2016届《创新设计》数学一轮(文科)人教A版配套作业 第八章 立体几何 第4讲 直线、平面垂直的判定与性质 W

合集下载

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 阶段回扣练

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 阶段回扣练

阶段回扣练8 立体几何(建议用时:90分钟)一、选择题1.(2014·辽宁质量检查)某几何体的俯视图是正方形,则该几何体不可能是()A.三棱柱B.四棱柱C.圆柱D.圆锥解析依题意,当一个几何体的俯视图是正方形时,该几何体不可能是圆锥,故选D.答案 D2.(2015·杭州质量检测)设直线l⊥平面α,直线m⊂平面β() A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥βD.若α⊥β,则l∥m解析A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.答案 B3. 如图是一个无盖的正方体盒子展开后的平面图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC的值为()A.30°B.45°C.60°D.90°解析还原为正方体,如图所示,连接AB,BC,AC,可得△ABC是正三角形,则∠ABC=60°.答案 C4.(2014·青岛调研)已知三棱锥的主视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为()解析由主视图和俯视图还原几何体如图所示,由主视图和俯视图对应线段可得AB=BD=AD=2,当BC⊥平面ABD时,BC=2,△ABD的边AB上的高为3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选B.答案 B5.(2014·广州综合测试)一个几何体的三视图如图所示,则该几何体的体积为()A.2πB.4πC.6πD.12π解析依题意,题中的几何体是半个圆柱,因此其体积等于12×π×22×3=6π.答案 C6.(2015·济南模拟)已知直线m,n不重合,平面α,β不重合,下列命题正确的是() A.若m⊂β,n⊂β,m∥α,n∥α,则α∥βB.若m⊂α,n⊂β,α∥β,则m∥nC.若α⊥β,m⊂α,n⊂β,则m⊥nD.若m⊥α,n⊂α,则m⊥n解析由面面平行的判定定理可知A中需增加条件m,n相交才正确,所以A 错误;若m⊂α,,n⊂β,α∥β,则m,n平行或异面,B错误;若α⊥β,m⊂α,n⊂β,则m,n平行、相交、异面都有可能,C错误;由直线与平面垂直的定义可知D正确,故选D.答案 D7.(2014·烟台模拟)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48B.32+817C.48+817D.80解析由三视图可得该几何体是一个侧放的直四棱柱,该四棱柱的底面是上底、下底、高分别为2,4,4,腰长为17的等腰梯形,所以两个底面面积和为2×12×(2+4)×4=24,侧棱长为4,所以侧面积为(2+4+217)×4=24+817,表面积为24+24+817=48+817,故选C.答案 C8.(2015·银川质量检测)如图,O为正方体ABCD-A1B1C1D1的体对角线A1C和AC1的交点,E为棱BB1的中点,则空间四边形OEC1D1在正方体各面上的正投影不可能是()解析依题意,注意到题中的空间四边形OEC1D1在平面CC1D1D、平面DD1A1A、平面ABCD上的正投影图形分别是选项B,C,D,故选A.答案 A9.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310解析如图,由球心作平面ABC的垂线,则垂足为BC的中点M.又AM=12BC=5 2,OM=12AA1=6,所以球O的半径R=OA=⎝⎛⎭⎪⎫522+62=132.答案 C10.(2015·东北三省四市联考)若一个圆柱的主视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为()A.ππ+1B.2π2π+1C.22π+1D.1π+1解析设圆柱的底面半径为r,高为h,则2rh=h2πr,则h=2rπ,则S侧=2πr·h=4πr2π,S全=4πr2π+2πr2,故圆柱的侧面积与全面积之比为4πr2π4πr2π+2πr2=2π2π+1,故选B.答案 B二、填空题11.如图所示,在边长为5+2的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,则圆锥的全面积S =________.解析 设圆锥的母线长为l ,底面半径为r ,由已知条件得⎩⎨⎧l +r +2r =(5+2)×22πr l =π2,解得r =2,l =42,S =πrl +πr 2=10π. 答案 10π12.四棱锥P -ABCD 的顶点P 在底面ABCD 上的投影恰好是点A ,其正视图与侧视图都是腰长为a 的等腰直角三角形.则在四棱锥P -ABCD 的任意两个顶点的连线中,互相垂直的异面直线共有________对.解析 四棱锥P -ABCD 的直观图如图所示,结合图形可知,满足题中要求的有P A ⊥BC ,P A ⊥CD ,AB ⊥PD ,BD ⊥P A ,BD ⊥PC ,AD ⊥PB ,共6对.答案 613.在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________. 解析 ∵P A ⊥底面ABC ,∴P A 为三棱锥P -ABC 的高,且P A =3. ∵底面ABC 为正三角形且边长为2, ∴底面面积为12×22×sin 60°=3, ∴V P -ABC =13×3×3= 3. 答案314.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.解析 如图,设截面小圆的半径为r ,球的半径为R ,因为AH ∶HB =1∶2,所以OH =13R .由勾股定理,有R 2=r 2+OH 2,又由题意得πr 2=π,则r =1,故R 2=1+⎝ ⎛⎭⎪⎫13R 2,即R 2=98.由球的表面积公式,得S =4πR 2=92π.答案 92π15.一个盛满水的三棱锥容器S -ABC ,不久发现三条侧棱上各有一个小洞D ,E ,F ,且SD ∶DA =SE ∶EB =CF ∶FS =2∶1,若仍用这个容器盛水,则最多可盛原来水的______倍.解析 设点F 到平面SDE 的距离为h 1,点C 到平面SAB 的距离为h 2,当平面EFD 处于水平位置时,容器盛水最多. V F -SDE V C -SAB=13S △SDE ·h 113S △SAB ·h 2=13·SD ·SE ·sin ∠DSE ·h 113·SA ·SB ·sin ∠ASB ·h 2=SD SA ·SE SB ·h 1h 2=23×23×13=427.故最多可盛原来水的1-427=2327. 答案 2327 三、解答题16.(2014·陕西卷)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.(1)解由该四面体的三视图可知,BD⊥DC,BD⊥AD,AD⊥DC,BD=DC=2,AD=1,∴AD⊥平面BDC,∴四面体ABCD的体积V=13×12×2×2×1=23.(2)证明∵BC∥平面EFGH,平面EFGH∩平面BDC=FG,平面EFGH∩平面ABC=EH,∴BC∥FG,BC ∥EH,∴FG∥EH.同理,EF∥AD,HG∥AD,∴EF∥HG,∴四边形EFGH是平行四边形.又∵AD⊥平面BDC,∴AD⊥BC,∴EF⊥FG,∴四边形EFGH是矩形.17.(2015·济南一模)在如图的多面体中,AE⊥底面BEFC,AD∥EF∥BC,BE=AD=EF=12BC,G是BC的中点.求证:(1)AB∥平面DEG;(2)EG⊥平面BDF.证明(1)∵AD∥EF,EF∥BC,∴AD∥BC.又∵BC=2AD,G是BC的中点,∴AD綉BG,∴四边形ADGB是平行四边形,∴AB∥DG.∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG.(2)连接GF,四边形ADFE是矩形,∵DF∥AE,AE⊥底面BEFC,∴DF⊥平面BCFE,EG⊂平面BCFE,∴DF⊥EG.∵EF綉BG,EF=BE,∴四边形BGFE为菱形,∴BF⊥EG,又BF∩DF=F,BF⊂平面BFD,DF⊂平面BFD,∴EG⊥平面BDF.18. (2015·青岛质量检测)如图几何体中,四边形ABCD为矩形,AB=3BC=6,BF=CF=AE=DE=2,EF=4,EF∥AB,G为FC的中点,M为线段CD上的一点,且CM=2.(1)证明:AF∥平面BDG;(2)证明:平面BGM⊥平面BFC.证明(1)连接AC交BD于O点,则O为AC的中点,连接OG.∵点G为FC的中点,∴OG为△AFC的中位线,∴OG∥AF.∵AF⊄平面BDG,OG⊂平面BDG,∴AF∥平面BDG.(2)连接FM.∵BF=CF=BC=2,G为CF的中点,∴BG⊥CF.∵CM=2,∴DM=4.∵EF∥AB,四边形ABCD为矩形,∴EF∥DM,又∵EF=DM=4,∴四边形EFMD为平行四边形.∴FM=ED=2,∴△FCM为正三角形,∴MG⊥CF.∵MG∩BG=G,∴CF⊥平面BGM.∵CF⊂平面BFC,∴平面BGM⊥平面BFC.19. (2014·重庆卷)如图,在四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=π3,M为BC上一点,且BM=1 2.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.(1)证明如图,连接OB,因为ABCD为菱形,O为菱形的中心,所以AO⊥OB.因为∠BAD=π3,所以OB=AB·sin∠OAB=2sin π6=1,又因为BM =12,且∠OBM =π3,所以在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM =12+⎝ ⎛⎭⎪⎫122-2×1×12×cos π3=34. 所以OB 2=OM 2+BM 2,故OM ⊥BM .又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM .(2)解 由(1)可得,OA =AB ·cos ∠OAB =2·cos π6= 3.设PO =a ,由PO ⊥底面ABCD 知,△POA 为直角三角形,故P A 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM =22+⎝ ⎛⎭⎪⎫122-2×2×12×cos 2π3=214.由于MP ⊥AP ,故△APM 为直角三角形,则P A 2+PM 2=AM 2,即a 2+3+a 2+34=214,得a =32或a =-32(舍去),即PO =32.此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32=538.所以V P -ABMO =13·S 四边形ABMO ·PO =13×538×32=516.。

