10-第十章 羧酸及其衍生物
羧酸及其衍生物

羧酸及其衍生物的化学性质:1.羧酸酸性羧酸能与金属氧化物和金属氢氧化物等反应生成盐,能与碳酸盐作用生成羧酸盐并放出二氧化碳。
羧酸的碱金属盐如钠盐、钾盐等,都能溶于水。
不溶于水的羧酸转化为盐后就可以溶于水,利用这个性质,可以将羧酸和其他不溶于水的非酸性有机物分离。
利用碳酸氢钠可以将羧酸和酚分离。
2.羧基中的羧基取代反应:羧基中的—OH可作为一个基团被酸根(R—COO—)、卤素、烷氧基(—OR)或氨基(—NH2)置换,分别生成酸酐、酰酐、酯或酰胺等羧酸的衍生物。
①酸酐的生成:羧酸在脱水剂如五氧化二磷的存在下加热,两分子羧酸间能失去一分子水而形成酸酐。
②酰卤的生成:羧酸与PX3、PX5、亚硫酰氯(SOCl2)作用生成酰卤。
③酯的生成:在强酸如浓硫酸的催化下,羧酸能和醇反应生成酯。
有机酸和醇的反应是可逆的。
④酰胺的生成:在羧酸中通入氨气或加入碳酸铵,可得到羧酸铵盐,铵盐热失水而生成酰胺。
酰胺在加热则进一步失水生成氰。
氰水解则可通过酰胺而转化成羧酸,这实际上是羧酸盐失水的逆反应。
3.羧酸的还原:羧酸很难被还原,只能用LiAlH4才能将其还原为相应的伯醇。
H2/Ni、NaBH4等都不能使羧酸还原。
4.羧酸的α-H的卤代反应:①α-H的卤代作用:羧酸的α-H可在少量红磷、硫等催化剂存在下被溴或氯取代生成卤代酸。
②芳香环的取代反应:羧基属于间位定位基,所以苯甲酸在进行苯环上的亲电取代反应时,取代基将主要进入羧基的间位。
5.二元羧酸受热反应的规律①乙二酸、丙二酸受热脱羧生成一元酸,丙二酸的脱羧反应是所有在β-位有羰基的化合,如烷丙基、酮酸等共有的反应。
②丁二酸、戊二酸受热脱水(不脱羧)生成环状酸酐。
③己二酸、庚二酸受热既脱水又脱羧生成环酮。
④两个羧基间隔来5个以上的碳原子的脂肪二元羧酸在加热的情况下,得到的产物是分子间失水而形成的酸酐。
6.羧酸的衍生物的水解四种羧酸衍生物在化学性质上的一个主要共同点是他们都能水解生成相应的酸,酰氯、酸酐容易水解,而酯、酰胺的水解需要酸或碱作催化剂,并且还要加热。
有机化学--羧酸及其衍生物

POCl3
HCl↑
O R C OH
SOCl2
O R C Cl
SO2↑
低、高沸点 ↑ HCl 的酰氯制备 都适合
② 酸酐的生成
羧酸在脱水剂如五氧化二磷的存在下,加热。两分子羧 酸失去一分子水而形成酸酐。
R-C OH R-C OH O R-C O R-C + H2O
P2O5
△
(产率较低)
O
分子量较大的羧酸在乙酐(作脱水剂)存在下,失水生 成酸酐。反应平衡中发生了酸和酸酐的交换。 O O CH3-C 2R-C-OH + O CH3-C O
任何使酸根负离子稳定的因素都将增加其酸性,羧酸根负离 子愈稳定,愈容易生成,酸性就愈强。
(1)电子效应的影响
诱导效应:X—COOH
-I使酸性增强, +I使酸性减弱
X= F Cl Br I CHO 3.53 NO2 1.68
+N(CH ) 3 3
pKa 2.66 2.86 2.90 3.18
1.83
O CH3CH2 C
丙酰基
O C
苯甲酰基
CH3 CH3 CH3CH-CHCH2COOH CH3CH-CHCH21 COOH 4 3 2 CH2CH3 CH
5 6 3
CH3-C =CH-COOH CH3 3-甲基-2-丁烯酸
γ β α
4
3
2
1
3,4-二甲基戊酸 CH2-COOH CH2-COOH 丁二酸
羧酸铵盐 腈的水解为其逆反应:
酰胺
腈
O C OH + HNH-
O C NHN-苯基苯甲酰胺
+ H2 O
扑热息痛
3、羧基的还原 (LiAlH4)
第十章 羧酸及羧酸衍生物

