南航双语矩阵论第四章部分习题答案

合集下载

(完整word)高等代数第四章矩阵练习题参考答案

(完整word)高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。

南航矩阵论课后习题答案

南航矩阵论课后习题答案

南航矩阵论课后习题答案南航矩阵论课后习题答案矩阵论是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等等。

南航的矩阵论课程是培养学生数学思维和解决实际问题的重要环节。

在课后习题中,学生需要运用所学的矩阵理论知识,解答各种问题。

下面是南航矩阵论课后习题的一些答案和解析。

1. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的逆矩阵。

解析:要求一个矩阵的逆矩阵,需要先判断该矩阵是否可逆。

一个矩阵可逆的充要条件是其行列式不为零。

计算矩阵A的行列式,得到det(A) = -3。

因此,矩阵A可逆。

接下来,我们可以使用伴随矩阵法求解逆矩阵。

首先,计算矩阵A的伴随矩阵Adj(A),然后将其除以行列式的值,即可得到逆矩阵。

计算得到A的伴随矩阵为Adj(A) = [-3 6 -3; 6 -12 6; -3 6 -3]。

最后,将伴随矩阵除以行列式的值,即可得到矩阵A的逆矩阵A^-1 = [-1 2 -1; 2 -4 2; -1 2 -1]。

2. 已知矩阵A = [2 1; 3 4],求A的特征值和特征向量。

解析:要求一个矩阵的特征值和特征向量,需要先求解其特征方程。

特征方程的形式为|A - λI| = 0,其中A为给定矩阵,λ为特征值,I为单位矩阵。

计算得到特征方程为|(2-λ) 1; 3 (4-λ)| = (2-λ)(4-λ) - 3 = λ^2 - 6λ + 5 = 0。

解这个二次方程,得到特征值λ1 = 1,λ2 = 5。

接下来,我们可以求解对应于每个特征值的特征向量。

将特征值代入(A - λI)x = 0,即可求解出特征向量。

对于特征值λ1 = 1,解得特征向量x1 = [1; -1];对于特征值λ2 = 5,解得特征向量x2 = [1; 3]。

3. 已知矩阵A = [1 2; 3 4],求A的奇异值分解。

解析:奇异值分解是将一个矩阵分解为三个矩阵的乘积:A = UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。

矩阵论课后题答案(研究生用书)改

矩阵论课后题答案(研究生用书)改

⎞ ⎠

A
P
⎞ ⎠
⎠ ⎞
P

− 1
A

A
J
P
P
A P
J
A f f A f E E A A A A
⎞ ⎠
A
A
A
A
E
A
E

A
A A E
A

f A
A
A
A
A
A
E
A
E
E
A A


A A A
A
A
E
2
f
E
A
f A
⎞ ⎠
A
A A A E A
A
E
A
A
⎠ ⎞
E
A
E


⎞ ⎠
f A E
E

A
A
E
⎞ ⎠
f A E E E
0 0
x
x
x
A A
E
E E A A A A A E
⎞ ⎠
j
E
E A A A A
A
E E
A E
E A
A
A
E A
A
A
F
j
F
j
j
A
E
A
A
A A E A g A E A E A E A g A A E A E E A A A E
A
A
A
F
A
A
H
A
A A A A
F
A
H
A
A
A
A
A
A
F

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案矩阵论及其应用习题四答案矩阵论是数学中重要的分支之一,它研究的是矩阵的性质、运算规律以及在各个学科中的应用。

在学习矩阵论的过程中,习题是不可或缺的一部分,通过解答习题可以加深对矩阵理论的理解和应用。

下面是习题四的答案,希望能对大家的学习有所帮助。

1. 设A、B、C为同阶矩阵,证明:(AB)C=A(BC)解答:我们需要证明(AB)C的每个元素与A(BC)的对应元素相等。

设(AB)C的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b,C的第k行第j列元素为c。

则有:x = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

而A(BC)的第i行第j列元素为y,可表示为:y = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)C=A(BC)。

2. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)A=A。

解答:我们需要证明(AB)A的每个元素与A的对应元素相等。

设(AB)A的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

而A的第i行第j列元素为y,可表示为:y = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)A=A。

3. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)B=B。

解答:我们需要证明(AB)B的每个元素与B的对应元素相等。

设(AB)B的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

而B的第i行第j列元素为y,可表示为:y = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

矩阵理论第4章习题解答 (2)

矩阵理论第4章习题解答 (2)

矩阵理论第四章习题解答1. 习题1问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵C = A + B。

解答我们可以直接对A和B对应位置的元素进行相加,得到矩阵C。

A +B = [1+9, 2+8, 3+7][4+6, 5+5, 6+4][7+3, 8+2, 9+1]计算结果为:[10, 10, 10][10, 10, 10]2. 习题2问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [9, 8, 7][6, 5, 4][3, 2, 1]求矩阵D = A - B。

解答我们可以直接对A和B对应位置的元素进行相减,得到矩阵D。

A -B = [1-9, 2-8, 3-7][4-6, 5-5, 6-4][7-3, 8-2, 9-1]计算结果为:[-2, 0, 2][4, 6, 8]3. 习题3问题描述已知矩阵A和B定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]B = [2, 0, 1][1, 2, 1][0, 1, 2]求矩阵E = A * B。

解答我们可以通过矩阵乘法的定义来计算E。

矩阵乘法的定义为:矩阵C的第i行第j列的元素等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。

对于矩阵A和B,可以计算得到矩阵E。

E = [1*2+2*1+3*0, 1*0+2*2+3*1, 1*1+2*1+3*2][4*2+5*1+6*0, 4*0+5*2+6*1, 4*1+5*1+6*2][7*2+8*1+9*0, 7*0+8*2+9*1, 7*1+8*1+9*2]计算结果为:E = [4, 7, 8][10, 13, 16][16, 19, 22]4. 习题4问题描述已知矩阵A定义如下:A = [1, 2, 3][4, 5, 6][7, 8, 9]求矩阵F = A^T,其中A^T表示A的转置矩阵。

04南航戴华《矩阵论》第四章l矩阵的因子分解

04南航戴华《矩阵论》第四章l矩阵的因子分解

对初等下三角矩阵,当i <j 时,有
1 0 1 T T li 1,i Li (li ) L j (l j ) I li ei l j e j 1 l j 1, j 0 0 lni 0 1 l nj
4.1.3 Householder矩阵
取u = v = w, σ=2,并且w是单位向量,即 ||w|| =1,初等矩阵
H (w) E(w, w,2) I 2ww
H
(4.1.7)
称为Householder矩阵或初等Hermite矩阵。
定理4.1.2 Householder矩阵H(w)具有如下性质:
(U H AU U 1 AU B)
则称A正交(酉)相似于B。 定理4.5.1(Schur定理) 任何一个n 阶复矩阵A都酉相 似于一个上三角矩阵,即存在一个n 阶酉矩阵U 和 一个n阶上三角矩阵 R 使得
U AU R
H
(4.5.1)
其中R 的对角元是A 的特征值,它们可以按要求的 次序排列。
上(下)三角矩阵的性质
• 什么是矩阵的LU分解? • 矩阵的LU分解是否存在?如果存在, LU分解 是否唯一? • 如何计算矩阵的LU分解? • LU分解有什么应用?
定理4.3.1(LU分解定理)设 A 是 n 阶非奇异矩 阵,则 存在唯一的单位下三角矩阵L和上三角矩 阵U使得 A LU 的充分必要条件是A的所有顺序主子式均非零, 即
H H
mn
,则
AH A与AAH的特征值均为非负实数 ;
(2)
A A与AA 的非零特征值相同,并 且非零特征 值的个数(重特征值按重数计算 )等于rank( A).