创新设计 数学一轮文科 苏教 江苏专用 课时作业 第八章 立体几何4

创新设计 数学一轮文科 苏教 江苏专用 课时作业 第八章 立体几何4

第4讲直线、平面垂直的判定与性质基础巩固题组(建议用时:40分钟)一、填空题1.(2015·南通、扬州、泰州、宿迁调研)设l,m表示直线,m是平面α内的任意一条直线,则“l⊥m”是“l⊥α”成立的________条件(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选填一个).解析因为m是平面α内的任意一条直线,若l⊥m,则l⊥α,所以充分性成立;反过来,若l⊥α,则l⊥m,所以必要性成立,故“l⊥m”是“l⊥α”成立的充要条件.答案充要2.设a是空间中的一条直线,α是空间中的一个平面,给出下列说法:①过a一定存在平面β,使得β∥α;②过a一定存在平面β,使得β⊥α;③在平面α内一定不存在直线b,使得a⊥b;④在平面α内一定不存在直线b,使得a∥b.其中说法正确的是________(填序号).解析当a与α相交时,不存在过a的平面β,使得β∥α,故①错误;直线a 与其在平面α内的投影所确定的平面β满足β⊥α,②正确;平面α内的直线b 只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故③错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故④错误.答案②3.(2014·盐城模拟)已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则与平面ABCD垂直的直线MN有________条.解析如图所示,设D1E与平面AA1C1C相交于点M,在平面AA1C1C内过点M作MN∥AA1交C1F于点N,连接MN,由C1F与D1E为异面直线知MN唯一,且MN⊥平面ABCD.答案 14.(2015·青岛质量检测)设a,b是两条不同的直线,α,β是两个不同的平面,则下列条件中能得出a⊥b的是______(填序号).①a⊥α,b∥β,α⊥β;②a⊥α,b⊥β,α∥β;③a⊂α,b⊥β,α∥β;④a⊂α,b∥β,α⊥β.解析①中,两直线可以平行、相交或异面,故不正确;②中,两直线平行,故不正确;③中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;④中,两直线可以平行,相交或异面,故不正确.答案③5. 如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.答案①②③6. (2015·深圳调研)如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,给出下列结论:①平面ABC⊥平面ABD;②平面ABD⊥平面BDC;③平面ABC⊥平面BDE,且平面ADC⊥平面BDE;④平面ABC⊥平面ADC,且平面ADC⊥平面BDE.其中结论正确的序号是________.解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又由于AC ⊂平面ACD,所以平面ACD⊥平面BDE.所以③正确.答案③7.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC)8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.解析连接AC交BD于O,在长方体中,∵AB=AD=3,∴BD=3 2且AC⊥BD.又∵BB1⊥底面ABCD,∴BB1⊥AC.又DB∩BB1=B,∴AC⊥平面BB1D1D,∴AO为四棱锥A-BB1D1D的高且AO=12BD=32 2.∵S矩形BB1D1D=BD×BB1=32×2=62,∴VA-BB1D1D=13S矩形BB1D1D·AO=13×62×322=6(cm3).答案 6二、解答题9.如图,在直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是棱AA1的中点,CD⊥B1D.(1)证明:CD⊥B1C1;(2)平面CDB1分此棱柱为两部分,求这两部分体积的比.(1)证明由题设知,三棱柱的侧面为矩形,由于D为AA1的中点,故DC=DC1,又AA1=2A1C1,可得DC21+DC2=CC21,所以CD⊥DC1,而CD⊥B1D,B1D∩C1D=D,所以CD⊥平面B1C1D,因为B1C1⊂平面B1C1D,所以CD⊥B1C1.(2)解 由(1)知B 1C 1⊥CD ,且B 1C 1⊥C 1C ,C 1C ∩CD =C ,则B 1C 1⊥平面ACC 1A 1, 设V 1是平面CDB 1上方部分的体积,V 2是平面CDB 1下方部分的体积,则V 1=VB 1-CDA 1C 1=13×S 梯形CDA 1C 1×B 1C 1=13×32B 1C 31=12B 1C 31. V 总=VABC -A 1B 1C 1=12AC ×BC ×CC 1=B 1C 31,V 2=V 总-V 1=12B 1C 31=V 1,故V 1V 2=1∶1. 10.(2014·镇江模拟)如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ;(2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .证明 (1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE .所以四边形ABED 为平行四边形.所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD ,所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD.所以P A⊥CD.又因为P A∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.又E,F分别是CD和PC的中点,所以PD∥EF.故CD⊥EF,由EF,BE⊂平面BEF,且EF∩BE=E.所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.能力提升题组(建议用时:25分钟)1.(2015·南京模拟)已知m,n是不重合的两条直线,α,β是不重合的两个平面.下列命题:①若α⊥β,m⊥α,则m∥β;②若m⊥α,m⊥β,则α∥β;③若m∥α,m⊥n,则n⊥α;④若m∥α,m⊂β,则α∥β.其中所有真命题的序号是________.解析若α⊥β,m⊥α,则m∥β或m⊂β,①是假命题;若m⊥α,m⊥β,则α∥β,②是真命题;若m∥α,m⊥n,则n⊥α或n∥α或n⊂α或n,α相交(非垂直),③是假命题;若m∥α,m⊂β,则α∥β或α,β相交,④是假命题,故其中所有真命题的序号是②.答案②2.(2014·衡水中学模拟)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.给出下列结论:①点H是△A1BD的垂心;②AH垂直于平面CB1D1;③AH延长线经过点C1;④直线AH和BB1所成角为45°.其中错误的结论序号是________.解析对于①,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H 是△A1BD的垂心,命题①是真命题;对于②,由于B1D1∥BD,CD1∥A1B,故平面A1BD∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题②是真命题;对于③,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题③是真命题;对于④,由③知直线AH即是直线AC1,又直线AA1∥BB1,因此直线AC1和BB1所成的角就等于直线AA1与AC1所成的角,即∠A1AC1,而tan∠A1AC1=2=2,因此命题④是假命题.1答案④3.(2014·苏、锡、常、镇模拟)如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;又平面P AD⊥平面ABC,∴平面ABC⊥平面PBC 不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面P AD,∴BC∥平面P AD,∴直线BC∥平面P AE也不成立,③错;在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,∴④正确.答案①④4. (2015·南京模拟)如图,在四棱锥P-ABCD中,DC∥AB,DA=DC=2AB,O为AC与BD的交点,AB⊥平面P AD,△P AD是正三角形.(1)若点E为棱P A上一点,且OE∥平面PBC,求AEPE的值;(2)求证:平面PBC⊥平面PDC.(1)解因为OE∥平面PBC,OE⊂平面P AC,平面P AC∩平面PBC=PC,所以OE∥PC,所以AO∶OC=AE∶EP.因为DC∥AB,DC=2AB,所以AO∶OC=AB∶DC=1∶2.所以AEPE=12.(2)证明取PC的中点F,连接FB,FD.因为△P AD是正三角形,DA=DC,所以DP=DC.因为F为PC的中点,所以DF⊥PC.因为AB⊥平面P AD,所以AB⊥P A,AB⊥AD,AB⊥PD. 因为DC∥AB,所以DC⊥DP,DC⊥DA.设AB=a,在等腰直角三角形PCD中,DF=PF=2a.在Rt△P AB中,PB=5a.在直角梯形ABCD中,BD=BC=5a.因为BC=PB=5a,点F为PC的中点,所以PC⊥FB.在Rt△PFB中,FB=3a.在△FDB中,由DF=2a,FB=3a,BD=5a,可知DF2+FB2=BD2,所以FB⊥DF.由DF⊥PC,DF⊥FB,PC∩FB=F,PC,FB⊂平面PBC,所以DF⊥平面PBC.又DF⊂平面PCD,所以平面PBC⊥平面PDC.。

《创新设计·高考一轮总复习》数学(理)第八篇 立体几何 第7讲

《创新设计·高考一轮总复习》数学(理)第八篇 立体几何 第7讲
第7讲 立体几何中的向量方法(Ⅰ)——证明 平行与垂直
【2014年高考浙江会这样考】
1.通过线线、线面、面面关系考查空间向量的坐标运算.
2.利用空间向量解决直线、平面的平行与垂直问题. 3.利用空间向量求空间距
抓住2个考点
突破3个考向
揭秘3年高考
考点梳理 1.用向量证明空间中的平行和垂直关系 (1)直线的方向向量与平面的法向量的确定 ①直线的方向向量:l是空间一直线,A,B是直线l上任意 → → 两点,则称AB为直线l的方向向量,与AB平行的任意
是C1C、B1C1的中点.求证:MN∥平面A1BD.
抓住2个考点
突破3个考向
揭秘3年高考
[审题视点]
这是证明线面平行问题,可以利用三种方法证
→ 明:一是证明 MN 与平面A1BD的法向量垂直;二是在平面 → → A1BD内找一向量与 MN 共线;三是证明 MN 可以利用平面 A1BD中的两不共线向量线性表示.
量运算,研究点、线、面之间的位置关系;(3)根据运算结
果的几何意义来解释相关问题.
抓住2个考点
突破3个考向
揭秘3年高考
两个结论 x1+x2 y1+y2 (1)P1(x1, y1, z1 ) , P2(x2, y2 , z2), P1P2 的中点坐标为 2 , 2 , z1+z2 2 . (2)已知△ABC 的三个顶点 A(x1,y1,z1),B(x2,y2,z2),C(x3, x1+x2+x3 y1+y2+y3 y3,z3),则△ABC 的重心 G 的坐标为( , , 3 3 z1+z2+z3 ). 3

设平面A1BD的法向量n=(x,y,z),则
x+z=0, → → n· DA1=0且n· DB=0,得 x+y=0.

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课5

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课5

把直线与平面的平行、垂直关系作为考查的重点,以多面
体为载体的线面位置关系的论证是历年必考内容,其中既 有单独考查直线和平面的位置关系的试题,也有以简单几
何体体积的计算为载体考查直线和平面的位置关系的试
题.从内容上看,主要考查对定义、定理的理解及符号语 言、图形语言、文字语言之间的相互转换;从能力上来 看,主要考查考生的空间想象能力和逻辑思维能力.
第四步:转化为线面平行. 第五步:反思回顾,检查答题规范.
证明面面垂直问题
第一步:根据已知条件确定一个平面内的一条直线垂直于另一 个平面内的一条直线.
第二步:结合已知条件证明确定的这条直线垂直于另一平面内
的两条相交直线. 第三步:得出确定的这条直线垂直于另一平面. 第四步:转化为面面垂直. 第五步:反思回顾,检查答题规范.
法二
如图 2,取 AC 的中点 H,连接 C1H,FH.
(4 分)
因为 H,F 分别是 AC,BC 的中点,所以 HF∥AB, (6 分) 又因为 E,H 分别是 A1C1,AC 的中点, 所以 EC1 綉 AH, 所以四边形 EAHC1 为平行四边形, 所以 C1H∥AE,又 C1H∩HF=H,AE∩AB=A, 所以平面 ABE∥平面 C1HF,又 C1F⊂平面 C1HF, 所以 C1F∥平面 ABE. (10 分) (8 分)
何体的数据,通过计算也可得到线线垂直的关系,所以要 注意几何体中数据的正确利用.
【训练 2】 如图 1,在边长为 1 的等边△ABC 中,D,E 分别 是 AB,AC 上的点,AD=AE,F 是 BC 的中点,AF 与 DE 交于点 G.将△ABF 沿 AF 折起, 得到如图 2 所示的三棱锥 A 2 -BCF,其中 BC= 2 .

