别求出n =的值,进而得出答案.解:(1)∵二次函数的最小值为-1,点M (1,m )是其对称轴上一点,∴二次函数顶点为(1,-1),设二次函数解析式为y =a (x -1)2-1,将点O (0,0)代入得,a -1=0,∴a =1,∴y =(x -1)2-1=x 2-2x ;(2)连接OP ,。

二次函数与几何图形综合 专题练习题 教师版含答案

二次函数与几何图形综合 专题练习题 教师版含答案

二次函数与几何图形综合 专题练习题1.如图,直线l 过A(3,0)和B(0,3)两点,它与二次函数y =ax 2的图象在第一象限内交于点P ,若△AOP 的面积为3,求二次函数的解析式.答案:解:易求直线AB 的解析式为y =-x +3,设P(t ,-t +3)(0<t <3),∵△AOP 的面积为3, ∴12·3·(-t +3)=3,解得t =1,∴P 点坐标为(1,2), 把P(1,2)代入y =ax 2得a =2,∴二次函数解析式为y =2x 22.如图,在直角坐标系中,△ABC 是等腰直角三角形,∠BAC =90°,A(1,0),B(0,2),抛物线y =12x 2+bx -2的图象过C 点.求抛物线的解析式.答案:解:过点C 作CD ⊥x 轴于点D ,则∠CAD+∠ACD=90°.∵∠OBA +∠OAB=90°,∠OAB +∠CAD=90°,∴∠OAB =∠ACD,∠OBA =∠CAD,由ASA 可证△AOB≌△CDA, ∴CD =OA =1,AD =OB =2,∴OD =OA +AD =3,∴C(3,1).∵点C(3,1)在抛物线上,∴1=12×9+3b -2,解得b =-12,∴抛物线的解析式为y =12x 2-12x -23.如图,已知抛物线y =-x 2+mx +3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0).(1)求m 的值及抛物线的顶点坐标;(2)点P 是抛物线对称轴l 上的一个动点,当PA +PC 的值最小时,求点P 的坐标.答案:解:(1)把点B 的坐标(3,0)代入y =-x 2+mx +3得0=-32+3m +3,解得m =2,∴y =-x 2+2x +3=-(x -1)2+4,∴顶点坐标为(1,4) (2)连接BC 交抛物线对称轴l 于点P ,则此时PA +PC 的值最小,由点C(0,3),B(3,0),可求直线BC 的解析式为y =-x +3,当x =1时,y =-1+3=2,∴当PA +PC 的值最小时,点P 的坐标为(1,2)4.二次函数y =-x 2+mx +n 的图象经过点A(-1,4),B(1,0), 直线y =-x +b 经过点B ,且与二次函数y =-x 2+mx +n 交于点D ,过点D 作DC ⊥x 轴于点C. (1)求二次函数的解析式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为P ,交BD 于点M ,求MN 的最大值.答案:解:(1)y =-x 2-2x +3(2)∵y=-12x +b 经过点B ,∴-12×1+b =0,解得b =12,∴y =-12x +12,设M(m ,-12m +12),则N(m ,-m 2-2m +3),∴MN =-m 2-2m +3-(-12m +12)=-m 2-32m +52=-(m +34)2+4916,∴MN 的最大值为49165.如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点(-1,8)并与x 轴交于A ,B 两点,且点B 坐标为(3,0). (1)求抛物线的解析式;(2)若抛物线与y 轴交于点C ,顶点为点P ,求△CPB 的面积.答案:解:(1)y =x 2-4x +3(2)∵y=x 2-4x +3=(x -2)2-1,∴P 点坐标为(2,-1), C 点坐标为(0,3),设对称轴与BC 交于点E ,易知直线BC 的解析式为y =-x +3,点E 的横坐标为2, 则E 点的坐标为(2,1),∴PE =1-(-1)=2,∴S △CPB =S △CPE +S △PBE =12×2×3=36.如图,抛物线y =ax 2+bx +c 交x 轴于点A ,B ,交y 轴于点D(0,3),其对称轴为直线x =4,点C 为对称轴上一点,四边形ABCD 为平行四边形,求抛物线的解析式.答案:解:∵四边形ABCD 为平行四边形,点D 坐标为(0,3),点C 为对称轴x =4上一点,∴AB =CD =4,点A 和B 的坐标分别为(2,0),(6,0),设y =a(x -2)(x -6),由抛物线过(0,3)得a =14,∴y =14x 2-2x +37.如图是函数y =23x 2的图象,点A 0位于坐标原点,点A 1,A 2,A 3,…,A n 在y 轴的正半轴上,点B 1,B 2,B 3,…,B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3,…,四边形A n -1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 2=∠A 2B 3A 3=…=∠A n -1B n A n =60°,则菱形A n -1B n A n C n 的周长为____.答案:4n8.如图,在平面直角坐标系中,二次函数y =ax 2+c(a ≠0)的图象过正方形ABOC 的三个顶点A ,B ,C ,则ac 的值是____.答案: -29.如图,四边形ABCD 是菱形,点D 的坐标是(0,3),以点C 为顶点的抛物线y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1)求A ,B ,C 三点的坐标;(2)求经过A ,B ,C 三点的抛物线的解析式.答案:解:(1)过点C 作CE⊥AB 于点E ,由抛物线的对称性可知AE =BE ,由AAS 可证△AOD≌△BEC,∴OA =EB =EA.设菱形的边长为2m ,在Rt △AOD 中,m 2+(3)2=(2m)2,解得m =1,∴DC =2,OA =1,OB =3,∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3)(2)设抛物线的解析式为y =a(x -2)2+3,代入A 的坐标(1,0),得a =-3,∴抛物线的解析式为y =-3(x -2)2+ 310.如图,对称轴为直线x =72的抛物线经过点A(6,0)和B(0,-4).(1)求抛物线解析式及顶点坐标;(2)设点E(x ,y)是抛物线上一动点,且位于第一象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式;(3)当(2)中的平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形.答案:解:(1)y =-23x 2+143x -4,顶点坐标为(72,256)(2)E 点坐标为(x ,-23x 2+143x -4),∴S =2×12OA·y E =6(-23x 2+143x -4),即S =-4x 2+28x -24(3)平行四边形OEAF 的面积为24时,平行四边形OEAF 可能为菱形,理由如下:当平行四边形OEAF 的面积为24时,即-4x 2+28x -24=24,化简得x 2-7x +12=0,解得x =3或4,当x =3时,EO =EA ,平行四边形OEAF 为菱形;当x =4时,EO ≠EA ,平行四边形OEAF 不为菱形,∴平行四边形OEAF 的面积为24时,平行四边形OEAF 可能为菱形11.如图①,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF =90°,且EF 交正方形外角的平分线CF 于点F.(1)若图①中点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE =EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等;(不要求证明) (2)如图②,若点E 在线段BC 上滑动(不与点B ,C 重合). ①AE =EF 是否总成立?请给出证明;②在如图②的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线y =-x 2+x +1上,求此时点F 的坐标.答案:解:(1)如图①,取AB的中点G,连接EG,△AGE与△ECF全等(2)①若点E在线段BC上滑动,AE=EF总成立.证明:如图②,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°-45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF,∴AE=EF ②过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a-1,∴点F的坐标为F(a,a-1).∵点F恰好落在抛物线y=-x2+x+1上,∴a-1=-a2+a+1,∴a1=2,a2=-2(不合题意,舍去),∴a-1=2-1,∴点F的坐标为(2,2-1)。

二次函数与几何图形综合题

二次函数与几何图形综合题

二次函数与几何图形综合题二次函数与几何图形综合题一、二次函数与直角三角形1、抛物线y=x²+bx+c与x轴交于A(-1,0)、B点,与y轴交于C(0,-3)顶点为D。

(1)求抛物线解析式;(2)点N为抛物线对称轴上一动点,若以B、N、C为顶点的三角形为直角三角形,求所有相应的点N的坐标。

2、如图,在平面直角坐标系中,已知点A的坐标是(4,0),且OA=OC=4OB,动点P在过A、B、C三点的抛物线上。

(1)求抛物线的表达式;(2)在抛物线上是否还存在点P',使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由。

3、如图,抛物线y=ax²-2ax-3a交y轴于A点,交x轴于B、C两点(B在C右边),顶点为D(1)写出B、C、A、D四点的坐标(其中A、D两点的坐标用含a的式子表示);(2)当OA=OB时,求抛物线的解析式;(3)若以A、B、D为顶点的三角形为直角三角形,求a的值。

作业:1、如图,已知抛物线y=ax²+bx-3(a≠0)与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点的坐标是(4,-3)。

(1)求抛物线解析式;(2)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由。

二、二次函数与等腰三角形1、如图,已知抛物线y=ax²+bx+c(a≠0)经过A(-1,0)、B(3,0)、C(0,-3)三点,直线l是抛物线的对称轴。

(1)求抛物线的函数关系式;(2)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M 的坐标;2、作业:如图,二次函数y=ax²+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为x=-x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标。

二次函数与几何(含答案)

二次函数与几何(含答案)

二次函数与几何一、知识要点归纳1、二次函数关于坐标轴对称式规律: 原式:()20y ax bx c a =++≠⑴关于x 轴对称:2y ax bx c =--- ⑵关于y 轴对称:2y ax bx c =-+ ⑶关于原点对称:2y ax bx c =-+- 2、平面直角坐标系中两点间距离公式:AB =3、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,二、常见题型【轴对称性】例1:抛物线y=ax 2+2ax+a 2+2的一部分如图1所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是 ( )A .(12 ,0); B .(1, 0);C .(2, 0);D .(3, 0)解:由题意,得y=a(x+1)2+ a 2-a+2 则抛物线对称轴为:直线x=-1从而,点(-3,0)直线x=-1的距离为2,所以,点(-3,0)关于直线x=-1的对称点的坐标为:(1,0),选B.注意:由抛物线的轴对称性可知,抛物线与横轴的两个交点间的距离相等.例2:如图2,在平面直角坐标系中,二次函数y=ax 2+c (a <0)的图象过正方形ABOC 的三个顶点A 、B 、C ,则ac 的值是 . 解:连结BC 交OA 于点D ,则DC=DB=OD=DA. 由已知条件可知,点A 的坐标为:(0,c ),所以点C 的坐标为:(2c ,2c ),从而有:2c=42ac+ c.所以ac=-2.注意:本题把抛物线的轴对称性与正方形的轴对称性对称性相结合,得出抛物线上的点坐标,并由此得出等量关系,求未知代数式的值. 例3:若A (-134,y 1)、B (-1,y 2)、C (53,y 3)为二次函数245y x x =--+的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B 、y 3<y 2<y1C 、y 3<y 1<y 2D 、y 2<y 1<y 3解:二次函数245y x x =--+可变形为: 9)2(2++-=x y ,由此可知,抛物线的顶点坐标为:(-2,9),对称轴为:直线x=-2; 从而可知,点A 关于直线x=-2的对称点的坐标为(43,y 1),这样,它与B (-1,y 2)、C (53,y 3)都在对称轴的右侧,而抛物线的开口向下,于是,由抛物线的性质可知:y 2<y 1<y 3,选D.注意:本题借助抛物线的轴对称性,把位于对称轴两侧的点,变换到了同一侧,这样便于利用二次函数的增减性来进行比较.当然,本题也可以用直接求函数值法进行比较.例4:已知二次函数y =2x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与 ( )A. x =1时的函数值相等B. x =0时的函数值相等C. x =41时的函数值相等 D. x =-49时的函数值相等 解析:易知抛物线y =2 x 2+9x+34的顶点横坐标为:-49,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则以x 1、x 2为横坐标的两点关于直线x=-49对称.所以选B.注意:自变量不同时,函数值相等.由此可知,以这两个自变量的值为横坐标的点,关于抛物线的对称轴对称.从而,得出这两个自变量的数值关系是本题的突破口.例5:在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx ﹣2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式; (3)若该抛物线在﹣2<x <﹣1这一段位于直线l 的上方,并且在2<x <3这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当x=0时,y=﹣2,∴A(0,﹣2),抛物线的对称轴为直线x=﹣=1,∴B(1,0);(2)易得A点关于对称轴直线x=1的对称点A′(2,﹣2),则直线l经过A′、B,设直线l的解析式为y=kx+b(k≠0),则,解得,所以,直线l的解析式为y=﹣2x+2;(3)∵抛物线的对称轴为直线x=1,∴抛物线在2<x<3这一段与在﹣1<x<0这一段关于对称轴对称,结合图象可以观察到抛物线在﹣2<x<﹣1这一段位于直线l的上方,在﹣1<x<0这一段位于直线l的下方,∴抛物线与直线l的交点的横坐标为﹣1,当x=﹣1时,y=﹣2×(﹣1)+2=4,所以,抛物线过点(﹣1,4),当x=﹣1时,m+2m﹣2=4,解得m=2,∴抛物线的解析式为y=2x2﹣4x﹣2.【二次函数存在性问题】例1:如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当P1C⊥CB时,△P1BC为直角三角形,∵直线BC的斜率为﹣,∴直线P1C斜率为,∴直线P1C解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P2B⊥BC时,△BCP2为直角三角形,同理得到直线P2B的斜率为,∴直线P2B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P2(,﹣2).综上所示,P1(,)或P2(,﹣2).当点P为直角顶点时,设P(,y),∵B(4,0),C(0,3),∴BC=5,∴BC2=PC2+PB2,即25=()2+(y﹣3)2+(﹣4)2+y2,解得y=,∴P3(,),P4(,).综上所述,P1(,),P2(,﹣2),P3(,),P4(,).例2:如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由;(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,∴,解得:,则抛物线解析式为y=x2﹣2x﹣3;(2)△BCM为直角三角形,理由为:对于抛物线解析式y=x2﹣2x﹣3=(x﹣1)2﹣4,即顶点M坐标为(1,﹣4),令x=0,得到y=﹣3,即C(0,﹣3),根据勾股定理得:BC=3,BM=2,CM=,∵BM2=BC2+CM2,∴△BCM为直角三角形;(3)若∠APC=90°,即P点和O点重合,如图1,连接AC,∵∠AOC=∠MCB=90°,且,∴Rt△AOC∽Rt△MCB,∴此时P点坐标为(0,0).若P点在y轴上,则∠PAC=90°,如图2,过A作AP1⊥AC交y轴正半轴于P1,∵Rt△CAP1∽Rt△COA∽Rt△BCM,∴=,即=,∴点P1(0,).若P点在x轴上,则∠PCA=90°,如图3,过C作CP2⊥AC交x轴正半轴于P2,∵Rt△P2CA∽Rt△COA∽Rt△BCM,∴=,即=,AP2=10,∴点P2(9,0).∴符合条件的点有三个:O(0,0),P1(0,),P2(9,0).例3:如图,已知抛物线y=﹣x2+bx+c与直线AB相交于A(﹣3,0),B(0,3)两点.(1)求这条抛物线的解析式;(2)设C是抛物线对称轴上的一动点,求使∠CBA=90°的点C的坐标;(3)探究在抛物线上是否存在点P,使得△APB的面积等于3?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)把点A(﹣3,0),B(0,3)代入y=﹣x2+bx+c得:,解得:∴抛物线的解析式是y=﹣x2﹣2x+3;(2)如图1:过点B作CB⊥AB,交抛物线的对称轴于点C,过点C作CE⊥y轴,垂足为点E,∵y=﹣x2﹣2x+3,∴抛物线对称轴为直线x=﹣1,∴CE=1,∵AO=BO=3,∴∠ABO=45°,∴∠CBE=45°,∴BE=CE=1,∴OE=OB+BE=4,∴点C的坐标为(﹣1,4);(3)假设在在抛物线上存在点P,使得△APB的面积等于3,如图2:连接PA,PB,过P作PD⊥AB于点D,作PF∥y轴交AB于点F,在Rt△OAB中,易求AB==3,∵S△APB=3,∴PD=∵∠PFD=∠ABO=45°,∴PF=2,设点P的坐标为(m,﹣m2﹣2m+3),∵A(﹣3,0),B(0,3),∴直线AB的解析式为y=x+3,∴可设点F的坐标为(m,m+3),①当点P在直线AB上方时,可得:﹣m2﹣2m+3=m+3+2,解得:m=﹣1或﹣2,∴符合条件的点P坐标为(﹣1,4)或(﹣2,3),②当点P在直线AB下方时,可得:﹣m2﹣2m+3=m+3﹣2,解得:m=或,∴符合条件的点P坐标为(,)或(,)综上可知符合条件的点P有4个,坐标分别为:(﹣1,4)或(﹣2,3)或(,)或(,).【二次函数最值问题】例1:如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得PB+PC的和最小?若存在,求出P点坐标;若不存在,请说明理由;(3)若点M是线段BC下方的抛物线上一点,求△MBC面积的最大值,并求出此时M点的坐标.解:(1)∵将点B的坐标代入得:16a﹣6﹣2=0,解得:a=,∴抛物线的解析式为y=.(2)如图1所示:∵PC+PB≥BC,∴当点P、C、B在一条直线上时,PC+PB有最小值.∵令x=0得;y=﹣2,∴点C的坐标为(0,﹣2).设直线BC的解析式为y=kx+b.∵将点B、C的坐标代入得:,解得:k=,b=﹣2,∴直线BC的解析式为y=﹣2.∵抛物线的对称轴为x=﹣==,∴点P的横坐标为.∵将x=代入直线BC的解析式得;y=﹣2=﹣,∴点P的坐标为(,﹣).(3)过点M作MD⊥x轴,交直线BC与点D.设点M(a,),则点D(a,).DM=﹣()=﹣a2+2a.∵△CMB的面积=MD•OB=×4×(﹣a2+2a)=﹣a2+4a=﹣(a﹣2)2+4,∴当a=2时,△CMB的面积有最大值,△CMB的最大面积=4.∴点M(2,﹣3).例2:如图,在平面直角坐标系中,点A、C的坐标分别为(﹣1,0)、(0,﹣),点B 在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.解:(1)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c为常数),由抛物线的对称性知B点坐标为(3,0),依题意得:,(1分)解得:,(2分)∴所求二次函数的解析式为;(3分)(2)∵P点的横坐标为m,∴P点的纵坐标为,(4分)设直线BC的解析式为y=kx+b(k≠0,k、b是常数),依题意,得,∴,故直线BC的解析式为,(5分)∴点F的坐标为,∴;(6分)(3)∵△PBC的面积=,∴当时,△PBC的最大面积为,(8分)把代入,得,∴点P的坐标为.(10分)例3:如图,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(2,0)两点,与y轴交于点C(0,﹣2),过A、C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)若M为线段OB上的一个动点,过点M做MN平行于y轴交抛物线于点N,当点M运动到何处时,四边形ACNB的面积最大?求出此时点M的坐标及四边形ACNB面积的最大值?解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(2,0)两点,∴设抛物线解析式为y=a(x+1)(x﹣2),∴抛物线与y轴交于点C(0,﹣2),∴﹣2=a×1×(﹣2),∴a=1,∴抛物线解析式为y=(x+1)(x﹣2)=x2﹣x﹣2,(2)∵点P在x轴正半轴上,∴设点P(m,0)(m>0),∴PA=m+1,PC=,∵PA=PC,∴m+1=,∴m=,∴OP=m=;(3)如图,∵M为线段OB上的一个动点,∴设M(n,0),(0<n<2)∵过点M做MN平行于y轴交抛物线于点N,∴n(n,n2﹣n﹣2)∵OA=1,OC=2,OM=n,MN=|n2﹣n﹣2|=﹣(n2﹣n﹣2)=﹣n2+n+2,MB=2﹣n,∴S四边形ACNB=S△AOC+S梯形OCNM+S△BMN=OA×OC+(OC+MN)×OM+MB×MN,=×1×2+[2+(﹣n2+n+2)]n+×(2﹣n)×(﹣n2+n+2)=﹣n2+2n+3=﹣(n﹣1)2+4,∵0<n<2,∴当n=1时,S四边形ACNB面积最大,最大值为4,∴M(1,0)例4:如图,抛物线y=x2+nx﹣2与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由;(3)点M是线段BC上的一个动点,过点M作x轴的垂线,与抛物线相交于点N,当点M移动到什么位置时,四边形CDBN的面积最大?求出四边形CDBN的最大面积及此时M点的坐标.解:(1)把点A(﹣1,0)代入y=x2+nx﹣2得,n=﹣,即抛物线的表达式为:y=x2﹣x﹣2.(2)存在.∵y=x2﹣x﹣2,∴抛物线对称轴为:x=,①当∠CPD=90°时,很显然点P坐标为(,﹣2);②当∠PCD=90°时,如图①所示:CD==,∵cos∠CDP==cos∠DCO==,∴PD=,则点P坐标为(,﹣).综上可得:存在点P,使△PCD是直角三角形,点P坐标为(,﹣2)或(,﹣).(3)过线段BC上一点M作MN⊥x轴,垂足为F,与抛物线交于点N,过点C作CE⊥MN,垂足为E,如图②所示:由二次函数解析式可得点B(4,0),点C(0,﹣2),设BC解析式为y=kx+b,则,解得:,则直线BC解析式为y=x﹣2,设点M的坐标为(m,m﹣2),则点N的坐标为(m,m2﹣m﹣2),MN=(m﹣2)﹣(m2﹣m﹣2)=﹣m2+2m,∴S四边形CDBN=S△CDB+S△BMN+S△CMN=BD×OC+MN×BF+MN×CE=(4﹣)×2+MN(BF+CE)=+(﹣m2+2m)×4=﹣m2+4m+=﹣(m﹣2)2+,当m=2时,S四边形CDBN有最大值,最大值为,此时点M的坐标为(2,﹣1).【讨论四边形】例1:如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).例2:如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)解:(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,∴,解得a=﹣1,b=2,∴抛物线的解析式为:y=﹣x2+2x+3.(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:,解得k=﹣1,b=3,∴y=﹣x+3.设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3),∴EF=y E﹣y F=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.∵四边形ODEF是平行四边形,∴EF=OD=2,∴﹣x2+3x=2,即x2﹣3x+2=0,解得x=1或x=2,∴P点坐标为(1,0)或(2,0).(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF 的面积.①当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(,2).设直线AG的解析式为y=kx+b,将A(﹣1,0),G(,2)坐标代入得:,解得k=b=,∴所求直线的解析式为:y=x+;②当P(2,0)时,点F坐标为(2,1),又D(0,2),设对角线DF的中点为G,则G(1,).设直线AG的解析式为y=kx+b,将A(﹣1,0),G(1,)坐标代入得:,解得k=b=,∴所求直线的解析式为:y=x+.综上所述,所求直线的解析式为:y=x+或y=x+.例3:如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x 轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m 为何值时,以,A,B,D,P为顶点的四边形是平行四边形?解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣ m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣ m2+m),∴点D的坐标为(2m,﹣ m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣ m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣ m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅱ)当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣ m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.注意:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.。

二次函数与几何综合(习题及部分答案)

二次函数与几何综合(习题及部分答案)