供电子诱导效应:
O->COO-> (CH3)3C> (CH3)2CH>CH3CH2>CH3>H
二元酸的酸性:
HOOCCH2COOH pKa1 = 2.9 + HOOCCH2COO + H pKa2 = 5.7 + OOCCH2COO + H
pKa1 < pKa2
?
2. 羧酸衍生物的生成(羟基被取代)
1/2
Cl
H O
1/2
>
1/2
Cl
C H
C O 1/2
>
O
1/2
O Cl C H C
1/2
H
O 1/2
>
CH3
O H C H C
1/2
O 1/2
O H C
O 1/2
>
CH3
C
O1/2
>
O CH3 C C
1/2
O 1/2 CH3
产生这一结果的原因是由于分子内的诱导效应。 诱导效应与原子的电负性 有关,一般以氢原子作为比较标准。比氢原子电负性大的原子或基团表现出吸
(1) 俗名
(2) 羧酸的普通命名法 选择含羧基的最长碳链为主链,按主链碳原子数目称为某酸。取代基
的位次用希腊字母表示,与羧基直接相连的碳原子编为α,其余依次编为
β,γ,δ 等,碳链末端有时编为ω。
CH3CH2CHCOOH CH3
CH3CH2C=CHCOOH CH3
α-甲基丁酸
β-甲基-α-戊烯酸
提纯
COONa + HCI
COOH + NaCI
羧基中的碳原子采取SP2杂化,三个杂化轨道在同一平面上,键角约 (2) 羧基的结构与羧酸酸性 为 它们互相平行在侧面交盖形成一个л键,同时,羟基中的氧原子的未共用
大学有机化学羧酸

H2O
OH R-C=NH
互变异构
O R-C-NH2
-OH
O
R-C-NH2 OH
RCOOH + NH2-
RCOO- + NH3 H+
RCOOH
10.4.4 有机金属化合物的反应
1 格氏试剂和CO2的反应
Mg 无水醚
RX RMgX
CO2
RCOOMgX
H2 O
RCOOH
讨 论
(1) 1oRX、2oRX较好,3oRX需在加压条件下反应 ( 否则易消除) (2) ArI、ArBr易制成格氏试剂、ArCl较难。 (3) 产物比RX多一个碳原子。
O
C
O
H O H -H+
O C
O H O
试分析富马酸的K 大于其顺式异构体马来酸K 的原因。
2 2
H C C HOOC 富马酸
10.1.2羧酸和羧酸根的结构比较
两个碳氧键不 等长,部分离 域。
O
O H C O H
1.23Å 1.36Å
H
C O H
醇中C-O单键键长为1.43Å
两个碳氧键 等长,完全 离域。
O H C O
O H C O
-
1.27Å
羧酸的物理性质
低级脂肪酸是液体,可溶于水,具有刺鼻的气味。 中级脂肪酸也是液体,部分地溶于水,具有难闻的气味。 高级脂肪酸是蜡状固体。无味,在水中溶解度不大。
H R C X
O C .. O H
ICH2
吸电子基团的吸电子能力增强,酸性增强 Br CH2 COOH ClCH2 COOH F CH2 COOH COOH
3.12 2.90 2.86 2.59
第十章 羧酸及其衍生物

+ H OC2H5
18
H
+
O CH3C
18
OC2H5 + H2O
酰氧断裂
12
O CH3C OH
:OH
+H
+
OH CH3C OH 加成
-H2O
HOC2H5
OH CH3 C OH HOC2H5
OH CH3 C OC2H5
: : : : : : : :
质子迁 移
-H+
O CH3 C OC2H5
1
I 羧酸
一,结构 烃基与羧基相连的物质叫羧酸:一元羧酸通式为 RCOOH;羧基( COOH)就是羧酸的官能团 RCOOH;羧基(-COOH)就是羧酸的官能团. 就是羧酸的官能团.
O
ห้องสมุดไป่ตู้
中碳为SP 杂化, OH 中碳为SP2 杂化,氧原子与羰基双键间存 在着P― 共扼.由于共扼, P―л 在着P―л共扼.由于共扼,使羧基中的羰基失去了典 型的羰基的性质(如不与NH OH作用 作用) 型的羰基的性质(如不与NH2OH作用);―OH 氧原 子上的电子云向羰基偏移,这有利于―OH氢的离解 氢的离解. 子上的电子云向羰基偏移,这有利于―OH氢的离解.
14
Br2 / P
(2)芳香环的取代反应 (2)芳香环的取代反应
COOH Br2 FeBr3
COOH
Br
5. 二元羧酸的受热反应
乙 二 酸 HOOCCOOH 丙 二 酸 HOOCCH 2COOH 丁二酸 CH 2 COOH CH 2 COOH 戊 二 酸 CH 2 CH 2COOH CH 2COOH
CH 3 COOH + C 2H 5 OH : 1 1 1 : 10
有机化学第10章羧酸及其衍生物