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何6

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何6

第八章 第6节对应学生用书课时冲关 理(四十五)/第319页文(四十二)/第283页一、选择题1.已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A ,B ,则|AB |等于( )A .3B .4C .3 2D .4 2解析:设直线AB 的方程为y =x +b ,A (x 1,y 1), B (x 2,y 2),由⎩⎪⎨⎪⎧y =-x 2+3,y =x +b ⇒x 2+x +b -3=0⇒x 1+x 2=-1, 得AB 的中点M ⎝⎛⎭⎫-12,-12+b . 又M ⎝⎛⎭⎫-12,-12+b 在直线x +y =0上,可求出b =1, 则|AB |= 1+12·(-1)2-4×(-2)=3 2.答案:C2.(2015·泰安模拟)斜率为3的直线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A .[2,+∞)B .(2,+∞)C .(1,3)D .(3,+∞)解析:因为斜率为3的直线与双曲线x 2a 2-y 2b 2=1恒有两个公共点,所以ba >3,所以e =ca=1+b 2a2> 1+(3)2=2.所以双曲线离心率的取值范围是(2,+∞). 答案:B3.(2015·西安模拟)已知任意k ∈R ,直线y -kx -1=0与椭圆x 25+y 2m =1(m >0)恒有公共点,则实数m 的取值范围是( )A .(0,1)B .(0,5)C .[1,5)∪(5,+∞)D .[1,5)解析:直线y =kx +1过定点(0,1),只要(0,1)在椭圆x 25+y 2m =1上或其内部即可.从而m ≥1,又因为椭圆x 25+y 2m=1中m ≠5,所以m 的取值范围是[1,5)∪(5,+∞).答案:C4.(2015·衡水模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与椭圆x 2m 2+y 2b 2=1(m >b >0)的离心率之积等于1,则以a ,b ,m 为边长的三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形解析:设双曲线离心率为e 1,椭圆离心率为e 2, 所以e 1= a 2+b 2a 2,e 2= m 2-b 2m 2, 故e 1·e 2=(a 2+b 2)(m 2-b 2)a 2m2=1,⇒(m 2-a 2-b 2)b 2=0, 即a 2+b 2-m 2=0,所以,以a ,b ,m 为边长的三角形为直角三角形. 答案:B5.(2015·嘉定模拟)过点P (1,1)作直线与双曲线x 2-y 22=1交于A ,B 两点,使点P 为AB中点,则这样的直线( )A .存在一条,且方程为2x -y -1=0B .存在无数条C .存在两条,方程为2x ±(y +1)=0D .不存在解析:设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=2, 则x 21-12y 21=1,x 22-12y 22=1, 两式相减得(x 1-x 2)(x 1+x 2)-12(y 1-y 2)(y 1+y 2)=0,所以x 1-x 2=12(y 1-y 2),即k AB =2,故所求直线方程为y -1=2(x -1),即2x -y -1=0.联立⎩⎪⎨⎪⎧y =2x -1,x 2-12y 2=1可得2x 2-4x +3=0,但此方程没有实数解,故这样的直线不存在.故选D. 答案:D6.(2015·杭州模拟)F 为椭圆x 25+y 2=1的右焦点,第一象限内的点M 在椭圆上,若MF⊥x 轴,直线MN 与圆x 2+y 2=1相切于第四象限内的点N ,则|NF |等于( )A.213 B.45 C.214 D.35解析:因为MF ⊥x 轴,F 为椭圆x 25+y 2=1的右焦点,所以F (2,0),M ⎝⎛⎭⎫2,55,设l MN :y -55=k (x -2), N (x ,y ),则O 到l MN 的距离d =⎪⎪⎪⎪-2k +55k 2+1=1,解得k =255(负值舍去).又因为⎩⎪⎨⎪⎧x 2+y 2=1,y -55=255(x -2)⇒⎩⎨⎧x =23,y =-53,即N ⎝⎛⎭⎫23,-53,所以|NF |= ⎝⎛⎭⎫2-232+⎝⎛⎭⎫532=213. 答案:A 二、填空题7.已知两定点M (-2,0),N (2,0),若直线上存在点P ,使得|PM |-|PN |=2,则称该直线为“A 型直线”,给出下列直线:①y =x +1;②y =3x +2;③y =-x +3;④y =-2x .其中是“A 型直线”的序号是________.解析:由条件知考虑给出直线与双曲线x 2-y 23=1右支的交点情况,作图易知①③直线与双曲线右支有交点,故填①③.答案:①③8.(2015·无锡模拟)若直线mx +ny =4与☉O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________.解析:由题意知:4m 2+n 2>2,即m 2+n 2<2,所以点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.答案:29.已知双曲线左、右焦点分别为F 1,F 2,点P 为其右支上一点,∠F 1PF 2=60°,且S△F 1PF 2=23,若|PF 1|,14|F 1F 2|2,|PF 2|成等差数列,则该双曲线的离心率为________.解析:设|PF 1|=m ,|PF 2|=n (m >n ),双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),因此有m -n=2a ,|F 1F 2|=2c ,S △PF 1F 2=12·m ·n ·32=23,m ·n =8.又m +n =12×4c 2=2c 2⇒(m +n )2=4c 4.①由余弦定理cos ∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·|PF 2|=m 2+n 2-4c 22mn =12⇒m 2+n 2=8+4c 2⇒(m +n )2=4c 2+24. ②①②两式联立解得c 2=3⇒c =3,所以⎩⎪⎨⎪⎧m ·n =8,m +n =6,m >n⇒⎩⎪⎨⎪⎧m =4,n =2,⇒2a =2,a =1,e =c a = 3.答案: 3 三、解答题10.(2015·衡水模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b ≥1)的离心率e =32,且椭圆C 上一点N 到点Q (0,3)的距离最大值为4,过点M (3,0)的直线交椭圆C 于点A ,B .(1)求椭圆C 的方程;(2)设P 为椭圆上一点,且满足OA →+OB →=tOP →(O 为坐标原点),当|AB |<3时,求实数t 的取值范围.解析:(1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,则椭圆方程为x 24b 2+y 2b 2=1,即x 2+4y 2=4b 2.设N (x ,y ),则|NQ |= (x -0)2+(y -3)2= 4b 2-4y 2+(y -3)2 = -3y 2-6y +4b 2+9 =-3(y +1)2+4b 2+12.当y =-1时,|NQ |有最大值为4b 2+12=4, 解得b 2=1,所以a 2=4,椭圆方程是x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0), AB 方程为y =k (x -3),由⎩⎪⎨⎪⎧y =k (x -3),x 24+y 2=1,整理得(1+4k 2)x 2-24k 2x +36k 2-4=0. 由Δ=(24k 2)2-16(9k 2-1)(1+4k 2)>0,得k 2<15.x 1+x 2=24k 21+4k 2,x 1·x 2=36k 2-41+4k 2.所以OA →+OB →=(x 1+x 2,y 1+y 2)=t (x 0,y 0), 则x 0=1t (x 1+x 2)=24k 2t (1+4k 2),y 0=1t (y 1+y 2) =1t [k (x 1+x 2)-6k ]=-6k t (1+4k 2). 由点P 在椭圆上,得(24k 2)2t 2(1+4k 2)2+144k 2t 2(1+4k 2)2=4,化简得36k 2=t 2(1+4k 2) ①又由|AB |=1+k 2|x 1-x 2|<3,即(1+k 2)[(x 1+x 2)2-4x 1x 2]<3,将x 1+x 2,x 1x 2代入得(1+k 2)⎣⎢⎡⎦⎥⎤242k 4(1+4k 2)2-4(36k 2-4)1+4k 2<3, 化简,得(8k 2-1)(16k 2+13)>0, 则8k 2-1>0,k 2>18,所以18<k 2<15②由①,得t 2=36k 21+4k 2=9-91+4k 2, 联立②,解得3<t 2<4, 所以-2<t <-3或3<t <2.11.(2015·石家庄模拟)椭圆x 2b 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-1,0)、F 2(1,0),过F 1作与x 轴不重合的直线l 交椭圆于A 、B 两点.(1)若△ABF 2为正三角形,求椭圆的离心率; (2)若椭圆的离心率满足0<e <5-12,O 为坐标原点,求证:|OA |2+|OB |2<|AB |2.(1)解:由椭圆的定义知|AF 1|+|AF 2|= |BF 1|+|BF 2|,∵|AF 2|=|BF 2|,∴|AF 1|=|BF 1|,即F 1F 2 为边AB 上的中线, ∴F 1F 2⊥AB .在Rt △AF 1F 2中,cos 30°=2c4a 3, 则c a =33,∴椭圆的离心率为33. (2)证明:设A (x 1,y 1),B (x 2,y 2),∵0<e <5-12,c =1,∴a >1+52. ①当直线AB 与x 轴垂直时,1a 2+y 2b 2=1,y 2=b 4a 2, OA →·OB →=x 1x 2+y 1y 2=1-b 4a 2=-a 4+3a 2-1a 2=-⎝⎛⎭⎫a 2-322+54a 2,∵a 2>3+52,∴OA →·OB →<0,∴∠AOB 恒为钝角,∴|OA |2+|OB |2<|AB |2.②当直线AB 不与x 轴垂直时,设直线AB 的方程为: y =k (x +1),代入x 2a 2+y 2b2=1,整理得,(b 2+a 2k 2)x 2+2k 2a 2x +a 2k 2-a 2b 2=0, ∴x 1+x 2=-2a 2k 2b 2+a 2k 2,x 1x 2=a 2k 2-a 2b 2b 2+a 2k 2,OA →·OB →=x 1x 2+y 1y 2 =x 1x 2+k 2(x 1+1)(x 2+1) =x 1x 2(1+k 2)+k 2(x 1+x 2)+k 2=(a 2k 2-a 2b 2)(1+k 2)-2a 2k 4+k 2(b 2+a 2k 2)b 2+a 2k 2=k 2(a 2+b 2-a 2b 2)-a 2b 2b 2+a 2k 2=k 2(-a 4+3a 2-1)-a 2b 2b 2+a 2k 2令m (a )=-a 4+3a 2-1,由①可知m (a )<0, ∴∠AOB 恒为钝角,∴恒有|OA |2+|OB |2<|AB |2. 12.(2015·长春三校调研)在直角坐标系xOy 中,点M ⎝⎛⎭⎫2,-12,点F 为抛物线C :y =mx 2(m >0)的焦点,线段MF 恰被抛物线C 平分. (1)求m 的值;(2)过点M 作直线l 交抛物线C 于A ,B 两点,设直线F A ,FM ,FB 的斜率分别为k 1,k 2,k 3,问k 1,k 2,k 3能否成公差不为零的等差数列?若能,求直线l 的方程;若不能,请说明理由.解:(1)由题得抛物线C 的焦点F 的坐标为⎝⎛⎭⎫0,14m ,线段MF 的中点N ⎝⎛⎭⎫1,18m -14在抛物线C 上,∴18m -14=m,8m 2+2m -1=0, ∴m =14⎝⎛⎭⎫m =-12舍去. (2)由(1)知抛物线C :x 2=4y ,F (0,1). 设直线l 的方程为y +12=k (x -2),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y +12=k (x -2),x 2=4y ,得x 2-4kx +8k +2=0, Δ=16k 2-4(8k +2)>0, ∴k <2-62或k >2+62.由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8k +2,假设k 1,k 2,k 3能成公差不为零的等差数列,则k 1+k 3=2k 2.而k 1+k 3=y 1-1x 1+y 2-1x 2=x 2y 1+x 1y 2-x 2-x 1x 1x 2=x 2x 214+x 1x 224-x 2-x 1x 1x 2=⎝⎛⎭⎫x 1x 24-1(x 1+x 2)x 1x 2=⎝⎛⎭⎫8k +24-1·4k 8k +2=4k 2-k4k +1,k 2=-12-12-0=-34,∴4k 2-k 4k +1=-32,8k 2+10k +3=0,解得k =-12(符合题意)或k =-34(不合题意,舍去).∴直线l 的方程为y +12=-12(x -2),即x +2y -1=0.∴k 1,k 2,k 3能成公差不为零的等差数列,此时直线l 的方程为x +2y -1=0.[备课札记]。

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何4

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何4

第八章 第4节对应学生用书课时冲关 理(四十三)/第315页 文(四十)/第279页一、选择题1.(2014·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1 解析:∵b a=2,0=-2c +10,∴c =5,a 2=5,b 2=20, ∴双曲线的方程为x 25-y 220=1. 答案:A2.(2015·济南期末)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均与圆C :x 2+y 2-4x +3=0相切,则该双曲线的离心率等于( )A.32B.62C.233D.33解析:依题意可知圆C :(x -2)2+y 2=1,设双曲线的渐近线方程为y =±kx ,则|2k |1+k 2=1,解得k 2=13,即b 2a 2=13,所以该双曲线的离心率e = 1+13=233.故选C. 答案:C3.(2015·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 解析:依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2,∴b 2a 2=8,b a =22,a b =24. 答案:D4.(2015·哈师大附中模拟)与椭圆C :y 216+x 212=1共焦点且过点(1,3)的双曲线的标准方程为( )A .x 2-y 23=1 B .y 2-2x 2=1C.y 22-x 22=1 D.y 23-x 2=1 解析:椭圆y 216+x 212=1的焦点坐标为(0,-2),(0,2),设双曲线的标准方程为y 2m -x 2n=1(m >0,n >0),则⎩⎪⎨⎪⎧3m -1n =1,m +n =4,解得m =n =2,故选C. 答案:C5.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( ) A .m >12B .m ≥1C .m >1D .m >2解析:用m 表示出双曲线的离心率,并根据离心率大于2建立关于m 的不等式求解.∵双曲线x 2-y 2m =1的离心率e =1+m , 又∵e >2,∴1+m >2,∴m >1.答案:C6.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则b 2+13a的最小值为( ) A.233B.33 C .2 D .1 解析:因为双曲线的离心率为2,所以c a=2, 即c =2a ,c 2=4a 2.又因为c 2=a 2+b 2,所以a 2+b 2=4a 2,即b =3a ,因此b 2+13a =3a 2+13a =a +13a ≥213=233,当且仅当 a =13a 时等号成立.即b 2+13a 的最小值为233.答案:A7.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,则PF 1→·PF 2→=0,则|PF 1→|+|PF 2→|=( ) A.10 B .210 C.5 D .219解析:∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴|PF 1→|2+|PF 2→|2=40,又||PF 1→|-|PF 2→||=2a =2,∴||PF 1→|-|PF 2→||2=|PF 1→|2+|PF 2→|2-2|PF 1→|×|PF 2→|=4,∴|PF 1→|×|PF 2→|=18,||PF 1→|+|PF 2→||2=|PF 1→|2+|PF 2→|2+2|PF 1→|×|PF 2→|=76,∴|PF 1→|+|PF 2→|=219.答案:D8.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A.2 B.3 C.3+12 D.5+12解析:设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =b a x ,而k BF =-b c , ∴b a ·⎝⎛⎭⎫-b c =-1,整理得b 2=ac . ∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),故选D. 答案:D9.已知点F 是双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是钝角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,+∞)解析:根据双曲线的对称性,若△ABE 是钝角三角形,则只要0<∠BAE <π4即可.直线AB :x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝⎛⎭⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |>|EF |就能使∠BAE <π4,故b 2a>a +c ,即b 2>a 2+ac ,即c 2-ac -2a 2>0,即e 2-e -2>0,得e >2或e <-1,又e >1,故e >2.故选D.答案:D10.若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1 (a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞ D.⎣⎡⎭⎫74,+∞ 解析:由a 2+1=4,得a =3,则双曲线方程为x 23-y 2=1. 设点P (x 0,y 0),则x 203-y 20=1,即y 20=x 203-1. OP →·FP →=x 0(x 0+2)+y 20=x 20+2x 0+x 203-1 =43⎝⎛⎭⎫x 0+342-74,∵x 0≥3, 故OP →·FP →的取值范围是[3+23,+∞),故选B.答案:B11.(2015·临沂联考)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,2)B .(2,2)C .(3,2)D .(2,3)解析:由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形,则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝⎛⎭⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a<a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2.又e >1,故1<e <2.答案:A二、填空题12.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m =________.解析:由题意知a 2=1,b 2=-1m,则a =1,b = -1m .∴ -1m =2,解得m =-14. 答案:-1413.已知以双曲线C 的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C 的离心率为________.解析:如图,∠B 1F 1B 2=60°,则c =3b ,即c 2=3b 2,由c 2=3(c 2-a 2),得c 2a 2=32,则e =62. 答案:62三、解答题14.(2014·山东高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,求双曲线的渐近线方程.解析:由题意可知,抛物线的焦点F 为⎝⎛⎭⎫0,p 2,准线方程为y =-p 2.因为|F A |=c ,所以⎝⎛⎭⎫p 22+a 2=c 2,即=⎝⎛⎭⎫p 22=b 2.联立⎩⎨⎧ y =-p 2,x 2a 2-y 2b 2=1,消去y ,得x =± a 2+a 2p 24b 2,即x =±2a .又因为双曲线截抛物线的准线所得的线段长为2c ,所以22a =2c ,即2a =c ,所以b =a ,所以双曲线的渐近线方程为y =±x .15.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,求此双曲线的离心率e 的最大值.解析:由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a . 在△PF 1F 2中,由余弦定理, 得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos ∠F 1PF 2的最小值,∴当cos ∠F 1PF 2=-1时,得e =53, 即e 的最大值为53.[备课札记]。