南航双语矩阵论matrix theory第4章部分习题参考答案

南航双语矩阵论matrix theory第4章部分习题参考答案

)
If i is a root of p( ) 0 , then p(i ) 0 . We obtain that eigenvalue of C T with eigenvector x (1, i ,, in 2 , in 1 )T .
Exercise 16
Let be an orthogonal transformation on a Euclidean space V (an inner product space over the real number field). If W is a -invariant subspace of V, show that the orthogonal complement of W is also -invariant. Proof Let V W W , where W is -invariant. Let {u1 , u2 ,, uk } be an orthonormal basis for
0 1 T C x 0 0 0 0 1 0 0 0 0 0 0 an 0 an 1 0 an 2 1 a1
T
i i 1 2 2 i i i n2 n 1 n 1 i i i n 1 n n 1 a a a p ( i n i n 1 i 1 i i
C T x i x . Then i is an
(b) If p( ) has n distinct roots, then all roots of p( ) are eigenvalues of C T . We obtain that the characteristic polynomial of C T and p( ) have the same n distinct roots. And also they have the same degree and the same leading coefficient. Hence, the characteristic polynomial of C T is the same as p( ) . Since C and C T have the same characteristic polynomial, we know that p( ) is the characteristic polynomial of C.

南京航空航天大学MatrixTheory双语矩阵论期末考试

南京航空航天大学MatrixTheory双语矩阵论期末考试
(2) The Jordan canonical form is
--------------------------------------------------------------------------------------------------------------------------
(2) Find a basis for such that with respect to this basis,thematrixBrepresenting is diagonal.
(3) Find thekernel(核)andrange(值域)of this transformation.
Solution:
南京航空航天大学Matrix-Theory双语矩阵论期末考试
———————————————————————————————— 作者:
———————————————————————————————— 日期:
Part I (必做题,共5题,70分)
第1题(15分)
得分
Let denote the set of all real polynomials of degree less than 3 withdomain(定义域) .The addition and scalar multiplication are defined intheusual way.Definean inner product on by
第2题(15分)
得分
Let be the linear transformation on (the vector space of real polynomials of degree less than 3) defined by

矩阵理论第4章习题解答

矩阵理论第4章习题解答