二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点A 在点B 的左侧),与y 轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.yA OB xC第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式.再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形.【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.1第二问:铅垂法求面积【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S△ACP的最大值,分析A,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3<x P<0;(2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S△ACP.第三问:平行四边形的存在性【思路分析】分析不变特征:以A,B,E,F 为顶点的四边形中,A,B 为定点,E,F 为动点,定点A,B 连接成为定线段AB.分析形成因素:要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条yA Q OB xPC23件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足 EF ∥AB 且 EF =AB ,要找 EF ,可借助平移.点 E 在对称轴上,沿直线容易平移,故将线段 AB 拿出来沿对称轴上下方向平移,确保点 E 在对称轴上,来找抛物线上的点 F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上 E 点坐标,利用平行且相等表达抛物线上 F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足 AB , EF 互相平分,先找到定线段 AB 的中点,在旋转过程中找到 EF 恰好被 AB 中点平分的位置,因为 E 和 AB 中点都在抛物线对称轴上,说明 EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为 F 点坐标.画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当 AB 为边时,AB ∥EF 且 AB =EF , 如图所示,设 E 点坐标为(-1,m ), 当四边形是□ABFE 时,由 A (-3,0),B (1,0)可知,F 1(3,m ), 代入抛物线解析式,可得,m =12, ∴F 1(3,12);当四边形是□ABEF 时,由 A (-3,0),B (1,0)可知,F 2(-5,m ), 代入抛物线解析式,可得,m =12, ∴F 2(-5,12).②当 AB 为对角线时,AB 与 EF 互相平分, AB 的中点 D (-1,0),设 E (-1,m ),则 F (-1,-m ), 代入抛物线解析式,可得,m =4, ∴F 3(-1,-4).综上:F 1(3,12),F 2(-5,12),F 3(-1,-4).结果验证:➢巩固练习1.如图,直线y =-1x 与抛物线y =-1x2 + 6 交于A,B 两点,2 4C 是抛物线的顶点.(1)在直线AB 上方的抛物线上有一动点P,当△ABP 的面积最大时,点P 的坐标为.(2)若点M 在抛物线上,且以点M,A,B 以及另一点N 为顶点的平行四边形ABNM 的面积为240,则M,N 两点的坐标为.yCBO xAyCBO xA42.已知抛物线y=-mx2+4x+2m 与x 轴交于点A(α,0),B(β,0),且1+1=-2 .抛物线的对称轴为直线l,与y 轴的交点为点αβC,顶点为点D,点C 关于l 的对称点为点E.(1)抛物线的解析式为.(2)连接CD,在直线CD 下方的抛物线上有一动点G,当S△CDG=3,点G 的坐标为.(3)若点P 在抛物线上,点Q 在x 轴上,当以点D,E,P,Q 为顶点的四边形是平行四边形时,点Q 的坐标为.53.已知抛物线y=ax2-4ax+b 的对称轴为直线x=2,顶点为P,与x 轴交于A,B 两点,与y 轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P 的一点Q,使△BCQ 与△BCP 的面积相等?若存在,求出点Q 的坐标;若不存在,请说明理由.(3)若点E 是抛物线上一动点,点F 是x 轴上一动点,是否存在以B,C,E,F 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.64.如图,在平面直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b 与y 轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l 移动到何处时,恰好将△ABC 的面积分为相等的两部分?(3)点P 是抛物线上一动点,点Q 是抛物线对称轴l 上一动点,是否存在点P,使以P,Q,A,B 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.75.如图,二次函数图象的顶点为坐标系原点O,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠CDO=∠OED,求点D的坐标;(3)当点D在直线AC上的一个动点时,以点O、C、D、E为顶点的四边形能成为平行四边形吗?请说明理由.6.已知关于二次函数y=x2﹣(4k+2)x+4k2+3k的图象与x轴有两个交点.(1)求k的取值范围;(2)若二次函数与x轴的两个交点坐标为(a,0),(b,0),并满足(a﹣b)2=2,求k的值,并写出二次函数的表达式;(3)如图所示,由(2)所得的抛物线与一次函数y=﹣3x +的图象相交于点C、点D,求三角形CDP的面积.7.如图1,二次函数y=a(x2﹣x﹣6)(a≠0)的图象过点C(1,﹣),与x轴交于A,B两点(点A在x轴的负半轴上),且A,C两点关于正比例函数y=kx(k≠0)的图8象对称.(1)求二次函数与正比例函数的解析式;(2)如图2,过点B作BD⊥x轴交正比例函数图象于点D,连接AC,交正比例函数的图象于点E,连接AD,CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动,当其中一个点到达终点时,另一个点随之停止运动,连接PQ,QE,PE,设运动时间为t秒,是否存在某一刻,使PE,QE分别平分∠APQ和∠PQC?若存在,求出t的值;若不存在,请说明理由.8.如图,二次函数图象的顶点为坐标原点O,y轴为对称轴,且经过点A(3,3),一次函数的图象经过点A和点B(6,0).(1)求二次函数与一次函数的解析式;(2)如果一次函数图象与y轴相交于点C,E是抛物线上OA段上一点,过点E作y轴平行的直线DE与直线AC交于点D,∠DOE=∠EDA,求点E的坐标;(3)点M是线段AC延长线上的一个动点,过点M作y轴的平行线交抛物线于F,以点O、C、M、F为顶点的四边形能否为菱形?若能,求出点F的坐标;若不能,请说明理由.9.小明在学习时遇到这样一个问题:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,9b,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函2数”.求y=﹣x2+3x﹣2函数的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2016的值;(3)已知函数y =﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A,B1,C1,试证明经过点A1,B1,C1的二次函数与函1数y =﹣(x+1)(x﹣4)互为“旋转函数”.10.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.11.如图,抛物线y=ax2+bx+c与x轴交与A(1,0),B(4,0)两点,与y轴交于点C (0,4)(1)求抛物线的解析式.(2)点P为抛物线上一动点,满足S△PBC =S△ABC,求P点的坐标.(3)点D为抛物线对称轴上一点,若△BCD是锐角三角形,求点D的纵坐标n的取值范围.1012.如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x =﹣,且抛物线经过A、B两点,交x轴于另一点C.(1)求抛物线的解析式;(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;(4)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.13.在平面直角坐标系xOy中,对于图形G,若存在一个正方形γ,这个正方形的某条边与x轴垂直,且图形G上的所有的点都在该正方形的内部或者边上,则称该正方形γ为图形G的一个正覆盖.很显然,如果图形G存在一个正覆盖,则它的正覆益有无数个,我们将图形G的所有正覆盖中边长最小的一个,称为它的紧覆盖,如图所示,图形G为三条线段和一个圆弧组成的封闭图形,图中的三个正方形均为图形G的正覆盖,其中正方形ABCD就是图形G的紧覆盖.(1)对于半径为2的⊙O,它的紧覆盖的边长为.(2)如图1,点P为直线y=﹣2x+3上一动点,若线段OP的紧覆盖的边长为2,求点P的坐标.(3)如图2,直线y=3x+3与x轴,y轴分别交于A,B,11①以O为圆心,r为半径的⊙O与线段AB有公共点,且由⊙O与线段AB组成的图形G的紧覆益的边长小于4,直接写出r的取值范围;②若在抛物线y=ax2+2ax﹣2(a≠0)上存在点C,使得△ABC的紧覆益的边长为3,直接写出a 的取值范围.14.如图1,在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(n,1)(n>0),将此矩形绕O点逆时针旋转90°得到矩形OA′B′C′,抛物线y=ax2+bx+c(a≠0)经过A、A′、C′三点.(1)求此抛物线的解析式(a、b、c可用含n的式子表示);(2)若抛物线对称轴是x=1的一条直线,直线y=kx+2(k≠0)与抛物线相交于两点D (x1,y1)、E(x2、y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点D和E 的坐标;(3)若抛物线对称轴是x=1的一条直线,如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q 关于直线CM对称,连接MQ′、PQ′,当△PMQ′与平行四边形APQM重合部分的面积是平行四边形的面积的时,求平行四边形APQM的面积.1215.如图①,在平面直角坐标系中,抛物线y =x2﹣x﹣2分别与x轴交于A,B两点,与y轴交于C点,直线EF垂直平分线段BC,分别交BC于点E,y轴于点F,交x轴于D.(1)判定△ABC的形状;(2)在线段BC下方的抛物线上有一点P,当△BCP面积最大时,求点P的坐标及△BCP面积的最大值;(3)如图②,过点E作EH⊥x轴于点H,将△EHD绕点E逆时针旋转一个角度α(0°≤α≤90°),∠DEH的两边分别交线段BO,CO于点T,点K,当△KET为等腰三角形时,求此时KT的值.16.如图,在平面直角坐标系中,抛物线y =﹣x2+bx+c与x轴交于点A,B,与y轴交于点C,直线BC的解析式为y=﹣x+6.(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的任意一点,连接MB,MC,点N为抛物线对称轴上任意一13点,当M到直线BC的距离最大时,求点M的坐标及MN+NB的最小值;(3)在(2)中,点M到直线BC的距离最大时,连接OM交BC于点E,将原抛物线沿射线OM 平移,平移后的抛物线记为y′,当y′经过点M时,它的对称轴与x轴的交点记为H.将△BOE绕点B逆时针旋转60°至△BO1E1,再将△BO1E1沿着直线O1H平移,得到△B 1O2E2,在平面内是否存在点F,使以点C,H,B1,F为顶点的四边形是以B1H为边的菱形.若存在,直接写出点B1的横坐标;若不存在,请说明理由.【参考答案】1415。