. 6H O 2
Ⅱ羧酸衍生物
羧酸分子中的羧基被不同基团取代的产物—羧酸的衍生物。 一、命名
酰氯和酰胺的命名相同,以它所含酰基命名
O O C CH 3 C Cl Cl CH3 C NH2 C NH2 O O
O H C N
CH3
O C H 3 C N H C H 2C H 3
CH3
N,N‘—二甲基甲酰胺(DMF)
O H2 R
'
+
-H R
+
O R C OR
'
H
(4)酰胺的形成
先得到铵盐,将铵盐加热,首先失去一分子水,生成酰胺,继续加热失水成腈。
O R C OH O O ONH
4
+
NH3
R
C
-H 2 O
R
C
NH2
-H 2 O
R
C
N
正好是腈水解的逆反应。 芳香、二元羧酸同样具有上述反应,可生成单酰氯、单酯也可生成二酰氯二酯。
2-丁烯酸
二元羧酸、 选取含有两个羧基的最长碳链,叫某二酸。
COOH H 3 CH 2 C H C HOOCCH COOH
2 CH 2 CH 2 CH 2 COOH
乙基丙二酸
HOOCCH=CHCOOH
已二酸
丁烯二酸 芳香酸:把芳环作为取代基
COOH COOH CH=CH-COOH HOOCH
2C
邻苯二甲酸
三、化学性质 1、酸性 RCOOH可看作 HOH中的H被酰基
R O C
取代的产物。
由于羰基的π 键与羟基氧原子上未共用电子对形成P-π 共轭体系,—OH氧上电子密度因向羰基转移而有所降低,使得—OH中氢氧间电 子密度降低,键强度减弱,以致—OH中的氢以质子形成离解,所以酸性比弱酸 和水强得多。但与强酸相比,羧酸只属于弱酸。
第十章_羧酸及羧酸衍生物

RCH2CH2R' O2 , MnO2 RCOOH + R'COOH
产物是以C12~C18的高级脂肪酸的混合物,多用于 工业制皂。
有机化学
羧酸及其衍生物
10
10.2.1 氧化法
2. 烯烃、炔烃氧化
RCH CHR' RC CR'
1. O3 2. H2O KMnO4/H+
RCOOH + R'COOH
山梨酸钾是常用的食品防腐剂。
有机化学
羧酸及其衍生物
21
影响羧酸酸性的因素****
影响羧酸酸性的因素十分复杂,其酸性主要取决于羧酸 中的电子效应(诱导效应、共轭效应)、空间阻碍效应、 分子内氢键及场效应等诸多因素。
但无论因素如何变化,总是有规律可循。一般来讲:
使羧基负离子(羧酸根)趋向稳定的因素都使羧酸的 酸性变强;而使羧基负离子趋向不稳定的因素都会使羧 酸的酸性减弱。
10.4.1 羧基的结构与性质的关系
羧基在结构上由羰基和羟基组成,因此羧基也体现 了羰基和羟基的部分性质,但与醛酮的羰基及醇羟
基的性质又有明显区别。如:羧酸有明显的酸性, 不易发生亲核加成反应,与羧基直接相连的C上 的H被活化,可发生卤代反应,但比醛酮困难。
O
118°
108°
C
H
H
O
CH2COOH
COOH CH3
COOH
2-环丙烷基乙酸 2-甲基丙二酸
有机化学
羧酸及其衍生物
9
10.2 羧酸的制备方法(复习)
羧酸的制备方法有很多,其中以氧化法最为简便和 实施。
10.2.1 氧化法 1. 高级脂肪烃氧化 高级脂肪烃在MnO2的催化下,用空气氧化可制备
羧酸及羧酸衍生物

水解
(1)反应特点:
+ RCOOR' H2O
① 反应可逆(酯化和水解都不能进行完全)。
② 反应速度慢,催化剂同时加速酯化和水解反应。
增大产率:① 增加反应物; ② 减少生成物。
(2)反应历程: ① 伯、仲醇:亲核加成—消除历程 醇中羟基上的氢与羧酸中的羟基结合脱水生成 酯,反应中羧酸的酰氧键断裂。
沸点(162℃)
O
+ R C OH SOCl2
沸点(79℃)
O
+ R C Cl POCl3 制备高沸点酰氯
沸点(107℃)
O
+ + R C Cl SO2 HCl
两种情况均适用
生成酰卤的反应历程
R
O
-HCl
C OH + PCl3
R
O CO
PCl2
Cl- R
O C
O PCl2
b.p. 75℃
Cl
O R C Cl + HO PCl2
攻酰基碳而发生酯化。
O
O
O
+O
+
C-OH
C-OH2
+C
C
CH3
CH3 H2SO4(浓) CH3
CH3 CH3
CH3 CH3
CH3
CH3
CH3OH CH3
CH3
OH C-O+ CCHH33
-H+ CH3
CH3
O C-OCH3
CH3
CH3
78%
CH3
CH3
(3)羧酸和醇的结构对酯化反应速率的影响 ① 羧酸α-C上支链愈多,基团愈大,酯化反应 速率愈慢。
羧酸及其衍生物