第四章 习题解答1. 证明:实对称矩阵A 的所有特征值在区间[],a b 上的充要条件是对任何0a λ<,0λ-A E 是正定矩阵;而对任何0a λ<,0λ-A E 是负定矩阵.证:因为A 为实对称矩阵,所以存在正交矩阵Q ,使得{}12,,n diag λλλ T A =Q Q ,其中特征值[],i a b λ∈.{}010200,,n diag λλλλλλλ--- T A -E =Q Q ,所以对于00,0i a λλλ∀<->知A 为正定矩阵;00,0i b λλλ∀>-<知A 为负定矩阵. 2. 设A ,B 都是实对称矩阵, A 的一切特征值在区间[],a b 上, B 的一切特征值在区间[],c d 上. 证明: A+B 的特征值必在区间[],a c b d ++.证:设A ,B 的特征值分别为()()()12n b A A A a λλλ≥≥≥≥≥ , ()()()12n d B B B c λλλ≥≥≥≥≥ ,又因为A ,B 为实对称矩阵,所以A ,B 为Hermite 矩阵,由定理18知,A+B 的特征值()k λ+A B ,1,2,,k n ∀= . 有()()()()()1k n k k λλλλλ+≤+≤+A B A B A B .即()()()()()()()1k k n k k k a c c d b dλλλλλλλ+≤+≤+≤+≤+≤+≤+A A B A B A B A 3 设P 是酉矩阵,()1,,n A diag a a = ,证明PA 的特征值μ满足不等式m M μ≤≤,其中,{}min i im a =,{}max i iM a =.证:因为P 是酉矩阵,所以HP P E =,又因为()()HH H H PA PA A P PA A A ==,所以由Browne 定理知,PA 的特征值μ满足不等式minminmaxmaxiiiiμ=≤≤=而minmin i iia m ==,maxmax i iia M ==,所以 m M μ≤≤.4.用圆盘定理证明9121081110401001-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A =至少有两个实特征值. 证: A 的4个盖尔圆为{}1|94G z z =-≤,{}2|82G z z =-≤, {}3|41G z z =-≤,{}4|11G z z =-≤,它们构成的两个连通区域部分为1123S G G G = , 24S G =, 易知1S 与2S 都关于实轴对称, 因为实矩阵的复特征值必成对共轭出现, 所以2S 中含有A 的一个特征值, 而1S 中至少含有A 的一个实特征值, 因此A 中至少有两个实特征值. 5 参见课本135页中的例1. 6 用圆盘定理估计7-168-1678885⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦A =的特征值和A 的谱半径, 然后选取一组正数123,,p p p 对A 的特征值作更细的估计. 解: A 的3个特征值在它的2个盖尔圆724z -≤,516z +≤得并集中, 且()31r A ≤. 因为矩阵A 有相同的主对角元素,所以,无法通过选取正数123,,p p p 给出更精细的估计.7证明141414141525115161636161171737⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =的谱半径()1r <A . 证: 113:||44S z -≤,223:||55S z -≤,333:||66S z -≤,433:||77S z -≤,故矩阵A 的盖尔,圆盘位于单位圆内且只与单位圆交于1,又因为||0E A -≠,所以知()1r <A .8. 证明14141141251515161636161717147⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =的谱半径()1r =A . 证: 113:||44S z -≤,223:||55S z -≤,333:||66S z -≤,443:||77S z -≤,故矩阵A 的盖尔,圆盘位于单位圆内且只与单位圆交于1,又因为()det 10=I -A , 所以()1r =A . 9.举例说明:(1)在有两个盖儿圆构成构成的连通部分中,可以在每一个盖儿圆中恰有一个特征值. (2)不一定每个盖尔圆中必有一个特征值.解:(1)如122-1⎛⎫ ⎪⎝⎭A =,故250λλ-=-=E A,1,2λ=(2)如1-0.80.50⎛⎫ ⎪⎝⎭A =,故20.40λλλ-=-+=E A,(1,211.2λ=±11.设()n,nij a =∈C A ,满足()1,2,,ij ij j ia a i n ≠>=∑ 则(1)A 可逆; (2)1det .nii ij j i i a a ≠=⎛⎫≥- ⎪⎝⎭∑∏A 证:(1)因为A 为严格对角占优矩阵,由定理4知,A 可逆。