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1

中考数学二次函数和几何综合汇编经典和答案解析1一、二次函数压轴题1.如图,在平面直角坐标系xOy 中,抛物线()20y ax bx c a =++>与x 轴相交于()()1, 0, 3, 0A B -两点,点C 为抛物线的顶点.点(0,)M m 为y 轴上的动点,将抛物线绕点M 旋转180︒,得到新的抛物线,其中B C 、旋转后的对应点分别记为’'B C 、.(1)若1a =,求原抛物线的函数表达式;(2)在(1)条件下,当四边形''BCB C 的面积为40时,求m 的值;(3)探究a 满足什么条件时,存在点M ,使得四边形' 'BCB C 为菱形?请说明理由.2.综合与探究如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,()2,0A -,()4,0B ,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式:(2)若点D 在x 轴的下方,当BCD △的面积是92时,求ABD △的面积;(3)在直线l 上有一点P ,连接AP ,CP ,则AP CP 的最小值为______;(4)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.3.如图1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (﹣12,0),B (2,0)两点,与y 轴交于点C (0,1).(1)求抛物线的函数表达式;(2)如图1,点D 为第一象限内抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第四象限内是否存在这样的点P ,使△BPQ ∽△CAB .若存在,请直接写出所有符合条件的点P 的坐标,若不存在,请说明理由.4.如图,抛物线y =x 2﹣2x ﹣8与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 是第四象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q . (1)求A ,B ,C 三点的坐标;(2)试探究在点P 运动的过程中,是否存在这样的点Q ,使得以A 、C 、Q 为顶点的三角形是等腰三角形?若存在,请求出此时点Q 的坐标;若不存在,请说明理由.5.小明结合自己的学习经验,对新函数y =21b kx +的解析式、图象、性质及应用进行探究:已知当x =0时,y =2;当x =1时,y =1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为: . (2)函数图象探究:①根据解析式,补全如表,则m = ,n = .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象. x …… ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 0121 2 n 4 ……y……21715 25m85285 12515 217…… (3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质: .(4)综合应用:已知函数y =|715x ﹣815|的图象如图所示,结合你所画的函数图象,直接写出不等式|715x ﹣815|≤21bkx +.6.如果抛物线C 1:2y ax bx c =++与抛物线C 2:2y ax dx e =-++的开口方向相反,顶点相同,我们称抛物线C 2是C 1的“对顶”抛物线.(1)求抛物线247y x x =-+的“对顶”抛物线的表达式;(2)将抛物线247y x x =-+的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线247y x x =-+形成两个交点M 、N ,记平移前后两抛物线的顶点分别为A 、B ,当四边形AMBN 是正方形时,求正方形AMBN 的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C 1与C 2的顶点位于x 轴上,那么系数b 与d ,c 与e 之间的关系是确定的,请写出它们之间的关系.7.某校九年级数学兴趣社团的同学们学习二次函数后,有兴趣的在一起探究“函数2||y x x =-的有关图象和性质”.探究过程如下:(1)列表:问m =______. x …3- 2- 1- 0 1 2 122…y (6)20 0 2 m…(2)请在平面直角坐标系中画出图象.(3)若方程2||x x p -=(p 为常数)有三个实数根,则p =______.(4)试写出方程2||x x p -=(p 为常数)有两个实数根时,p 的取值范围是______. 8.定义:如果一条直线把一个封闭的平面图形分成面积相等的两部分,我们把这条直线称为这个平面图形的一条中分线.如三角形的中线所在的直线是三角形的一条中分线.(1)按上述定义,分别作出图1,图2的一条中分线.(2)如图3,已知抛物线2132y x x m =-+与x 轴交于点(2,0)A 和点B ,与y 轴交于点C ,顶点为D .①求m 的值和点D 的坐标;②探究在坐标平面内是否存在点P ,使得以A ,C ,D ,P 为顶点的平行四边形的一条中分线经过点O .若存在,求出中分线的解析式;若不存在,请说明理由.9.已知抛物线()2n n n y x a b =--+(n 为正整数,且120n a a a ≤<<<)与x 轴的交点为(0,0)A 和()1,0,2n n nn A c c c -=+.当1n =时,第1条抛物线()2111=--+y x a b 与x 轴的交点为(0,0)A 和1(2,0)A ,其他以此类推. (1)求11,a b 的值及抛物 线2y 的解析式.(2)抛物线n y 的顶点n B 的坐标为(_______,_______);以此类推,第(1)n +条抛物线1n y +的顶点1n B +的坐标为(______,_______);所有抛物线的顶点坐标(,)x y 满足的函数关系式是_________. (3)探究以下结论:①是否存在抛物线n y ,使得△n n AA B 为等腰直角三角形?若存在,请求出抛物线n y 的解析式;若不存在,请说明理由.②若直线(0)=>x m m 与抛物线n y 分别交于点12,,,n C C C ,则线段12231,,,n n C C C C C C -的长有何规律?请用含有m 的代数式表示.10.如图1,在平面直角坐标系中,已知抛物线y=a x 2+b x+3经过A(1,0) 、B(-3,0)两点,与y 轴交于点C .直线BC 经过B 、C 两点.(1)求抛物线的解析式及对称轴;(2)将△COB 沿直线 BC 平移,得到△C 1O 1B 1,请探究在平移的过程中是否存在点 O 1落在抛物线上的情形,若存在,求出点O 1的坐标,若不存在,说明理由;(3)如图2,设抛物线的对称轴与x 轴交于点E ,连结AC ,请探究在抛物线上是否存在一点F ,使直线EF ∥AC ,若存在,求出点F 的坐标,若不存在,说明理由.二、中考几何压轴题11.如图(1),已知点G 在正方形ABCD 的对角线AC 上,,GE BC ⊥垂足为点,E GF CD ⊥,垂足为点F .(1)证明与推断:①求证:四边形CEGF 是正方形;②推断:AGBE的值为_ _; (2)探究与证明:将正方形CEGF 绕点C 顺时针方向旋转a 角)045(a ︒<<︒,如图(2)所示,试探究线段AG 与BE 之间的数量关系,并说明理由;(3)拓展与运用:若24AB EC ==,正方形CEGF 在绕点C 旋转过程中,当A E G 、、三点在一条直线上时,则BE = .12.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明. 13.几何探究: (问题发现)(1)如图1所示,△ABC 和△ADE 是有公共顶点的等边三角形,BD 、CE 的关系是_______(选填“相等”或“不相等”);(请直接写出答案)(类比探究)(2)如图2所示,△ABC 和△ADE 是有公共顶点的含有30角的直角三角形,(1)中的结论还成立吗?请说明理由; (拓展延伸)(3)如图3所示,△ADE 和△ABC 是有公共顶点且相似比为1 : 2的两个等腰直角三角形,将△ADE 绕点A 自由旋转,若22BC =,当B 、D 、E 三点共线时,直接写出BD 的长.14.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.(问题理解)(1)如图1,点A 、B 、C 在⊙O 上,∠ABC 的平分线交⊙O 于点D ,连接AD 、CD . 求证:四边形ABCD 是等补四边形;(拓展探究)(2)如图2,在等补四边形ABCD 中,AB =AD ,连接AC ,AC 是否平分∠BCD ?请说明理由; (升华运用)(3)如图3,在等补四边形ABCD 中,AB =AD ,其外角∠EAD 的平分线交CD 的延长线于点F .若CD =6,DF =2,求AF 的长. 15.综合与实践 操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______; ②设AE a =,AM b =,请用含a 的式子表示b :______; ③ME 的最小值为______.16.综合与实践.特例感知.两块三角板△ADB 与△EFC 全等,∠ADB =∠EFC =90°,∠B =45°,AB =6.将直角边AD 和EF 重合摆放.点P 、Q 分别为BE 、AF 的中点,连接PQ ,如图1.则△APQ 的形状为 .操作探究(1)若将△EFC 绕点C 顺时针旋转45°,点P 恰好落在AD 上,BE 与AC 交于点G ,连接PF ,如图2. ①FG :GA = ;②PF 与DC 的位置关系为 ; ③求PQ 的长; 开放拓展(2)若△EFC 绕点C 旋转一周,当AC ⊥CF 时,∠AEC 为 . 17.综合与实践动手实践:一次数学兴趣活动,张老师将等腰Rt AEF 的直角顶点A 与正方形ABCD 的顶点A 重合(AE AD >),按如图(1)所示重叠在一起,使点E 在CD 边上,连接BF .则可证:ADE ≌△△______,______三点共线;发现问题:(1)如图(2),已知正方形ABCD ,E 为DC 边上一动点,DC nDE =,AF AE ⊥交CB 的延长线于F ,连结EF 交AB 于点G .若2n =,则AG BG =______,AGE BGFS S =△△______; 尝试探究:(2)如图(3),在(1)的条件下若3n =,求证:5AG GB =;拓展延伸:(3)如图(4),在(1)的条件下,当n =______时,AG 为GB 的6倍(直接写结果,不要求证明). 18.综合与实践数学活动课上,老师让同学们结合下述情境,提出一个数学问题:如图1,四边形ABCD 是正方形,四边形BEDF 是矩形.探究展示:“兴趣小组”提出的问题是:“如图2,连接CE .求证:AE ⊥CE .”并展示了如下的证明方法:证明:如图3,分别连接AC ,BD ,EF ,AF .设AC 与BD 相交于点O . ∵四边形ABCD 是正方形,∴OA =OC =12AC ,OB =OD =12BD ,且AC =BD . 又∵四边形BEDF 是矩形,∴EF经过点O,∴OE=OF=1EF,且EF=BD.2∴OE=OF,OA=OC.∴四边形AECF是平行四边形.(依据1)∵AC=BD,EF=BD,∴AC=EF.∴四边形AECF是矩形.(依据2)∴∠CEA=90°,即AE⊥CE.反思交流:(1)上述证明过程中“依据1”“依据2”分别是什么?拓展再探:(2)“创新小组”受到“兴趣小组”的启发,提出的问题是:“如图4,分别延长AE,FB交于点P,求证:EB=PB.”请你帮助他们写出该问题的证明过程.(3)“智慧小组”提出的问题是:若∠BAP=30°,AE=31,求正方形ABCD的面积.请你解决“智慧小组”提出的问题.19.(1)问题发现如图1,△ABC与△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,直线BD,CE交于点F,直线BD,AC交于点G.则线段BD和CE的数量关系是,位置关系是;(2)类比探究如图2,在△ABC和△ADE中,∠ABC=∠ADE=α,∠ACB=∠AED=β,直线BD,CE交于点F,AC与BD相交于点G.若AB=kAC,试判断线段BD和CE的数量关系以及直线BD和CE相交所成的较小角的度数,并说明理由;(3)拓展延伸如图3,在平面直角坐标系中,点M的坐标为(3.0),点N为y轴上一动点,连接MN.将线段MN绕点M逆时针旋转90得到线段MP,连接NP,OP.请直接写出线段OP 长度的最小值及此时点N的坐标.20.如图,已知ABC和ADE均为等腰三角形,AC=BC,DE=AE,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.【参考答案】***试卷处理标记,请不要删除一、二次函数压轴题1.B解析:(1)2 23;y x x =--(2)416m m ==-或;(3)3a ≥M ,使得四边形''BCB C 为菱形,理由见解析【分析】(1)因为1a =,所以2y x bx c =++,将()()1, 0, 3, 0A B -代入得关于b 和c 的二元一次方程组,解方程组得到b 和c 即可求得原抛物线的解析式;(2)连接','CC BB ,延长BC 与y 轴交于点E ,根据题(1)可求出点B 、C 的坐标,继而求出直线BC 的解析式及点E 的坐标,根据题意易知四边形''BCB C 是平行四边形,继而可知()1312BCM MBE MCE S S S ME ME ∆∆∆=-=⨯-⨯=,由此可知ME =10,继而即可求解点M 的坐标;(3)如图,过点C 作CD y ⊥轴于点D ,当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,继而可证MOB CDM ∆∆,根据相似三角形的性质可得MO MD BO CD •=•代入数据即可求解.【详解】解:(1)∵1a =,∴2y x bx c =++将()()1, 0, 3, 0A B -代入得:10930b c b c -+=⎧⎨++=⎩解得:23b c =-⎧⎨=-⎩∴原抛物线的函数表达式为:2 23y x x =--;(2)连接','CC BB ,并延长BC 与y 轴交于点E ,二次函数2 23y x x =--的项点为(1,4,)-()1,4,C ∴-()3, 0,B∴直线BC 的解析式为: 2 6.y x =--()0,6E ∴-抛物线绕点M 旋转180︒','MB MB MC MC ==∴四边形''BCB C 是平行四边形,()1312BCM MBE MCE S S S ME ME ∆∆∆∴=-=⨯-⨯= 10ME416m m ∴==-或(3)如图,过点C 作CD y ⊥轴于点D当平行四边形''BCB C 为菱形时,应有MB MC ⊥,故点M 在,O D 之间,当MB MC ⊥时,MOB CDM ∆∆,MO BO CD MD∴= 即MO MD BO CD •=•二次函数()()13y a x x =+-的顶点为()()()1,4,0,,3,0a M m B - 1,,4,3CD MO m MD m a ON ∴==-=+=,()43m m a ∴-+=,∴2430m am ,216120,0a a ∆-≥>a ∴≥所以a ≥M ,使得四边形''BCB C 为菱形.【点睛】本题考查二次函数的综合应用,涉及到平行四边形的性质、菱形的性质,难度较大,解题的关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质及二次函数的性质,注意挖掘题目中的隐藏条件.2.A解析:(1)233642y x x =--;(2)454;(3)134)存在,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭ 【分析】(1)把A 、B 两点坐标代入26y ax bx =+-可得关于a 、b 的二元一次方程组,解方程组求出a 、b 的值即可得答案;(2)过D 作DG x ⊥轴于G ,交BC 于H ,根据抛物线解析式可得点C 坐标,利用待定系数法可得直线BC 的解析式,设233,642D x x x ⎛⎫-- ⎪⎝⎭,根据BC 解析式可表示出点H 坐标,即可表示出DH 的长,根据△BCD 的面积列方程可求出x 的值,即可得点D 坐标,利用三角形面积公式即可得答案;(3)根据二次函数的对称性可得点A 与点B 关于直线l 对称,可得BC 为AP +CP 的最小值,根据两点间距离公式计算即可得答案;(4)根据平行四边形的性质得到MB //ND ,MB =ND ,分MB 为边和MB 为对角线两种情况,结合点D 坐标即可得点N 的坐标.【详解】(1)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,()2,0A -,()4,0B ,∴426016460a b a b --=⎧⎨+-=⎩, 解得:3432a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为:233642y x x =--. (2)如图,过D 作DG x ⊥轴于G ,交BC 于H ,当0x =时,6y =-,∴()0,6C -,设BC 的解析式为y kx b =+,则640b k b =-⎧⎨+=⎩, 解得326k b ⎧=⎪⎨⎪=-⎩, ∴BC 的解析式为:362y x =-, 设233,642D x x x ⎛⎫-- ⎪⎝⎭,则3,62H x x ⎛⎫- ⎪⎝⎭, ∴2233336632424DH x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵BCD △的面积是92, ∴1922DH OB ⨯=, ∴213943242x x ⎛⎫⨯⨯-+= ⎪⎝⎭, 解得:1x =或3,∵点D 在直线l 右侧的抛物线上,∴153,4D ⎛⎫- ⎪⎝⎭, ∴ABD △的面积11154562244AB DG ⨯=⨯⨯=;(3)∵抛物线26y ax bx =+-与x 轴相交于A ,B 两点,∴点A 与点B 关于直线l 对称,∴BC 为AP +CP 的最小值,∵B (4,0),C (0,-6),∴AP +CP 的最小值=BC =2246+=213. 故答案为:213(4)①当MB 为对角线时,MN //BD ,MN =BD ,过点N 作NE ⊥x 轴于E ,过当D 作DF ⊥x 轴于F ,∵点D (3,154-), ∴DF =154, 在△MNE 和△BDF 中,NEM DFB NMB DBF MN BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MNE ≌△BDF ,∴DF =NE =154, ∵点D 在x 轴下方,MB 为对角线,∴点N 在x 轴上方,∴点N 纵坐标为154, 把y =154代入抛物线解析式得:215336442x x =--, 解得:1114x =-,2114x =+, ∴1N (114-,154),2N (114+,154)如图,当BM 为边时,MB //ND ,MB =ND ,∵点D (3,154-), ∴点N 纵坐标为154-, ∴233156424x x --=-, 解得:11x =-,23x =(与点D 重合,舍去),∴3N (1-,154-),综上所述:存在点N ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,点N 的坐标为:15114,4⎛⎫ ⎪⎝⎭或15114,4⎛⎫ ⎪⎝⎭或151,4⎛⎫-- ⎪⎝⎭. 【点睛】本题考查的是二次函数的综合,首先要掌握待定系数法求解析式,其次要添加恰当的辅助线,灵活运用面积公式和平行四边形的判定和性质,应用数形结合的数学思想解题. 3.A解析:(1)2312y x x =-++;(2)DE AE 的最大值为45;(3)914511924145(P -+-+或9177317()P --+ 【分析】(1)用待定系数法求出函数解析式即可;(2)构造出△AGE ∽△DEH ,可得DE DH AE AG=,而DE 和AG 都可以用含自变量的式子表示,最后用二次函数最大值的方法求值.(3)先发现△ABC 是两直角边比为2:1的直角三角形,由△BPQ ∽△CAB ,构造出△BPQ ,表示出Q 点的坐标,代入解析式求解即可.【详解】解:(1)分别将C (0,1)、A (﹣12,0)、B (2,0)代入y =ax 2+bx +c 中得110424201a b c a b c c ⎧++=⎪⎪++=⎨⎪=⎪⎩, 解得:1321a b c =-⎧⎪⎪=⎨⎪=⎪⎩,∴抛物线的函数表达式为2312y x x =-++. (2)过A 作AG ∥y 轴交BC 的延长线于点G ,过点D 作DH ∥y 轴交BC 于点H ,∵B (2,0)C (0,1),∴直线BC :y =12x +1,∵A (-12,0),∴G (-12,54), 设D (23,12m m m -++),则H (1,12m m -+), ∴DH =(2312m m -++)﹣(112m -+), =﹣m 2+2m ,∴AG=54, ∵AG ∥DH , ∴()2224415554DE DH m m m AE AG -+===--+,∴当m =1时,DE AE 的最大值为45. (3)符合条件的点P 914511924145-+-+9177317--+ ∵l ∥BC , ∴直线l 的解析式为:y =-12x ,设P (n ,-12n ),∵A (-12,0),B (2,0),C (0,1),∴AC 2=54,BC 2=5,AB 2=254.∵AC 2+BC 2=AB 2,∴∠ACB =90°.∵△BPQ ∽△CAB , ∴12BP AC BQ BC ==, 分两种情况说明:①如图3,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵∠PNB =∠BMQ =90°, ∠NBP +∠MBQ =90°,∠MQB +∠MBQ =90°,∴∠NBP =∠MQB .∴△NBP ∽△MQB ,∴12PN NB BM MQ ==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴1,2PN n ON n ==, ∴BN =2﹣n ,∴BM =2PN =n ,QM =2BN =4﹣2n ,∴OM =OB +BM =2+n ,∴Q (2+n ,2n ﹣4),将Q 的坐标代入抛物线的解析式得:()()23221242n n n -++++=-, 2n 2+9n ﹣8=0, 解得:)1291459145n n -+--==舍∴P (914511924145,416-+-+). ②如图4,过点P 作PN ⊥x 轴于N ,过点Q 作QM ⊥x 轴于M .∵△PNB ∽△BMQ ,又∵△BPQ ∽△CAB ,∴2BC QM AC BN==, ∵1,2P n n ⎛⎫- ⎪⎝⎭, ∴Q (2﹣n ,4﹣2n ),将Q 的坐标代入抛物线的解析式得:()()23221422n n n --+-+=-, 化简得:2n 2﹣9n +8=0, 解得:)12917917n n -+==舍, ∴P 9177317--+. 【点睛】本题考查待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程,掌握待定系数法求抛物线解析式,平行线分线段成比例,利用二次函数求线段比的最大值,勾股定理逆定理,相似三角形判定与性质,抛物线与一元二次方程的关系是解题关键.4.A 解析:(1)A (﹣2,0),B (4,0),C (0,﹣8);(2)存在,Q 点坐标为124(85,858)55Q ,21722(,)77Q . 【分析】(1)解方程2280x x --=,可求得A 、B 的坐标,令0x =,可求得点C 的坐标;(2)利用勾股定理计算出AC =BC 的解析式为28y x =-,可设Q (m ,2m ﹣8)(0<m <4),分三种情况讨论:当CQ =AC 时,当AQ =AC 时,当AQ =QC 时,然后分别解方程求出m 即可得到对应的Q 点坐标.【详解】(1)当0y =,2280x x --=,解得x 1=﹣2,x 2=4,所以(2,0)A -,(4,0)B ,x =0时,y =﹣8,∴(0,8)C -;(2)设直线BC 的解析式为y kx b =+,把(4,0)B ,(0,8)C -代入解析式得:408k b b +=⎧⎨=-⎩,解得28k b =⎧⎨=-⎩, ∴直线BC 的解析式为28y x =-,设Q (m ,2m ﹣8)(0<m <4),当CQ =CA 时,22(288)68m m +-+=,解得,1m =2m =∴Q 8), 当AQ =AC 时,22(2)(28)68m m ++-=,解得:128m 5=(舍去),m 2=0(舍去); 当QA =QC 时,2222(2)(28)(2)m m m m ++-=+,解得177m =, ∴Q 1722(,)77-.综上所述,满足条件的Q 点坐标为18)Q ,21722(,)77Q -. 【点睛】 本题考查了二次函数,熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质,会利用待定系数法求函数解析式,理解坐标与图形性质,会利用勾股定理表示线段之间的关系,会运用分类讨论的思想解决数学问题.5.(1) y=221x +;(2)m=1,n=3;(3) 函数存在最大值,当x=0是,y 取得最大值2.(4)-1≤x≤2 【分析】(1)待定系数法求解函数解析式(2)分别将m,n 代入函数解析式,求出对应的横纵坐标即可求解(3)观察图像即可,答案不唯一(4)观察图像选择曲线在上方的区域即可.【详解】解(1)将(0,2),(1,1)代入解析式得20111b b k ⎧=⎪⎪+⎨⎪=⎪+⎩ 解得:12k b =⎧⎨=⎩ ∴函数的解析式为y =221x + (2) ①令x =-1, 则y=1, ∴m =1令y =15,则x =±3,∵2<n <4, ∴n =3②(3)函数存在最大值,当x =0是,y 取得最大值2. (4)直接观察图象可知,当|715x ﹣815|≤时,-1≤x ≤2 【点睛】本题考查了用待定系数法求函数的解析式,函数的图象和性质,根据函数图象求解不等式等问题,综合性强,熟悉函数的图象和性质是解题关键.6.C解析:(1)241y x x =-+-;(2)2;(3)b dc e =-⎧⎨=-⎩【分析】(1)先求出抛物线C 1的顶点坐标,进而得出抛物线C 2的顶点坐标,即可得出结论; (2)设正方形AMBN 的对角线长为2k ,得出B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ),再用点M (2+k ,3+k )在抛物线y =(x −2)2+3上,建立方程求出k 的值,即可得出结论;(3)先根据抛物线C 1,C 2的顶点相同,得出b ,d 的关系式,再由两抛物线的顶点在x 轴,求出c ,e 的关系,即可得出结论. 【详解】解:(1)解:(1)∵y =x 2−4x +7=(x −2)2+3, ∴顶点为(2,3),∴其“对顶”抛物线的解析式为y =−(x −2)2+3, 即y =−x 2+4x −1; (2)如图,由(1)知,A (2,3), 设正方形AMBN 的对角线长为2k ,则点B (2,3+2k ),M (2+k ,3+k ),N (2−k ,3+k ), ∵M (2+k ,3+k )在抛物线y =(x −2)2+3上, ∴3+k =(2+k −2)2+3, 解得k =1或k =0(舍);∴正方形AMBN 的面积为12×(2k )2=2;(3)根据抛物线的顶点坐标公式得,抛物线C 1:y =ax 2+bx +c 的顶点为(2b a-,244ac b a-),抛物线C 2:y =−ax 2+dx +e 的顶点为(2d a ,244ae d a---),∵抛物线C 2是C 1的“对顶”抛物线, ∴22b d a a-=, ∴=-b d ,∵抛物线C 1与C 2的顶点位于x 轴上,∴224444ac b ae d a a ---=-, ∴c e =-,即b d c e =-⎧⎨=-⎩. 【点睛】此题主要考查了抛物线的顶点坐标公式,正方形的性质,理解新定义式解本题的关键. 7.(1)154m =;(2)见解析;(3)0p =;(4)14p =-或0p >.【分析】(1)把x=122代入解析式,计算即可;(2)按照画图像的基本步骤画图即可;(3)一个方程有两个不同实数根,另一个方程有两个相等的实数根和两个方程都有两个不同的实数根,但是有一个公共根;(4)结合函数的图像,分直线经过顶点和在x 轴上方两种情形解答即可. 【详解】(1)当x=122时,2||y x x =-=25)2|(|52- =154, ∴154m =; (2)画图像如下;(3)当x≥0时,函数为2y x x ;当x <0时,函数为2y x x =+;∵方程2||x x p -=(p 为常数)有三个实数根, ∴两个方程有一个公共根,设这个根为a , 则22a a a a -=+, 解得a=0, 当a=0时,p=0, 故答案为:p=0;(4)∵方程2||x x p -=(p 为常数)有两个实数根, ∴p >0; 或△=0 即1+4p=0, 解得14p =-.综上所述,p 的取值范围是14p =-或0p >. 【点睛】本题考查了二次函数图像,二次函数与一元二次方程的关系,熟练掌握抛物线与一元二次方程的关系,灵活运用分类思想,数形结合思想是解题的关键. 8.(1)见解析;(2)①4m =,1(3,)2D -;②存在,76y x =或2y x =或110y x =-【分析】(1)对角线所在的直线为平行四边形的中分线,直径所在的直线为圆的中分线; (2)①将(2,0)A 代入抛物线2132y x x m =-+,得143202m ⨯-⨯+=,解得4m =,抛物线解析式2211134(3)222y x x x =-+=--,顶点为1(3,)2D -;②根据抛物线解析式求出(2,0)A ,(4,0)B ,(0,4)C ,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分,所以平行四边形的中分线必过对角线的交点.Ⅰ.当CD 为对角线时,对角线交点坐标为37(,)24,中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标(1,2).中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为51(,)24-,中分线解析式为110y x =-. 【详解】解:(1)如图,对角线所在的直线为平行四边形的中分线, 直径所在的直线为圆的中分线,(2)①将(2,0)A 代入抛物线2132y x x m =-+,得 143202m ⨯-⨯+=, 解得4m =,∴抛物线解析式2211134(3)222y x x x =-+=--,∴顶点为1(3,)2D -;②将0y =代入抛物线解析式21342y x x =-+,得 234201x x -+=, 解得2x =或4,(2,0)A ∴,(4,0)B , 令0x =,则4y =,(0,4)C ∴,当A 、C 、D 、P 为顶点的四边形为平行四边形时,根据平行四边形的性质,过对角线的交点的直线将该平行四边形分成面积相等的两部分, 所以平行四边形的中分线必过对角线的交点. Ⅰ.当CD 为对角线时,对角线交点坐标为14032(,)22-+,即37(,)24,中分线经过点O ,∴中分线解析式为76y x =;Ⅱ.当AC 为对角线时,对角线交点坐标为2004(,)22++,即(1,2). 中分线经过点O ,∴中分线解析式为2y x =;Ⅲ.当AD 为对角线时,对角线交点坐标为10232(,)22-+,即51(,)24-, 中分线经过点O ,∴中分线解析式为110y x =-, 综上,中分线的解析式为式为76y x =或为2y x =或为110y x =-.【点睛】本题考查了二次函数,熟练运用二次函数的性质与平行四边形的性质是解题的关键.9.C解析:(1)1111a b =⎧⎨=⎩ ;y 2 =−(x−2)2+4;(2)(n ,n 2 );[(n +1),(n +1)2 ];y =x 2;(3)①存在,理由见详解;②C 1n -C n =2m . 【分析】(1)1(2,0)A ),则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:()2112110=-0(-2-)a b a b ⎧-+⎪⎨=-+⎪⎩,解得:1111a b =⎧⎨=⎩ ,则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4,即可求解;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B +[(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ,即可求解; (3)①△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2+4n ),即可求解;②y 1n c -=−(m−n +1)2+(n−1)2,y n c =−(m−n )2+n 2,C 1n -C n = y n c −y 1n c -,即可求解. 【详解】解:(1)1(2,0)A ,则1c =2,则2c =2+2=4,将点A 、1A 的坐标代入抛物线表达式得:2112110=()0(2)a b a b ⎧--+⎨=---+⎩,解得:1111a b =⎧⎨=⎩, 则点2A (4,0),将点A 、2A 的坐标代入抛物线表达式,同理可得:2a =2,2b =4; 故y 2 =−(x−2a )2+2b =−(x−2)2+4;(2)同理可得:3a =3,3b =9,故点n B 的坐标为(n ,2n ),以此推出:点1n B + [(n +1),(n +1)2],故所有抛物线的顶点坐标满足的函数关系式是:y =2x ; 故答案为:(n ,n 2 );[(n +1),(n +1)2];y =x 2; (3)①存在,理由:点A (0,0),点An (2n ,0)、点n B (n ,n 2 ),△AAnBn 为等腰直角三角形,则AAn 2 =2ABn 2,即(2n )2=2(n 2 +n 4), 解得:n =1(不合题意的值已舍去), 抛物线的表达式为:y =−(x−1)2 +1; ②y 1n c -=−(m−n +1)2+(n−1)2, y n c =−(m−n )2+n 2,C 1n -C n =y n c −y 1n c -=−(m−n )2+n 2 +(m−n +1)2−(n−1)2=2m . 【点睛】本题考查的是二次函数综合运用,这种找规律类型题目,通常按照题设的顺序逐次求解,通常比较容易.10.F解析:(1)223y x x =--+,1x =-;(2)O 1)3)满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【分析】(1)把A (1,0),B (-3,0)代入y=ax 2+bx+3即可求解;(2)先求出直线OO 1的解析式为y x =,再根据223x x x --+=,求解即可或是根据23(23)3x x x +---+=得出x 的值,再根据直线OO 1的解析式为y x =求解;(3)先求出直线EF 解析式为 33y x =--,再根据22333x x x --+=--求解即可. 【详解】解:(1)将点A (1, 0),B (-3, 0)代入抛物线解析式y=a x 2+b x+3 得:{309330a b a b ++=-+=解得:{12a b =-=-∴抛物线解析式为 223y x x =--+ ∴2(1)4y x =++ ∴1x =-(2)∵点C 为223y x x =--+与y 轴的交点∴C (0,3) ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y x = 根据题意 得 223x x x --+= 整理得 2330x x +-=解得 1x =2x =∴O 1 )或)解法2 ∵点C 为223y x x =--+与y 轴的交点∴C (0,3)∴OC=3 ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 01C 1=3 ∴23(23)3x x x +---+= 整理得 2330x x +-= 解得 13212x -+=23212x --= ∵B(-3,0)∴OB =OC ∴ ∠CBO=45° ∵将△COB 沿直线 BC 平移,得到△C 1O 1B 1 ∴直线OO 1∥BC ∴ ∠O 1OA=45° ∴直线OO 1的解析式为y=x ∴O 1(3212-+,3212-+ )或(3212--,3212--)(3)∵抛物线对称轴与x 轴交于点E,则点E 的坐标为E(-1,0),过点C 作CF ∥x 轴 根据抛物线的对称性得F 的坐标为F(-2,3) ∴AE=CF=2 ∵CF ∥AE ∴四边形CFEA 为平行四边形 ∴EF ∥CA设直线EF 的解析式为y kx b =+ 得:{320k bk b =-+=-+ 解得:{33k b =-=-∴直线EF 解析式为 33y x =-- 根据题意 得 22333x x x --+=-- 解得12x =- 23x =满足条件的点F 的坐标为F 1(-2,3),F 2(3,-12). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线的判定和性质,解题的关键是学会利用参数构建方程组解决问题,学会用转化的思想思考问题.二、中考几何压轴题11.(1)证明见解析;;(2)线段与之间的数量关系为;(3)或 【分析】(1)①由、结合可得四边形CEGF 是矩形,再由即可得证;②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得; (2解析:(1)①证明见解析;2)线段AG 与BE 之间的数量关系为AG =;(3【分析】(1)①由GE BC ⊥、GF CD ⊥结合BCD 90∠=可得四边形CEGF 是矩形,再由ECG 45∠=即可得证;②由正方形性质知CEG B 90∠∠==、ECG 45∠=,据此可得CGCE=GE //AB ,利用平行线分线段成比例定理可得; (2)连接CG ,只需证ACG BCE 即可得;(3)由(2)证出ACGBCE 就可得到BE AG =,再根据A E G 、、三点在同一直线上分在CD 左边和右边两种不同的情况求出AG 的长度,即可求出BE 的长度. 【详解】(1)①证明:四边形ABCD 是正方形,90,45BCD BCA ∴∠=︒∠=︒ ,,GE BC GF CD ⊥⊥90,CEG CFG ECF ∴∠=∠=∠=︒∴四边形CEGF 是矩形,45,CGE ECG ∠=∠=︒,EG EC ∴=∴四边形CEGF 是正方形;②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴CGCE=,GE ∥AB ,∴AG CGBE CE==(2)如下图所示连接,CG 由旋转性质知,BCE ACG a ∠=∠=在Rt CEG △和Rt CBA 中,45CE cos CG =︒=45CB cos CA =︒=CG CACE CB∴== ,ACGBCE ∴AG CABE CB∴==∴线段AG 与BE 之间的数量关系为2AG BE =;(3)解:①当正方形CEGF 在绕点C 旋转到如下图所示时: 当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CABE CB∴==, 22BE AG ∴=∠CEG=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+=42AC ∴=22222(42)228AE AC CE ∴=-=-=27AE ∴=272AG AE EG ∴=+=+22(272)14222BE AG ∴==⨯+=+②当正方形CEGF 在绕点C 旋转到如下图所示时:当A E G 、、三点在一条直线上时, 由(2)可知ACG BCE ,2AG CA BE CB∴==, 2BE AG ∴=∠CEA=∠ABC=90°,24AB EC ==,222224432AC AB BC ∴=+=+= 42AC ∴=22222(42)228AE AC CE ∴=-=-= 27AE ∴=272AG AE EG ∴=-=-22(272)14222BE AG ∴==⨯-=-142142【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.12.(1)是,理由见解析;(2)或或;(3),证明见解析.【分析】(1)证明,可得,又点F 为CD 中点,即可得出结论;(2)当为点构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:和,根解析:(1)是,理由见解析;(2)1211t =或2t =或4t =;(3)M CNF ∠=∠,证明见解析.【分析】(1)证明EDB ABD ∠=∠,可得DE BE AE ==,又点F 为CD 中点,即可得出结论; (2)当MN 为点,,,A B E F 构成的四边形的准中位线.则M 、N 一定是中点,再分两种情况讨论:BE AF 和EF AB ∥,根据平行线分线段成比例列方程即可求解;(3)连接BD ,取BD 的中点H ,连接EH ,FH 得两条中位线,根据中位线定理,得平行,可找到相等角和线段,从而可得EFH △是等腰三角形,进而可得M HEF HFE CNF ∠=∠=∠=∠.【详解】解:(1)EF 是四边形ABCD 的准中位线,理由如下:∵DE AE =,。

中考数学复习攻略 专题8 二次函数与几何的综合(含答案)

中考数学复习攻略 专题8 二次函数与几何的综合(含答案)