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何2

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何2

第八章 第2节对应学生用书课时冲关 理(四十一)/第312页文(三十八)/第275页一、选择题1.“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:若直线y =x +4与圆(x -a )2+(y -3)2=8相切,则有|a -3+4|2=22,即|a +1|=4,所以a =3或-5.但当a =3时,直线y =x +4与圆(x -a )2+(y -3)2=8一定相切,故“a =3”是“直线y =x +4与圆(x -a )2+(y -3)2=8相切”的充分不必要条件.答案:A2.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( )A .8B .-4C .6D .无法确定解析:圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝⎛⎭⎫-m2,0,即-m2+3=0,∴m =6. 答案:C3.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆x 2+y 2-2ax +3by =0的圆心为⎝⎛⎭⎫a ,-32b , 则a <0,b >0.直线y =-1a x -b a ,k =-1a >0,-ba >0,直线不经过第四象限.答案:D4.(2014·浙江高考)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8解析:圆的标准方程为(x +1)2+(y -1)2=2-a ,r 2=2-a ,则圆心(-1,1)到直线x +y +2=0的距离为|-1+1+2|2= 2.由22+(2)2=2-a ,得a =-4, 故选B. 答案:B5.圆C 1:x 2+y 2+2x +2y -2=0与圆C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( ) A .1条 B .2条 C .3条D .4条解析:⊙C 1:(x +1)2+(y +1)2=4, 圆心C 1(-1,-1),半径r 1=2.⊙C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),半径r 2=2. ∴|C 1C 2|=13,∴|r 1-r 2|=0<|C 1C 2|<r 1+r 2=4, ∴两圆相交,有两条公切线. 答案:B6.已知圆的半径为2,圆心在x 轴的正半轴上,且与直线3x +4y +4=0相切,则圆的方程是( )A .x 2+y 2-4x =0B .x 2+y 2+4x =0C .x 2+y 2-2x -3=0D .x 2+y 2+2x -3=0解析:设圆心为C (m,0) (m >0),因为所求圆与直线3x +4y +4=0相切,所以|3m +4×0+4|32+42=2,整理得|3m +4|=10,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=22,即x 2+y 2-4x =0,故选A.答案:A7.(2015·郑州第一次质检)以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A .x 2+y 2+2x =0B .x 2+y 2+x =0C .x 2+y 2-x =0D .x 2+y 2-2x =0解析:抛物线y 2=4x 的焦点坐标为(1,0),选项A 中圆的圆心坐标为(-1,0),排除A ;选项B 中圆的圆心坐标为(-0.5,0),排除B ;选项C 中圆的圆心坐标为(0.5,0),排除C.答案:D8.已知圆(x +1)2+(y -1)2=1上一点P 到直线3x -4y -3=0距离为d ,则d 的最小值为( )A .1B.45C.25D .2解析:∵圆心C (-1,1)到直线3x -4y -3=0距离为|3×(-1)-4-3|5=2,∴d min =2-1=1.答案:A9.(2015·温州模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 为切点,若四边形P ACB 的最小面积是2,则k 的值为( )A .4B .3C .2D. 2解析:圆C 的方程可化为x 2+(y -1)2=1,因为四边形P ACB 的最小面积是2,且此时切线长为2,故圆心(0,1)到直线kx +y +4=0的距离为5,即51+k 2=5,解得k =±2,又k >0,所以k =2.答案:C10.(2015·成都模拟)直线l :mx +(m -1)y -1=0(m 为常数),圆C :(x -1)2+y 2=4,则下列说法正确的是( )A .当m 变化时,直线l 恒过定点(-1,1)B .直线l 与圆C 有可能无公共点C .对任意实数m ,圆C 上都不存在关于直线l 对称的两点D .若直线l 与圆C 有两个不同交点M 、N ,则线段MN 的长的最小值为2 3解析:直线l 可化为m (x +y )-(y +1)=0,令⎩⎪⎨⎪⎧ x +y =0,y +1=0,得⎩⎪⎨⎪⎧x =1,y =-1,∴l 过定点(1,-1),故A 错;又(1-1)2+(-1)2=1<4,∴点(1,-1)在⊙C 内部,∴l 与⊙C 恒相交,故B 错;当l 过圆心C (1,0),即m =1时,圆心上存在关于直线l 对称的两点,故C 错.故选D.答案:D11.设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .4 2 C .8D .8 2解析:∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|= (a -b )2+(a -b )2=32×2=8.答案:C12.(2015·吉林模拟)已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33|AB →|,那么k 的取值范围是( )A .(3,+∞)B .[2,+∞)C .[2,22)D .[3,22)解析:当|OA →+OB →|=33|AB →|时,O ,A ,B 三点为等腰三角形的三个顶点,其中OA =OB ,∠AOB =120°,从而圆心O 到直线x +y -k =0(k >0)的距离为1,此时k =2;当k >2时||OA →+OB →>33||AB→,又直线与圆x 2+y 2=4存在两交点,故k <22,综上,k 的取值范围为[2,22),故选C.答案:C 二、填空题13.(2015·金华十校联考)已知圆C 的半径为1,圆心在第一象限,与y 轴相切,与x 轴相交于点A 、B ,且AB =3,则该圆的标准方程是________.解析:依题可设⊙C :(x -1)2+(y -b )2=1(b >0),且⎝⎛⎭⎫322+b 2=1,可解得b =12,所以⊙C 的标准方程为(x -1)2+⎝⎛⎭⎫y -122=1. 答案:(x -1)2+⎝⎛⎭⎫y -122=1 14.已知圆x 2+y 2+2x -4y +a =0关于直线y =2x +b 成轴对称,则a -b 的取值范围是________.解析:圆的方程化为(x +1)2+(y -2)2=5-a , ∴其圆心为(-1,2),且5-a >0,即a <5. 又圆关于直线y =2x +b 成轴对称, ∴2=-2+b ,∴b =4.∴a -b =a -4<1. 答案:(-∞,1)15.(2014·重庆高考)已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.解析:∵圆C 的标准方程为(x +1)2+(y -2)2=9,∴圆心为C (-1,2),半径为3.∵AC ⊥BC ,∴|AB |=3 2.∵圆心到直线的距离d =|-1-2+a |2=|a -3|2,∴|AB |=2r 2-d 2=2 9-⎝ ⎛⎭⎪⎫|a -3|22=32,即(a -3)2=9,∴a =0或a =6. 答案:0或616.(2015·吉林长春一调)若圆C :x 2+y 2+2x -4y +3=0关系直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值为________.解析:将圆化为标准方程为(x +1)2+(y -2)2=2,圆心坐标为C (-1,2),代入直线2ax +by +6=0,得-2a +2b +6=0,即点(a ,b )在直线l :-x +y +3=0上,过C (-1,2)作l 的垂线,垂足设为D ,过D 作圆C 的切线,切点设为E ,则切线长DE 最短,于是有|CE |=2,|CD |=|6|2=32,∴由勾股定理得|DE |=4. 答案:417.已知AC 、BD 为圆O :x 2+y 2=4的两条相互垂直的弦,垂足为M (1,2),则四边形ABCD 的面积的最大值为________.解析:如图,取AC 的中点F ,BD 的中点E , 则OE ⊥BD ,OF ⊥AC .又AC ⊥BD , ∴四边形OEMF 为矩形,设|OF |=d 1,|OE |=d 2,∴d 21+d 22=|OM |2=3. 又|AC |=24-d 21,|BD |=24-d 22,∴S 四边形ABCD =12|AC |·|BD |=24-d 21·4-d 22=2(1+d 22)·(4-d 22)=2-⎝⎛⎭⎫d 22-322+254. ∵0≤d 22≤3.∴当d 22=32时,S 四边形ABCD 有最大值是5. 答案:5[备课札记]。