《矩阵论》习题答案

《矩阵论》习题答案

第一章第一章第6题实数域R 上的全体n 阶对称(反对称)矩阵,对矩阵的加法和数量乘法。

解:实数域R 上的全体n 阶矩阵,对矩阵的加法和数量乘法构成R 上的线性空间nn R ⨯,记{}{}A A R A A W A A R A A V T n n T n n -=∈==∈=⨯⨯,/;,/ 以为,对任意的,,,,B B A A V B A T T ==∈则(),B A B A T+=+即V B A ∈+,所以V 对加法运算是封闭的;对任意的A A R k V A T =∈∈,,,则(),,V kA kA kA T∈=即所以V 对数乘运算封闭;所以,V 是nn R⨯的一个线性子空间,故V 构成实数域R 上的一个线性空间。

同理可证,W 也是一个线性空间。

P41第一章第8题(参考P10例题 1.2.5) 证明:存在1k ,2k ,3k ,4k 使得112233440k k k k αααα+++=即11111k ⎡⎤⎢⎥⎣⎦+21101k ⎡⎤⎢⎥⎣⎦+31110k ⎡⎤⎢⎥⎣⎦+41011k ⎡⎤⎢⎥⎣⎦=0 解12341231341240000k k k k k k k k k k k k k +++=⎧⎪++=⎪⎨++=⎪⎪++=⎩ 得12340k k k k ====所以1α,2α,3α,4α线性无关P42第1章第12题解:因为A=x 1α1+x 2α2+x33α+x 4α4即x 1+x 2+x 3+x 4=1x 1+x 2+x 3=2x 1+x 3+x 4=-2x 1+x 2+x 4=0⇒x 1=-2x2=3x 3=1 x 4=-1所以A 的坐标为[x 1,x 2,x 3,x 4]T=[-2,3,1,-1]TP42第一章第13题 答案 f(x)=3+1-n 2x( 泰勒展开))(f x '=2(n-1)2-n x(x)f ''=2(n-1)(n-2)3-n x …… )1(f -n (x)=2(n-1)! )(f n (x)=0f(1)=5 )1(f '=2(n-1) (1)f ''=2(n-1)(n-2) …… )1(f -n (1)=2(n-1)!f(x)=f(1)+ )1(f '(x-1)+!21(1)f ''2)1(-x +……+)!1(1-n )1(f -n (1)1)1(--n x =5+2(n-1)(n-2)+!2)2)(1(2--n n 2)1(-x +……+)!1()1(2--n n !1)1(--n x=5+211-n C (x-1)+221-n C 2)1(-x +……+211--n n C 1)1(--n x取f(x)=3+1-n 2x在基1, (x-1), 2)1(-x , ……,1)1(--n x 下的坐标为(5 , 211-n C , 221-n C ,…… , 211--n n C T)教材P42习题14:求基T)0,0,0,1(1=α,T)0,0,1,0(2=α,T )0,1,0,0(3=α,T)1,0,0,0(4=α,到基T )1,1,1,2(1-=β,T )0,1,3,0(2=β,T )1,2,3,5(3=β,T )3,1,6,6(4=β的过度矩阵,确定向量T x x x x ),,,(4321=ξ在基1β,2β,3β,4β,下的坐标,并求一非零向量,使它在这两组基下的坐标相同。

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲Chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 线性子空间的定义与判断;z 子空间的交z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。

习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。

(1) 求的维数;并写出的一组基;求在所取基下的坐标;3]x [R 3]x [R 221x x ++ (2) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基;3][x R (3)求与之间的距离;221x x ++2x 2x 1+−(4)证明:是的子空间;2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。

(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:V 也是22R ×的子空间;并写出V 的维数和一组基;(7)写出子空间的一组基和维数。

南京航空航天大学MatrixTheory双语矩阵论期末考试

南京航空航天大学MatrixTheory双语矩阵论期末考试

第6题 第7题
Let P4 be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication. Let x1, x2 , x3 be three distinct real numbers. For each pair of polynomials f and g in P4 , define
Explain.
Solution:
(1) An annihilating polynomial of A is x2 5x 6 .
The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are
x 6 , x 1, and x2 5x 6 . --------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the
(1)
(1) 0 (x) x (x2) 2 2x2

