数学人教版七年级下册一元一次不等式组方案问题导学案
数学人教版七年级下册一元一次不等式组及解法导学案
9.3 一元一次不等式组及解法导学案学习目标:1、理解一元一次不等式组,一元一次不等式组的解集等概念。
2、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、经过观察、讨论、交流等过程,体会数形结合思想。
学习重点:一元一次不等式组的解法。
学习难点:在数轴上找公共部分,确定不等式组的解集 。
学习过程:一、自主学习 感受新知【问题 1】有人要买一双手套,而且价格要低于6元,要超过 3元 如果你是商店 售货员,你会拿什么价格的手套给他们选择呢? 设手套的价格为x 元,则x 同时满足不等(1)(2)那么,手套的价格可能是 元。
用数轴表示:【问题2】 用每分可抽30t 水的抽水机来抽污水管里积存的污水,估计积存的污水超过1200t 而不足1500t ,那么将污水抽完所用时间的范围是什么?设用xmin 将污水抽完,则x 同时满足不等式(1)(2)用数轴表示:二、自主交流 探究新知类比方程组的解,不等式组中的 各不等式解集的 ,就是 一元一次不等式组中 x 的 。
【问题3】写出下列不等式组的解集:⎩⎨⎧>>31)1(x x ⎩⎨⎧<<31)2(x x ⎩⎨⎧<>31)3(x x { {所以,我们得出口诀: 三、自主应用 巩固新知问题4:利用数轴判断下列不等式组是否有解集?如有,请写出解一元一次不等式组的一般步骤: 例1:解下列不等式组:{{【随堂练习】P129练习第1题四、自主总结本节课,我掌握了 ________________________________五、布置作业:课本130页,习题9.3复习巩固1、2题练习册本节习题 ⎩⎨⎧><31)4(x x ⎩⎨⎧>->32x x ⎩⎨⎧<-<32x x2x-1˃x+1 X+8˂4x-1 2x+3≥x+11 2x+53-1<2-x。
人教版七年级下册数学一元一次不等式导学案
一元一次不等式导学案【考点一】、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法【典型例题】1.若0<m<1,m、m2、的大小关系是()A.m<m2<B.m2<m<C.<m<m2D.<m2<m2.某电梯的额定限载量为1000千克,某人要用电梯把一批重物从底层搬到顶层,若人的身体质量为70千克,每箱货物质量为30千克,问他每次最多搬运多少箱?若设每次搬运货物x箱,则根据题意可列出关于x的不等式:.【巩固练习】1.点P(a,1)在第一象限,则a的取值范围是()A.a>0B.a≥0C.a<0D.a≤02.“x的2倍减去y的差是非正数”用不等式表示为.3.根据“3x与5的和是负数”可列出不等式.4.语句“x的与x的和不超过5”可以表示为.5.﹣<x<的所有整数的和是.6.已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.7.用不等式表示:x的4倍与y的和不小于300 .8.已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.9.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x 后程序操作仅进行了二次就停止,则输入整数x的值可能是.A.7B.9C.11D.1310.甲、乙、丙三位同学合作学习一元一次不等式组,要求每位同学给出关于x的不等式.甲:我写的不等式所有解为非负数;乙:我写的不等式解集为x≤8;丙:我给出的不等式在求解过程中需要改变不等号的方向,(1)请你填写符合上述条件的不等式,甲:;乙:;丙:.(2)将(1)中的三个不等式列成不等式组,并解此不等式组.11.已知[x]表示不超过x的最大整数.例如:[4.8]=4,[﹣1.8]=﹣2.(1)[0.6]=;[﹣2.2]=;[﹣0.5]=;(2)求[﹣5.5]﹣[3.1]﹣[﹣4.8]的值;(3)嘉淇在探究中发现,[﹣4.1]=﹣5,[﹣4.3]=﹣5,[﹣4.5]=﹣5,[﹣4.99]=﹣5,如果[x]=﹣5,那么有理数x有没有最小值?如果有,求出最小值;如果没有,说明理由.12.已知点P(2a﹣12,1﹣a)位于第三象限.(1)若点P的纵坐标为﹣3,试求出a的值;(2)求a的取值范围.13.在平面直角坐标系中,已知点M(1+2m,﹣m).(1)若点M在y轴上,求m的值;(2)若点M到y轴的距离是3,求m的值;(3)若点M在第一、三象限的角平分线上,求m的值.【考点二】、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