专题八 二次函数与几何的综合题型1 二次函数中与线段相关及最值问题此类题型一般选择抛物线上一点与过这点且平行于y 轴的直线与已知直线交点形成的线段长度为定值或者最值时求点的坐标.突破口为设抛物线上点的坐标中横坐标为x ,纵坐标为抛物线的表达式,与之相关的点横坐标也为x ,纵坐标为直线的表达式,两点纵坐标之差的绝对值即线段长度;或者建立关于线段长度的二次函数,通过求二次函数的最值进而求线段长度相关的最值;也有出现线段长度之和最小的问题,转化为对称点后用“两点之间线段最短”解决.中考重难点突破【例】如图,在平面直角坐标系中,已知点B 的坐标为(-1,0),且OA =OC =4OB ,抛物线y =ax 2+bx +c (a ≠0)的图象经过A ,B ,C 三点.(1)求A ,C 两点的坐标; (2)求抛物线的表达式;(3)若点P 是直线AC 下方的抛物线上的一个动点,作PD ⊥AC 于点D ,当PD 的值最大时,求此时点P 的坐标及PD 的最大值.【解析】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等,其中第(3)问用函数关系式表示出PD 的长,是解题的关键.【解答】解:(1)由B (-1,0)可得OA =OC =4OB =4. ∴A (4,0),C (0,-4);(2)由题意可得抛物线的表达式为y =a (x +1)(x -4)=a (x 2-3x -4).∵点C (0,-4)在抛物线上,∴-4a =-4.解得a =1.∴抛物线的表达式为y =x 2-3x -4; (3)∵直线AC 过点C (0,-4), ∴设其函数表达式为y =kx -4.将A (4,0)代入上式,得4k -4=0.解得k =1. ∴直线AC 的表达式为y =x -4.过点P 作y 轴的平行线交AC 于点H .∵OA =OC =4,∴∠OAC =∠OCA =45°. ∵PH ∥y 轴,∴∠PHD =∠OCA =45°.设P (x ,x 2-3x -4)(0<x <4),则H (x ,x -4).∴PD =PH ·sin ∠PHD =22 (x -4-x 2+3x +4)=-22 x 2+22 x =-22(x -2)2+22 .∵-22 <0,∴当x =2时,PD 有最大值,最大值为22 ,此时P (2,-6).如图,二次函数y =ax 2+bx +c 的图象过O (0,0),A (1,0),B ⎝⎛⎭⎫32,32 三点.(1)求二次函数的表达式;(2)若线段OB 的垂直平分线与y 轴交于点C ,与二次函数的图象在x 轴上方的部分相交于点D ,求直线CD 的表达式;(3)在直线CD 下方的二次函数的图象上有一动点P ,过点P 作PQ ⊥x 轴,交直线CD 于点Q ,当线段PQ 的长最大时,求点P 的坐标.解:(1)将点O ,A ,B 的坐标代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧c =0,a +b +c =0,94a +32b +c =32. 解得⎩⎨⎧a =233,b =-233,c =0.∴二次函数的表达式为y =233 x 2-233x ;(2)设C (0,m ),直线CD 的表达式为y =kx +n .连接BC .∵CD 垂直平分OB ,∴OC =BC .∴m 2=⎝⎛⎭⎫32 2 +⎝⎛⎭⎫m -32 2.∴m =3 .∴C (0,3 ).又∵直线CD 经过OB 的中点⎝⎛⎭⎫34,34 ,∴⎩⎪⎨⎪⎧n =3,34k +n =34.解得⎩⎨⎧k =-3,n =3. ∴直线CD 的表达式为y =-3 x +3 ;(3)设P ⎝⎛⎭⎫x ,233x 2-233x ,则Q (x ,-3 x +3 ).∴PQ =-3 x +3 -⎝⎛⎭⎫233x 2-233x =-233 x 2-33 x +3 =-233 ⎝⎛⎭⎫x +14 2 +25324 . ∵-233 <0,∴当x =-14 时,PQ 的长最大,此时P ⎝⎛⎭⎫-14,5324 .中考专题过关1.在平面直角坐标系xOy 中,二次函数y =-x 2+(m -1)x +4m 的图象与x 轴负半轴交于点A ,与y 轴交于点B (0,4),已知点E (0,1).(1)求二次函数的表达式及点A 的坐标;(2)如图,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连接A ′B ,BE ′. ①当点E ′落在该二次函数的图象上时,求AA ′的长;②设AA ′=n ,其中0<n <2,试用含n 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标.解:(1)由题意,得4m =4. 解得m =1.∴二次函数的表达式为y =-x 2+4.当y =0时,-x 2+4=0.解得x 1=2,x 2=-2. ∵点A 在x 轴负半轴上, ∴A (-2,0);(2)①由题可知,y E ′=y E =1.∵点E ′在二次函数y =-x 2+4的图象上, ∴-x 2+4=1.解得x =±3 . ∵点E ′在y 轴右侧,∴x =3 . ∴AA ′=3 ; ②连接EE ′.由题意知AA ′=n (0<n <2),则A ′O =2-n .在Rt △A ′BO 中,A ′B 2=A ′O 2+BO 2=(2-n )2+42=n 2-4n +20. ∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的, ∴EE ′∥AA ′,且EE ′=AA ′. ∴∠BEE ′=90°,EE ′=n . 又∵BE =OB -OE =3,∴在Rt △BE ′E 中,BE ′2=E ′E 2+BE 2=n 2+9. ∴A ′B 2+BE ′2=2n 2-4n +29=2(n -1)2+27.当n =1时,A ′B 2+BE ′2取得最小值,此时E ′(1,1). 2.(2021·青海中考)如图,在平面直角坐标系中,直线y =x +2与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,点C 的坐标为(1,0),抛物线y =ax 2+bx +c 经过点A ,B ,C .(1)求抛物线的表达式;(2)根据图象写出不等式ax 2+(b -1)x +c >2的解集;(3)点P 是抛物线上的一动点,过点P 作直线AB 的垂线段,垂足为点Q .当PQ =22时,求点P 的坐标.解:(1)当x =0时, y =0+2=2.当y =0时,x +2=0. 解得x =-2.∴A (-2,0),B (0,2).把A (-2,0),C (1,0),B (0,2)分别代入抛物线的表达式,得 ⎩⎪⎨⎪⎧4a -2b +c =0,a +b +c =0,c =2. 解得⎩⎪⎨⎪⎧a =-1,b =-1,c =2.∴抛物线的表达式为y =-x 2-x +2;(2)由ax 2+(b -1)x +c >2,得 ax 2+bx +c >x +2.由图象,得不等式ax 2+(b -1)x +c >2的解集为-2<x <0;(3)过点P作PE⊥x轴于点E,交AB于点D,作PQ⊥AB于点Q.①如图1,当点P在AB上方时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°.∴∠PDQ=∠ADE=45°.在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=22.∴PD=PQ2+DQ2=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=-x2-x+2-(x+2)=-x2-2x,即-x2-2x=1.解得x1=x2=-1.∴此时点P的坐标为(-1,2);图1图2②如图2,当点P在点A左侧时,同①可得PD=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=(x+2)-(-x2-x+2)=x2+2x,即x2+2x=1.解得x=±2-1.由图象知此时点P在第三象限.∴x=-2-1.∴此时点P的坐标为(-2-1,-2);③如图3,当点P在点B右侧时,图3同理可得PD=1.设点P(x,-x2-x+2),则点D(x,x+2).∴PD=(x+2)-(-x2-x+2)=x2+2x,即x2+2x=1.解得x=±2-1.由图象知此时点P在第一象限.∴x=2-1.∴此时点P的坐标为(2-1,2).综上所述,点P的坐标为(-1,2)或(-2-1,-2)或(2-1,2).3.(2021·泰安中考)二次函数y=ax2+bx+4(a≠0)的图象经过点A(-4,0),B(1,0),与y轴交于点C,点P 为第二象限内抛物线上一点,连接BP,AC,交于点Q,过点P作PD⊥x轴于点D.(1)求二次函数的表达式;(2)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式;(3)请判断:PQQB是否有最大值?如有,请求出有最大值时点P 的坐标;如没有,请说明理由.解:(1)∵二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0), ∴⎩⎪⎨⎪⎧16a -4b +4=0,a +b +4=0. 解得⎩⎪⎨⎪⎧a =-1,b =-3.∴该二次函数的表达式为y =-x 2-3x +4; (2)设BP 与y 轴交于点E .由题意知,PD ∥y 轴,∴∠DPB =∠OEB . ∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO . ∴∠ECB =∠EBC .∴BE =CE .设OE =a ,则CE =4-a ,∴BE =4-a . 在Rt △BOE 中,由勾股定理,得 BE 2=OE 2+OB 2.∴(4-a )2=a 2+12.解得a =158.∴E ⎝⎛⎭⎫0,158 . 设BE 所在直线表达式为y =kx +e (k ≠0).∴⎩⎪⎨⎪⎧e =158,k +e =0. 解得⎩⎨⎧k =-158,e =158.∴直线BP 的表达式为y =-158 x +158;(3)PQQB有最大值,此时P (-2,6). 设PD 与AC 交于点N ,过点B 作y 轴的平行线与AC 相交于点M . 设直线AC 的表达式为y =mx +n . ∵A (-4,0),C (0,4), ∴⎩⎪⎨⎪⎧-4m +n =0,n =4. 解得⎩⎪⎨⎪⎧m =1,n =4.∴直线AC 的表达式为y =x +4. ∴点M 的坐标为(1,5).∴BM =5. ∵BM ∥PN ,∴△PNQ ∽△BMQ . ∴PQ QB =PN BM =PN 5. 设P (a 0,-a 20 -3a 0+4)(-4<a 0<0),则N (a 0,a 0+4).∴PQ QB =-a 20 -3a 0+4-(a 0+4)5 =-a 20 -4a 05 =-(a 0+2)2+45. ∴当a 0=-2时,PQQB有最大值.此时,点P 的坐标为(-2,6).题型2二次函数与图形的面积如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=12ah,即S三角形=水平宽×铅垂高2,也就是三角形面积等于水平宽与铅垂高乘积的一半.在直角坐标系中,水平宽为BC两点横坐标之差的绝对值,铅垂高为AD两点纵坐标之差的绝对值.中考重难点突破【例】如图,已知抛物线y=ax2+bx+c经过点A(0,3),B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的表达式;(2)若动点P在直线OE下方的抛物线上,连接PE,PO,当m为何值时,四边形AOPE面积最大?并求出其最大值.【解析】(1)利用抛物线对称性可得抛物线与x轴另一个交点的坐标,从而根据交点式可得抛物线的表达式;(2)由题意知P(m,am2+bm+c),过点P作y轴的平行线与OE相交,再根据OE的函数表达式表示出四边形AOPE的面积,利用配方法可求其最大值.【解答】解:(1)设抛物线与x轴的另一个交点为D.由抛物线的对称性可得D(3,0).设抛物线的表达式为y=a(x-1)(x-3).将A(0,3)代入y=a(x-1)(x-3),可得a=1.∴抛物线的表达式为y=x2-4x+3;(2)由题意,得P(m,m2-4m+3).∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°.∴△AOE是等腰直角三角形.∴AE=OA=3.∴E(3,3).易得OE的表达式为y=x.过点P作PG∥y轴,交OE于点G,则G(m,m).∴PG=m-(m2-4m+3)=-m2+5m-3.∴S四边形AOPE=S△AOE+S△POE=12×3×3+12 PG·AE=92+12×(-m2+5m-3)×3=-32 m2+152 m=-32⎝⎛⎭⎫m-522+758.∵-32<0,∴当m=52时,四边形AOPE面积最大,最大值是758.如图,在平面直角坐标系中,抛物线y=ax2+bx-2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若PC∥AB,求点P的坐标;(3)连接AC,求△P AC面积的最大值及此时点P的坐标.解:(1)由抛物线y =ax 2+bx -2,得C (0,-2).∴OC =2. ∵OA =2OC =8OB ,∴OA =4,OB =12.∴A (-4,0),B ⎝⎛⎭⎫12,0 .∴y =a (x +4)⎝⎛⎭⎫x -12 =a ⎝⎛⎭⎫x 2+72x -2 . ∴-2a =-2,即a =1.∴此抛物线的表达式为y =x 2+72x -2;(2)由(1)可得抛物线的对称轴为x =-74.当PC ∥AB 时,点P ,C 的纵坐标相同,根据抛物线的对称性得P ⎝⎛⎭⎫-72,-2 ; (3)过点P 作PH ∥y 轴交AC 于点H .设P ⎝⎛⎭⎫m ,m 2+72m -2 .由点A ,C 的坐标得,直线AC 的表达式为y =-12m -2,则H ⎝⎛⎭⎫m ,-12m -2 . ∴S △P AC =S △PHA +S △PHC =12 OA ·PH =12×4×⎝⎛⎭⎫-12m -2-m 2-72m +2 =-2(m +2)2+8. ∵-2<0,∴当m =-2时,S △P AC 有最大值,最大值为8.此时P (-2,-5).中考专题过关1.(2021·扬州中考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于点A (-1,0),B (3,0),与y 轴交于点C .(1)b =________,c =________;(2)若点D 在该二次函数的图象上,且S △ABD =2S △ABC ,求点D 的坐标;(3)若点P 是该二次函数图象上位于x 轴上方的一点,且S △APC =S △APB ,直接写出点P 的坐标.解:(1)-2,-3;(2)连接BC ,由题意,得A (-1,0),B (3,0),C (0,-3),y =x 2-2x -3,∴S △ABC =12×4×3=6.∵S △ABD =2S △ABC ,设点D (m ,m 2-2m -3), ∴12 ×AB ×|y D |=2×6, 即12×4×|m 2-2m -3|=2×6. 解得m =1+10 或1-10 , ∴D (1+10 ,6)或(1-10 ,6); (3)设P (n ,n 2-2n -3).∵点P 在抛物线位于x 轴上方的部分, ∴n <-1或n >3.当点P 在点A 左侧,即n <-1时,可知点C 到AP 的距离小于点B 到AP 的距离, ∴S △APC <S △APB ,与题意不符; 当点P 在点B 右侧,即n >3时,∵△APC 和△APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ∥AP . 设直线BC 的表达式为y =kx +p , 则⎩⎪⎨⎪⎧0=3k +p ,-3=p . 解得⎩⎪⎨⎪⎧k =1,p =-3. 设直线AP 的表达式为y =x +q , 将点A (-1,0)代入上式, 得-1+q =0.解得q =1.∴直线AP 的表达式为y =x +1. 将P (n ,n 2-2n -3)代入上式, 得n 2-2n -3=n +1.解得n =4或n =-1(舍去). ∴点P 的坐标为(4,5).2.如图,直线y =-12 x +2交y 轴于点A ,交x 轴于点C ,抛物线y =-14x 2+bx +c 经过点A ,C ,且交x 轴于另一点B .(1)直接写出点A ,B ,C 的坐标及拋物线的表达式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点P (m ,0)顺时针旋转90°得到线段O ′A ′,若线段O ′A ′与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.解:(1)A (0,2),B (-2,0),C (4,0),y =-14 x 2+12x +2;(2)如图1,过点M 作MN ∥y 轴,与AC 交于点N .设M ⎝⎛⎭⎫a ,-14a 2+12a +2 ,则N ⎝⎛⎭⎫a ,-12a +2 . ∴S △ACM =12 MN ·OC =12 ⎣⎡⎝⎛⎭⎫-14a 2+12a +2-⎦⎤⎝⎛⎭⎫-12a +2 ×4=-12a 2+2a . ∵S △ABC =12 BC ·OA =12×(4+2)×2=6,∴S 四边形ABCM =S △ACM +S △ABC =-12 a 2+2a +6=-12(a -2)2+8.∴当a =2时,四边形ABCM 的面积最大,最大值为8,此时M (2,2);(3)如图2,将线段OA 绕x 轴上的动点P (m ,0)顺时针旋转90°得到线段O ′A ′. ∴PO ′=PO =m ,O ′A ′=OA =2. ∴O ′(m ,m ),A ′(m +2,m ).当A ′(m +2,m )在抛物线上时,有-14 (m +2+2)(m +2-4)=m .解得m =-3±17 ;当点O ′(m ,m )在抛物线上时,有-14 m 2+12m +2=m .解得m =-4或2.∴当-4≤m ≤-3-17 或-3+17 ≤m ≤2时,线段O ′A ′与抛物线只有一个公共点.3.在平面直角坐标系中,二次函数y =12x 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的表达式;(2)如图1,连接AC ,P A ,PC ,若S △P AC =152,求点P 的坐标;(3)如图2,过A ,B ,P 三点作⊙M ,过点P 作PE ⊥x 轴,垂足为点D ,交⊙M 于点E .点P 在运动过程中线段DE 的长是否变化?若有变化,求出DE 的取值范围;若不变,求DE 的长.解:(1)∵二次函数y =12 x 2+bx +c 的图象与x 轴交于A (-2,0),B (4,0)两点,∴二次函数的表达式为y =12(x +2)(x -4),即y =12x 2-x -4;(2)图1中,连接OP .设P ⎝⎛⎭⎫m ,12m 2-m -4 . 由题意,得C (0,-4).∵S △P AC =S △AOC +S △OPC -S △AOP =152,∴152 =12 ×2×4+12 ×4×m -12×2×⎝⎛⎭⎫-12m 2+m +4 .整理,得m 2+2m -15=0. 解得m =3或m =-5(舍去).∴P ⎝⎛⎭⎫3,-52 ; (3)点P 在运动过程中线段DE 的长是定值.图2中,连接AM ,PM ,EM ,设M (1,t ),P ⎝⎛⎭⎫m ,12m 2-m -4 ,E (m ,n ). 由题意知,A (-2,0),AM =PM .∴32+t 2=(m -1)2+⎣⎡⎦⎤12(m +2)(m -4)-t 2.解得t =1+14(m +2)(m -4).∵EM =PM ,PE ⊥AB ,∴t =n +12(m +2)(m -4)2.∴n =2t -12(m +2)(m -4)=2⎣⎡⎦⎤1+14(m +2)(m -4) -12 (m +2)(m -4)=2. ∴DE =2.∴点P 在运动过程中线段DE 的长是定值,DE =2.题型3 二次函数与特殊三角形的存在类问题特殊三角形存在类问题常见的有等腰三角形和直角三角形两类.若判断等腰三角形,可以对顶点进行分类讨论,经常要借助勾股定理、线段垂直平分线、三角形相似等求点的坐标;若判断直角三角形,可以对直角顶点进行分类讨论,常借助勾股定理、三角形相似、锐角三角函数等求点的坐标.中考重难点突破【例】如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (-1,0),B (3,0)两点,与y 轴相交于点C (0,-3).(1)求这个二次函数的表达式;(2)若点P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【解析】(1)已知三点,直接利用待定系数法或交点式可求二次函数的表达式;(2)①根据平行于y 轴直线上两点间的距离是用较大的纵坐标减去较小的纵坐标,表示出PM 的长,利用相应函数的性质可求最大值;②根据等腰三角形的定义,分类讨论列方程求解即可.【解答】解:(1)将点A ,B ,C 的坐标代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3. 解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.∴这个二次函数的表达式为y =x 2-2x -3;(2)设直线BC 的表达式为y =kx +b ′. 将点B ,C 的坐标代入上式,得 ⎩⎪⎨⎪⎧3k +b ′=0,b ′=-3. 解得⎩⎪⎨⎪⎧k =1,b ′=-3. ∴直线BC 的表达式为y =x -3.设M (n ,n -3),P (n ,n 2-2n -3),0<n <3,则 ①PM =(n -3)-(n 2-2n -3) =-n 2+3n=-⎝⎛⎭⎫n -32 2 +94.∵-1<0,∴当n =32 时,PM 取得最大值,最大值为94;②当PM =PC 时,(-n 2+3n )2=n 2+(n 2-2n -3+3)2. 解得n =0(舍去)或n =2.当n =2时,y =-3,此时P (2,-3);当PM =MC 时,(-n 2+3n )2=n 2+(n -3+3)2. 解得n =0(舍去)或n =3+2 (舍去)或n =3-2 . 当n =3-2 时,y =2-42 , 此时P (3-2 ,2-42 ).综上所述,P (2,-3)或P (3-2 ,2-42 ).如图,直线y =-2x +10分别与x 轴、y 轴交于A ,B 两点,点C 为OB 的中点,抛物线y =x 2+bx +c 经过A ,C 两点.(1)求抛物线的表达式;(2)点D 是直线AB 下方的抛物线上的一点,且△ABD 的面积为452,求点D 的坐标;(3)点P 为抛物线上一点,若△APB 是以AB 为直角边的直角三角形,求点P 到抛物线的对称轴的距离. 解:(1)直线y =-2x +10中, 令x =0,则y =10;令y =0,则x =5. ∴A (5,0),B (0,10).∵点C 是OB 的中点,∴C (0,5).将点A ,C 的坐标代入y =x 2+bx +c ,得 ⎩⎪⎨⎪⎧0=25+5b +c ,5=c . 解得⎩⎪⎨⎪⎧b =-6,c =5. ∴抛物线的表达式为y =x 2-6x +5;(2)联立⎩⎪⎨⎪⎧y =-2x +10,y =x 2-6x +5, 解得⎩⎪⎨⎪⎧x =-1,y =12 或⎩⎪⎨⎪⎧x =5,y =0. ∴直线AB 与抛物线的另一个交点为(-1,12). 设D (m ,m 2-6m +5).∵点D 是直线AB 下方抛物线上的一点,∴-1<m <5.过点D 作DE ⊥x 轴,交直线AB 于点E ,则E (m ,-2m +10). ∴DE =-2m +10-m 2+6m -5=-m 2+4m +5.∴S △ABD =12 OA ·DE =12 ×5×(-m 2+4m +5)=452.解得m =2. ∴D (2,-3);(3)设P (n ,n 2-6n +5).∵A (5,0),B (0,10),∴AP 2=(n -5)2+(n 2-6n +5)2,BP 2=n 2+(n 2-6n +5-10)2,AB 2=125,AP 2-BP 2=20n 2-130n +25. 若△APB 是以AB 为直角边的直角三角形,则 当点A 为直角顶点时,BP 2=AB 2+AP 2,解得n =32或n =5(舍去);当点B 为直角顶点时,AP 2=AB 2+BP 2,解得n =13+2494 或n =13-2494.又∵抛物线的对称轴为直线x =3,则3-32 =32 ,13+2494 -3=249+14 ,3-13-2494 =249-14.综上所述,点P 到抛物线对称轴的距离为32 或249+14 或249-14.中考专题过关1.(2020·桂林中考)如图,已知抛物线y =a (x +6)(x -2)过点C (0,2),交x 轴于点A 和点B (点A 在点B 的左侧),抛物线的顶点为D ,对称轴DE 交x 轴于点E ,连接EC . (1)直接写出a 的值,点A 的坐标和抛物线对称轴的表达式;(2)若点M 是抛物线对称轴DE 上的点,当△MCE 是等腰三角形时,求点M 的坐标;(3)点P 是抛物线上的动点,连接PC ,PE ,将△PCE 沿CE 所在的直线对折,点P 落在坐标平面内的点P ′处.求当点P ′恰好落在直线AD 上时点P 的横坐标.解:(1)a =-16,A (-6,0),对称轴为直线x =-2;(2)如图1,由(1)知,抛物线的对称轴为x =-2. ∴E (-2,0).∵C (0,2),∴OC =OE =2.∴CE =2 OC =22 ,∠CED =45°. 由△MCE 是等腰三角形,得①当ME =MC 时,∠ECM 1=∠CED =45°, ∴∠CM 1E =90°.∴M 1(-2,2); ②当CE =CM 时,M 1M 2=CM 1=2, ∴EM 2=4.∴M 2(-2,4);③当EM =CE 时,EM 3=EM 4=22 . ∴M 3(-2,-22 ),M 4(-2,22 ).∴满足条件的点M 的坐标为(-2,2)或(-2,4)或(-2,-22 )或(-2,22 );(3)如图2,由(1)知,抛物线的表达式为y =-16 (x +6)(x -2)=-16 (x +2)2+83.