羧酸及其衍生物羧酸及其衍生物Ⅰ 目的要求羧酸是含有羧基(―COOH)的含氧有机化合物,我们平常所说的有机酸就是指的这类化合物。
所谓羧酸衍生物,包括的化合物种类很多,诸如羧酸盐类、酰卤类、酯类(包括内酯、交酯、聚酯等)、酸酐类、酰胺类(包括酰亚胺、内酰胺)等都是羧酸衍生物,有人甚至把腈类也包括在羧酸衍生物的范围之内。
其实,比较常见的而又比较重要的是酰卤、酸酐、酯和酰胺这四类化合物。
羧酸盐与一般无机酸盐在键价类型上没大区别,不作专门介绍。
至于腈类,将放在含氮化合物中加以介绍。
这四类化合物都是羧酸分子中,因酰基转移而产生的衍生物,所以又叫羧酸的酰基衍生物。
羧酸及其衍生物RCOL(L:-OH、-X、-OOCR′、-OR′、-NH2)在许多重要天然产物的构成以及在生物代谢过程中均占有重要地位。
本章将以饱和一元脂肪酸为重点,讨论羧酸及其衍生物的结构和性质。
鉴于乙酰乙酸乙酯和丙二酸二乙酯在有机合成上的重要地位,本章作概括介绍。
希望学生在此基础上,探讨设计合成路线的一般方法。
本章学习的具体要求1、掌握羧酸的结构与性质之间的关系。
2、掌握羧酸衍生物的主要化学性质。
3、了解羧酸衍生物的亲核取代反应机理。
4、掌握羧酸与羧酸衍生物之间相互转变条件。
5、了解卤代酸、羟基酸的特性。
6、掌握乙酰乙酸乙酯和丙二酸二乙酯的制法、性质和在有机合成上的应用。
这也是本章的重点之一。
Ⅱ 学习提要(一)羧酸一、概述羧酸往往有俗名,希望学生有所了解,尽可能记忆一些,脂肪酸的系统命名原则和醛相β α同。
γCH3-CH-CH2-COOH2 14 3 OH 芳香酸命名是把芳环视作取代基。
76羧酸的沸点比分子量相近的其它有机物高,这是由于羧酸能以氢键缔合。
同时,即使在气态时,羧酸也是双分子缔合的,所以羧酸的沸点比分子量相近的醇还要高。
二、羧酸结构和化学性质亲核取代O 还原R-C-C-O-H α-H反应H 脱羧酸性1、酸性?E O O O +?R-C H + R-C R-C E EO-H O OO O NaOH/Na2CO3/ NaHCO3H2O + R-C E R-C EH+ O-Na O-H应用:①鉴别:与酚不同,与非酸性物质不同。
第10章 羧酸及其衍生物

CH2CH Cl
CHCH2COOH
CH3CHCHCH2COOH H3C CH3
3,4-二甲基戊酸 3,4-dimethylpentanoic acid
5-氯-3-戊烯酸 5-chloro-3-pentenoic acid
CH3(CH2)7CH
CH(CH2)7COOH CH3C CHCOOH CH3 9-十八碳烯酸(油酸) 3-甲基-2-丁烯酸 9-octadecenoic acid 3-methyl-2-butenoic acid (oleic acid)
小。
pKa值 2.86 4.82
4.41
4.70
取代基对芳香酸酸性的影响
• 芳香酸>脂肪酸(共轭效应的影响)
• 当芳环上有取代基时,分析两种效应影响:
A. -I、-C共存,方向相同,作用加强
O2N COOH> NC COOH > COOH
B. -I、+C共存,方向相反:同周期时,+C>-I, 酸性减弱;不同周期时,-I>+C,酸性增强
增强了氧氢键的极性,有利于氢原子的离解,使 羧基具有酸性。
由于p-π共轭的存在,使羧酸中的羰基对亲核试剂的
活性降低,不能和HCN、NH2OH等加成; 因此不能把羧酸的性质简单的看作是羰基化合 物与醇的性质的加合。
乙酸
羧酸酸性的强弱取决于电离后所形成的羧酸根
负离子的相对稳定性。
O R C OH
(2) 影响羧酸酸性的因素
脂肪族羧酸: ①吸电子诱导效应使酸性增强; ②供电子诱导效应使酸性减弱; ③羧基与其他基团共轭时,酸性增强。
CH3COOH
pKa值 4.76
Ph-COOH
4.20
1、电子效应对酸性的影响 (1)诱导效应(-I越大,酸性越大) 1°吸电子诱导效应使酸性增强。 FCH2COOH>ClCH2COOH>BrCH2COOH>ICH2COOH>CH3COOH pKa值 2.66 2.86 2.89 3.16 4.76
羧酸及其衍生物