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

NUAALet 3P (the vector space of real polynomials of degree less than 3) defined by(())'()''()p x xp x p x σ=+.(1) Find the matrix A representing σ with respect to the ordered basis [21,,x x ] for 3P .(2) Find a basis for 3P such that with respect to this basis, the matrix B representing σ is diagonal.(3) Find the kernel (核) and range (值域)of this transformation. Solution: (1)221022x x x x σσσ===+()()() 002010002A ⎛⎫⎪= ⎪ ⎪⎝⎭----------------------------------------------------------------------------------------------------------------- (2)101010001T ⎛⎫ ⎪= ⎪ ⎪⎝⎭(The column vectors of T are the eigenvectors of A)The corresponding eigenvectors in 3P are 1000010002T AT -⎛⎫⎪= ⎪ ⎪⎝⎭(T diagonalizes A ) 22[1,,1][1,,]x x x x T += . With respect to this new basis 2[1,,1]x x +, the representingmatrix of σis diagonal.------------------------------------------------------------------------------------------------------------------- (3) The kernel is the subspace consisting of all constant polynomials.The range is the subspace spanned by the vectors 2,1x x +-----------------------------------------------------------------------------------------------------------------------Let 020012A ⎛⎫⎪= ⎪ ⎪-⎝⎭.(1) Find all determinant divisors and elementary divisors of A .(2) Find a Jordan canonical form of A .(3) Compute At e . (Give the details of your computations.) Solution: (1)110020012I A λλλλ-⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭,(特征多项式 2()(1)(2)p λλλ=--. Eigenvalues are 1, 2, 2.)Determinant divisor of order 1()1D λ=, 2()1D λ=, 23()()(1)(2)D p λλλλ==-- Elementary divisors are 2(1) and (2)λλ-- .---------------------------------------------------------------------------------------------------------------------- (2) The Jordan canonical form is100021002J ⎛⎫ ⎪= ⎪ ⎪⎝⎭--------------------------------------------------------------------------------------------------------------------------(3) For eigenvalue 1, 010010011I A ⎛⎫⎪-=- ⎪ ⎪-⎝⎭ , An eigenvector is 1(1,0,0)T p = For eigenvalue 2, 1102000010I A ⎛⎫⎪-= ⎪ ⎪⎝⎭, An eigenvector is 2(0,0,1)T p =Solve 32(2)A I p p -=, 331100(2)00000101A I p p --⎛⎫⎛⎫⎪ ⎪-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭we obtain that3(1,1,0)T p =-101001010P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, 1110001010P -⎛⎫⎪= ⎪ ⎪-⎝⎭ 1At J e Pe P -=22210100110001000101000010tt t t e e te e ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭22220000t t t t t t e e e e tee ⎛⎫-⎪= ⎪ ⎪-⎝⎭ --------------------------------------------------------------------------------------------------------------------Suppose that ∈R A and O I A A =--65.(1) What are the possible minimal polynomials of A ? Explain.(2) In each case of part (1), what are the possible characteristic polynomials of A ? Explain.Solution:(1) An annihilating polynomial of A is 256x x --.The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are6x -, 1x +, and 256x x --.---------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case 6x -, the characteristic polynomial is 3(6)x - Case 1x +, the characteristic polynomial is 3(1)x + Case 256x x --, the characteristic polynomial is 2(1)(6)x x +- or 2(6)(1)x x -+-------------------------------------------------------------------------------------------------------------------Let 120000A ⎛⎫=⎪⎝⎭. Find the Moore-Penrose inverse A +of A .Solution: ()12011200000A PG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭1()(1,0)T T P P P P +-==, 111()250T T G G GG +-⎛⎫⎪== ⎪ ⎪⎝⎭110112(1,0)2055000A G P +++⎛⎫⎛⎫ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭也可以用SVD 求.------------------------------------------------------------------------------------------------------------------Part II (选做题, 每题10分)请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.Let 4P be the vector space consisting of all real polynomials of degree lessthan 4 with usual addition and scalar multiplication. Let 123,,x x x be three distinct real numbers. For each pair of polynomials f and g in 4P , define 31,()()i i i f g f x g x =<>=∑.Determine whether ,f g <> defines an inner product on 4P or not. Explain.Let n n A ⨯∈R . Show that if x x A =)(σis the orthogonal projection fromn R to )(A R , then A is symmetric and the eigenvalues ofA are all 1’s and 0’s.n n A ⨯∈C . Show that x x A H is real-valued for all n C x ∈if and only if Ais Hermitian.Let n n B A ⨯∈C , be Hermitian matrices, and A bepositive definite. Show thatAB is similar to BA , and is similar to a real diagonal matrix.若正面不够书写,请写在反面.123()()()x x x x x x ---. Then ,0f f <>=. But 0f ≠. This does not define an inner product. For any x , ()()x x T A R A N A ⊥-∈=, ()x x 0T A A -=. Hence, T T A A A =. Thus. T A A =.From above, we have 2A A =. This will imply that λλ-2is an annihilating polynomial of A. The eigenvalue of A must be the roots of 02=-λλ. Thus, the eigenvalues of A are1’s and 0’s.See Thm 7.1.1, page 182. 也可以用其它方法.Since A is nonsingular, 1()AB A BA A -=. Hence, A is similar to BASince A is positive definite, there is a nonsingular hermitian matrix P such that H A PP =. 1()H H AB PP B P P BP P -==Since H P BP is Hermitian, it is similar to a real diagonal matrix.is similar to H AB P BP , H P BP is similar to a real diagonal matrix. Thus AB is similar to a real diagonal matrix.。