∴D ⎝⎛⎭⎫-2,83 . 令y =0,即-16(x +6)(x -2)=0,∴x =-6或x =2.∴A (-6,0).设直线AD 的表达式为y =kx +b ,则⎩⎪⎨⎪⎧-2k +b =83,-6k +b =0. 解得⎩⎪⎨⎪⎧k =23,b =4.∴直线AD 的表达式为y =23x +4.过点P 作PQ ⊥x 轴于点Q ,过点P ′作P ′Q ′⊥DE 于点Q ′,则∠EQP =∠EQ ′P ′=90°. 由(2)知,∠CEB =∠CED =45°.由折叠性质知,EP =EP ′,∠CEP =∠CEP ′. ∴∠CEB -∠CEP =∠CED -∠CEP ′, 即∠PEQ =∠P ′EQ ′.∴△PQE ≌△P ′Q ′E (AAS ). ∴PQ =P ′Q ′,EQ =EQ ′.设P (m ,n ),则OQ =m ,PQ =n .∴P ′Q ′=n ,EQ ′=EQ =m +2.∴P ′(n -2,2+m ). ∵点P ′在直线AD 上,∴2+m =23(n -2)+4. ①∵点P 在抛物线上,∴n =-16(m +6)(m -2). ②联立①②,解得m =-13-2412 或m =-13+2412.∴点P 的横坐标为-13-2412 或-13+2412.2.(2021·广安中考)如图,在平面直角坐标系中,抛物线y =-x 2+bx +c 的图象与坐标轴相交于A ,B ,C 三点,其中点A 坐标为(3,0),点B 坐标为(-1,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒 2 个单位向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t s.(1)求b ,c 的值;(2)在P ,Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使△MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0), ∴⎩⎪⎨⎪⎧-9+3b +c =0,-1-b +c =0. 解得⎩⎪⎨⎪⎧b =2,c =3;(2)由(1)可知,抛物线为y =-x 2+2x +3,∴C (0,3),A (3,0).∴△OAC 是等腰直角三角形. 由点P 的运动可知,AP =2 t . 过点P 作PE ⊥x 轴,垂足为E .∴AE =PE =2t2=t ,即E (3-t ,0).又∵Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =12 ×4×3-12 ×[3-(-1+t )]t =12 t 2-2t +6 =12(t -2)2+4. ∵当其中一点到达终点时,另一点随之停止运动, AC =32+32 =32 ,AB =4,∴0≤t ≤3.又∵12 >0,∴当t =2时,四边形BCPQ 的面积最小,最小值为4;(3)存在.过点M 作x 轴的平行线,与EP 的延长线交于点F . ∵△MPQ 是以点P 为直角顶点的等腰直角三角形, ∴PM =PQ ,∠MPQ =90°. ∴∠MPF +∠QPE =90°. 又∵∠MPF +∠PMF =90°, ∴∠PMF =∠QPE . 又∠F =∠QEP ,∴△PFM ≌△QEP (AAS ).∴MF =PE =t ,PF =QE =4-2t . ∴EF =4-2t +t =4-t . 又∵OE =3-t ,∴点M 的坐标为(3-2t ,4-t ).∵点M 是线段AC 上方的抛物线上的点, ∴4-t =-(3-2t )2+2(3-2t )+3.解得t 1=9-178 ,t 2=9+178(舍去).∴点M 的坐标为⎝ ⎛⎭⎪⎫3+174,23+178 .3.(2020·北部湾中考)如图1,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,△ABC 的面积为S .(1)当t =2时,请直接写出点B 的坐标; (2)S 关于t 的函数表达式为S =⎩⎪⎨⎪⎧14t 2+bt -54,t <-1或t >5,a (t +1)(t -5),-1<t <5,其图象如图2所示,结合图1、图2的信息,求出a 与b 的值;(3)在l 2上是否存在点A ,使得△ABC 是直角三角形?若存在,请求出此时点A 的坐标和△ABC 的面积;若不存在,请说明理由.解:(1)B ⎝⎛⎭⎫-12,12 ; (2)当t <-1或t >5时,由图可知当t =7时,S =4.∴14 ×72+7b -54=4.解得b =-1; 当-1<t <5时,由图可知当t =-1+52=2时,S 取得最大值,此时O ,A ,B 三点在一条直线上.∴S =S △OAC -S △OBC =12 ×3×2-12 ×3×12 =94 .∴a (2+1)(2-5)=94 .解得a =-14;(3)存在点A ,使得△ABC 是直角三角形.①若点A 为△ABC 的直角顶点,如图3,则AC ∥l 1. 此时AC 的表达式为y =x +3. 令x =-2,则A (-2,1).设B (x ,x +1).∵D (-2,-1),∴AD =2. 在Rt △ABD 中,AB 2+BD 2=AD 2, 即(x +2)2+x 2+(x +2)2+(x +2)2=22. 解得x 1=-1,x 2=-2(舍去). ∴B (-1,0),即点B 在x 轴上.∴AB =12+12 =2 ,AC =22+(3-1)2 =22 .∴S =12 AB ·AC =12×2 ×22 =2;②若点C 为△ABC 的直角顶点,过点B 作l 2的垂线交l 2于点E ,如图4 ,则A (-2,t ). ∵∠ABD =90°,∠ADB =45°, ∴△ABD 是等腰直角三角形.∵D (-2,-1),∴E ⎝⎛⎭⎫-2,t -12 ,B ⎝⎛⎭⎫t -32,t -12 . 在Rt △ABC 中,AC 2+BC 2=AB 2,∴22+(t -3)2+⎝⎛⎭⎫t -32 2 +⎝⎛⎭⎫t -12-3 2 =⎝⎛⎭⎫t -32+2 2 +⎝⎛⎭⎫t -t -12 2 .化简,得t 2-12t +27=0.解得t =3或t =9. ∴A (-2,3)或A (-2,9).当A (-2,3)时,B (0,1),AC =2,BC =2,则S =12 AC ·BC =12×2×2=2;当A (-2,9)时,B (3,4),AC =(9-3)2+22 =210 ,BC =(4-3)2+32 =10 ,则S =12 AC ·BC =12×210 ×10 =10;③若点B 为△ABC 的直角顶点,此种情况不存在.综上所述,当A (-2,1)时,△ABC 的面积S =2;当A (-2,3)时,S =2;当A (-2,9)时,S =10.题型4 二次函数与特殊四边形的综合此类题型结合特殊四边形的判定方法,对对应边进行分类讨论,尤其求平行四边形及特殊平行四边形存在类问题用平移法求坐标较简单.如图,点A 到B 的平移方式与点D 到C 的平移方式相同,若A (1,2),B (0,0),D (x ,y ),则可设C (x -1,y -2).也可利用平行四边形的对角线互相平分来通过对角线的中点坐标求解,如▱ABCD 中,x A +x C =x B +x D ,y A +y C =y B +y D .其他特殊的平行四边形结合其判定方法还可用边相等、角为直角等特殊性质来突破.中考重难点突破【例】如图,已知抛物线y =ax 2+bx +c 的顶点为A (4,3),与y 轴相交于点B (0,-5),对称轴为直线l ,点M 是线段AB 的中点.(1)求抛物线的表达式;(2)写出点M 的坐标并求直线AB 的表达式;(3)设动点P ,Q 分别在抛物线和对称轴l 上,当以A ,P ,Q ,M 为顶点的四边形是平行四边形时,求P ,Q 两点的坐标.【解析】(1)设抛物线的顶点式为y =a (x -4)2+3,代入点B 的坐标,即可求解;(2)由A (4,3),B (0,-5),可求其中点M 的坐标,用待定系数法可直接求直线AB 的表达式; (3)分为当AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)由题意可设抛物线的表达式为y =a (x -4)2+3,将点B 的坐标代入上式,解得a =-12.∴抛物线的表达式为y =-12x 2+4x -5;(2)由A (4,3),B (0,-5),得M (2,-1). 设直线AB 的表达式为y =kx -5.将点A 的坐标代入上式,得3=4k -5,解得k =2. ∴直线AB 的表达式为y =2x -5;(3)设P ⎝⎛⎭⎫m ,-12m 2+4m -5 ,Q (4,n ). 若点Q 在点A 下方,则①当AM 是平行四边形的一条边时,点A 向左平移2个单位、向下平移4个单位得到点M ,同样点P ⎝⎛⎭⎫m ,-12m 2+4m -5 向左平移2个单位、向下平移4个单位得到点Q (4,n ),即m -2=4,-12 m 2+4m -5-4=n ,解得m =6,n =-3.∴点P ,Q 的坐标分别为(6,1),(4,-3);②当AM 是平行四边形的对角线时,AQ 綊MP ,则m =2,-12m 2+4m -5=1,n =3-2=1.∴点P ,Q 的坐标分别为(2,1),(4,1);若点Q 在点A 上方,则AQ 綊MP ,同②可得AQ =MP =2,点P ,Q 的坐标分别为(2,1),(4,5). 综上所述,点P ,Q 的坐标分别为(6,1),(4,-3)或(2,1),(4,1)或(2,1),(4,5).如图,在平面直角坐标系xOy 中,直线y =kx +3分别交x 轴、y 轴于A ,B 两点,经过A ,B 两点的抛物线y =-x 2+bx +c 与x 轴的正半轴相交于点C (1,0).(1)求抛物线的表达式;(2)若点P 为线段AB 上一点,∠APO =∠ACB ,求AP 的长;(3)在(2)的条件下,设点M 是y 轴上一点,试问:抛物线上是否存在点N ,使得以A ,P ,M ,N 为顶点的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.解:(1)直线y =kx +3中, 令x =0,得y =3.∴B (0,3).由题意知抛物线经过B (0,3),C (1,0)两点,则 ⎩⎪⎨⎪⎧c =3,-1+b +c =0. 解得⎩⎪⎨⎪⎧b =-2,c =3. ∴抛物线的表达式为y =-x 2-2x +3;(2)对于抛物线y =-x 2-2x +3,令y =0,解得x =-3或x =1.∴A (-3,0). ∵B (0,3),C (1,0),∴OA =OB =3,OC =1,AB =32 ,AC =4. ∵∠APO =∠ACB ,∠P AO =∠CAB ,∴△P AO ∽△CAB .∴AP AC =AO AB ,即AP 4 =332.∴AP =22 ;(3)存在.由(2)可知,A (-3,0),P (-1,2),AP =22 .①当AP 为平行四边形的边时,点N 的横坐标为2或-2,∴N (-2,3)或N (2,-5); ②当AP 为平行四边形的对角线时,点N 的横坐标为-4,∴N (-4,-5). 综上所述,满足条件的点N 的坐标为(-2,3)或(2,-5)或(-4,-5).中考专题过关1.如图,已知抛物线L 1:y =-x 2+4经过点A (-1,a )和点B ,与x 轴正半轴交于点C ,且点B 与点A 关于y 轴对称.(1)求点B ,C 的坐标;(2)平移抛物线L 1得到抛物线L 2,且L 2经过点C ,那么在抛物线L 2的对称轴上是否存在一点P ,使得以A ,B ,C ,P 为顶点的四边形是以AB 为边的平行四边形?若存在,写出平移过程;若不存在,请说明理由.解:(1)∵抛物线L 1:y =-x 2+4过点A (-1,a ), ∴a =-1+4=3,即A (-1,3).∵点A 与点B 关于y 轴对称,∴B (1,3). 令y =0,得-x 2+4=0,解得x =±2. ∵点C 在x 轴的正半轴上,∴C (2,0);(2)存在.设抛物线L 1的顶点为D ,则D (0,4). ∵四边形是以AB 为边的平行四边形,∴AB 綊CP .∴点P 在x 轴上. ∵AB =2,∴CP =2.∴点P 的坐标为(0,0)或(4,0).设抛物线L 2的表达式为y =-x 2+bx +c . ∵点C 在抛物线L 2上,∴-4+2b +c =0.∴c =4-2b .∴抛物线L 2的表达式为y =-x 2+bx +4-2b .若P (0,0),则抛物线的对称轴为直线x =0,∴b =0.∴抛物线L 2的表达式为y =-x 2+4,与抛物线L 1重合.∴不存在坐标为(0,0)的点P ;若P (4,0),则抛物线的对称轴为直线x =4.∴b =8.∴抛物线L 2的表达式为y =-x 2+8x -12=-(x -4)2+4. 令抛物线L 2的顶点为D ′,则D ′(4,4).此时将抛物线L 1向右平移4个单位得到抛物线L 2.2.(2020·百色二模)如图,抛物线y =-x 2+bx +c 交x 轴于点A ,B ,交y 轴于点C ,点B 的坐标为(3,0),点C 的坐标为(0,3),点C 与点D 关于抛物线的对称轴对称.(1)求抛物线的表达式;(2)若点P 为抛物线对称轴上一点,连接BD ,以PD ,PB 为边作平行四边形PDNB ,是否存在这样的点P ,使得▱PDNB 是矩形?若存在,请求出点P 的坐标;(3)在(2)的结论下,求出tan ∠BDN 的值.解:(1)将B (3,0),C (0,3)代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-9+3b +c =0,c =3. 解得⎩⎪⎨⎪⎧b =2,c =3. ∴抛物线的表达式为y =-x 2+2x +3;答图(2)存在.如答图,设抛物线的对称轴交x 轴于点F ,过点D 作DH ⊥PF 于点H . ∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的对称轴为直线x =1.∵点D 与点C (0,3)关于对称轴对称,∴D (2,3). ∴DH =1,BF =2,HF =3.∵▱PDNB 是矩形,∴∠DPB =∠DHP =∠PFB =90°.∴∠DPH +∠BPF =90°. ∵∠PBF +∠BPF =90°,∴∠DPH =∠PBF .∴△DHP ∽△PFB .∴DH PF =HP FB =DPPB.设PF =m ,则HP =3-m .∵DH =1,FB =2,∴1m =3-m2.∴m =1或m =2.∴PF =1或PF =2.∴存在点P 使▱PDNB 是矩形,点P 的坐标为(1,1)或(1,2); (3)∵四边形PDNB 是平行四边形,∴DN ∥PB . ∴∠BDN =∠PBD . ①当PF =1时,tan ∠BDN =tan ∠PBD =DP BP =DH PF =11=1;②当PF =2时,tan ∠BDN =tan ∠PBD =DP BP =DH PF =12.综上所述,tan ∠BDN 的值为1或12.3.在平面直角坐标系中,抛物线y =-13x 2+bx +c 交x 轴于A (-3,0),B (4,0)两点,交y 轴于点C .(1)求抛物线的表达式;(2)如图,直线y =34 x +94与抛物线交于A ,D 两点,与直线BC 交于点E .若M (m ,0)是线段AB 上的动点,过点M 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当点F 在直线AD 上方的抛物线上,且S △EFG =59S △OEG 时,求m 的值;②在平面内是否存在点P ,使四边形EFHP 为正方形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.备用图解:(1)∵抛物线y =-13 x 2+bx +c 交x 轴于A (-3,0),B (4,0)两点,∴抛物线的表达式为y =-13(x +3)(x -4)=-13 x 2+13x +4;(2)①设直线BC 的表达式为y =kx +n .∵B (4,0),C (0,4),∴⎩⎪⎨⎪⎧4k +n =0,n =4. 解得⎩⎪⎨⎪⎧k =-1,n =4. ∴直线BC 的表达式为y =-x +4.令-x +4=34 x +94,解得x =1.∴E (1,3).∵M (m ,0),且MH ⊥x 轴,∴G ⎝⎛⎭⎫m ,34m +94 ,F ⎝⎛⎭⎫m ,-13m 2+13m +4 . ∵S △EFG =59 S △OEG ,直线AD 与y 轴交于点⎝⎛⎭⎫0,94 ,∴12 FG ·(x E -x F )=59 ×12 ×94(x E -x G ),即⎣⎡⎦⎤⎝⎛⎭⎫-13m 2+13m +4-⎝⎛⎭⎫34m +94 (1-m )=59 ×94 (1-m ).∴m =34或m =-2;②存在.点P 的坐标为⎝ ⎛⎭⎪⎫1,7+132 或⎝ ⎛⎭⎪⎫1,7-132 .[由①知E (1,3).∵四边形EFHP 是正方形,∴FH =EF ,∠EFH =∠FHP =∠HPE =90°. ∵M (m ,0),且MH ⊥x 轴,∴H (m ,-m +4),F ⎝⎛⎭⎫m ,-13m 2+13m +4 . 分两种情况:i)当-3≤m <1时,点F 在EP 的左侧,如图1.∴FH =(-m +4)-⎝⎛⎭⎫-13m 2+13m +4 =13 m 2-43 m . ∵FH =EF ,∴13 m 2-43 m =1-m .解得m 1=1+132 (舍去),m 2=1-132.∴H ⎝ ⎛⎭⎪⎫1-132,7+132 .∴P ⎝ ⎛⎭⎪⎫1,7+132 ; 图1图2ii)当1<m ≤4时,点F 在PE 的右侧,如图2.同理得-13 m 2+43 m =m -1.解得m 1=1+132 ,m 2=1-132 (舍去).同理得P ⎝⎛⎭⎪⎫1,7-132 .综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫1,7+132 或⎝ ⎛⎭⎪⎫1,7-132 .]题型5 二次函数与相似三角形的综合此类题型结合相似三角形判定方法,如果一个角为直角,只需两直角边之比分别相等,此时要对对应边进行分类讨论.中考重难点突破【例】(2019·百色二模)如图,以D 为顶点的抛物线y =-x 2+bx +c 交x 轴于A ,B 两点,交y 轴于点C ,直线BC 的表达式为y =-x +3.(1)求抛物线的表达式;(2)请判断△BCD 的形状,并说明理由;(3)在x 轴上是否存在一点Q ,使得以A ,C ,Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.【解析】(1)先求出点B ,C 的坐标,再用待定系数法即可得出结论;(2)先求出点D 的坐标,进而求出CD ,BC ,DB ,最后用勾股定理的逆定理判断即可得出结论; (3)先用两边对应成比例判断出△AOC ∽△DCB ,再构造出△ACQ ∽△AOC ,即可得出结论.【解答】解:(1)y =-x +3中,x =0时,y =3;y =0时,x =3,则B (3,0),C (0,3).将其代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-9+3b +c =0,c =3. 解得⎩⎪⎨⎪⎧b =2,c =3. ∴抛物线的表达式为y =-x 2+2x +3; (2)△BCD 是直角三角形.理由:由y =-x 2+2x +3=-(x -1)2+4,得D (1,4).又∵B (3,0),C (0,3),∴CD =(4-3)2+12 =2 , BC =32+32 =32 , BD =42+(1-3)2 =25 . ∵(2 )2+(32 )2=20,(25 )2=20, ∴CD 2+BC 2=BD 2.∴∠BCD =90°,即△BCD 是直角三角形;(3)存在.∵A (-1,0),C (0,3),∴OA =1,OC =3.∴OA OC =CD BC =13.又∵∠AOC =∠DCB =90°,∴△AOC ∽△DCB . ∴当点Q 的坐标为(0,0)时,△AQC ∽△DCB .如图,连接AC ,过点C 作CQ ⊥AC ,交x 轴于点Q . ∵△ACQ 为直角三角形,CO ⊥AQ , ∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△DCB ∽△ACQ . ∴CD BD =AC AQ ,即225 =10AQ.∴AQ =10.∴Q (9,0). 综上所述,当点Q 的坐标为(0,0)或(9,0)时,以A ,C ,Q 为顶点的三角形与△BCD 相似.如图,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,且OA =2OB ,与y 轴交于点C ,连接BC ,抛物线对称轴为直线x =12,点D 为第一象限内抛物线上一动点,过点D 作DE ⊥OA 于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求点D 的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与△BOC 相似?若存在,求出m 的值;若不存在,请说明理由.解:(1)设OB =t ,则OA =2t .∴A (2t ,0),B (-t ,0).∵抛物线的对称轴为直线x =12 ,∴12 =12(2t -t ).解得t =1.∴A (2,0),B (-1,0).∴抛物线的表达式为y =a (x -2)(x +1)=ax 2-ax -2a .∴-2a =2.解得a =-1. ∴抛物线的表达式为y =-x 2+x +2;(2)对于y =-x 2+x +2,令x =0,则y =2.∴C (0,2). 由点A ,C 的坐标得,直线AC 的表达式为y =-x +2.设点D 的横坐标为m ,则D (m ,-m 2+m +2),F (m ,-m +2).∴DF =-m 2+m +2-(-m +2)=-m 2+2m =-(m -1)2+1.∵-1<0,∴当m =1时,DF 有最大值,此时D (1,2); (3)存在.∵D (m ,-m 2+m +2)(0<m <2), ∴OE =m ,DE =-m 2+m +2.若以点O ,D ,E 为顶点的三角形与△BOC 相似, 则DE OE =OB OC 或DE OE =OC OB ,即DE OE =12 或2. ∴-m 2+m +2m =12 或2.解得m =1或m =-2(舍去)或m =1+334 或m =1-334(舍去).∴m =1或m =1+334.中考专题突破1.已知抛物线y =-12x 2+bx 经过点A (4,0),抛物线顶点为点B ,点P 为抛物线上的一点,且点P 的横坐标为-1,直线l :y =-x +m 分别与P A ,PB 交于M ,N 两点.(1)求直线AB 的表达式;(2)当△P AB 与△PMN 的面积之比为4∶1时,求点M 的坐标及m 的值.解:(1)∵y =-12x 2+bx 经过点A (4,0),∴-12 ×42+4b =0.∴b =2.∴y =-12 x 2+2x =-12(x -2)2+2.∴B (2,2).设直线AB 的表达式为y =kx +n . 把A ,B 两点的坐标代入上式,得 ⎩⎪⎨⎪⎧4k +n =0,2k +n =2. 解得⎩⎪⎨⎪⎧k =-1,n =4. ∴直线AB 的表达式为y =-x +4;(2)∵y =-x +m 和y =-x +4的k 值相等, ∴直线l ∥AB .∴△P AB ∽△PMN . ∵S △P AB S △PMN=4,∴PN PB =PM P A =12 .∴点M 为P A 的中点,点N 为PB 的中点. ∵点P 的横坐标为-1,∴y p =-12 x 2+2x =-52,即P ⎝⎛⎭⎫-1,-52 . ∵-1+42 =32 ,-52 ×12 =-54 ,∴M ⎝⎛⎭⎫32,-54 . ∵y =-x +m 经过点M ⎝⎛⎭⎫32,-54 , ∴-54 =-32 +m .∴m =14 .2.(2021·黔东南中考)如图,抛物线y =ax 2-2x +c (a ≠0)与x 轴交于A ,B (3,0)两点,与y 轴交于点C (0,-3),抛物线的顶点为D .(1)求抛物线的表达式;(2)点P 在抛物线的对称轴上,点Q 在x 轴上,若以点P ,Q ,B ,C 为顶点,BC 为边的四边形为平行四边形,请直接写出点P ,Q 的坐标;(3)已知点M 是x 轴上的动点,过点M 作x 的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A ,M ,G 为顶点的三角形与△BCD 相似,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)将点B (3,0),C (0,-3)分别代入y =ax 2-2x +c 中,得⎩⎪⎨⎪⎧9a -2×3+c =0,c =-3. 解得⎩⎪⎨⎪⎧a =1,c =-3.∴抛物线的表达式为y =x 2-2x -3;(2)P(1,-3),Q(4,0)或P(1,3),Q(-2,0).[由抛物线的表达式知,其对称轴为x =-b2a=1,设点P(1,m),Q(x ,0).当以点P ,Q ,B ,C 为顶点,BC 为边的四边形为平行四边形时,点C 先向右平移3个单位再向上平移3个单位得到点B ,同样点P(Q)先向右平移3个单位再向上平移3个单位得到点Q(P),则1±3=x 且m±3=0.解得⎩⎪⎨⎪⎧m =-3,x =4 或⎩⎪⎨⎪⎧m =3,x =-2. ∴点P ,Q 的坐标分别为(1,-3),(4,0)或(1,3),(-2,0)](3)当y =0时,即x 2-2x -3=0,解得x 1=-1,x 2=3.∴A(-1,0). 又y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点D 的坐标为(1,-4). ∵C(0,-3),B(3,0),D(1,-4),∴BD 2=22+42=20,CD 2=12+12=2,BC 2=32+32=18.∴BD 2=CD 2+BC 2. ∴△BDC 是直角三角形,且∠BCD =90°.设点M 的坐标为(m ,0),则点G 的坐标为(m ,m 2-2m -3). 根据题意,得∠AMG =∠BCD =90°.∴要使以A ,M ,G 为顶点的三角形与△BCD 相似,需要满足条件:AM MG =BC CD =322=3或AM MG =CDBC =。