乙酰氯,加热后才出现白色沉淀者为氯,无上述现象发生者为乙酸酐 (4)首先在三者中分别
加入容易,不能产生黄色碘仿沉淀者为乙酸;然后把能发生碘仿反应的两者再加入托伦试剂 实 验,能够发生银镜反映者为乙醛,无此现象者为乙醇
答:由强到弱的排列顺序如下 (1) 草酸>丙二酸>氯乙酸>乙酸>苯酚 (2)F3CCOOH> C6H5COOH> CH3COOH >C6H5OH> C2H5OH
(3) CH3CCl2COOH >CH3CHClCOOH >CH2ClCH2COOH >CH3CH2COOH >H2O >C2H5OH 10.4 用化学方法区别下列各组化合物。 (1) 甲酸,乙酸,乙二酸;(2)乙酸丁酯,丁酸乙酯,甲基丙烯甲酯 (2) 乙酰胺,乙酰氯,滤乙烷;(4)乙醇,乙醛,乙酸
Cl C6H6,AlCl3 (C6H5)3COH
(3) 乙 烯、丙 烯
3甲 基 丁酸
CH2
CH2
O2,Ag 250 ℃
CH3CH CH2 HBr
CH2
CH2OCH3 NhomakorabeaCH2CH2
Mg CH3CHCH3 无水 乙 醚 CH3CHMgBr
O
CH3 CH3CHCH2CH2OMgBr
H3+
Br O,H2O
CH3
C6H6,AlCl3
COCH2CH2COOH
C2H5NH2 (过量) C2H5NHCOCH2CH2COONH3C2H5
10.7 写出丙酸乙酯与下列试剂作用的产物
第十章 羧酸及衍生物

酰卤
羧基中的羟基可 被其它原子或原 子团取代,生成 羧酸衍生物。
O R C OH
P2O5
O R R C O C O
酸酐
O
R'OH
NH3
R C OR'
酯
酰胺
a.酰氯的生成
• 羧酸与PCl3、PCl5、SOCl2等试剂都可以发生羧基中的羟基被取代的 反应,生成相应结构的酰氯,此反应中不能用 HX反应,酰氯是发生 活泼的最常用的酰化试剂之一。
还原反应 亲核取代反应
(1) 水解
O R C X O O O R C O C R +H HOH 2O
+
R C O R' O
R C NH2
水解反应活性: 酰卤> 酸酐>酯>酰胺
=
立即反应
HX O RC O O H R'OH
(2)乙酸
俗称醋酸,食醋中约含6%-10%的醋酸。纯醋酸为无色并具有刺 激性的液体,沸点118℃ ,冷却至16.6℃时即可凝结为冰状固体。 无色乙酸亦称冰醋酸。
(3)乙二酸
乙二酸俗称草酸,通常以盐的形式存在于多种植物的细 胞膜中。草酸是无色晶体,常见的草酸含有两分子结晶水, 熔点为101.5℃ ,在100~105℃加热则可失去结晶水,得到 无水草酸。无水草酸的熔点为189.5℃ 。
NaO H
RCOO Na+
C10以下溶于水;
+ H2O
>C10在水溶液中呈胶体溶液。
RCO O H +
NaHCO 3
RCOO Na+
+ CO2 + H2O
应用:用于分离、鉴别。
苯甲酸 对甲苯酚
第十章 羧酸及其衍生物

第十章羧酸及其衍生物分子中含有羧基(—COOH)的有机化合物称为羧酸,可用通式RCOOH 表示。
羧基中的羟基被其他原子或基团取代后的化合物称为羧酸衍生物。
例如酰卤、酸酐、酯、酰胺等。
第一节羧酸一、羧酸的结构、分类和命名1.羧酸的结构和分类相互影响,使它们不同于醛酮分子中的羰基和醇分子中的羟基,而表现出一些特殊的性质。
根据分子中含羧基的个数分为:一元、二元和多元羧酸。
按照羧基所连烃基的种类分为:脂肪族羧酸、脂环族羧酸和芳香族羧酸。
按烃基是否饱和分为:饱和羧酸和不饱和羧酸。
脂肪族羧酸丁酸(一元酸)丙烯酸(一元酸)乙二酸(二元酸)饱和羧酸不饱和羧酸饱和羧酸脂环族羧酸环丁基甲酸(一元酸)3-甲基环戊基甲酸(一元酸)芳香族羧酸苯甲酸(一元酸)α-萘乙酸(一元酸)2.羧酸的命名⑴ 俗名某些羧酸最初是根据来源命名,称为俗名。
例如:甲酸来自蚂蚁,称为蚁酸;乙酸存在于食醋中,称为醋酸;丁酸存在于奶油中,称为酪酸;苯甲酸存在于安息香胶中,称为安息香酸。
⑵系统命名法羧酸系统命名法的原则是:选择含有羧基的最长碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号。
若分子中含有重键,则选含有羧基和重键的最长碳链为主链,根据主链上碳原子的数目称“某酸”或“某烯(炔)酸”。
例如:2,3-二甲基丁酸2-甲基-4-溴戊酸2-丁烯酸3-甲基-4-己炔酸芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名。
若芳环上连有取代基,则从羧基所连的碳原子开始编号,并使取代基的位次最小。
3-苯基丙烯酸(肉桂酸)邻羟基苯甲酸(水杨酸)3-环己基丙酸二元羧酸命名时,选择包含两个羧基的最长碳链为主链,根据主链碳原子的数目称为“某二酸”。
例如:己二酸顺丁烯二酸邻苯二甲酸1,3-环己基二甲酸二、羧酸的制法1、氧化法⑴ 烃的氧化高级脂肪烃(如石蜡)加热到120℃和硬脂酸锰存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物。
脂酸锰烯烃通过氧化,碳链在双键处断裂得到羧酸。
第十章 羧酸及其衍生物