七年级数学下册《9.3 一元一次不等式组》导学案(新版)新人教版
《9.3 一元一次不等式组》学习目标:1、会解一元一次不等式组,并会把不等式组的解集在数轴上表示2、激情投入,阳光展示,高效学习,享受学习的乐趣。
学习重点:解不等式组 学习难点:解不等式组 教学过程: 一、温故知新1、动手解一解下列不等式,并在数轴上表示。
① 21x x ->-;② 0.53x <;③ 321x x -<+;④ 541x x +>+;二、自主导学1、解下列不等式组,并在数轴上标出解集。
(1)⎩⎨⎧<->0312x x (2)⎩⎨⎧<+->-81312x x (3)⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325三、合作探究例1、解不等式组,并把解集在数轴上表示出来.⎩⎪⎨⎪⎧ x -32+3≥x +1,1-3(x -1)<8-x .①②⎪⎩⎪⎨⎧-≥+-<-x x x 221132四、学以致用1.(1)⎪⎩⎪⎨⎧-≥+-<+213212312x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-<-≥+21312312x x x x(3)3150728x x x ->⎧⎨-<⎩;;① ② (4)312342x x x x --⎧⎨-+>-⎩;.≤ ① ②五、自主作业 1.把不等式组⎩⎨⎧>-≥-36042x x 的解集表示在数轴上,正确的是( )2.不等式组⎨⎧-≥-111x x <的解集在数轴上表示正确的是( )3.解集在数轴上表示为如图1所示的不等式组是( )A.⎩⎨⎧≥->23x x B.⎩⎨⎧≤-<23x x C.⎩⎨⎧≥-<23x x D.⎩⎨⎧≤->23x x4.若不等式组⎩⎨⎧><n x mx 的解集为m x n <<,则m n ,的大小关系是 . 5.不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是.6.解集是如图2 所示的不等式组为( )A.2030x x +⎧⎨->⎩,;≥B.2030x x +<⎧⎨-<⎩,; C. 241103x x -⎧⎪⎨-<⎪⎩,;≤D.2241103x x -+⎧⎪⎨-<⎪⎩,.≥7.不等式组61x x <⎧⎨>⎩,的解集是_____;不等式组51x x >⎧⎨<-⎩,的解集是_____.8.解不等式组2(2)41032x x x x --⎧⎪⎨+-<⎪⎩,,≤① ②解不等式①得_____,解不等式②得_____,所以不等式组的解集是_____.9.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,4-x >1的整数解共有5个,则a 的取值范围是( ).A .-3<a <-2B .-3<a ≤-2C .-3≤a ≤-2D .-3≤a <-210.不等式组⎩⎪⎨⎪⎧2x >-3,x -1≤8-2x 的最小整数解是( ).A .-1B .0A B CD图2C .2D .311.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a >0,1-x >0的整数解共有3个,则a 的取值范围是__________.12.若代数式3x -15的值不小于代数式1-5x6的值,则x 的取值范围是__________.13.若点(1-2m ,m -4)在第三象限内,则m 的取值范围是______.14.若不等式组⎩⎪⎨⎪⎧x >a +2,x <3a -2无解,则a 的取值范围是__________.15.如果关于x 的方程a3-2x =4-a 的解大于方程a (x -1)=x (a -2)的解,求a 的取值范围.21.已知方程组⎩⎪⎨⎪⎧2x +y =2-5a ,x -2y =3a 的解x ,y 的和是负数,求满足条件的最小整数a .。