2020中考数学 压轴专题:二次函数与几何综合(含答案)

2020中考数学 压轴专题:二次函数与几何综合(含答案)

2020中考数学 压轴专题:二次函数与几何综合1. 已知抛物线y =-x 2+bx +c 与x 轴交于点A (m -2,0)和B (2m +1,0)(点A 在点B 的左侧),与y 轴相交于点C ,顶点为P ,对称轴为l :x =1. (1)求抛物线解析式;(2)直线y =kx +2(k ≠0)与抛物线相交于两点M (x 1,y 1),N (x 2,y 2)(x 1<x 2).当|x 1-x 2|最小时,求抛物线与直线的交点M 和N 的坐标;(3)首尾顺次连接点O 、B 、P 、C 构成多边形的周长为L ,若线段OB 在x 轴上移动,求L 最小值时点O 、B 移动后的坐标及L 的最小值.第1题图解:(1)令y =0,得x 2-bx -c =0,由根与系数的关系可知m -2+2m +1=b ,(m -2)(2m +1)=-c , 又∵抛物线的对称轴为x =b2=1,即b =2,∴m -2+2m +1=2,解得m =1, ∴c =3,∴抛物线的解析式为y =-x 2+2x +3;(2)由⎩⎪⎨⎪⎧y =-x 2+2x +3y =kx +2可得:x 2+(k -2)x -1=0,∴x 1+x 2=2-k ,x 1x 2=-1,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=(2-k )2+4≥2, 当k =2时,|x 1-x 2|取到最小值2, 此时x 1=-1,x 2=1,∴直线解析式为y=2x+2,∴M(-1,0),N(1,4);第1题解图(3)如解图,设平移后的O、B两点为O′和B′,以O′B′、PB′为边作平行四边形P′O′B′P,则有PB′=P′O′,PP′=O′B′,再将C点以x轴为对称轴对称到C′点,连接P′C′,O′C′,则有O′C′=O′C,∴CO′+PB′=P′O′+O′C′≥P′C′,又由(1)易知P(1,4),∵P′P=O′B′=OB=3,C(0,3),∴P′(-2,4),C′(0,-3),PC=2,∴直线P′C′的解析式为y=-72x-3,直线P′C′与x轴的交点为(-67,0),∵PC,O′B′为定值,∴当CO′+PB′取最小值P′C′时L最小,此时O′(-67,0),则B′(157,0).又∵P′C′=(4+3)2+22=53,∴L最小值=P′C′+PC+O′B′=53+2+3.2.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1, 0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE =2ED 时,求P 点坐标;②是否存在点P 使△BEC 为等腰三角形?若存在请直接写出点P 的坐标;若不存在,请说明理由.第2题图解:(1)∵点B (4,m )在直线y =x +1上, ∴m =4+1=5, ∴B (4,5),把A 、B 、C 三点坐标代入抛物线解析式可得⎩⎪⎨⎪⎧a -b +c =016a +4b +c =525a +5b +c =0,解得⎩⎪⎨⎪⎧a =-1b =4c =5,∴抛物线解析式为y =-x 2+4x +5;(2)①设P (x ,-x 2+4x +5),则E (x ,x +1),D (x ,0), 则PE =|-x 2+4x +5-(x +1)|=|-x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|-x 2+3x +4|=2|x +1|,当-x 2+3x +4=2(x +1)时,解得x =-1或x =2,当x =-1时,P 与A 重合不合题意,舍去, ∴P (2,9);当-x 2+3x +4=-2(x +1)时,解得x =-1或x =6,当x =-1时,P 与A 重合不合题意,舍去, ∴P (6,-7);综上可知P 点坐标为(2,9)或(6,-7);②存在点P 的坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5).【解法提示】设P (x ,-x 2+4x +5),则E (x ,x +1),且B (4,5),C (5,0),∴BE =(x -4)2+(x +1-5)2=2|x -4|,CE =(x -5)2+(x +1)2=2x 2-8x +26, BC =(4-5)2+(5-0)2=26,当△BEC 为等腰三角形时,则有BE =CE 、BE =BC 或CE =BC 三种情况,当BE =CE 时,则 2|x -4|=2x 2-8x +26,解得x =34,此时P 点坐标为(34,11916);当BE =BC 时,则2|x -4|=26,解得x =4+13或x =4-13,此时P 点坐标为(4+13,-413-8)或(4-13,413-8);当CE =BC 时,则2x 2-8x +26=26,解得x =0或x =4,当x =4时,E 点与B 点重合,不合题意,舍去,此时P 点坐标为(0,5);综上可知存在满足条件的点P ,其坐标为(34,11916)或(4+13,-413-8)或(4-13,413-8)或(0,5).3. 在平面直角坐标系中,抛物线y =-x 2-2x +3与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图①,在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图②,F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.第3题图解:(1)A (-3,0),C (0,3),D (-1,4);(2)如解图①,作点C 关于x 轴的对称点M ,则M (0,-3),连接DM ,DM 与x 轴的交点为E ,连接CE ,此时△CDE 的周长最小,第3题解图①设直线DM 的解析式为y =kx +b (k ≠0),将D (-1,4),M (0,-3)代入y =kx +b ,得⎩⎪⎨⎪⎧-k +b =4b =-3,解得⎩⎪⎨⎪⎧k =-7b =-3, ∴直线DM 的解析式为y =-7x -3, 令y =0,则y =-7x -3=0, 解得x =-37,∴点E 的坐标为(-37,0).(3)存在.由(1)知,OA =OC =3,∠AOC =90°, ∴∠CAB =45°,如解图②,第3题解图②①当∠AFP =90°时,即∠AF 1P 1=90°,∴点P 1既在x 轴上,又在抛物线上,则点P 1与点B 重合,点P 1的坐标为(1,0); ②当∠F AP =90°时,即∠F 2AP 2=90°,则∠P 2AO =45°,设AP 2与y 轴的交点为点N , ∴OA =ON =3,则N (0,-3), ∴直线AP 2的解析式为y =-x -3,联立抛物线与直线AP 2的解析式,得方程组⎩⎪⎨⎪⎧y =-x -3y =-x 2-2x +3,解得⎩⎪⎨⎪⎧x =-3y =0或⎩⎪⎨⎪⎧x =2y =-5,∵A (-3,0), ∴P 2(2,-5);③当∠APF =90°时,即∠AP 3F 3=90°,点P 3既在x 轴上,又在抛物线上,则点P 3与点B 重合,点P 3的坐标为(1,0).综上所述,抛物线上存在点P ,使得△AFP 为等腰直角三角形,其坐标为P (1,0)或(2,-5). 4. 在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x轴交于A 、B 两点,其中点A 在点B 的左侧. (1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.第4题图解:(1)∵C 1、C 2关于y 轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.∵AB的中点为(-1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1-(-3)=4,∴PQ=4,设P(t,t2-2t-3),则Q(t+4,t2-2t-3)或(t-4,t2-2t-3),①当Q(t+4,t2-2t-3)时,则t2-2t-3=(t+4)2+2(t+4)-3,解得t=-2,∴t2-2t-3=4+4-3=5,∴P(-2,5),Q(2,5);②当Q(t-4,t2-2t-3)时,则t2-2t-3=(t-4)2+2(t-4)-3,解得t=2,∴t2-2t-3=4-4-3=-3,∴P(2,-3),Q(-2,-3);综上可知,存在满足条件的点P、Q,其坐标为P(-2,5),Q(2,5)或P(2,-3),Q(-2,-3).5.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3.若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0)(0,1).(1)求抛物线的解析式;(2)猜想△EDB的形状并加以证明;(3)点M在对称轴右侧的抛物线上,点N在x轴上.请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.第5题图解:(1)∵在矩形OABC 中,OA =4,OC =3, ∴A (4,0),C (0,3),∵抛物线经过O 、A 两点,且顶点在BC 边上, ∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y =a (x -2)2+3,把A 点坐标代入可得0=a (4-2)2+3,解得a =-34,∴抛物线解析式为y =-34(x -2)2+3,即y =-34x 2+3x ;(2)△EDB 为等腰直角三角形,证明:由(1)可知B (4,3),且D (3,0),E (0,1),∴DE 2=32+12=10, BD 2=(4-3)2+32=10,BE 2=42+(3-1)2=20, ∴DE 2+BD 2=BE 2,且DE =BD , ∴△EDB 为等腰直角三角形; (3)存在,理由如下:设直线BE 解析式为y =kx +b (k ≠0),把B 、E 坐标代入可得⎩⎪⎨⎪⎧3=4k +b1=b ,解得⎩⎪⎨⎪⎧k =12b =1,∴直线BE 解析式为y =12x +1,当x =2时,y =2,∴F (2,2),①当AF 为平行四边形的一边时,则M 到x 轴的距离与F 到x 轴的距离相等,即M 到x 轴的距离为2. ∴点M 的纵坐标为2或-2, 在y =-34x 2+3x 中,令y =2可得2=-34x 2+3x ,解得x =6±233,∵点M 在抛物线对称轴右侧, ∴x >2, ∴x =6+233,∴M 点坐标为(6+233,2);在y =-34x 2+3x 中,令y =-2可得-2=-34x 2+3x ,解得x =6±2153,∵点M 在抛物线对称轴右侧, ∴ x >2, ∴ x =6+2153,∴M 点坐标为(6+2153,-2);②当AF 为平行四边形的对角线时, ∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1), 设M (t ,-34t 2+3t ),N (x ,0),则-34t 2+3t =2,解得t =6±233,∵点M 在抛物线对称轴右侧, ∴ x >2, ∴ t =6+233,∴M 点坐标为(6+233,2),综上可知,存在满足条件的点M ,其坐标为(6+233,2)或(6+2153,-2).6. 如图,抛物线y =-x 2+bx +c 经过A (-1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD . (1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.解:(1)∵抛物线y =-x 2+bx +c 经过A (-1,0),B (3,0)两点,∴⎩⎪⎨⎪⎧-1-b +c =0-9+3b +c =0,解得⎩⎪⎨⎪⎧b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =-x 2+2x +3; (2)如解图①,连接PC 、PE .第6题解图①∵抛物线对称轴为直线 x =-b 2a =-22×(-1)=1,∴当x =1时,y =-1+2+3=4, ∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n (m ≠0),将B (3,0)和D (1,4)分别代入,得⎩⎪⎨⎪⎧0=3m +n 4=m +n ,解得⎩⎪⎨⎪⎧m =-2n =6,则y =-2x +6,设点P 坐标为(x ,-2x +6), ∵C (0,3),E (1,0), ∴由勾股定理可得: PC 2=x 2+[3-(-2x +6)]2, PE 2=(x -1)2+(-2x +6)2, 又∵PC =PE ,∴x 2+(3+2x -6)2=(x -1)2+(-2x +6)2, 解得x =2,则y =-2×2+6=2, ∴点P 坐标为(2,2);第6题解图②(3)依题意可设点M 坐标为(a ,0),则点G 坐标为(a ,-a 2+2a +3). 如解图②,以F 、M 、N 、G 为顶点的四边形是正方形时,必有FM =MG , |2-a |=|-a 2+2a +3|, ①2-a =-(-a 2+2a +3),解得a =1±212,②2-a =-a 2+2a +3, 解得a =3±132,∴M 点的坐标为(1-212,0),(1+212,0),(3-132,0),(3+132,0).7. 如图,抛物线y =-12x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD . (1)求抛物线的解析式及点D 的坐标;(2)点F 是抛物线上的动点,当∠FBA =∠BDE 时,求点F 的坐标;(3)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,在平面内是否存在一点Q ,使四边形MPNQ 是以线段MN 为对角线的正方形?若存在,求出点Q 的坐标;若不存在,请说明理由.解:(1)把点B (6,0)、C (0,6)代入y =-12x 2+bx +c 中得,⎩⎪⎨⎪⎧-18+6b +c =0c =6,解得⎩⎪⎨⎪⎧b =2c =6, ∴抛物线的解析式为y =-12x 2+2x +6.将解析式化为顶点式为y =-12(x -2)2+8,∴顶点D 的坐标为(2,8);(2)设F (x ,-12x 2+2x +6),如解图①,①当点F 在x 轴上方时,过F 作FG ⊥x 轴于点G , ∵∠FBA =∠BDE ,∠FGB =∠DEB =90°,第7题解图①∴△BFG ∽△DBE , ∴FG BE =BGDE, ∵BE =6-2=4,DE =8, ∴FG BG =BE DE =48=12, ∴BG =2FG ,即6-x =2(-12x 2+2x +6),化简得x 2-5x -6=0,解得x 1=-1,x 2=6(不合题意), ∵当x =-1时,-12x 2+2x +6=72,∴F (-1,72);②当点F 在x 轴下方时,如解图①,记为F ′,同理可得 6-x =2(12x 2-2x -6)化简得x 2-3x -18=0解得x 1=-3,x 2=6(不合题意), ∵当x =-3时,-12x 2+2x +6=-92,∴F ′(-3,-92),综上所述,点F 的坐标为(-1,72)或(-3,-92);第7题解图②(3)假设存在点Q 使四边形MPNQ 是以线段MN 为对角线的正方形,由正方形的性质可知,点P 就是抛物线对称轴与x 轴的交点,如解图②,直线l 1,l 2即是正方形边所在的直线,分别与抛物线交于点M 2、N 1、M 1、N 2,M 1N 1、M 2N 2分别与对称轴交于点E 1、E 2.设直线l 1的表达式为y =x +b , ∵l 1过点P (2,0), ∴l 1的表达式为y =x -2,联立方程组得⎩⎪⎨⎪⎧y =-12x 2+2x +6y =x -2,解得⎩⎨⎧x 1=1+17y 1=17-1,⎩⎨⎧x 2=1-17y 2=-17-1,∴N 1(1+17,17-1),M 2(1-17,-17-1);又∵Q 1E 1=E 1P =E 1N 1=E 1M 1,Q 2E 2=E 2P =M 2E 2=E 2N 2,点Q 1、Q 2都在抛物线的对称轴上, ∴存在满足条件的点Q ,点Q 的坐标分别为(2,217-2),(2,-217-2).8. 如图,抛物线L :y =ax 2+bx +c 与x 轴交于A ,B (3,0)两点(A 在B 的左侧),与y 轴交于点C (0,3),已知对称轴x =1. (1)求抛物线L 的解析式;(2)将抛物线L 向下平移h 个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC 的边界),求h 的取值范围;(3)设点P 是抛物线L 上任一点,点Q 在直线l :x =-3上,△PBQ 能否成为以点P 为直角顶点的等腰直角三角形?若能,求出符合条件的点P 的坐标;若不能,请说明理由.第8题图解:(1)把C (0,3)代入y =ax 2+bx +c ,得c =3, 把B (3,0)代入y =ax 2+bx +3, 得9a +3b +3=0,又∵抛物线的对称轴为x =1, ∴联立⎩⎪⎨⎪⎧9a +3b +3=0-b 2a=1,解得⎩⎪⎨⎪⎧a =-1b =2,∴抛物线L 的解析式是y =-x 2+2x +3;【一题多解】设所求抛物线L 的解析式为y =m (x -1)2+n ,把B (3,0),C (0,3)分别代入得⎩⎪⎨⎪⎧4m +n =0m +n =3,解得⎩⎪⎨⎪⎧m =-1n =4,∴抛物线L 的解析式是y =-(x -1)2+4,即y =-x 2+2x +3. (2)由y =-x 2+2x +3=-(x -1)2+4得抛物线的顶点D (1,4), 如解图①,过点D 作y 轴的平行线分别交CB ,OB 于点E 、F , 则△BEF ∽△BCO , ∴EF OC =BFBO, ∴EF =2,∴4-2≤h ≤4,即2≤h ≤4;第8题解图①【一题多解】由y=-(x-1)2+4得抛物线的顶点D(1,4),如解图①,过D作y轴平行线,分别交CB,OB于点E,F,∵△OBC是等腰直角三角形,∠OBC=45°,且EF⊥OB,∴△EFB为等腰直角三角形,∴EF=BF=2,∴4-2≤h≤4,即2≤h≤4;(3)能.设P(x,-x2+2x+3),如解图②,过点P分别作x轴、直线l的垂线,垂足分别是点M,N,第8题解图②∴∠NPM=∠QPB=90°,即∠NPQ=∠MPB,又∵PB=PQ且∠PMB=∠PNQ=90°,∴△PMB ≌△PNQ (AAS), ∴PM =PN .①当点P 在x 轴上方时,-x 2+2x +3=x +3, 即x 2-x =0,解得x 1=0,x 2=1, ∴P 1(0,3),P 2(1,4);②当点P 在x 轴下方,直线l 右侧时,-(-x 2+2x +3)=x +3, 即x 2-3x -6=0,解得x =3±332,分别代入y =-x 2+2x +3得P 3(3-332,-9-332),P 4(3+332,-9+332),当点P 在x 轴下方,直线l 左侧时,-(-x 2+2x +3)=-3-x , 解得x 1=0(舍去),x 2=1(舍去),综上所述,满足条件的点P 有四个点,分别是P 1(0,3),P 2(1,4),P 3(3-332,-9-332),P 4(3+332,-9+332).9. 如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC . (1)求A 、B 两点的坐标及抛物线的对称轴;(2)求直线l 的函数表达式(其中k ,b 用含a 的式子表示);(3)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值;(4)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A ,D ,P ,Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.解:(1)当y =0时,ax 2-2ax -3a =0, 解得:x 1=-1,x 2=3, ∴A (-1,0),B (3,0), 对称轴为直线x =-1+32=1.(2)∵直线l :y =kx +b 经过点A (-1,0), ∴0=-k +b , 即b =k ,∴直线l :y =kx +k .∵抛物线与直线l 交于点A ,D , ∴ax 2-2ax -3a =kx +k , 即ax 2-(2a +k )x -3a -k =0, ∵CD =4AC , ∴点D 的横坐标为4,由根与系数的关系可得-3-ka =-1×4,∴k =a ,∴直线l 的函数表达式为y =ax +a .(3)如解图①,过点E 作EF ∥y 轴交直线l 于点F , 设E (x ,ax 2-2ax -3a ),则F (x ,ax +a ), ∴EF =ax 2-2ax -3a -(ax +a )=ax 2-3ax -4a ,∴S △ACE =S △AFE -S △CFE =12(ax 2-3ax -4a )(x +1)-12(ax 2-3ax -4a )x =12(ax 2-3ax -4a )=12a (x -32)2-258a ,∵a <0,∴当x =32时,△ACE 的面积最大,最大值为-258a ,∵△ACE 的面积的最大值为54,∴-258a =54,解得a =-25;第9题解图①(4)能; 理由如下:令ax 2-2ax -3a =ax +a ,即ax 2-3ax -4a =0, 解得x 1=-1,x 2=4, ∴D (4,5a ).∵抛物线的对称轴为直线x =1, ∴设P (1,m ),①如解图②,若AD 是矩形ADPQ 的一条边,连接AP ,第9题解图②则易得Q (-4,21a ),m =21a +5a =26a ,则P (1,26a ), ∵四边形ADPQ 为矩形, ∴∠ADP =90°, ∴AD 2+PD 2=AP 2.∴52+(5a )2+(1-4)2+(26a -5a )2=(-1-1)2+(26a )2, 即a 2=17,∵a <0, ∴a =-77, ∴P (1,-2677).②如解图③,若AD 是矩形APDQ 的对角线,第9题解图③则易得Q 为(2,-3a ),m =5a -(-3a )=8a ,则P (1,8a ), ∵四边形APDQ 为矩形, ∴∠APD =90°, ∴AP 2+PD 2=AD 2,∴(-1-1)2+(8a )2+(1-4)2+(8a -5a )2=52+(5a )2, 即a 2=14,∵a <0, ∴a =-12,∴P (1,-4).综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P 的坐标为(1,-2677)或(1,-4).10. 如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2-3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-83),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A ,B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为3∶7的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否成为菱形?若能,求出点N 的坐标;若不能,请说明理由.解:(1)把点C (0,-83)代入y =a (x +1)2-3,得-83=a -3,解得a =13,∴y =13(x +1)2-3,当y =0时,有13(x +1)2-3=0,∴x 1=2,x 2=-4, ∴A (-4,0),B (2,0);(2)如解图①,连接CH ,设过点H 的直线l HE 交BC 于点E ,过点H 的直线l HF 交AD 于点F ,第10题解图①由(1)可知D (-1,-3),H (-1,0)S 四边形ABCD =S △AHD +S △HCD +S △BHC =12×3×3+12×3×1+12×3×83=10,则S △BHE =S △AHF =310S 四边形ABCD=3, ∵AH =BH =3, ∴E 、F 的纵坐标为-2,用待定系数法可求出直线BC 和直线AD 的解析式, l BC :y =43x -83,l AD :y =-x -4,∴E (12,-2),F (-2,-2),∴可求出直线HF 和直线HE 的解析式,即l HE :y =-43x -43,l HF :y =2x +2,∴直线l 的函数表达式为y =-43x -43或y =2x +2;(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (-1,0)的直线PQ 的解析式为y =kx +b , ∴-k +b =0, ∴b =k , ∴y =kx +k . 由⎩⎪⎨⎪⎧y =kx +k y =13x 2+23x -83, ∴13x 2+(23-k )x -83-k =0, 得x 1+x 2=-2+3k ,y 1+y 2=kx 1+k +kx 2+k =3k 2, ∵点M 是线段PQ 的中点, ∴M (32k -1,32k 2).假设存在这样的N 点,如解图②,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k -3第10题解图②由⎩⎪⎨⎪⎧y =kx +k -3y =13x 2+23x -83, 解得x 1=-1,x 2=3k -1, ∴N (3k -1,3k 2-3) ∵四边形DMPN 是菱形, ∴DN =DM ,∴(3k )2+(3k 2)2=(3k 2)2+(32k 2+3)2,整理得3k 4-k 2-4=0, 即(k 2+1)(3k 2-4)=0, ∵k 2+1>0,∴3k 2-4=0,解得k =±233,∵k <0, ∴k =-233,∴P (-33-1,6),M (-3-1,2),N (-23-1,1) ∴PM =DN =27, ∵PM ∥DN ,∴四边形DMPN 是平行四边形, ∵DM =DN ,∴四边形DMPN 是菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(-23-1,1).。