第十章羧酸及其衍生物羧酸及其衍生物❖羧酸及其衍生物的结构特征;❖羧酸及其衍生物的物理和化学性质;❖乙酰乙酸乙酯和丙二酸酯的特性及其在有机合成上的应用;❖蜡和油脂,碳酸衍生物重点要求掌握羧酸及其衍生物的化学性质;乙酰乙酸乙酯在有机合成上的应用。
10.1 羧酸10.1.1 羧酸的构造、分类和命名1、羧酸的构造和分类分子中具有羧基的化合物,称为羧酸。
它的通式为 RCOOH。
2、命名由它的来源命名:甲酸最初是由蚂蚁蒸馏得到的,称为蚁酸。
乙酸最初是由食用的醋中得到,称为醋酸。
还有草酸、琥珀酸、苹果酸、柠檬酸。
系统命名:含羧基最长的碳链作为主链,根据主链上碳原子数目称为某酸.编号从羧基开始.3,4-二甲基戊酸3-甲基-2-丁烯酸芳香族羧酸可以作为脂肪酸的芳基取代物命名:羧酸常用希腊字母来标名位次,即与羧基直接相连的碳原子为α,其余位次为β、γ…,距羧基最远的为ω位。
二元酸命名:10.1.2 羧酸的物理性质在室温下10个碳原子以下的饱和一元羧酸是液体。
10个碳原子以上的羧酸为石蜡固体,挥发性很低,无气味。
4~9个碳原子的脂肪酸具有腐败恶臭、动物的汗液和奶油发酸变坏的气味。
饱和一元羧酸的沸点比相对分子质量相似的 醇还要高。
饱和一元羧酸的熔点随分子中碳原子数目的增加呈锯齿状的变化。
低级脂肪酸易溶于水,但随分子量的增高而降低。
甲酸与水通过氢键缔合在固态和液态,羧酸主要以二聚体形式存在。
低级的羧酸,在气相时仍以双分子缔合状态存在。
10.1.3 羧酸的化学性质OOH H HOH O HH HHOCRCOOHOORHO ORHCC2HOR H O HC Cα10.1.3.1 酸性羧酸具有弱酸性,在水溶液中存在着如下平衡:乙酸的离解常数K a 为1.75×10-5 甲酸的K a =2.1×10-4 , p Ka =3.75其他一元酸的K a 在1.1~1.8×10-5之间, p Ka 在4.7~5之间。
第十章 羧酸

CH3CH2CHCOOH Br
CH3CHCOOH Br
通过卤代酸可制 R—CH-CO2H 备其它取代酸: Br
OH- R—CH-CO2H OH NH3 R—CH-CO2H NH2 CN- R—CH-CO2H CN
4、氧化还原
羧酸很难被一般的还原剂还原,但能被LiAlH4 顺利地还原为伯醇。 CH2=CHCH2CO2H ———> CH2=CHCH2CH2OH
O 羧基 酰基 R C OH
四、羧酸的化学性质
4. 脱羧反应 氧化还原
O
1.酸性
C
R(Ar)
3.a-H的取代 2.羟基被取代
H
O
-X(Cl) -OR 酰卤 酯 -OCOR 酸酐
芳环H的取代
(-NH2)
酰胺
1、酸性: Ka在10-4~10-5之间
RCOOH + H2O RCOO- + H3O+
OH
△
一元羧酸 + CO2
环酮 +
O 酰卤 O 酸酐 O
羧酸的衍生物
O 酯 O 酰胺 腈
一、羧酸衍生物的分类与命名
R C X R C O C R R C O R R C NH2(R) R C N
CH3—COOH
乙酸
CH3—CO—
乙酰基
C6H5—COOH C6H5—CO— 苯甲酸 苯甲酰基
乙酸甲酯
O (CH3)2CHCH2-C-OCH2异戊酸苄酯
CH3COOCH=CH2
乙酸乙烯酯
酰胺:氨或胺分子中的H被酰基取代的产物
命名:酰基名称+胺(或某胺)——“某酰(某)胺” 内酰胺用希腊字母标明氨基位置。
CH3 O O HCN-CH3 CH3 COOH CH3CH2CHCH2CNHCH3
羧酸及其衍生物

羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMgX RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.RCOOH RCOO- + H+因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + NaOH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 SOCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CHCl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CHCOOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-CaO)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3这是实验室用来制取纯甲烷的方法.一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CHCl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐) 乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质酰氯大多数是具有强烈刺激性气味的无色液体或低熔点固体.低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯> 酸酐> 酯> 酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + HOR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CHOHCOOH 2-羟基丙酸(乳酸)HOOCCH2CHOHCOOH 羟基丁二酸(苹果酸)HOOCCHOHCHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CHOHCOOH OHCH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOHCOH RCHO + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOHCOOH + RCHOHCOOH 交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOHCH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.4,洒石酸:是透明棱形晶体,有很强的酸味,易溶于水.洒石酸常用于配制饮料,洒石酸钾钠用于配制斐林试剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2SO4 RCHO + CO2↑RCOCOOH + 浓H2SO4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅NaOH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离.形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.。
羧酸及其衍生物

2 RCOO
-2e
2RCOO˙
-2CO2
2R ˙
R-R
1.3.4 α -H的卤代
RCH2COOH + Br2
P
RCHBrCOOH
1.3.5 还原 4RCOOH +3LiAlH4 4H2 + 2LiAlO2 + (RCH2O)4AlLi
(RCH2O)4AlLi + H2O
4RCH2OH
H3O+
RCOOH
Li/CH3NH2
RCH=NCH3
RCHO
1.4 取代酸
1.4.1 卤代酸
OHNH3 H2NR CN
-
CH3CHCOOH OH CH3CHCOOH NH2 CH3CHCOOH NHR CH3CHCOOH CN CH3CHCOOH
OAr
CH3CHCOOH Br
ArO
-
ClCH2COOH
OH-
HOCH2COOH
羧酸的制备方法较多,常用的有氧化法、水解法和由有机金属化 合物制备等。
1.2.1由烃、醇、醛氧化
常用的氧化剂有K2Cr2O7+H2SO4, KMnO4, HNO3, CrO3 等。 芳烃支链的氧化常用于芳香族羧酸的合成:
CH3
KMnO4 / OH回流
COOH
CH2CH2CH3 CH3
K2Cr 2O7 / H 2SO4
+ +
H+
RCOH R C O RCOR'
OH R'OH
RCOH O
+
H2O
R'OH+
RCO+ R' H
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 羧酸的命名和制备 羧酸的物理性质 羧酸的化学性质 重要的羧酸 羧酸衍生物的命名 羧酸衍生物的化学性质 自然界的羧酸衍生物 碳酸的衍生物
[本章作业] P202:1、2、3、 4、5、8
第一节 羧酸的命名和制备
一、命名(P181-182)
Cl
Mg / THF
MgCl
1. CO2 2. H+ / H2O
COOH
第二节 羧酸的物理性质
一、气味
低级酸有明显的气味,如乙酸 (醋味)、丁酸(酸臭味、脚汗臭)
二、水溶性
低级酸(C4以下)易溶于H2O, 但随着COOH比例的减少而溶解度降 低。