人教版七年级下册-一元一次不等式的解法导学案
第1课时 一元一次不等式的解法一、学习目标(1分钟)能熟练地解一元一次不等式,并能在数轴上表示出不等式的解集。
二、自主学习(15分钟)(一)、解下列不等式,并把解集在数轴上表示出来............: 1、 13-〉-x 2、 756-〈x x 3、 124-≥x 4、2131-≥-x(二)、解下列不等式:5、 15)34(2)4(7〈---x x6、 215323xx +≤--三、合作探究(7分钟) 7、解一元一次方程.145261+-=+x x 8、对照解一元一次方程的步骤和方法 类似地解不等式.145261+-〉+x x 解:去分母得:去括号得: 移项得: 合并得:解:去分母得:2(x+1)=3(2x —5)+12去括号得:2x+2=6x —15+12 移项得:2x —6x=—15+12—2 合并得:—4x=—5 系数化为1得:45=x归纳:解一元一次不等式的一般步骤和解一元一次方程类似:(1)____________,(2)___________,(3)___________,(4)________________,(5)___________________。
四、师生互动:(4分钟) 五、精讲点拨:(4分钟)9、例题:5143-a 的值是负数,求a 的正整数值。
六、当堂训练(14分钟)10、变式训练:上题中a 的最大整数值是a=______, a 的非负整数值是a=______________。
必做题:11、列出不等式,求出解集,并在数轴上.....表示解集....。
4x 与7的和不小于6。
13、 解不等式1215312≤+--x x【素材积累】1、只要心中有希望存摘,旧有幸福存摘。
预测未来的醉好方法,旧是创造未来。
坚志而勇为,谓之刚。
刚,生人之德也。
美好的生命应该充满期待、惊喜和感激。
人生的胜者决不会摘挫折面前失去勇气。
2、我一直知道,漫长人生中总有一段泥泞得不走,总有一个寒冬不得不过。
人教版初中数学七年级下册第九章第三节《一元一次不等式组》导学案
通过课后作业,教师及时了解学生对本节知识的掌握情况,对教学进度和方法进行适当的调整。
注意:
(1)每个不等式必须为一元一次不等式;
(2)不等式必须是只含有同一个未知数;
(3)不等式的数量至少是两个或者多个。
教师提出问题,学生独立思考后回答,其他同学提出自己的观点,并说明理由,进一步明确上述概念的三个要素。
发现第六个可以改写成不等式组的形式,明确连不等式是不等式组的另一种表示方法。
回到速度问题,由学生回答速度范围,用不等关系表示。引出一元一次不等式组解集的概念。
培养学生们的总结概括能力和语言表达能力.培养了学生参与意识和合作交流的意识
让学生分组完成,组内对比合作探究,总结出相关规律。在学生亲自动手实践的基础上,老师再次逐条总结出规律
此次活动中关注:
(1)学生完成问题的准确性;(2)能否注意细节;(3)能否抓住解不等式的规律:同大取大,同小取小;大小小大中间找,大大小小找不着
。
引导学生由形再回到数,抛开数轴,直接运用规律解决问题。
组内出题,组间互换互批,发现问题解决问题,培养同学们的参与意识,进一步巩固了所学知识,激发学生的学习兴趣
及时巩固练习,加深对知识的理解与记忆.
学生归纳:
教师总结:学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要;学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验.
活动1:
一、创设情境,导入新课
1.小视频引出速度问题
2.跷跷板引出小猪体重问题
引出课题:9.3一元一次不等式组
数学人教版七年级下册一元一次不等式组导学案
x a x b
x a x b
x a x b
x a x b
②、同大取
;同
取小;大
小
中间找;大大小小
。.
二、课堂探究案(合作交流学习)——你帮我,我帮你,大家同成长 【自主探究一】
知识点 1:一元一次不等式组的概念. 【例】不等式组 1.