二次函数与几何综合(通用版)(含答案)

二次函数与几何综合(通用版)(含答案)

二次函数与几何综合(通用版)试卷简介:二次函数与几何综合一、单选题(共6道,每道13分)1.如图,已知抛物线与x轴交于A,B两点,顶点为M.将抛物线沿x轴翻折后再向左平移得到抛物线.若抛物线过点B,与x轴的另一个交点为C,顶点为N,则四边形AMCN的面积为( )A.16B.24C.32D.48答案:C解题思路:由得y=(x-1)(x-5),∴抛物线与x轴的两个交点的坐标为A(5,0),B(1,0),顶点坐标M(3,-4),∴AB=5-1=4,由翻折、平移的性质可知,BC=AB=4,N(-1,4),∴AC=AB+BC=8,∴.试题难度:三颗星知识点:二次函数与几何综合2.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线(a<0)的图象上,则a的值为( )A. B.C. D.答案:B解题思路:如图,连接OB,过B作BD⊥x轴于D,则∠BOC=45°,∠BOD=30°.∵正方形边长为1,∴.∵在Rt△OBD中,,∠BOD=30°,∴,∴,代入抛物线的解析式中,得:,∴.试题难度:三颗星知识点:二次函数与几何综合3.如图,在平面直角坐标系xOy中,若动点P在抛物线上,⊙P恒过点F(0,n),且与直线y=-n始终保持相切,则n=( )A. B.C. D.答案:D解题思路:如图,连接PF.设⊙P与直线y=-n相切于点E,直线y=-n与y轴交于点A,连接PE,则PE⊥AE.∵动点P在抛物线上,∴设.∵⊙P恒过点F(0,n),∴PF=PE,即.∴.试题难度:三颗星知识点:二次函数与几何综合4.二次函数的图象如图所示,点位于坐标原点,点,…,在y轴的正半轴上,点,…,在二次函数位于第一象限的图象上,点,…,在二次函数位于第二象限的图象上,四边形,四边形,四边形,…,四边形都是菱形,…=60°,则菱形的周长为( )A. B.C. D.答案:D解题思路:∵四边形是菱形,=60°,∴是等边三角形.设的边长为,则,代入抛物线的解析式中,得:m=1或m=0(舍去);故的边长为1,同理可求得的边长为2,……依次类推,的边长为n,故菱形的周长为4n.试题难度:三颗星知识点:二次函数与几何综合5.如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B 在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A,D,则平移后的抛物线的解析式为( )A. B.C. D.答案:C解题思路:由题意得,.根据题意,点A,B关于对称轴对称,∴C为OB的中点,顶点C的纵坐标为,即,解得,由图可知,,∴b<0,∴b=-3,∴对称轴为直线,∴点D的坐标为,设平移后的抛物线的解析式为,则,解得,∴.试题难度:三颗星知识点:二次函数与几何综合6.已知直线与抛物线交于A,B两点,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中存在一个面积最大的三角形,其最大面积为( )A. B.C. D.答案:C解题思路:联立直线与抛物线解析式可得点,如图过点P作垂直于x轴的垂线交直线AB于点E,则的面积为∵点P在直线AB上方的抛物线上运动,设点P的横坐标为m,则且∴的面积为∴当时,的面积最大,其最大面积为.试题难度:三颗星知识点:二次函数面积问题二、填空题(共2道,每道11分)7.如图,抛物线:y=-x(x-3)(0≦x≦3)与x轴交于点;将绕点旋转180°得到,交x轴于点;将绕点旋转180°得到,交x轴于点;…如此进行下去,直至得.若P(37,m)在第13段抛物线上,则m=____.答案:2解题思路:根据循环规律,容易发现第13段抛物线开口向下并且与x轴的交点坐标是(36,0),(39,0),故由题意可得,此抛物线的解析式为,∴当时,.试题难度:知识点:周期循环类8.如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点处,点A的对应点为,则抛物线上PA段扫过的区域(阴影部分)的面积为____.答案:12解题思路:连接,可知四边形是平行四边形.由平移可知,抛物线PA段扫过的面积等于线段PA扫过的平行四边形的面积,过点A作,垂足为E∵点P(-2,2),∴,直线的解析式为∴∠AOE=45°∵AO=3∴,则平行四边形的面积为即所求阴影部分的面积为12.试题难度:知识点:二次函数平移。

九年级数学二次函数与几何综合(四)(含答案)

九年级数学二次函数与几何综合(四)(含答案)

学生做题前请先回答以下问题问题1:两定点、两动点的平行四边形存在性问题处理框架:(1)分析定点、动点,属于两定两动的平行四边形存在性问题.(2)连接两定点得____________,考虑:①若定线段作为平行四边形的边,则通过_____________确定点的坐标;②若定线段作为平行四边形的对角线,则绕定线段________________,利用________________确定点的坐标.(3)利用函数特征和几何特征求解后,结合图形进行验证.二次函数与几何综合(四)一、单选题(共4道,每道25分)1.如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点在直线BC上.已知点M在x轴上,点N在抛物线上,若以A,M,N,P为顶点的四边形是平行四边形,则点M的坐标为( )A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:平行四边形的存在性2.如图,在平面直角坐标系xOy中,A(1,0),B(0,2).点P是抛物线上一动点,点Q是抛物线对称轴上一动点,若以P,Q,A,B为顶点的四边形是平行四边形,则点P的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平行四边形的存在性3.如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.P为抛物线上一动点,Q为直线y=-x上一动点,若四边形OPBQ是平行四边形,则点Q的横坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行四边形的存在性4.如图,在平面直角坐标系xOy中,抛物线与x轴相交于O,B两点.若将抛物线向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为C.P为x轴上一点,Q为抛物线m上一点.若以O,P,C,Q为顶点的四边形是平行四边形,且OC为该四边形的一条边,则点Q的坐标为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:平行四边形的存在性。

二次函数与几何综合(有答案)中考数学压轴题必做

二次函数与几何综合(有答案)中考数学压轴题必做

二次函数与几何综合07年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的代数几何综合题,计算量较大。

几何题可能想很久都不能动笔,而代数题则可以想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。

因此,课改之后,武汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学生减轻负担的主旨,因此也会继续下去。

要做好这最后一题,主要是要在有限的时间里面找到的简便的计算方法。

要做到这一点,一是要加强本身的观察力,二是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐心,做到计算又快又准。

题目分析及对考生要求(1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系数法求函数解析式,属于送分题。

(2)第二问为代数几何综合题,题型不固定。

解题偏代数,要求学生能够熟练掌握函数的平移,左加右减,上加下减。

要求学生有较好的计算能力,能够把题目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。

(3)第三问为几何代数综合,题型不固定。

解题偏几何,要求学生能够对题目所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系,再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。

在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用,这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种常见的条件转化思想。

1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底,根据面积公式转化为线段条件。

2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全等或者利用锐角三角函数,转化为线段条件。

二次函数与几何综合讲义(答案)

二次函数与几何综合讲义(答案)

二次函数与几何综合讲义2013/11/101.若抛物线y =x 2-2x +c 与y 轴的交点坐标为(0,-3),则下列说法不正确的是( C ) A.抛物线的开口向上 B.抛物线的对称轴是直线x =1C.当x =1时,y 的最大值为-4D.抛物线与x 轴的交点坐标为(-1,0),(3,0)。

2.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( C )A B C D3.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0;②b +c +1=0;③3b +c +6=0;④当1<x <3时,x 2+(b -1)x +c <0.其中正确的个数是( B )A .1B .2C .3D .44.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x >3时,y <0;②3a +b >0;③-1≤a ≤-23;④3≤n ≤4中,正确的是( D ). A .①②B .③④C .①④D .①③5.方程0132=-+x x 的根可视为函数3+=x y 的图象与函数xy 1=的图象的交点的横坐标,则0123=-+x x 的实数根0x 所在的范围是(C )A . 4100<<x B . 31410<<x C .21310<<x D . 1210<<x 6.如图1,把矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm 2,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论::①AD=BE=5cm ;②当0<t ≤5时;y=52t 2;③直线NH 的解析式为y=-25t+27;④若△ABE 与△QBP 相似,则t=429秒。

中考总复习-二次函数与几何综合练习(含答案)

中考总复习-二次函数与几何综合练习(含答案)