高中新创新一轮复习理数:第八章 立体几何

高中新创新一轮复习理数:第八章 立体几何

第八章⎪⎪⎪立体几何第一节 空间几何体的三视图、直观图、表面积与体积本节主要包括3个知识点:1.空间几何体的三视图和直观图;空间几何体的表面积与体积;3.与球有关的切、接应用问题.突破点(一) 空间几何体的三视图和直观图[基本知识]1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[基本能力]1.判断题(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)棱台各侧棱的延长线交于一点.()(3)正方体、球、圆锥各自的三视图中,三视图均相同.()(4)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A=90°,则在直观图中,∠A=45°.()答案:(1)×(2)√(3)×(4)×2.填空题(1)如图所示的几何体中,是棱柱的为________(填写所有正确的序号).解析:根据棱柱的定义,结合给出的几何体可知③⑤满足条件.答案:③⑤(2)有一个几何体的三视图如图所示,这个几何体的形状为________.解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台.答案:棱台(3)已知一个几何体的三视图如图所示,则此几何体从上往下依次由____________构成.解析:由三视图可知,该几何体是由一个圆台和一个圆柱组成的组合体.答案:圆台,圆柱(4)利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上结论正确的个数是________.解析:由斜二测画法的规则可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案:1[全析考法][例1]给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3[解析]①错误,只有这两点的连线平行于旋转轴时才是母线;②错误,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.[答案] A[方法技巧]解决与空间几何体结构特征有关问题的技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1中的命题②④易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2018·河北衡水中学调研)正方体ABCD -AB1C1D1中,E为棱BB1的中点(如1图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧视图为()(2)(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3 2 B.2 3C.2 2 D.2[解析](1)过点A,E,C1的截面为AEC1F,如图,则剩余几何体的侧视图为选项C中的图形.故选C.(2)在正方体中还原该四棱锥如图所示,从图中易得最长的棱为AC1=AC2+CC21=(22+22)+22=2 3.[答案](1)C(2)B[方法技巧]有关三视图问题的解题方法(1)由几何体的直观图画三视图需注意的事项①注意正视图、侧视图和俯视图对应的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符合“长对正、高平齐、宽相等”的基本特征.(2)由几何体的部分视图画出剩余视图的方法先根据已知的部分视图推测直观图的可能形式,然后推测其剩余视图的可能情形,若为选择题,也可以逐项检验.(3)由几何体三视图还原其直观图时应注意的问题要熟悉柱、锥、球、台的三视图,结合空间想象将三视图还原为直观图.空间几何体的直观图按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A[全练题点]1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C空间几何体的正视图和侧视图“高平齐”,故正视图的高一定为2,正视图和俯视图“长对正”,故正视图的底边长为 2.侧视图中的直角说明这个三棱锥最前面的面垂直于底面,这个面遮住了后面的一条侧棱.综合以上可知,这个三棱锥的正视图可能是C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二]已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .4解析:选D 由题意知,三棱锥放置在长方体中如图所示,利用长方体模型可知,此三棱锥的四个面全部是直角三角形.故选D.突破点(二) 空间几何体的表面积与体积[基本知识]1.圆柱、圆锥、圆台的侧面展开图及侧面积公式S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式[基本能力]1.判断题(1)锥体的体积等于底面面积与高之积.( ) (2)台体的体积可转化为两个锥体的体积之差.( ) (3)球的体积之比等于半径比的平方.( ) 答案:(1)× (2)√ (3)× 2.填空题(1)已知圆柱的底面半径为a ,高为66a ,则此圆柱的侧面积等于________. 解析:底面周长l =2πa ,则S 侧=l ·h =2πa ·⎝⎛⎭⎫66a =63πa 2. 答案:63πa 2(2)已知某棱台的上、下底面面积分别为63和243,高为2,则其体积为________. 解析:V =13(63+243+63×243)×2=28 3.答案:28 3(3)已知圆锥的母线长是8,底面周长为6π,则它的体积是________.解析:设圆锥底面圆的半径为r ,则2πr =6π,∴r =3.设圆锥的高为h ,则h =82-32=55,∴V 圆锥=13πr 2h =355π.答案:355π(4)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为________.解析:在正三棱柱ABC -A 1B 1C 1中,∵AD ⊥BC ,AD ⊥BB 1,BB 1∩BC =B ,∴AD ⊥平面B 1DC 1.∴VA -B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1.答案:1(5)一个空间几何体的三视图如图所示,则该几何体的表面积为________.解析:由三视图可知该几何体是一个底面为等腰梯形的平放的直四棱柱,所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.答案:48+817[全析考法][例1] (1)(2018·福州市五校联考)某几何体的三视图如图所示,其中俯视图为一个直角三角形,一个锐角为30°,则该几何体的表面积为( )A .24+12 3B .24+5 3C .12+15 3D .12+12 3(2)(2018·南昌市十校联考)已知某几何体的三视图如图所示,则该几何体的表面积是( )A .(25+35)πB .(25+317)πC .(29+35)πD .(29+317)π[解析] (1)由已知可得,该几何体为三棱柱,底面是斜边长为4,斜边上的高为3的直角三角形,底面面积为23,底面周长为6+23,棱柱的高为4,故棱柱的表面积S =2×23+4×(6+23)=24+123,故选A.(2)由三视图可知该几何体由一个上下底面直径分别为2和4,高为4的圆台,一个底面直径为4,高为4的圆柱和一个直径为4的半球组成,其直观图如图所示,所以该几何体的表面积为π+π×(1+2)×17+π×4×4+4π×222=π+317π+16π+8π=(25+317)π,故选B. [答案] (1)A (2)B[方法技巧] 求空间几何体表面积的常见类型及思路[例2] (1)(2017·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为()A .60B .30C .20D .10(2)(2018·洛阳市第一次统考)某几何体的三视图如图所示,则该几何体的体积是()A.15π2 B .8π C.17π2D .9π[解析] (1)如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,故该三棱锥的体积V =13×12×5×3×4=10.(2)依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接,恰好可以形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.[答案] (1)D (2)B[方法技巧] 求空间几何体体积的常见类型及思路[全练题点]1.[考点二](2018·石家庄市教学质量检测)某几何体的三视图如图所示(在网格线中,每个小正方形的边长为1),则该几何体的体积为( )A .2B .3C .4D .6解析:选A 由三视图知,该几何体为四棱锥如图所示,其底面面积S =12×(1+2)×2=3,高为2,所以该几何体的体积V =13×3×2=2,故选A.2.[考点一](2018·长沙市统一模拟考试)如图是某几何体的三视图,其正视图、侧视图均是直径为2的半圆,俯视图是直径为2的圆,则该几何体的表面积为( )A .3πB .4πC .5πD .12π解析:选A 由三视图可知,该几何体是半径为1的半球,其表面积为2π+π=3π.选A.3.[考点二](2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =12×13π×12×3+13×12×2×2×3=π2+1.4.[考点一](2018·南昌市模拟)如图,直角梯形ABCD 中,AD ⊥DC ,AD ∥BC ,BC =2CD =2AD =2,若将该直角梯形绕BC 边旋转一周,则所得的几何体的表面积为________.解析:根据题意可知,此旋转体的上半部分为圆锥(底面半径为1,高为1),下半部分为圆柱(底面半径为1,高为1),如图所示.则所得几何体的表面积为圆锥的侧面积、圆柱的侧面积以及圆柱的下底面积之和,即表面积为π·1·12+12+2π·12+π·12=(2+3)π.答案:(2+3)π5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得(5.4-x )×3×1+π×⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题与球有关的组合体问题常涉及内切和外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体时,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体时,正方体的各个顶点均在球面上,正方体的体对角线长等于球的直径.球与其他旋转体组合时,通常作它们的轴截面解题;球与多面体组合时,通常过多面体的一条侧棱和球心及“切点”或“接点”作截面图进行解题.[全析考法]多面体的内切球问题[例1] (1)(2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________. (2)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] (1)设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.(2)设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14×63a =612a , 因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. [答案] (1)32 (2)63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(2)(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.(3)(2018·河北衡水调研)一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为________.[解析] (1)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2,∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(2)由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.(3)由直六棱柱的外接球的直径为直六棱柱中最长的对角线,知该直六棱柱的外接球的直径为42+32=5,∴其外接球的表面积为4π×⎝⎛⎭⎫522=25π. [答案] (1)A (2)9π2 (3)25π[方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.[全练题点]1.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 2.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.[考点一](2018·东北三省模拟)三棱柱ABC -A 1B 1C 1的底面是边长为3的正三角形,侧棱AA 1⊥底面ABC ,若球O 与三棱柱ABC -A 1B 1C 1各侧面、底面均相切,则侧棱AA 1的长为( )A.12B.32C .1D. 3解析:选C 因为球O 与直三棱柱的侧面、底面均相切,所以侧棱AA 1的长等于球的直径.设球的半径为R ,则球心在底面上的射影是底面正三角形ABC 的中心,如图所示.因为AC =3,所以AD =12AC =32.因为tan π6=MD AD ,所以球的半径R =MD =AD tan π6=32×33×1=12,所以AA 1=2R =2×12=1.4.[考点二]三棱锥P -ABC 中,PA ⊥平面ABC ,AC ⊥BC ,AC =BC =1,PA =3,则该三棱锥外接球的表面积为( )A .5π B.2π C .20πD .4π解析:选A 把三棱锥P -ABC 看作由一个长、宽、高分别为1、1、3的长方体截得的一部分(如图).易知该三棱锥的外接球就是对应长方体的外接球.又长方体的体对角线长为12+12+(3)2=5,故外接球半径为52,表面积为4π×⎝⎛⎭⎫522=5π. 5.[考点二](2018·洛阳统考)已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π333解析:选D 依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC =13S △ABC h =13×⎝⎛⎭⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎫2332=203,所以三棱锥P -ABC 的外接球的表面积为4πR 2=80π3,故选D.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.2.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34π×1=3π4. 3.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π23解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 4.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.5.(2015·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.6.(2017·全国卷Ⅱ)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.解析:由题意知,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积为S=4πR2=14π.答案:14π[课时达标检测][小题对点练——点点落实]对点练(一)空间几何体的三视图和直观图1.给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③有两侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱.其中正确的命题个数是()A.0 B.1C.2 D.3解析:选A①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③④显然错误,故选A.2.(2018·广州六校联考)已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数为()A.5 B.4C.3 D.2解析:选B由题知可以作为该几何体的俯视图的图形可以为①②③⑤.故选B.3.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为( )A .①和③B .③和①C .④和③D .④和②解析:选D 由题意得,该几何体的正视图是一个直角三角形,三个顶点的坐标分别是(0,0,2),(0,2,0),(0,2,2),且内有一条虚线(一顶点与另一直角边中点的连线),故正视图是④;俯视图即在底面的射影,是一个斜三角形,三个顶点的坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.4.如图,△O ′A ′B ′是△OAB 的水平放置的直观图,其中O ′A ′=O ′B ′=2,则△OAB 的面积是________.解析:在Rt △OAB 中,OA =2,OB =4,△OAB 的面积S =12×2×4=4.答案:45.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为_______cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C .在Rt △ABC 中,AC =12 cm ,BC =8-3=5(cm).∴AB =122+52=13(cm).答案:13对点练(二) 空间几何体的表面积与体积1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a 2B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π解析:选B 由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.3.(2018·湖北四校联考)已知某几何体的三视图如图所示,则该几何体的表面积为( )A .16B .(10+5)πC .4+(5+5)πD .6+(5+5)π解析:选C 该几何体是两个相同的半圆锥与一个半圆柱的组合体,其表面积为S =π+4π+4+5π=4+(5+5)π.4.(2017·山东高考)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为________.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π25.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸).答案:36.(2018·合肥市质检)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12.答案:12对点练(三) 与球有关的切、接应用问题1.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为( ) A .2π B .6π C .46πD .24π解析:选B 设相互垂直的三条侧棱AB ,AC ,AD 分别为a ,b ,c 则12ab =22,12bc =32,12ac =62,解得a =2,b =1,c = 3.所以三棱锥A -BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π.2.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于点E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π.3.(2018·湖北七市(州)联考)一个几何体的三视图如图所示,该几何体外接球的表面积为( )A .36π B.1123π C .32πD .28π解析:选B 根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥补形成一个三棱柱,如图所示,则其底面是边长为4的正三角形,高是4,该三棱柱的外接球即为原四棱锥的外接球,其中心到三棱柱 6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到该三角形三个顶点的距离为23。

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何1

2016年《创新教程》高考数学(理科)大一轮(人教A新课标)课时冲关第8章解析几何1

第八章 第1节对应学生用书课时冲关 理(四十)/第311页 文(三十七)/第273页一、选择题1.若直线斜率的绝对值等于1,则直线的倾斜角为( )A .45°B .135°C .45°或135°D .60°或120°解析:由|k |=|tan α|=1,知:k =tan α=1或k =tan α=-1.又倾斜角α∈[0°,180°),∴α=45°或135°.答案:C2.如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:直线l 1的斜率角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.答案:D3.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:由题意得a +2=a +2a,∴a =-2或a =1. 答案:D4.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)解析:由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,∴直线l 2恒过定点(0,2).答案:B5.(2015·江门模拟)如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:由题意知A ·B ·C ≠0,直线方程变为y =-A B x -C B .∵A ·C <0,B ·C <0,∴A ·B >0,∴其斜率k =-A B <0.又y 轴上的截距b =-C B >0,∴直线过第一、二、四象限.答案:C6.已知两点A (3,2)和B (-1,4)到直线mx +y +3=0的距离相等,则m 的值为( )A .0或-12 B.12或-6C .-12或12D .0或12解析:依题意得|3m +2+3|m 2+1=|-m +4+3|m 2+1,∴|3m +5|=|m -7|,∴3m +5=m -7或3m +5=7-m .∴m =-6或m =12.故应选B.答案:B7.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为() A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0解析:由题意设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0, 由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23. ∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0.答案:D8.(2015·广州模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3, 即x +2y -3=0.答案:D9.设直线l 的方程为x +y cos θ+3=0 (θ∈R ),则直线l 的倾斜角α的范围是( )A .[0,π)B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4解析:当cos θ=0时,方程变为x +3=0,其倾斜角为π2; 当cos θ≠0时,由直线方程可得斜率k =-1cos θ. ∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞),即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π),∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.由上知,倾斜角的范围是⎣⎡⎦⎤π2,3π4,故选C.答案:C10.(2015·北京海淀一模)已知点A (-1,0),B (cos α,sin α),且|AB |=3,则直线AB 的方程为( )A .y =3x +3或y =-3x - 3B .y =33x +33或y =-33x -33C .y =x +1或y =-x -1D .y =2x +2或y =-2x - 2解析:|AB |= (cos α+1)2+sin 2 α =2+2cos α=3,所以cos α=12,sin α=±32, 所以k AB =±33,即直线AB 的方程为y =±33(x +1),所以直线AB 的方程为y =33x +33或y =-33x -33,选B. 答案:B11.(2014·福建高考)已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y -2=0C .x +y -3=0D .x -y +3=0解析:由直线l 与直线x +y +1=0垂直,可设直线l 的方程为x -y +m =0.又直线l 过圆x 2+(y -3)2=4的圆心(0,3),则m =3,所以直线l 的方程为x -y +3=0,故选D.答案:D12.如图,已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .33D .2 5解析:由题意知点P 关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线所经过的路程PMN 的长为|CD |=2.答案:A二、填空题13.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,则直线l 的倾斜角的取值范围为________.解析:直线l 的斜率k =m 2-11-2=1-m 2≤1. 设l 的倾斜角为α,则tan α≤1.又∵α∈[0,π),∴α∈⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π. 答案:⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 14.一条直线经过点A (-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.解析:设所求直线的方程为x a +y b=1, ∵A (-2,2)在直线上,∴-2a +2b =1. ①又因直线与坐标轴围成的三角形面积为1,∴12|a |·|b |=1. ②由①②可得(1)⎩⎪⎨⎪⎧ a -b =1ab =2或(2)⎩⎪⎨⎪⎧ a -b =-1,ab =-2. 由(1)解得⎩⎪⎨⎪⎧ a =2b =1或⎩⎪⎨⎪⎧a =-1,b =-2,方程组(2)无解. 故所求的直线方程为x 2+y 1=1或x -1+y -2=1, 即x +2y -2=0或2x +y +2=0为所求直线的方程.答案:x +2y -2=0或2x +y +2=015.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.解析:根据A (a,0)、B (0,b )确定直线的方程为x a +y b=1,又C (-2,-2)在该直线上,故-2a +-2b=1, 所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据均值不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16.答案:1616.一条光线沿直线2x -y +2=0入射到直线x +y -5=0后反射,则反射光线所在的直线方程为________.解析:取直线2x -y +2=0上一点A (0,2),设点A (0,2)关于直线x +y -5=0对称的点为B (a ,b ),则⎩⎨⎧ a 2+b +22-5=0,b -2a =1,解得⎩⎪⎨⎪⎧a =3,b =5, ∴B (3,5),联立方程,得⎩⎪⎨⎪⎧ 2x -y +2=0,x +y -5=0,解得⎩⎪⎨⎪⎧x =1,y =4, ∴直线2x -y +2=0与直线x +y -5=0的交点为P (1,4),∴反射光线在经过点B (3,5)和点P (1,4)的直线上,其直线方程为y -4=4-51-3(x -1),整理得x-2y+7=0. 答案:x-2y+7=0 [备课札记]。