笔记 1:
2
x 2 x 5 x 1 5 x 1 0 2. 3. 2 4. x 1 4 x 3 y 2 4 x
。 一起,
其中是一元一次不等式组的为 结论:两个含相同 就得到一个 知识点 2:一元一次不等式组的解集 的一元一次不等式 不等式组。
预习说明:1、利用导学案掌握本课知识结构,明确重难点。 2、熟悉基础知识,对有关问题做初步探究,不会的用红笔标出。
课题
9.3 一元一次不等式组
主备人: 班级:
段必厚
审核: 姓名:
1、记住一元一次不等式组及其解的概念; 学习目标 2、会解一元一次不等式组,并会用数轴确定解集。 3、能按照要求 求一元一次不等式组的特殊解。 学习重点 学习难点 解一元一次不等式组的方法 确定一元一次不等式组的解集和特殊解 随堂手记 通过预习,你对本 节课有哪些了解? 有什么疑惑? 合起来,
一、课前预习案(独立自主学习)——我的课堂我做主
(阅读教材 P 127-129 页的内容,完成填空)
用圈、点、勾、划、记的方法有效预习完成下列问题: 1、类似于方程组,把几个具有相同未知数的 就组成了一元一次不等式组。 2、一般地,几个不等式的解集的 组成的 的解集。 ,叫做由它们所
3.一元一次不等式组解集规律: 、把下列同组各解集分别表示在同一数轴上,其中 a b 。
《一元一次不等式》精品导学案 人教版七年级数学下册导学案
9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。
人教七年级数学下册教学导学案设计:一元一次不等式
课题9.2实际问题与一元一次不课型新授等式单位主备人学习过程学生学习感悟(教师个性修订)教学目标:1.会解一元一次不等式.2.会用不等式来表示实际问题中的不等关系.教学重难点:用不等式来表示实际问题中的不等关系.教学过程:(一)自学教材p131——p133,回答下列问题1、解一元一次不等式,根据不等式的性质,将不等式逐步化为x>a(或x<a)的形式,一般步骤为:___________________________________________.2、列不等式解应用题的基本步骤与列方程解应用题步骤类似可分为:1)、审、2)、设3)、列 4)、解5)、答。
(二)新授问题甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?分析:甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?(3)如果累计购物超过100元,那么在甲店购物花费小吗?(学生完成解答过程)练一练1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样?(3) 就学生数x讨论哪家旅行社更优惠.例题例1 2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?讨论2002年北京空气质量良好的天数是,用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是,与x有关的哪个式子的值应超过70% ,这个式子表示为。
人教版数学七年级下册一元一次不等式组导学案
9.3一元一次不等式组导学案(2)学习目标:1、进一步熟练地掌握解一元一次不等式组。
2、运用不等式组的知识解决简单的实际问题。
学习重点:运用一元一次不等式组解决实际问题。
学习难点:运用一元一次不等式组解决实际问题。
学习过程:一、自主学习,感受新知解下列不等式组,并把解集在数轴上表示出来1.322,352x x x x 2..6)2(3)3(2,132x x x x 二、自主交流,探究新知【探究】3 个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。
每个小组原先每天生产多少件产品?【分析】“不能完成任务”的数量含义是什么?“提前完成任务”的数量含义是什么?【归纳总结】对于具有多种不等关系的问题,可通过_____________解决。
解一元一次不等式组时,一般先求出__________________________的解集,再求出____________________的公共部分。
利用________可以直观地表示不等式组的解集。
三、自主应用,巩固新知【例1】将若干只鸡放入若干个笼,若每4个放一笼,则有1只鸡无笼可放;若每5个放一笼,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?【例2】已知关于x ,y 的方程组34,72m y x m y x 的解为正数,求m 的取值范围.【例3】一本英语书共98页,张力读了一周(7天)还没读完,而李永不到一周就己读完.李永平均每天比张力多读3页,张力平均每天读多少页(答案取整数)?四、自主总结,拓展新知1、列一元一次不等式组解应用题与列一元一次不等式解应用题的思想和步骤是一样的,不同的是前者列出的是两个不等式,而后者列出的是一个不等式。
2、列不等式(组)解应用题的关键是找出不等关系.有时题目中含有“大于”、“不小于”、“超过”、“不足”、“至少”等等表示不等关系的词语,有时却没有这样的词语。
新版七年级数学下册:11.6.2《一元一次不等式组》导学案