南航《矩阵论》第四章矩阵的因子分解-2

南航《矩阵论》第四章矩阵的因子分解-2

2021/4/9
54
一、从几何观测说起
圆 S 经过变换 A ,变成椭圆 A S 。圆的正交方

v

1
v2
变成椭圆的长、短轴方向 1u1、2u2
2021/4/9
55
假定矩阵 ACmn(mn)是列满秩矩阵。
一般地,n 维空间中的单位球面 S 经过变换 A 变成超椭圆 A S 。正交方向 v1、、vn 变成超椭
2021/4/9
43
解: 对向量 1 (0,2,0)T ,令
u 1|| 1 1 |||| 1 1||||2 2e e 1 1||21 2(1,1,0)T
从而得Householder 矩阵 0 1 0
H1 I 2u1u1H 1 0 0 0 0 1
2021/4/9
44
使得
2 1 6
H1
A
5 2
5
2
5 1
5
2021/4/9
67
图像的数字化技术与矩阵的奇异值分解
• 计算机处理图像技术的第一步是图像的数字化 存储技术,即将图像转换成矩阵来存储。
• 转换的原理是将图形分解成象素(pixels)的 一个矩形的数阵,其中的信息就可以用一个矩 阵A=(a ij)m×n来存储。矩阵A的元素a ij是一个正 的数,它相应于象素的灰度水平(gray level) 的度量值。
2 7 1 3 0 1 0
0
3
1
3
2
1
0
A E
E 0
1
1
0
1 0 1
1 0 0
3 0 0
0
0
1
0
2 r1 r2 r1 r3
1 0

矩阵论课后参考答案(第一二三四

矩阵论课后参考答案(第一二三四

矩阵为 A

1 1
18 22
15 20



T
在 基 1 (1,2,1) , 2 (3,1,2),

1
21,2)下的矩阵。
解:由题可知1,2,3 与1,2,3 时空间 L(F 3) 的两组基,则存在一个
过渡矩阵 C 使得
3 -1 2
2 1 2
1 0 0
0 1 0
0 r 2(2)r1 1
0 r3(1)r10
1
0
3 5 -1
2 5 0
1 2 -1
0 1 0
0 0 1
1r2



5 (1)r 3
1 3 2 1 0
0
1 3 2 1 0 0
r2r30 1 0 1 0 1 r3(1)r20 1 0 1 0 1
2
1 0 0 0 0 1 0 0
0 0 0 0
0
0
0
0

1
0
0
0


0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1
(3)解:同上理,对 AT A 分析可知其为一个上下成负对称的矩阵,
且对角元全为 0,则其维数为
dim(V ) (n 1) (n 2) 1 (n 1)((n 1) 1) n(n 1)
2
2
其基为 n(n 1) 个 n n 阶的矩阵,故基可写为
2
0 1 0 0 0 0 1 0
1 0
0 0
0 0
所以V1 V2 {0} 。
2)明显V1 V2 Fn

矩阵论第四章作业答案

矩阵论第四章作业答案

第四章作业答案
第六题
证明:只需证明新定义的范数满足矩阵范数的四个性质即可!
非负性与齐次性是显然的。

(3)三角不等式性:
||||||()||||||||||||||||||||||b a a a a b b X Y B X Y C BXC BYC BXC BYC X Y +=+=+≤+=+
(4)相容性:
111111||||||||||||||||||||||||||||||||,||||1
||||||||||||||||||||b a a a a a a a a b a a b b
XY BXYC BXCC B BYC BXC C B BYC C B XY BXC BYC X Y ------==≤+++∴≤≤+ 都小于
所以是范数
第七题 如果看过第六题不会做第七题我也没办法了
第八题
证明:(2)如果A 可逆,则||||0A ≠ 11111||||||||||||||||
||||||||
E AA A A A A ----==≤∴≤
第九题
证明:(1)
2
2||||()()1||||1H U UU E U ρρ===∴=
(2)P83有证明
第十,十一题后面有详细证明,这里就不类
述了
第十四题
解:矩阵的1范数就是矩阵的列向量各数绝对值之和中最大的那个数矩阵的无穷范数就是矩阵的行向量各数绝对值之和中最大的那个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档