中考总复习-二次函数与几何综合1.在平面直角坐标系中,抛物线y =﹣12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的解析式;(2)在AC 上方的抛物线上有一动点P .①如图1,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图2,过点O ,P 的直线y =kx 交AC 于点E ,若PE :OE =3:8,求k 的值.2.如图在平面直角坐标系中顶点为点M 的抛物线是由抛物线23y x =-向右平移1个单位得到的,它与y 轴负半轴交于点A ,点B 在抛物线上,且横坐标为3.()1写出以M 为顶点的抛物线解析式.()2连接AB ,AM ,BM ,求tan ABM ∠;()3点P 是顶点为M 的抛物线上一点,且位于对称轴的右侧,设PO 与x 正半轴的夹角为α,当ABM α=∠时,求点P 坐标.3.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,经过B 、C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值;(3)在该抛物线的对称轴上是否存在点M ,使以C 、P 、M 为顶点的三角形为等腰三角形?若存在,请写出所符合条件的点M 的坐标;若不存在,请说明理由.4.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为()4,0B ,另一个交点为A ,且与y 轴相交于C 点()1求m 的值及C 点坐标;()2在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由()3P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.5.已知抛物线y =mx 2+2mx +m -1和直线y =mx +m -1,且m ≠0.(1)求抛物线的顶点坐标;(2)试说明抛物线与直线有两个交点;(3)已知点T (t ,0),且-1≤t ≤1,过点T 作x 轴的垂线,与抛物线交于点P ,与直线交于点Q ,当0<m ≤3时,求线段PQ 长的最大值.6.如图,在平面直角坐标系xOy 中,以直线52x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使90APB ∠=︒,求k 的值.7.在平面直角坐标系中,直线2y x =+与x 轴交于点A ,与y 轴交于点B ,抛物线()20y ax bx c a =++<经过点A 、B .(1)求a 、b 满足的关系式及c 的值.(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,求a 的取值范围. (3)如图,当1a =-时,在抛物线上是否存在点P ,使PAB ∆的面积为1?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由.8.如图,已知抛物线y =13x 2+bx +c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.9.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.10.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形? (3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.11.如图,抛物线2y ax bx 2=+-的对称轴是直线x 1=,与x 轴交于A ,B 两点,与y 轴交于点C ,点A 的坐标为()2,0-,点P 为抛物线上的一个动点,过点P 作PD x ⊥轴于点D ,交直线BC 于点E .()1求抛物线解析式;()2若点P 在第一象限内,当OD 4PE =时,求四边形POBE 的面积;()3在()2的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.12.如图1,已知抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.13.如图,一次函数1y=x+22分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.14.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.15.在平面直角坐标系中,O为原点,抛物线2(0)y ax x a=≠经过点3)A-,对称轴为直线l,点O关于直线l的对称点为点B.过点A作直线//AC x轴,交y轴于点C.(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P在y轴上,当PA PB+的值最小时,求点P的坐标;(Ⅲ)抛物线上是否存在点Q,使得13AOC AOQS S∆∆=,若存在,求出点Q的坐标;若不存在,请说明理由.16.如图1,抛物线的顶点A 的坐标为(1,4),抛物线与x 轴相交于B 、C 两点,与y 轴交于点E (0,3).(1)求抛物线的表达式;(2)已知点F (0,﹣3),在抛物线的对称轴上是否存在一点G ,使得EG +FG 最小,如果存在,求出点G 的坐标;如果不存在,请说明理由.(3)如图2,连接AB ,若点P 是线段OE 上的一动点,过点P 作线段AB 的垂线,分别与线段AB 、抛物线相交于点M 、N (点M 、N 都在抛物线对称轴的右侧),当MN 最大时,求△PON 的面积.17.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.18.若二次函数2y ax bx c =++的图象与x 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -. (1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PAB S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.19.如图,顶点为A1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.20.如图,已知抛物线y=﹣14x2﹣12x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.21.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB 上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.22.如图,抛物线y =12x 2+bx +c 与直线y =12x +3交于A ,B 两点,交x 轴于C 、D 两点,连接AC 、BC ,已知A (0,3),C (﹣3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB ﹣MD |的值最大,并求出这个最大值;(3)点P 为y 轴右侧抛物线上一动点,连接P A ,过点P 作PQ ⊥P A 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.23.如图,在平面直角坐标系xOy 中,一次函数y =x 与二次函数2y x bx =+的图象相交于O 、A 两点,点A (3,3),点M 为抛物线的顶点.(1)求二次函数的表达式;(2)长度为的线段PQ 在线段OA (不包括端点)上滑动,分别过点P 、Q 作x 轴的垂线交抛物线于点P 1、Q 1,求四边形PQQ 1P 1面积的最大值;(3)直线OA 上是否存在点E ,使得点E 关于直线MA 的对称点F 满足S △AOF =S △AOM ?若存在,求出点E 的坐标;若不存在,请说明理由.24.抛物线y =﹣x 2+bx +c 经过点A 、B 、C ,已知A (﹣1,0),C (0,3).(1)求抛物线的解析式;(2)如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BDC 的面积最大时,求点P 的坐标;(3)如图2,抛物线顶点为E ,EF ⊥x 轴于F 点,M (m ,0)是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请指出实数m 的变化范围,并说明理由.25.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知(1,0)(5,6)A D --,,P 点为抛物线2y x bx c =++﹣上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE ∥x 轴交直线l 于点E ,作//PF y 轴交直线l 于点F ,求PE PF +的最大值;(3)设M 为直线l 上的点,探究是否存在点M ,使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵直线y =x +4经过A ,C 两点,∴A 点坐标是(﹣4,0),点C 坐标是(0,4),又∵抛物线过A ,C 两点,∴21(4)4024b c c ⎧-⨯--+=⎪⎨⎪=⎩,解得:14b c =-⎧⎨=⎩, ∴抛物线的解析式为2142y x x =--+. (2)①如图1∵2142y x x =--+, ∴抛物线的对称轴是直线x =﹣1.∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上,∴PQ ∥AO ,PQ =AO =4.∵P ,Q 都在抛物线上,∴P ,Q 关于直线x =﹣1对称,∴P 点的横坐标是﹣3,∴当x =﹣3时,215(3)(3)422y =----+=×, ∴P 点的坐标是53,2⎛⎫- ⎪⎝⎭; ②过P 点作PF ∥OC 交AC 于点F ,∵PF ∥OC ,∴△PEF ∽△OEC ,∴PE PF OE OC=. 又∵3,48PE OE OC ==, ∴3PF 2=,设点F (x ,x +4), ∴2134(4)22x x x ⎛⎫--+-+= ⎪⎝⎭, 化简得:x 2+4x +3=0,解得:x 1=﹣1,x 2=﹣3.当x =﹣1时,92y =;当x =﹣3时,52y =, 即P 点坐标是91,2⎛⎫- ⎪⎝⎭或53,2⎛⎫- ⎪⎝⎭. 又∵点P 在直线y =kx 上,∴9k 2=-或56k =-.2.解:()1抛物线2y x 3=-向右平移一个单位后得到的函数解析式为2y (x 1)3=--, 顶点()M 1,3-,令x 0=,则2y (01)32=--=-,点()A 0,2-,x 3=时,2y (31)3431=--=-=,点()B 3,1;()2过点B 作BE AO ⊥于E ,过点M 作MF AO ⊥于M ,EB EA 3==,EAB EBA 45∠∠∴==,同理可求FAM FMA 45∠∠==,ABE ∴∽AMF ,AMAF 1AB AE 3∴==,又BAM 18045290∠=-⨯=,AM1tan ABM AB 3∠∴==;()3过点P 作PH x ⊥轴于H ,22y (x 1)3x 2x 2=--=--,∴设点()2P x,x 2x 2--,①点P 在x 轴的上方时,2x 2x 21x 3--=,整理得,23x 7x 60--=,解得12x (3=-舍去),2x 3=, ∴点P 的坐标为()3,1;②点P 在x 轴下方时,()2x 2x 21x 3---=,整理得,23x 5x 60--=,解得1x =舍去),2x =,x =时,21x 2x 23--=-=,∴点P 的坐标为.综上所述,点P 的坐标为()3,1或. 3.解:(1)y =﹣x +3,令y =0,则x =3,令x =0,则y =3, 故点B 、C 的坐标为(3,0)、(0,3),将点B 、C 的坐标代入y =x 2+bx +c 并解得:b =﹣4, 故抛物线的表达式为:y =x 2﹣4x +3,令y =0,则x =1或3,故点A (1,0),点P (2,﹣1); (2)过点E 作EH ∥y 轴交BC 于点H ,设点E (x ,x 2﹣4x +3),则点H (x ,﹣x +3)S △CBE =12HE ×OB =12×3×(﹣x +3﹣x 2+4x ﹣3)=32(﹣x 2+3x ), ∵﹣32<0,当x =32时,S △CBE 有最大值,点E (32,﹣34);(3)点C (0,3)、点P (2,﹣1),设点M (2,m ),CP 2=4+16=20,CM 2=4+(m ﹣3)2=m 2﹣6m +13,PM 2=m 2+2m +1, ①当CM =CP 时,20=m 2﹣6m +13,解得:m =7或﹣1(舍去m =﹣1); ②当CP =PM 时,同理可得:m =﹣1±2√5; ③当CM =PM 时,同理可得:m =32;故点M 坐标为:(2,7)或(2,﹣1+2√5 =)或(2,﹣1﹣2√5)或(2,32). 4.解:(1)将B (4,0)代入23y x x m =-++,解得,m =4,∴二次函数解析式为234y x x =-++,令x =0,得y =4, ∴C (0,4);(2)存在,理由:∵B (4,0),C (0,4),∴直线BC 解析式为y =﹣x +4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴24{34y x by x x =-++=-++,∴24(2)16t --+, ∴△=16﹣4b =0,∴b =4,∴26x y =⎧⎨=⎩,∴M (2,6);(3)①如图,∵点P 在抛物线上,∴设P (m ,234m m -++),当四边形PBQC 是菱形时,点P 在线段BC 的垂直平分线上,∵B (4,0),C (0,4),∴线段BC 的垂直平分线的解析式为y =x , ∴m =234m m -++,∴m =1±,∴P (1+,1+)或P (11;②如图,设点P (t ,234t t -++),过点P 作y 轴的平行线l ,过点C 作l 的垂线, ∵点D 在直线BC 上,∴D (t ,﹣t +4),∵PD =234t t -++﹣(﹣t +4)=24t t -+,BE +CF =4,∴S四边形PBQC =2S△PDC=2(S△PCD+S△BD)=2(12PD×CF+12PD×BE)=4PD=224164(2)16t t t-+--+∵0<t<4,∴当t=2时,S四边形PBQC最大=16.5.解:(1)∵y=mx2+2mx+m-1=m(x+1)2-1,∴抛物线的顶点坐标为(-1,-1).(2)由y=mx2+2mx+m-1和y=mx+m-1可得:mx2+2mx+m-1=mx+m-1,mx2+mx=0,mx(x+1)=0,∵m≠0,∴x1=0,x2=-1.∴抛物线与直线有两个交点.(3)由(2)可得:抛物线与直线交于(-1,-1)和(0,m-1)两点,点P的坐标为(t,mt2+2mt+m-1),点Q的坐标为(t,mt+m-1).①如图1,当-1≤t ≤0时,PQ =2Q P y y mt mt -=--=211()24m t m -++. ∵m >0, 当12t =-时,PQ 有最大值,且最大值为14m . ∵0<m ≤3,∴14m ≤34,即PQ 的最大值为34. ②如图2,当0<t ≤1时,PQ =2P Q y y mt mt -=+=211()24m t m +-. ∵m >0,∴当t =1时,PQ 有最大值,且最大值为2m . ∵0<m ≤3,∴0<2m ≤6,即PQ 的最大值为6. 综上所述,PQ 的最大值为6.6.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =. ∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==.32MQ =,2NQ ∴=,911,24B ⎛⎫⎪⎝⎭, 1,91,24k m k m +=⎧⎪∴⎨+=⎪⎩,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x ∴=+,102D ,⎛⎫ ⎪⎝⎭. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x ∴-+=-+,即22990x x -+=,123,32x x ∴==.52x >,3x ∴=,()3,1G ∴-. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x ∴=-+,21195522x x x ∴-+=-+,22990x x ∴--=.52x >,x ∴=G ∴. 综上所述,点G 坐标为()13,1G -;2G.(3)由题意可得:1k m +=.1m k ∴=-,11y kx k ∴=+-,2155kx k x x ∴+-=-+,即()2540x k x k -+++=.11x ∴=,24x k =+,()24,31B k k k ∴+++.设AB 的中点为'O ,P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ∴⊥轴,P ∴为MN 的中点,5,02k P +⎛⎫∴ ⎪⎝⎭. AMP PNB ∆∆∽,AM PNPM BN∴=,••AM BN PN PM ∴=, ()2551314122k k k k k ++⎛⎫⎛⎫∴⨯++=+-- ⎪⎪⎝⎭⎝⎭,即23650k k +-=,960∆=>.0k >,1k ∴==-+7.解:(1)2y x =+,令0x =,则2y =,令0y =,则2x =-, 故点A 、B 的坐标分别为()2,0-、()0,2,则2c =,则函数表达式为:22y ax bx =++,将点A 坐标代入上式并整理得:21b a =+;(2)当0x <时,若()20y ax bx c a =++<的函数值随x 的增大而增大,则函数对称轴02bx a=-≥,而21b a =+, 即:2102a a +-≥,解得:12a ≥-,故:a 的取值范围为:102a -≤<; (3)当1a =-时,二次函数表达式为:22y x x =--+,过点P 作直线l AB ,作PQ y 轴交BA 于点Q ,作PH AB ⊥于点H ,∵OA OB =,∴45BAO PQH ∠=∠=︒,11122PAB S AB PH PQ ∆=⨯⨯=⨯=,则1P Q y y -=,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点坐标,分别与点AB 组成的三角形的面积也为1, 故:1P Q y y -=,设点()2,2P x x x --+,则点(),2Q x x +,即:2221x x x --+--=±,解得:1x =-或1-故点()1,2P -或 ()1-+或(1--.8.解:(1)将A (0,1),B (9,10)代入函数解析式得:13×81+9b +c =10,c =1,解得b =−2,c =1, 所以抛物线的解析式y =13x 2−2x +1; (2)∵AC ∥x 轴,A (0,1), ∴13x 2−2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1), ∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,13m 2−2m +1),∴E (m ,m +1), ∴PE =m +1−(13m 2−2m +1)=−13m 2+3m . ∵AC ⊥PE ,AC =6, ∴S 四边形AECP =S △AEC +S △APC =12AC ⋅EF +12AC ⋅PF =12AC ⋅(EF +PF )=12AC ⋅EP =12×6(−13m 2+3m )=−m 2+9m. ∵0<m <6,∴当m =92时,四边形AECP 的面积最大值是814,此时P (9524 ,); (3)∵y =13x 2−2x +1=13(x −3)2−2, P (3,−2),PF =y F −y p =3,CF =x F −x C =3, ∴PF =CF ,∴∠PCF =45∘,同理可得∠EAF =45∘,∴∠PCF =∠EAF ,∴在直线AC 上存在满足条件的点Q ,设Q (t ,1)且AB =,AC =6,CP = ∵以C ,P ,Q 为顶点的三角形与△ABC 相似, ①当△CPQ ∽△ABC 时,CQ :AC =CP :AB ,(6−t):6=,解得t =4,所以Q (4,1); ②当△CQP ∽△ABC 时,CQ :AB =CP :AC ,(6−t):6,解得t =−3,所以Q (−3,1).综上所述:当点P 为抛物线的顶点时,在直线AC 上存在点Q ,使得以C ,P ,Q 为顶点的三角形与△ABC 相似,Q 点的坐标为(4,1)或(−3,1).9.解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =,∴CH 则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =,故点Q -或(;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:x =故点Q 或;综上,点Q -或(或或. 10.解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y =a (x +1)(x -4), 将点C (0,2)代入,得:-4a =2, 解得:a =-12, 则抛物线解析式为y =-12(x +1)(x -4)=-12x 2+32x +2; (2)由题意知点D 坐标为(0,-2), 设直线BD 解析式为y =kx +b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y =12x -2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m +2)、M (m ,12m -2), 则QM =-12m 2+32m +2-(12m -2)=-12m 2+m +4,∵F (0,12)、D (0,-2),∴DF =52, ∵QM ∥DF , ∴当-12m 2+m +4=52时,四边形DMQF 是平行四边形, 解得:m =-1(舍)或m =3,即m =3时,四边形DMQF 是平行四边形; (3)如图所示:∵QM ∥DF , ∴∠ODB =∠QMB , 分以下两种情况:①当∠DOB =∠MBQ =90°时,△DOB ∽△MBQ ,则21=42DO MB OB BQ ==, ∵∠MBQ =90°, ∴∠MBP +∠PBQ =90°, ∵∠MPB =∠BPQ =90°, ∴∠MBP +∠BMP =90°, ∴∠BMP =∠PBQ , ∴△MBQ ∽△BPQ ,∴BM BP BQ PQ=,即214132222m m m -=-++,解得:m 1=3、m 2=4,当m =4时,点P 、Q 、M 均与点B 重合,不能构成三角形,舍去, ∴m =3,点Q 的坐标为(3,2);②当∠BQM =90°时,此时点Q 与点A 重合,△BOD ∽△BQM ′, 此时m =-1,点Q 的坐标为(-1,0);综上,点Q 的坐标为(3,2)或(-1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似. 11.解:()1抛物线2y ax bx 2=+-的对称轴是直线x 1=,()A 20-,在抛物线上, 2b 12a(2)220a b ⎧-=⎪∴⎨⎪---=⎩,解得:1412a b ⎧=⎪⎪⎨⎪=-⎪⎩,抛物线解析式为211y x x 242=--; ()2令211y x x 2042=--=,解得:1x 2=-,2x 4=,当x 0=时,=-y2,()B 40∴,,()C 02-,,设BC 的解析式为y kx b =+,则402k b b +=⎧⎨=-⎩,解得:122k b ⎧=⎪⎨⎪=-⎩,1y x 22∴=-,设()D m 0,,DP //y 轴,1E m m 22⎛⎫∴- ⎪⎝⎭,,211P m m m 242⎛⎫-- ⎪⎝⎭,,OD 4PE =,2111m 4m m 2m 2422⎛⎫∴=---+ ⎪⎝⎭,m 5∴=或m 0(=舍去), ()D 50,∴,7P 54⎛⎫ ⎪⎝⎭,,1E 52⎛⎫⎪⎝⎭,,∴S 四边形POBE OPD EBD171133SS5124228=-=⨯⨯-⨯⨯=; ()3存在,设1M n n 22⎛⎫- ⎪⎝⎭,, ①以BD 为对角线,如图1,四边形BNDM 是菱形,MN ∴垂直平分BD ,1n 42∴=+, 91M 24⎛⎫∴ ⎪⎝⎭,,M ,N 关于x 轴对称,91N 24⎛⎫∴- ⎪⎝⎭,;②以BD 为边,如图2,四边形BNDM 是菱形,MN //BD ∴,MN BD MD 1===,过M 作MH x ⊥轴于H ,222MH DH DM ∴+=,即2221(n 2)(n 5)12-+-=,1n 4(∴=不合题意),2n 5.6=,4N 4.65⎛⎫∴ ⎪⎝⎭,,同理221(n 2)(4n)12-+-=,1n 4∴=+不合题意,舍去),2n 4=,N 5⎛∴ ⎝, ③以BD 为边,如图3,过M 作MH x ⊥轴于H ,222MH BH BM ∴+=,即2221(n 2)(n 4)12-+-=,1n 4∴=+2n 4=-不合题意,舍去),N 5⎛∴ ⎝,综上所述,当91N 24⎛⎫- ⎪⎝⎭,或44.65⎛⎫ ⎪⎝⎭,或5⎛⎝或5⎛+ ⎝,以点B ,D ,M ,N 为顶点的四边形是菱形.12.解:(1)将A (﹣1,0)、B (3,0)代入y =﹣x 2+bx +c ,得10930b c b c -++=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,∴抛物线的表达式为y =﹣x 2+2x +3;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,得303m nn+=⎧⎨=⎩,解得:13mn=-⎧⎨=⎩,∴直线BC的解析式为y=﹣x+3,∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278;②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC=,∴P点到直线BC278=,此时点P的坐标为(32,154).13.解:(1)∵1y=x+22-分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0).将x=0,y=2代入y=﹣x2+bx+c得c=2;将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=72.∴抛物线解析式为:y=﹣x2+72x+2.(2)如图1,设MN 交x 轴于点E ,则E (t ,0),BE =4﹣t . ∵OA 21tan ABO OB 42∠===, ∴ME =BE •tan ∠ABO =(4﹣t )×12=2﹣12t . 又∵N 点在抛物线上,且x N =t ,∴y N =﹣t 2+72t +2. ∴()222N 1MN y ME t t 22t t 4t=t 2+42=-=-++--=-+--(). ∴当t =2时,MN 有最大值4.(3)由(2)可知,A (0,2),M (2,1),N (2,5). 如图2,以A 、M 、N 、D 为顶点作平行四边形,D 点的可能位置有三种情形.(i)当D在y轴上时,设D的坐标为(0,a),由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2).(ii)当D不在y轴上时,由图可知D为D1N与D2M的交点,由D1(0,6),N(2,5)易得D1N的方程为y=12x+6;由D2(0,﹣2),M(2,1)D2M的方程为y=32x﹣2.由两方程联立解得D为(4,4).综上所述,所求的D点坐标为(0,6),(0,﹣2)或(4,4).14.解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣,﹣﹣1),,﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG垂直平分CD∴点E的纵坐标y=132-+=1,将y=1带入y=x+3,得x=﹣2.∵EG关于y轴对称,∴点G的坐标为(2,1);②如图2,当四边形CDEG为菱形时,以点D为圆心,DC的长为半径作圆,交AD于点E,可得DC=DE,构造菱形CDEG设点E的坐标为(n,n+3),点D的坐标为(0,3)∴DE∵DE=DC=4,4,解得n1=﹣,n2=.∴点E的坐标为(﹣,﹣+3)或,+3)将点E向下平移4个单位长度可得点G,点G的坐标为(﹣,﹣﹣1)(如图2)或,﹣1)(如图3)③如图4,“四边形CDGE为菱形时,以点C为圆心,以CD的长为半径作圆,交直线AD于点E,设点E的坐标为(k,k+3),点C的坐标为(0,﹣1).∴EC∵EC=CD=4,∴2k2+8k+16=16,解得k1=0(舍去),k2=﹣4.∴点E的坐标为(﹣4,﹣1)将点E上移1个单位长度得点G.∴点G的坐标为(﹣4,3).综上所述,点G的坐标为(2,1),(﹣,﹣﹣1),,﹣1),(﹣4,3).15.解:(Ⅰ)∵2(0) y ax x a=≠经过点3)A-,∴23a-=⨯-,解得12a=,∴抛物线的解析式为212y x x=,∵22bxa=-==∴抛物线的对称轴为直线x=.(Ⅱ)∵点(0,0)O,对称轴为x=,∴点O关于对称轴的对称点B点坐标为.作点B关于轴的对称点1B,得1(B-,设直线AB1的解析式为y kx b=+,把点3)A-,点1(B-代入得3bb⎧-=+⎪⎨=-+⎪⎩,解得94kb⎧=⎪⎪⎨⎪=-⎪⎩∴94y x=-.∴直线94y x=-与y轴的交点即为P点.令0x =得9y 4=-,∵P 点坐标为9(0,)4-.(Ⅲ)∵3)A -,//AC x 轴,∴AC =,3OC =,∴11322AOC S OC AC ∆=⋅=⋅=又∵13AOC AOQ S S ∆∆=,∴3AOQ AOC S S ∆∆==.设Q 点坐标为21(,)2m m , 如图情况一,作QR CA ⊥,交CA 延长线于点R ,∵AOQ AOC AQR OCRQ S S S S ∆∆∆=--=梯形,∴(211113332222m m m ⎛⎫⋅++-- ⎪ ⎪⎭⎝2132m ⎛⎫+= ⎪ ⎪⎝⎭化简整理得2180m --=,解得1m =2m =-.如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M ,∵AOQ AQN QMO OMNA S S S S ∆∆∆=--=梯形,∴221111m)3()2222m m m ⎛⎫⎛⎫--+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3()2m m --=,化简整理得2180m --=,解得1m =2m =-,∴Q 点坐标为或(-,∴抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=.16.解:(1)设抛物线的表达式为:y =a (x ﹣1)2+4, 把(0,3)代入得:3=a (0﹣1)2+4, a =﹣1,∴抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x +3;(2)存在,如图1,作E 关于对称轴的对称点E ',连接E 'F 交对称轴于G ,此时EG +FG 的值最小. ∵E (0,3),∴E '(2,3),设EF 的解析式为y =k ′x +b ′,把F (0,﹣3),E '(2,3)分别代入,得332b k b ''-=+'=⎧⎨⎩,解得33k b =⎧⎨=-''⎩,所以E 'F 的解析式为:y =3x ﹣3, 当x =1时,y =3×1﹣3=0,∴G (1,0); (3)如图2.设AB 的解析式为y =k ″x +b ″,把A (1,4),B (3,0)分别代入,得403k b k b ''''''''=+⎧⎨=+⎩,解得26k b ''''=-⎧⎨=⎩,所以AB 的解析式为:y =﹣2x +6, 过N 作NH ⊥x 轴于H ,交AB 于Q ,设N (m ,﹣m 2+2m +3),则Q (m ,﹣2m +6),(1<m <3), ∴NQ =(﹣m 2+2m +3)﹣(﹣2m +6)=﹣m 2+4m ﹣3, ∵AD ∥NH ,∴∠DAB =∠NQM ,∵∠ADB =∠QMN =90°,∴△QMN ∽△ADB ,∴QN AB MN BD =,∴2m 4m 3MN -+-=∴MN =(m ﹣2)2 5-<0, ∴当m =2时,MN 有最大值;过N 作NG ⊥y 轴于G ,∵∠GPN =∠ABD ,∠NGP =∠ADB =90°,∴△NGP ∽△ADB , ∴PG BD 21NG AD 42===,∴PG 12=NG 12=m , ∴OP =OG ﹣PG =﹣m 2+2m +312-m =﹣m 232+m +3, ∴S △PON 12=OP •GN 12=(﹣m 232+m +3)•m , 当m =2时,S △PON 12=⨯2(﹣4+3+3)=2.17.解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求P A PE ,AE =,分三种情况讨论:当P A =PE n =1,此时P (﹣1,1);当P A =AE =解得:n =,此时点P 坐标为(﹣1,);当PE =AE =,解得:n =﹣2,此时点P 坐标为:(﹣1,﹣2).综上所述:P 点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2). 18.解:(l )因为抛物线2y ax bx c =++过点(0,2)-,∴2c =-,又因为抛物线过点(3,0),(2,2)-∴93204222a b a b +-=⎧⎨+-=-⎩解,得2343a b ⎧=⎪⎪⎨⎪=-⎪⎩所以,抛物线表达式为224233y x x =-- (2)连接PO ,设点224,233P m m m ⎛⎫-- ⎪⎝⎭. 则PAB POA AOB POB S S S S ∆∆∆∆=+-21241132********m m m ⎛⎫=⨯⋅--+⨯⨯-⨯⋅ ⎪⎝⎭ 23m m =-由题意得234m m -= ∴4m =或1m =-(舍) ∴224102333m m --=∴点P 的坐标为104,3⎛⎫⎪⎝⎭.(3)设直线AB 的表达式为y kx n =+,因直线AB 过点(3,0)A 、(0,2)B -,∴302k n n +=⎧⎨=-⎩解,得232k n ⎧=⎪⎨⎪=-⎩所以AB 的表达式为223y x =- 设存在点M 满足题意,点M 的坐标为224,233t t t ⎛⎫-- ⎪⎝⎭,过点M 作ME y ⊥轴,垂足为E ,作MD x ⊥轴交AB 于点D ,则D 的坐标为2,23t t ⎛⎫- ⎪⎝⎭,2223MD t t =-+,22433BE t t =-+.又MDy 轴∴ABO MDB ∠=∠ 又∵ABO ABM ∠=∠ ∴MDB ABM ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与几何综合(讲义)➢ 课前预习1. 如图,直线112y x =+经过点A (1,m ),B (4,n ),点C 的坐标为(2,5),则△ABC 的面积为__________.提示:利用点坐标求面积,需要将点坐标转化为横平竖直的线段长,常考虑作横平竖直的线来对图形进行割补. 具体操作:①过点C 作CD ∥y 轴,交AB 于点D ; ②借助C ,D 坐标求解CD 长;③以CD 为底,则A ,B 两点间的水平距离为高,即1()2ABC ADC DBC B A S S S CD x x =+=⋅⋅-△△△2. 如图,在平面直角坐标系xOy 中,直线334y x =-+与x 轴,y 轴分别交于点A ,B ,点C 的坐标为(0,-2).若点D 在直线AB 上运动,点E 在直线AC 上运动,当以O ,A ,D ,E 为顶点的四边形是平行四边形时,点D 的坐标为__________.y xCB AO提示:(1)分析定点(A ,O ),动点(D ,E ),属于两定两动的平行四边形存在性问题.(2)连接两定点得定线段,考虑:①若定线段作为平行四边形的边,则通过平移确定点的坐标;②若定线段作为平行四边形的对角线,则绕定线段中点旋转,利用中点坐标公式确定点的坐标. (3)利用函数特征和几何特征求解后,结合图形进行验证.➢ 知识点睛1. “函数与几何综合”问题的处理原则:_________________,_____________________. 2. 研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.②___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3. 二次函数之面积问题的常见模型①割补法——铅垂法求面积:1()2APB B A S PM x x =⋅⋅-△ 1()2APB B A S PM x x =⋅⋅-△②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时, PQ ∥AB .AB 平分PQ .➢ 精讲精练1. 如图,抛物线y =-x 2+2x +3经过A ,B ,C 三点.点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,连接MB ,MC .(1)若设点M 的横坐标为m ,四边形OBMC 的面积为S ,则S 与m 的函数关系式为________________.(2)四边形OBMC 的最大面积为________,此时点M 的坐标为____________.2.如图,在平面直角坐标系中,抛物线y=-x2+2x+3经过A,B,C三点,点D的坐标为(0,1),直线AD与抛物线交于另一点E.(1)若M是直线AD上方抛物线上的一个动点,则△AME面积的最大值为__________.=6时,点G的坐标为_______________.(2)在直线AD下方的抛物线上有一动点G,当S△AEG3.如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A,B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC,CD,∠ACD=90°.(1)直接写出抛物线的解析式;(2)若点M在抛物线上,且以点M,A,C以及另一点N为顶点的平行四边形ACNM的面积为12,设M的横坐标为m,求m的值.4.如图,已知二次函数y=x2-3x-4的图象与x轴交于点A,B,且经过点C(2,-6),连接AC,二次函数图象的对称轴记为l.(1)点D(m,n)(-1<m<2)是二次函数图象上一动点,当△ACD关于l的对称点为E,求点E的坐标.(2)在(1)的条件下,能否在二次函数图象和直线l上分别找到点P,Q,使得以点D,E,P,Q为顶点的四边形为平行四边形.若能,求出点P的坐标;若不能,请说明理由.5. 如图,抛物线y =ax 2-5ax+4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式;(2)已知点D 在抛物线对称轴上,点E 在抛物线上,且以A ,B ,D ,E 为顶点的四边形是平行四边形,求点E 的坐标;(3)已知点F 是抛物线上的动点,点G 是直线y =-x 上的动点,且以O ,C ,F ,G 为顶点的四边形是平行四边形,求点G 的横坐标.【参考答案】➢课前预习1.9 22.1126 () 55D,,2286 () 55D,➢知识点睛1.利用横平竖直的线段长,函数特征与几何特征互转2.①四点一线;k,b②坐标转线段长➢精讲精练(2)(3,0)或(-2,-5)3.(1)y=x2-2x-3;(2)m=4或m=-1.二次函数与几何综合(习题)➢例题示范例1:如图,抛物线y=ax2+2ax-3a与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且OA=OC,连接AC.(1)求抛物线的解析式.(2)若点P是直线AC下方抛物线上一动点,求△ACP面积的最大值.(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3)析式.再结合所求线段长来观察几何图形,发现△AOC 【过程示范】解:(1)由y=ax2+2ax-3a=a(x+3)(x-1)可知A(-3,0),B(1,0),∵OA=OC,∴C(0,-3),将C(0,-3)代入y=ax2+2ax-3a,解得,a=1,∴y=x2+2x-3.(2+2x-3第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即 -3<x P <0; (2)设计方案:注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP . 【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q , 易得l AC :y =-x -3设点P 的横坐标为t ,则P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3),∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴2139()222ACP C A S PQ x x t t =⋅-=--△(-3<t <0) ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-,∴当32t =-时,S △ACP 最大,为278.第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素:要使这个四边形为平行四边形.首先考虑AB在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB既可以作边,也可以作对角线.画图求解:先根据平行四边形的判定来确定EF和AB之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB作为边时,依据平行四边形的判定,需满足EF∥AB且EF=AB,要找EF,可借助平移.点E在对称轴上,沿直线容易平移,故将线段AB拿出来沿对称轴上下方向平移,确保点E在对称轴上,来找抛物线上的点F.注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E点坐标,利用平行且相等表达抛物线上F点坐标,代入抛物线解析式求解.②AB作为对角线时,依据平行四边形的判定,需满足AB,EF互相平分,先找到定线段AB的中点,在旋转过程中找到EF恰好被AB中点平分的位置,因为E和AB中点都在抛物线对称轴上,说明EF所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形.【过程示范】(3)①当AB为边时,AB∥EF且AB=EF,如图所示,设E点坐标为(-1,m),当四边形是□ABFE时,由A(-3,0),B(1,0)可知,F1(3,m),代入抛物线解析式,可得,m=12,∴F1(3,12);当四边形是□ABEF时,由A(-3,0),B(1,0)可知,F2(-5,m),代入抛物线解析式,可得,m=12,∴F2(-5,12).②当AB为对角线时,AB与EF互相平分,AB的中点D(-1,0),设E(-1,m),则F(-1,-m),代入抛物线解析式,可得,m=4,∴F3(-1,-4).综上:F1(3,12),F2(-5,12),F3(-1,-4).➢巩固练习1.如图,直线12y x=-与抛物线2164y x=-+交于A,B两点,C是抛物线的顶点.(1)在直线AB上方的抛物线上有一动点P,当△ABP的面积最大时,点P的坐标为__________________.(2)若点M在抛物线上,且以点M,A,B以及另一点N为顶点的平行四边形ABNM的面积为240,则M,N两点的坐标为_______________.2.已知抛物线y=-mx2+4x+2m与x轴交于点A(α,0),B(β,0),且112αβ+=-.抛物线的对称轴为直线l,与y轴的交点为点C,顶点为点D,点C关于l的对称点为点E.(1)抛物线的解析式为_________.(2)连接CD,在直线CD下方的抛物线上有一动点G,当S△CDG=3,点G的坐标为______________.(3)若点P在抛物线上,点Q在x轴上,当以点D,E,P,Q为顶点的四边形是平行四边形时,点Q的坐标为_______.3.已知抛物线y=ax2-4ax+b的对称轴为直线x=2,顶点为P,与x轴交于A,B两点,与y轴交于点C,其中A(1,0),连接BC,PB,得到∠PBC=90°.(1)求抛物线的解析式.(2)抛物线上是否存在异于点P的一点Q,使△BCQ与△BCP的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.(3)若点E是抛物线上一动点,点F是x轴上一动点,是否存在以B,C,E,F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2).抛物线y=ax2-ax-b与y轴交于点D,且经过点C,连接AD,可得AB=AD.(1)求抛物线的解析式.(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,点Q是抛物线对称轴l上一动点,是否存在点P,使以P,Q,A,B为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.【参考答案】1.(1)23 (1)4,;(2)M1(-10,-19),N1(-20,-14);M2(12,-30),N2(2,-25) 2.(1)y=-x2+4x+2;(2)G1(-1,-3),G2(3,5);(3)1(40)Q,2(40)Q,3(0)Q,40)Q3.(1)y=-x2+4x-3;(2)存在,Q1(1,0),237 (22Q --,,337(22Q+-+,;(3)存在,F1(7,0),F2(-1,0).4. (1)211222y x x =--;(2)3x =(3)存在,1313()28P -,,2113()28P --,,3117()28P -,.。

相关文档
最新文档