11.6.2 一元一次不等式组班级:___________姓名:___________ 得分:___________一、【学习目标】1、知道一元一次不等式组及其解集的意义;2、会解由两个一元一次不等式组,并会用数轴确定解集3、掌握解一元一次不等式组的步骤二、【学习重难点】 解一元一次不等式组。
三、【自主学习】1.解下列不等式(1)2x+1〈 0 (2) 2(x+1)〈 4(4) 3x ≤x+5 (4) -2x ≤ 62.若不等式组{x <3x >m无解,则m 的范围是( ) A m >3 B m ≥3 C m <3 D m ≤3四、【合作 探究】 例2.利用数轴确定不等式组:⎪⎩⎪⎨⎧-〈++≥-244113x x x x解 : 解不等式①, 得 .解不等式②, 得 .在同一数轴上表示不等式①、②的解集,如图, 可知所求不等式组的解集是 .例3. 解不等式组:{2x+1<-1 ①3-x ≤1 ②解: 解不等式①,得 .解不等式②, 得 .在同一数轴上表示不等式①、②的解集,如图可见, 这两个不等式的解集没有公共部分,这时,我们说这个不等式组 . 知识点:解一元一次不等式组, 通常可以先分别求出不等式中每一个不等式的解集, 再求出它们的公共部分. 利用数轴可以直观地帮助我们求出不等式组的解集.五、【达标巩固】1、 解下列不等式组(1)⎩⎨⎧〈+≥-01203x x (2)⎩⎨⎧〈+≤-51402x x(3)⎩⎨⎧+≤〉+534)1(2x x x (4){x-4<3(x-2)2x+13 +1<x2、已知二元一次方程x + 2y = -5.当x 取什么值时,y 的值是大于—1的负数?板书设计:11.6一元一次不等式组(2)(1)2x+1〈 0 (2) 2(x+1)〈 4(4) 3x ≤x+5 (4) -2x ≤ 6例2.利用数轴确定不等式组:⎪⎩⎪⎨⎧-〈++≥-244113x x x x教学后记:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3一元一次不等式组的应用
——方案问题
【学习目标】
1、掌握列一元一次不等式组解决实际问题的一般步骤;
2、熟练运用不等式知识解决有关的实际问题;
3、通过思考、讨论等活动,经历从实际问题中抽象出数学模型的过程,积累利用一元一次不等式组解决问题的经验,培养学生的分析能力和解决问题的能力。
【学习重难点】
重点:分析实际问题中的不等关系。
难点:利用一元一次不等式组解决实际问题。
【学习过程】
【探究活动一】复习巩固引入新知
1、什么是一元一次不等式组?
2、什么是一元一次不等式组的解集?
3、如何确定不等式组的解集?
4、求使不等式5x>3(x-1)与x-2≤14-3x同时成立的未知数x的值?
【探究活动二】探究归纳生成新知
某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,已知生产一件A产品,需要甲原料9kg,乙原料3kg,生产一件B产品需要甲原料4kg,乙原料10kg。
问:
(1)该工厂生产A、B两种产品有哪几种方案?
(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?
学法指导:
(1)、①将题目中的条件填入下表:
②、若设生产A种产品x件,则生产B种产品件,
根据题意填写下表:
于是可得不等式组:
(2)分别求出(1)中每一种方案的利润进行比较,从而确定最大利润的方案。
解:
注意:关于实际问题的应用题中,要考虑所求得的解否符合实际意义。
通过上述问题的学习,请用自己的话总结一下利用不等式组解决实际问题的基本步骤。
【探究活动三】典例解析运用新知
江老师想为七(11)的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包2本词典。
问:
(1)每个书包和每本词典的价格各是多少元?
(2)江老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?
学法指导:
1、由题可设每本词典x元,则每个书包元,根据等量关系“用124元恰好可以买到3个书包2本词典”可得方程:
;
2、根据全班40人可知需要购买的学习用品共件,于是可设购买词典m件,则购买书包件,那么共需元,由不等关系“余下不少于100元且不超过120元的钱”可得不等式组:
解:
【课堂小结】
本节课你学到了什么?
【当堂测评】
某校七年级组织学生春游,现有36 座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,已知36座客
车租金400元,42座客车每辆租金440元,
(1)该校七年级共有多少人参加春游?
(2)请你帮该校设计一种最省钱的租车方案。
【能力提升】
某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元,乙商品每件进价30元,售价40元;
(1)若该超市一次性购进两种商品共80件,且恰好用去1600元,问购进甲、乙两种商品各多少件?
(2)若该超市要使两种商品共80件的购进费用不能超过1640元,且总利润不少于600元。
请你帮助该超市设计相应的进货方案,并使该超市利润最大的方案。