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课2

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课2

构建模板 求含参函数f(x)的单调区间的一般步骤 第一步:求函数f(x)的定义域(根据已知函数解析式确定).
第二步:求函数f(x)的导数f′(x).
第三步:根据f′(x)=0的零点是否存在或零点的大小对参数分类 讨论.
第四步:求解(令f′(x)>0或令f′(x)<0).
第五步:下结论. 探究提高 讨论含参函数的单调性,大多数情况下归结为对含 有参数的不等式的解集的讨论,注意根据对应方程解的大小进 行分类讨论.
热点三 构造函数法求解不等式恒成立问题
函数与导数的试题,在每年的高考中属于必考内容,一般
为压轴题,主要围绕函数的单调性、极值、最值、不等式 恒成立等问题展开,此类压轴试题难度较大,对逻辑推理
能力要求较强,不可小视.
【例4】 (2015·石家庄模拟)已知函数f(x)=xln x-(x-1)(ax-a
x x
1 -a)e,由(1-a)e· e=-1 得 a=2.
1 (2)由(1)知 f′(x)=(x -a+ln x)ex,若 f(x)为单调递减函数, 1 1 则 f′(x)≤0,即x -a+ln x≤0,所以 a≥x +ln x.令 g(x)= 1 1 1 x-1 x +ln x(x>0),则 g′(x)=-x2+x = x2 (x>0),由 g′(x) >0 得 x>1,故 g(x)在(0,1]上为单调递减函数,在[1,+∞) 上为单调递增函数,此时 g(x)有最小值为 g(1)=1,但 g(x) 无最大值.故 f(x)不可能是单调递减函数.若 f(x)为单调递 1 1 增函数,则 f′(x)≥0,即x -a+ln x≥0,所以 a≤x +ln x, 由上述推理可知此时 a≤1.故 a 的取值范围是(-∞,1].
1 3 2 【例 1】 (12 分)(2014· 广东卷节选)已知函数 f(x)=3x +x +ax +1(a∈R),求函数 f(x)的单调区间.

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课1

2016届《创新设计》人教A版高考数学(文)大一轮复习课件 探究课1
-0.6
)<f(log13)<f(log47),即 c<b<a.
2
答案 B
热点突破
热点三 函数与方程的求解问题
函数的零点与方程的解、函数图象等问题密切相关,该部 分的重点主要包括以下四个方面:(1)函数零点所在区间的确
定;(2)函数零点个数的判断;(3)函数零点近似值的求解;(4)
由函数零点所在范围或函数零点个数求解参数的取值范围 等.在高考试题中多作为选择题或填空题进行考查,难度中等 偏下.
(
)
1 + x 1 1 + 2 ,x≥-1, |x 1| 解析 因为 y=2 = 所以图象为 B. x+1 2 ,x<-1,
答案 B
热点突破
热点二
函数性质的三个核心点
函数的性质是基本初等函数最核心的知识,主要包括:函数的 单调性、周期性、奇偶性、有界性,以及函数图象的对称性、 函数的定义域和值域等.对于函数性质问题,重在灵活运用, 巧妙构建,便可实现函数问题的巧思妙解.
【例 3】 (2014· 福建卷)已知函数 结论正确的是 A.f(x)是偶函数 C.f(x)是周期函数
2 x +1,x>0, f(x)= cos x,x≤0,
则下列 ( )
B.f(x)是增函数 D.f(x)的值域为[-1,+∞)
热点突破
解析 然
π π - A 项,f-2=cos 2=0,而
热点突破
由已知 f(0)=0,而 又
1 3 1 f(2)=f2+2=-f 2,
1 1 f2=log22×2+1 =log22=1, 1 f(2)=-f 2=-1,
所以
即 f(2 015)=-1,故 f(-2 015)=1. 综上,f(-2 015)+f(2 013)=1+0=1.

创新设计高考数学浙江文理通用一轮复习练习:第八章 立体几何 第1讲 含答案

创新设计高考数学浙江文理通用一轮复习练习:第八章 立体几何 第1讲 含答案

基础巩固题组(建议用时:40分钟)一、选择题1.一个简单几何体的正视图、侧视图分别为如图所示的矩形、正方形,则其俯视图不可能为()A.矩形B.直角三角形C.椭圆D.等腰三角形解析依题意,题中的几何体的俯视图的长为3、宽为2,因此结合题中选项知,其俯视图不可能是等腰三角形,故选D.答案 D2.某几何体的三视图如图所示,则该几何体的体积为()A.13+2π B.13π6 C.7π3 D.5π2解析由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为1 2×13×π×12×1+π×12×2=13π6,故选B.答案 B3.(2014·新课标全国Ⅱ卷)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A.3B.32C.1D.32解析 如图,在正△ABC 中,D 为BC 中点,则有AD =32AB =3,又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高.∴VA -B 1DC 1=13S △B 1DC 1·AD =13×12×2×3×3=1,故选C.答案 C4.(2015·全国Ⅱ卷)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π解析 如图,要使三棱锥O -ABC 即C -OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O -ABC 最大=V C -OAB 最大=13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S球O=4πR 2=4π×62=144π,选C.答案 C5.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 答案 B二、填空题6.如图所示,E ,F 分别为正方体ABCD -A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是________(填序号).解析 由正投影的定义,四边形BFD 1E 在面AA 1D 1D 与面BB 1C 1C 上的正投影是图③;其在面ABB 1A 1与面DCC 1D 1上的正投影是图②;其在面ABCD 与面A 1B 1C 1D 1上的正投影也是②,故①④错误.答案 ②③7.(2016·哈尔滨、长春、沈阳、大连四市联考)如图,半球内有一内接正四棱锥S -ABCD ,该四棱锥的体积为423,则该半球的体积为________.解析 设所给半球的半径为R ,则棱锥的高h =R ,底面正方形中有AB =BC =CD =DA =2R ,∴其体积为23R 3=423,则R 3=22,于是所求半球的体积为V=23πR 3=423π.答案 423π8.(2016·舟山高三检测)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析 如图,设点C 到平面P AB 的距离为h ,△P AB 的面积为S ,则V 2=13Sh ,V 1=V E -ADB =13×12S ×12h =112Sh ,所以V 1V 2=14. 答案 14三、解答题9.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解 (1)正六棱锥.(2)其侧视图如图:其中AB =AC ,AD ⊥BC ,且BC 的长是俯视图中的正六边形对边的距离,即BC =3a ,AD 的长是正六棱锥的高,即AD =3a ,∴该平面图形的面积S =12 3a ·3a =32a 2.(3)V =13×6×34a 2×3a =32a 3.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6.故S四边形A1EHA=12×(4+10)×8=56,S四边形EB1BH=12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).能力提升题组(建议用时:20分钟)11.(2016·杭州模拟)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8πB.16πC.32πD.64π解析由三视图可知此几何体为一横放的四棱锥,其底为边长为4的正方形,高为2,其中平面SAB⊥平面ABCD,易知SA=SB=22,故可补全为以DA、SA、SB为棱的长方体,故2R=DA2+SA2+SB2=32=42,∴R=22,∴S表=4πR2=32π.答案 C12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2B.4 2C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6,选C. 答案 C13.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为________.解析 由题意知,如图所示,在棱锥S -ABC 中,△SAC ,△SBC都是有一个角为30°的直角三角形,其中SC =4,所以SA =SB=23,AC =BC =2,作BD ⊥SC 于D 点,连接AD ,易证SC ⊥平面ABD ,又易得AD =BD =3,由已知AB =3,因此V S -ABC =13×34×(3)2×4= 3.答案 3 14.如图,在三棱锥A -BCD 中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC的体积.法一 (1)证明 ∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD .(2)解 由AB ⊥平面BCD ,BD ⊂平面BCD ,得AB ⊥BD ,∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD ,∴三棱锥C -ABM 的高h =CD =1,因此三棱锥A -MBC 的体积V A -MBC =V C -ABM =13S △ABM ·h =112.法二 (1)证明 同法一.(2)解 由AB ⊥平面BCD 且AB ⊂平面ABD 知,平面ABD ⊥平面BCD ,又平面ABD ∩平面BCD =BD ,如图,过点M 作MN ⊥BD 交BD 于点N ,则MN ⊥平面BCD , 且MN =12AB =12,又CD ⊥BD ,BD =CD =1,∴S △BCD =12.∴三棱锥A -MBC 的体积V A -MBC =V A -BCD -V M -BCD =13AB ·S △BCD -13MN ·S △BCD =112.。

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 第讲

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 第讲

第4讲空间中的垂直关系基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β解析如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.答案 D2.(2015·抚顺模拟)设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是() A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b解析当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a 与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b 只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.答案 B3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.P A=PB>PCB.P A=PB<PCC.P A=PB=PCD.P A≠PB≠PC解析∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故P A=PB=PC.答案 C4.(2015·青岛质量检测)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D中,两直线可以平行,相交或异面,故不正确.答案 C5. (2015·深圳调研)如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又由于AC ⊂平面ACD,所以平面ACD⊥平面BDE,所以选C.答案 C二、填空题6.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.答案①②③7.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC)8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.解析连接AC交BD于O,在长方体中,∵AB=AD=3,∴BD=3 2且AC⊥BD.又∵BB1⊥底面ABCD,∴BB1⊥AC.又DB∩BB1=B,∴AC⊥平面BB1D1D,∴AO为四棱锥A-BB1D1D的高且AO=12BD=32 2.∵S矩形BB1D1D=BD×BB1=32×2=62,∴VA-BB1D1D=13S矩形BB1D1D·AO=13×62×322=6(cm3).答案 6三、解答题9. (2014·大连测试)如图,在直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是棱AA1的中点,CD⊥B1D.(1)证明:CD⊥B1C1;(2)平面CDB1分此棱柱为两部分,求这两部分体积的比.(1)证明由题设知,三棱柱的侧面为矩形,由于D为AA1的中点,故DC=DC1,又AA1=2A1C1,可得DC21+DC2=CC21,所以CD⊥DC1,而CD⊥B1D,B1D∩C1D=D,所以CD ⊥平面B 1C 1D ,因为B 1C 1⊂平面B 1C 1D ,所以CD ⊥B 1C 1.(2)解 由(1)知B 1C 1⊥CD ,且B 1C 1⊥C 1C ,则B 1C 1⊥平面ACC 1A 1, 设V 1是平面CDB 1上方部分的体积,V 2是平面CDB 1下方部分的体积, 则V 1=VB 1-CDA 1C 1=13×S 梯形CDA 1C 1×B 1C 1 =13×32B 1C 31=12B 1C 31.V 总=VABC -A 1B 1C 1=12AC ×BC ×CC 1=B 1C 31, V 2=V 总-V 1=12B 1C 31=V 1, 故V 1V 2=1∶1.10.如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .证明 (1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE . 所以四边形ABED 为平行四边形. 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD.所以P A⊥CD.所以CD⊥平面P AD.从而CD⊥PD.又E,F分别是CD和PC的中点,所以PD∥EF.故CD⊥EF,CD⊂平面PCD,由EF,BE⊂平面BEF,且EF∩BE=E.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.能力提升题组(建议用时:25分钟)11.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在() A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上.答案 A12.(2014·衡水中学模拟)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH延长线经过点C1D.直线CB1和CD1所成角为45°解析对于A,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H是△A1BD 的垂心,命题A是真命题;对于B,由于B1D1∥BD,CD1∥A1B,故平面A1BD ∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题B是真命题;对于C,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题C是真命题;对于D,因为△B1CD1为正三角形,所以∠B1CD=60°,故直线CB1和CD1所成角为60°,因此命题D是假命题.答案 D13.(2013·河南师大附中二模)如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;又平面P AD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面P AD,∴BC∥平面P AD,∴直线BC∥平面P AE 也不成立,③错;在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,∴④正确.答案①④14.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.(1)证明由直四棱柱,得BB1∥DD1,又∵BB1=DD1,∴BB1D1D是平行四边形,∴B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.(2)证明∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC.又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D.而MD⊂平面BB1D,∴MD⊥AC.(3)解当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D.理由如下:取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.∵N是DC的中点,BD=BC,∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.又可证得O是NN1的中点,∴BM∥ON且BM=ON,即BMON是平行四边形.∴BN∥OM.∴OM⊥平面CC1D1D.∵OM⊂平面DMC1,∴平面DMC1⊥平面CC1D1D.。

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 第2讲

创新设计 数学一轮文科 人教B 课时作业 第八章 立体几何 第2讲

第2讲平面的基本性质与推论基础巩固题组(建议用时:40分钟)一、选择题1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c() A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能解析当a,b,c共面时,a∥c;当a,b,c不共面时,a与c可能异面也可能相交.答案 D2.(2014·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案 D3.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF 的位置关系是() A.相交B.异面C.平行D.垂直解析如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案 A4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析当l1⊥l2,l2⊥l3时,l1与l3也可能相交或异面或平行,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点出发的三条棱,故D不正确.答案 B5.(2014·沈阳调研)两条异面直线在同一个平面上的正投影不可能是() A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点解析如图,在正方体ABCD-EFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD 内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.答案 C二、填空题6.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或47.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×4=24(对).2答案248.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.解析A,M,C1三点共面,且在平面AD1C1B中,但C∉平面AD1C1B,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,①②错,④正确;M,B,B1三点共面,且在平面MBB1中,但N∉平面MBB1,因此直线BN与MB1是异面直线,③正确.答案③④三、解答题9.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠F AB=90°,BC綉12AD,BE綉12F A,G,H分别为F A,FD的中点.(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?(1)证明由已知FG=GA,FH=HD,可得GH綉12AD.又BC綉12AD,∴GH綉BC,∴四边形BCHG为平行四边形.(2)解由BE綉12AF,G为F A中点知,BE綉FG,∴四边形BEFG为平行四边形,∴EF∥BG.由(1)知BG綉CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C,D,F,E四点共面.10.如图,空间四边形ABCD中,AB≠AC,AE是△ABC的BC边上的高,DF是△BCD的BC边上的中线,求证:AE与DF是异面直线.证明法一(定理法)由题设条件知点E,F不重合,设△BCD所在平面为α.∴DF⊂α,A∉α,E∈α,E∉DF.∴AE和DF是异面直线.法二(反证法)若AE和DF不是异面直线,则AE和DF共面.设过AE,DF的平面为β.(1)若E,F重合,则E是BC中点,这与题设AB≠AC相矛盾;(2)若E,F不重合,∵B∈EF,C∈EF,EF⊂β,∴BC⊂β.又A∈β,D∈β,∴A,B,C,D四点共面.这与题设四边形ABCD是空间四边形相矛盾.综上,AE和DF不是异面直线不成立.故AE和DF是异面直线.能力提升题组(建议用时:25分钟)11.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是() A.②③④B.①③④C.①②④D.①②③解析由图易知,平面BB1D1D和平面AMC1均与AB,B1C1相交,故③是假命题.故选C.答案 C12.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是() A.①②③B.②③④C.①②④D.①③④解析还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH 与MN成60°角,DE⊥MN.答案 B13.在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).解析图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉面GMN,因此GH与MN异面.所以在图②④中GH与MN异面.答案②④14.如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA. ∴CE,D1F,DA三线共点.。

创新设计 数学一轮理科 人教B 课时作业 第八章 立体几何6

创新设计 数学一轮理科 人教B 课时作业 第八章 立体几何6

第6讲 立体几何中的向量方法(一)——证明平行与垂直基础巩固题组(建议用时:40分钟)一、选择题1.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)解析 若l ∥α,则a·n =0,D 中,a·n =1×0+(-1)×3+3×1=0,∴a ⊥n .答案 D2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交B .平行C .在平面内D .平行或在平面内 解析 ∵AB →=λCD →+μCE →,∴AB →,CD →,CE →共面.则AB 与平面CDE 的位置关系是平行或在平面内.答案 D3.已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( ) A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)解析 逐一验证法,对于选项A ,MP →=(1,4,1), ∴MP →·n =6-12+6=0,∴MP →⊥n ,∴点P 在平面α内,同理可验证其他三个点不在平面α内.答案 A4.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE .则M 点的坐标为( ) A .(1,1,1)B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1D.⎝ ⎛⎭⎪⎫24,24,1 解析 设AC 与BD 相交于O 点,连接OE ,由AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE=OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线交点,∴M 为线段EF 的中点.在空间坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标⎝ ⎛⎭⎪⎫22,22,1. 答案 C5. 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 的位置关系为( ) A .平行B .异面C .垂直D .以上都不对解析 以D 点为原点,分别以DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz ,依题意,可得,D (0,0,0),P (0,1,3),C (0,2,0),A (22,0,0),M (2,2,0).∴PM →=(2,2,0)-(0,1,3)=(2,1,-3),AM →=(2,2,0)-(22,0,0)=(-2,2,0),∴PM →·AM →=(2,1,-3)·(-2,2,0)=0,即PM →⊥AM →,∴AM ⊥PM .答案 C二、填空题6.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.解析 ∵a ·b =x -2+6=0,∴x =-4.答案 -47.设点C (2a +1,a +1,2)在点P (2,0,0),A (1,-3,2),B (8,-1,4)确定的平面上,则a =________.解析 P A →=(-1,-3,2),PB →=(6,-1,4).根据共面向量定理,设PC →=xP A →+yPB →(x ,y ∈R ),则(2a -1,a +1,2)=x (-1,-3,2)+y (6,-1,4)=(-x +6y ,-3x -y ,2x +4y ),∴⎩⎪⎨⎪⎧2a -1=-x +6y ,a +1=-3x -y ,2=2x +4y ,解得x =-7,y =4,a =16.答案 168.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD→=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的序号是________.解析 ∵AB →·AP →=0,AD →·AP →=0,∴AB ⊥AP ,AD ⊥AP ,则①②正确.又AB →与AD →不平行,∴AP →是平面ABCD 的法向量,则③正确. 由于BD →=AD →-AB →=(2,3,4),AP →=(-1,2,-1),∴BD →与AP →不平行,故④错误.答案 ①②③三、解答题9.(2015·北京房山一模)如图,四棱锥P -ABCD的底面为正方形,侧棱P A ⊥底面ABCD ,且P A=AD =2,E ,F ,H 分别是线段P A ,PD ,AB的中点.求证:(1)PB ∥平面EFH ;(2)PD ⊥平面AHF .证明 建立如图所示的空间直角坐标系A -xyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0).(1)∵PB →=(2,0,-2),EH →=(1,0,-1),∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH ,∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1),∴PD →·AF →=0×0+2×1+(-2)×1=0,PD →·AH →=0×1+2×0+(-2)×0=0,∴PD ⊥AF ,PD ⊥AH ,又∵AF ∩AH =A ,∴PD ⊥平面AHF .10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.解 在棱C 1D 1上存在点F (为C 1D 1中点),使B 1F ∥平面A 1BE .证明如下:设正方体的棱长为1.如图所示,以AB →,AD →,AA →1为单位正交基底建立空间直角坐标系.依题意,得B (1,0,0),E ⎝ ⎛⎭⎪⎫0,1,12,A 1(0,0,1), BA →1=(-1,0,1),BE →=⎝ ⎛⎭⎪⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA →1=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0.所以x =z ,y =12z . 取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t ,1,1)(0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .能力提升题组 (建议用时:25分钟) 11.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1.以上正确说法的个数为 ( )A .1B .2C .3D .4解析 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.答案 C12.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN与平面BB 1C 1C 的位置关系是( ) A .相交B .平行C .垂直D .不能确定解析 分别以C 1B 1、C 1D 1,C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系,如图,∵A 1M =AN =23a ,∴M ⎝ ⎛⎭⎪⎫a ,23a ,a 3,N ⎝ ⎛⎭⎪⎫23a ,23a ,a , ∴MN →=⎝ ⎛⎭⎪⎫-a 3,0,23a . 又C 1(0,0,0),D 1(0,a ,0),∴C 1D 1→=(0,a ,0),∴MN →·C 1D 1→=0,∴MN →⊥C 1D 1→.∵C 1D 1→是平面BB 1C 1C 的法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .答案 B13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱BC ,DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1,D 1C 1,D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x ,1,1),B 1(1,1,0),F (0,0,1-y ),B (1,1,1),∴B 1E →=(x -1,0,1),∴FB →=(1,1,y ),由于B 1E ⊥平面ABF ,所以FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.答案 114.如图所示,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD . (2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC ?若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎪⎫0,0,62a , D ⎝ ⎛⎭⎪⎫-22a ,0,0,B ⎝ ⎛⎭⎪⎫22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a , 则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面P AC .理由如下:由已知条件知DS →是平面P AC 的一个法向量, 且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝⎛⎭⎪⎫0,-22a ,62a , BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at , 由BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.又BE 不在平面P AC 内,故BE ∥平面P AC .。

创新导学案(人教版·文科数学)新课标高考总复习专项演练:第八章 立体几何

创新导学案(人教版·文科数学)新课标高考总复习专项演练:第八章 立体几何

8-1A 组 专项基础训练 (时间:45分钟)1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线【解析】 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.【答案】 D2.(·全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【解析】 依据给出的三视图画出几何体的直观图,利用割补法求解.由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.【答案】 D3.(·陕西)已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2π D.4π3【解析】 正四棱柱的外接球的球心为上下底面的中心连线的中点,所以球的半径r = ⎝⎛⎭⎫222+⎝⎛⎭⎫222=1, 球的体积V =4π3r 3=4π3.故选D.【答案】 D4.(·浙江)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72 cm 3B .90 cm 3C .108 cm 3D .138 cm 3【解析】 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示.V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm 3). 【答案】 B5.(·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【解析】 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺). 故堆放的米约有3209÷1.62≈22(斛).故选B.【答案】 B6.(·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .5【解析】 先将三视图还原为几何体,再求解表面积.作出三棱锥的示意图如图,在△ABC 中,作AB 边上的高CD ,连接SD .在三棱锥S -ABC 中,SC ⊥底面ABC ,SC =1,底面三角形ABC 是等腰三角形,AC =BC , AB 边上的高CD =2,AD =BD =1, 斜高SD =5,AC =BC = 5.∴S 表=S △ABC +S △SAC +S △SBC +S △SAB =12×2×2+12×1×5+12×1×5+12×2×5=2+2 5.【答案】 C7.(·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4【解析】 根据几何体的三视图画出其直观图,根据直观图特征求其表面积. 由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.【答案】 D8.(·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【解析】 先通过三视图还原几何体,再利用体积公式求解.由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.【答案】 83π9.(·四川)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.【解析】 利用三视图还原几何体,再由体积公式求解.由三视图易知几何体ABC -A 1B 1C 1是上、下底面为等腰直角三角形的直三棱柱,则VP ­A 1MN =VA 1­PMN =V A ­PMN .又S △PMN =12MN ·NP =12×12×1=14,A 到平面PMN 的距离h =12,∴V A ­PMN =13S △PMN ·h =13×14×12=124.【答案】12410.(·浙江杭州一模)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.【解析】 如图所示,三棱台ABC -A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升 (时间:30分钟)11.(·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2【解析】 先根据三视图还原几何体,再根据几何体的结构特点求解.根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.故选B.【答案】 B12.(·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【解析】 画出球的直观图,利用锥体的体积公式求解. 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ­ABC =V C ­AOB ,而△AOB 面积为定值, ∴当点C 到平面AOB 的距离最大时,V O ­ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ­ABC 最大为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C. 【答案】 C13.(·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π 【解析】 根据三视图和几何体的体积公式求解.由三视图可知该几何体是由一个半圆柱和一个三棱锥组成的.由图中数据可得三棱锥的体积V 1=13×12×2×1×1=13,半圆柱的体积V 2=12π×12×2=π,∴V =13+π. 【答案】 A14.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积; (2)求P A .【解析】 (1)该四棱锥的俯视图(内含对角线)是边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6,且AD ⊥PD ,所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=63(cm).15.(·汕头二模)如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值. 【解析】 (1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C , ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC . (2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2), ∴S △ABC =12AC ·BC =12x ·4-x 2∴V (x )=V E ­ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤⎝⎛⎭⎫x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值为33.。

【创新设计】高考数学(文)人教A版(全国)一轮复习练习第八章立体几何专题探究课四含..doc

【创新设计】高考数学(文)人教A版(全国)一轮复习练习第八章立体几何专题探究课四含..doc

(建议用时:70分钟)一、选择题1. (2016-广州综合测试)一个几何体的三视图如图所示,则该几何体的体积为()解析 依题意,题中的几何体是半个圆柱,因此其体积等于|x JI X22X3 = 6JI . 答案C2. (2015-天水诊断)已知三棱锥的正视图与俯视图如图所示,俯视图是 边长为2的正三角形,则该三棱锥的侧视图可能为()解析 由正视图和俯视图还原几何体如图所示,由正视图和俯视 图对应线段可得AB=BD=AD=2,当BC 丄平面ABD 时,BC=2,△ABD 的边AB 上的高为羽,只有B 选项符合,当BC 不垂直平面时,没有符合条件的选项,故选B. 答案B 二、填空题3. _______________________________ 在三棱锥P-ABC 中,明丄底面ABC, M = 3,底面ABC 是边长为2的止三角 形,则三棱锥P-ABC 的体积等于 .解析 ・・•〃丄底面ABC. :.PA 为三棱锥P-ABC 的高,且M = 3.V 底面ABC 为 正三角形且边长为2,・•・底面面积为|x22Xsin 60° =£,・・・"wc=*X 羽X3A.2 nB.4兀 5I则视图俯视图C.6兀 D.12 JT 正视图正视图俯视图B=A/5.答案A/34.如图,在四棱锥P-ABCD中,用丄底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足 ________ 时,平面MBD丄平面PCD(只要填写一个你认为止确的条件即可).解析连接AC, •・•四边形ABCD各边相等, :.BD丄AC,又M丄底面ABCD, BDu平面4BCD,・・・用丄BD,又:.BD丄平面fi4C,而PCu平面B4C, :.BD丄PC.・••当DM丄PC(或BM丄PC)时,即有PC丄平面MBD, 而PCu平面PCD,・•・平面MBD丄平面PCD.答案DM丄PC(或BM丄PC)三、解答题5.如图所示,在四棱锥P-ABCD中,平面丄平面ABC D, AB=AD, ZBAD=60° , E, F 分别是AP, AD 的中点.求证:(1)直线EF〃平面PCD;⑵平而BEF丄平而PAD.证明⑴在中,因为E, F分别是AP, 4D的屮点,所以EF〃PD因対EF G平面PCD, PDu平面PCD,所以直线EF〃平面PCD⑵如图所示,连接BD,因为AB=AD, ZBAD=60° ,所以△ABD 为止三角形.因为尸是AD的中点,所以BF丄AD因为平而MZ)丄平ABCD,平而平ABCD=AD, BFu 平面ABCD.所以丄平面MD又BFu平面BEF,所以平面BEF丄平面PAD.6.(2016-沈阳监测)如图,设四棱锥E-ABCD的底面为菱形,且ZABC= 60°, AB=EC=2, AE=BE=©(1)证明:平面EAB丄平面ABCD;(2)求四棱锥E-ABCD的体积.(1)证明取AB的中点O,连接EO, CO.由AE=BE=y[i, AB=2,知为等腰直角三角形.pD pD故E0丄AB, EO=l,又AB=BC, ZABC=60° ,则厶ABC 是等边三角形, 从而CO=书.•:EC=2, :.EC 1 = EO 2+CO 2, :.EO 丄CO.又 EO 丄AB, COQAB=O, 因此EO 丄平面ABCD.又EOu 平面EAB,故平面丄平面ABCD.7. (2015-唐山模拟)如图,四棱锥P-ABCD 的底面ABCD 是平行四边形,朋丄底面ABCD, ZPCD=90° , PA=AB=AC=2.⑴求证:AC 丄CD ;(2) 点E 是棱PC 的中点,求点B 到平面E4D 的距离.⑴证明 ・・•/丄底面ABCD, ・・・〃丄CD, V ZPCD =90° , :.PC 丄CD,又 MQPC=P, ・・・CD 丄平面PAC,:.CD 丄 AC.(2)解 连接 DE/:PA=AB=AC=2, E 为 PC 的中点, :.AE 丄 PC, AE=y[2.由(1)知 AE 丄 CD, :.AE 丄平面 PCD 作 CF 丄DE,交 DE 于点、F,贝ij CF 丄AE,乂 CF 丄DE, DEOAE=E,则 CF 丄平面 EAD・・・BC 〃AD,・••点B 与点C 到平面EAD 的距离相等,CF 即为点C 到平而EAD 的距离.亠……亠CEXCD y/2X2 2^3在 RtAECD 中,CF= DE = & = 3 • ・・・点B 到平面EAD 的距离为爭.8. (2016-洛阳一模)如图,在四棱锥P-ABCD 中,必丄平面ABCD, 底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,且AB=2, ZBAD=60°・(1) 求证:OM 〃平面MB ; (2) 求证:平而丄平而2^33 •⑵解V E -ABCD =§S Q A BCD • EO=§X2X2Xsin 60° X 1 = PBD(3)当三棱锥M-BCD的体积等于乎时,求PB的长.⑴证明•・•在中,O, M分别是3D PD的中点,・・・0M是△PBD的中位线,・•・OM// PB.•?OMd平面PAB, PBu平面:.0M〃平面刊B.(2)证明・・•〃丄平而ABCD, BDu平面ABCD,・・・£4丄•・•底面A3CD是菱形,・・・BD丄AC•又ACu平面用C,用u平面用C, ACHPA=A,・・.BD丄平面PA a・.・BDu平而PBD,・••平而PBD丄平而PAC.⑶解•・•底面ABCD是菱形,M是PD的中点, • • yM-BCD =2YM-ABCD=~^yP-ABCD^从而Vp-ABCD=y[^・又AB=2, ZBAD=60° , :.S ^AB cD=2y[3.•・・四棱锥P-ABCD的高为PA,1 Q••込X 2书X "=书,得= y・.・用丄平面ABCD, ABu平面ABCD :.PALAB.在Rt^PAB中,PB=寸加+AB?=T g)2 + 2? =?.9.(2015-四川卷)一个正方体的平而展开图及该正方体的直观图的示意图如图所示.(1)请将字母F, G, H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF丄平面BEG.(1)解点F, G,刃的位置如图所示.⑵解平而BEG〃平而ACH,证明如下:因为ABCD-EFGH为正方体,所以BC//FG, BC=FG,头FG〃EH、FG=EH,所以BC〃EH, BC=EH,于是四边形BCHE为平行四边形,所以BE//CH.又CHu平面ACH, BEQ平面ACH,所以BE〃平而ACH.同理BG〃平而ACH.又BEOBG=B,所以平面BEG〃平面ACH.⑶证明连接FH.因为ABCD-EFGH为正方体,所以DH丄平面EFGH.因为EGu平面EFGH,所以DHA.EG,又EG丄FH, DHOFH=H,所以EG丄平而BFHD又DFu平面BFHD,所以DF丄EG同理DFLBG.又EGOBG=G,所以£>F丄平面BEG.10.(2016-北京海淀区期中)如图1,在RtAABC中,ZABC=90° , D为AC的中点,AE丄BD于E(不同于点D),延长AE交BC于F,将△ABD沿BD折起,得到三棱锥A{-BCD,如图2所示.(1)若M是FC的中点,求证:直线DM〃平面A、EF;(2)求证:BD丄A”(3)若平而A/D丄平面BCD,试判断直线A"与直线CD能否垂直?并说明理由. ⑴证明在题图1中,因为D M分别为AC, FC的屮点,则DM是ZVICF的屮位线,所以DM〃EF,乂EFu平面AiEF, DMQ平面A^EF,所以DM〃平面4]EF.(2)证明因为AE丄EF丄BD,且A]EClEF=E,所以BD丄平面AiEF.又AiFu平面AiEF,所以BDLAxF.(3)解直线AB与直线CD不能垂直•理由如下:因为平面AiBD丄平面BCD,平面A]BDQ平面BCD=BD EF丄BD, EFu平面BCD,所以EF丄平而ABD因为AiBu平面A、BD,所以A/丄EF,又EF〃/)M,所以A"丄DW.假设AiBlCD,因为A0丄DM, CDQDM=D,所以AiB丄平面BCD,所以AyBLBD,这与ZAiBD为锐角矛盾,所以假设不成立•所以直线A.B与直线CD不能垂直.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲直线、平面垂直的判定与性质基础巩固题组(建议用时:40分钟)一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β解析如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.答案 D2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是() A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b解析当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a 与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b 只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.答案 B3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A.P A=PB>PCB.P A=PB<PCC.P A=PB=PCD.P A≠PB≠PC解析∵M为AB的中点,△ACB为直角三角形,∴BM=AM=CM,又PM⊥平面ABC,∴Rt△PMB≌Rt△PMA≌Rt△PMC,故P A=PB=PC.答案 C4.(2015·青岛质量检测)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β解析A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D中,两直线可以平行,相交或异面,故不正确.答案 C5. (2015·深圳调研)如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又由于AC ⊂平面ACD,所以平面ACD⊥平面BDE,所以选C.答案 C二、填空题6.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.答案①②③7.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上的一动点,当点M满足________时,平面MBD⊥平面PCD(只要填写一个你认为正确的条件即可).解析∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案DM⊥PC(或BM⊥PC)8.如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________ cm3.解析连接AC交BD于O,在长方体中,∵AB=AD=3,∴BD=3 2 且AC⊥BD.又∵BB1⊥底面ABCD,∴BB1⊥AC.又DB∩BB1=B,∴AC⊥平面BB1D1D,∴AO为四棱锥A-BB1D1D的高且AO=12BD=32 2.∵S矩形BB1D1D=BD×BB1=32×2=62,∴VA-BB1D1D=13S矩形BB1D1D·AO=13×62×322=6(cm3).答案 6三、解答题9. (2014·包头市学业水平测试)如图,在直三棱柱ABC-A1B1C1中,AA1=2AC=2BC,D是棱AA1的中点,CD⊥B1D.(1)证明:CD⊥B1C1;(2)平面CDB1分此棱柱为两部分,求这两部分体积的比.(1)证明由题设知,三棱柱的侧面为矩形,由于D为AA1的中点,故DC=DC1,又AA1=2A1C1,可得DC21+DC2=CC21,所以CD ⊥DC 1,而CD ⊥B 1D ,B 1D ∩C 1D =D , 所以CD ⊥平面B 1C 1D ,因为B 1C 1⊂平面B 1C 1D ,所以CD ⊥B 1C 1.(2)解 由(1)知B 1C 1⊥CD ,且B 1C 1⊥C 1C ,则B 1C 1⊥平面ACC 1A 1, 设V 1是平面CDB 1上方部分的体积,V 2是平面CDB 1下方部分的体积, 则V 1=VB 1-CDA 1C 1=13×S 梯形CDA 1C 1×B 1C 1 =13×32B 1C 31=12B 1C 31.V 总=VABC -A 1B 1C 1=12AC ×BC ×CC 1=B 1C 31, V 2=V 总-V 1=12B 1C 31=V 1, 故V 1V 2=1∶1.10.如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .证明 (1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE . 所以四边形ABED 为平行四边形. 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD ,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD.所以P A⊥CD.所以CD⊥平面P AD.从而CD⊥PD.又E,F分别是CD和PC的中点,所以PD∥EF.故CD⊥EF,CD⊂平面PCD,由EF,BE⊂平面BEF,且EF∩BE=E.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.能力提升题组(建议用时:25分钟)11.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在() A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上.答案 A12.(2014·衡水中学模拟)如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错误的命题是()A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH延长线经过点C1D.直线AH和BB1所成角为45°解析对于A,由于AA1=AB=AD,所以点A在平面A1BD上的射影必到点A1,B,D的距离相等,即点H是△A1BD的外心,而A1B=A1D=BD,故点H是△A1BD的垂心,命题A是真命题;对于B,由于B1D1∥BD,CD1∥A1B,故平面A1BD∥平面CB1D1,而AH⊥平面A1BD,从而AH⊥平面CB1D1,命题B是真命题;对于C,由于AH⊥平面CB1D1,因此AH的延长线经过点C1,命题C 是真命题;对于D,由C知直线AH即是直线AC1,又直线AA1∥BB1,因此直线AC1和BB1所成的角就等于直线AA1与AC1所成的角,即=2,因此命题D是假命题.∠A1AC1,而tan∠A1AC1=21答案 D13.(2013·河南师大附中二模)如图,已知六棱锥P-ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由P A⊥平面ABC,AE⊂平面ABC,得P A⊥AE,又由正六边形的性质得AE⊥AB,P A∩AB=A,得AE⊥平面P AB,又PB⊂平面P AB,∴AE⊥PB,①正确;又平面P AD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面P AD,∴BC∥平面P AD,∴直线BC∥平面P AE 也不成立,③错;在Rt△P AD中,P A=AD=2AB,∴∠PDA=45°,∴④正确.答案①④14.如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.(1)证明由直四棱柱,得BB1∥DD1,又∵BB1=DD1,∴BB1D1D是平行四边形,∴B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,∴B1D1∥平面A1BD.(2)证明∵BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC.又∵BD⊥AC,且BD∩BB1=B,∴AC⊥平面BB1D.而MD⊂平面BB1D,∴MD⊥AC.(3)解当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D.理由如下:取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM,如图所示.∵N是DC的中点,BD=BC,∴BN⊥DC.又∵DC是平面ABCD与平面DCC1D1的交线,而平面ABCD⊥平面DCC1D1,∴BN⊥平面DCC1D1.又可证得O是NN1的中点,∴BM∥ON且BM=ON,即BMON是平行四边形.∴BN∥OM.∴OM⊥平面CC1D1D.∵OM⊂平面DMC1,∴平面DMC1⊥平面CC1D1D.。

相关文档
最新文档