第二节 羧酸的物理性质
三、b.p.(P184)
由于-COOH的存在,羧酸的沸点比分子量接近 的化合物沸点高。 化合物 分子量 b.p. 乙酸 60
二、乙酸(P191)
醋酸 / 食醋 / 冰醋酸
三、苯甲酸(P192)
安息香酸 / 食品防腐剂中有苯甲酸钠
第四节 重要的羧酸
四、乙二酸(P192)
草酸(HOOC-COOH)/ 二元酸中酸性最 强 / 具有还原性
应用:
——加热的方法行不行? ——直观吗?方便吗?可靠吗?
第四节 重要的羧酸
五、丁二酸(P192)
3.芳烃 KMnO4, K2Cr2O7
4.烯炔 KMnO4,
由ArR变成产物ArCOOH
产物碳数减少
5.酮
强烈氧化剂
卤仿反应
产物碳数减少
限-COCH3, -COCH2CO-结构
二、羧酸的制备(复习)
2. 由羧酸衍生物(腈)水解制备
二、羧酸的制备(复习)
3、由Grignard试剂来制备:RMgX+CO2:
琥珀酸 / 加热可成环状丁二酸酐
六、邻苯二甲酸(P192)
易由苯的邻二侧链化合物氧化得到:
(二个酸酐)
七、丁烯二酸(P193)
HOOC-CH=CH-COOH有顺反之分:
第五节 羧酸衍生物的命名
一、酰氯命名(P194)
以所含的取代基命名,如:
二、酰胺的命名(P194)
1、以所含取代基命名; 2、氮上有取代基时用N-注明。
118℃ (更易存在 氢键)
丙醇 60
97℃ (存在 氢键)
丙醛 58
49℃
甲乙醚 60
8℃
丁烷 58
-0.5℃
因此,不用查表: 丁酸 > 丙酸 > 丁醇 > 丁醛 > 乙醚 > 丁烷
第三节 羧酸的化学性质
一、酸性 二、羧酸中羟基的取代反应 三、还原
四、烃基上的反应
五、二元酸的特殊反应
一、酸性(P185)
2、酯的醇解即可生成另一种酯——酯交换反应
三、氨解(P196)
酰氯、酸酐和酯都能进行氨解,生成酰胺:
(酸酐另一部分为铵盐)
第七节 自然界的羧酸衍生物
一、乙酰辅酶A(P197-198)
/ 生物代谢
二、除虫菊酯(P199)
酯类 / 蚊香
三、青霉素(P199)
酰胺 / 药物
第八节 碳酸的衍生物
一、光气(P201)
1、弱酸
HCl>RCOOH>H2CO3>ArOH>H2O>ROH
2、反应
能与金属氧化物(MgO)、氢氧化物(NaOH)、Na2CO3、
NaHCO3反应,成盐而溶于H2O。
应用:分离、鉴别羧酸
Hale Waihona Puke 3、有机酸的酸性比较(P189-190)
(1)烷基越长,碳数越多,酸性越弱。
HCOOH>CH3COOH>CH3CH2COOH>CH3CH2CH2COOH
COCl2 / 剧毒 / 化学武器 / 重要的有机合 成中间体——无毒或更安全的替代品——绿色 化学
二、尿素(P201-202)
(自学)
[本章作业] P202:
1、2、3、4、5、8
五、二元酸的特殊反应
2、成环:生成酸酐或环酮
丁二酸、戊二酸受热脱水(不脱羧)生成环状酸酐
五、二元酸的特殊反应
(2)成环酮
己二酸、庚二酸受热既脱水又脱羧生成环酮 注意条件!
原因:五、六元环易于形成,稳定!
二元酸特殊反应的应用示例:
第四节 重要的羧酸
一、甲酸(P191)
蚁酸 / 同系列中酸性最强 / 唯一具有还原性 一元酸
二、羧酸中羟基的取代反应
1、成酐反应(P185-186)
二、羧酸中羟基的取代反应
2、生成酰卤(以酰氯为例)(P186)
3、酯化(P186)
通式:
酯化在合成中的应用:
反应式自己完成! 只写思路有“冤”无分!
二、羧酸中羟基的取代反应
4、酰胺的生成
RCO2H + NH3
RCO2NH4
-H2O
RCONH2
P 2 O5 -H2O
RC N
COOH CH3
NH3
CONH2 CH3
CN -H2O CH3
三、还原(P187)
RCO2H LiAlH4 or B2H6 H2O RCH2OH
LiAlH4 H2O CO2H B2H6 H2O CH2OH
(双键不受影响)
CH2OH
还原反应的综合应用:
酸<——>醇
四、烃基上的反应
1、脂肪酸α-卤代
羧酸的α-H可在少量红磷、硫等催化剂存在下被溴或氯取代生成 卤代酸。
2. -卤代酸的反应
NaOH, H2O R Br R CO2H NaHCO3 R NH3 R OH CO2Na NH2 CO2NH4 Br CO2Na NaCN R H3O+ R H3O+ R OH CO2H NH2 CO2H CN CO2Na H3O+ R CO2H CO2H
(氮上2个取代基)
第五节 羧酸衍生物的命名
三、酸酐的命名(P194)
根据来源的酸命名:
四、酯的命名(P195)
以形成的酸、醇命名:
(展开酯基)
第六节 羧酸衍生物的化学性质
一、水解(P195-196)
(酰胺水解需要碱催化和加热)
二、醇解(P196)
1、酰氯、酸酐 醇解成酯:
(酚也可进行类 似醇解的反应)
(2)吸电子基(如Cl、Br、I、F)越多,酸性越强。
Cl3CCOOH>Cl2CHCOOH>ClCH2COOH>CH3COOH
(3)吸电子基离羧基越远,酸性越弱。
3、有机酸的酸性比较(P190)
( 4 )吸电子基能力越大(卤素电负性越大,F>Cl>Br>I), 酸性越强。
4、关于酸性的综合应用
比较下列化合物的酸性:
1、含有羧基(-COOH)的最长碳链为主链,羧基 编号最小。
一、命名(P182)
2、不饱和酸中C=C的位置标明。
3、二元酸主链要包含有两个羧基。
一、命名(P182)
4、芳香酸芳环为取代基,其他环状酸类似以 环为取代基。
(ß 含义!)
(α含义!)
二、羧酸的制备(复习)
--1、氧化法
原料 1.醇 2.醛 氧化剂 KMnO4, K2Cr2O7 + H+ KMnO4, K2Cr2O7, RCO3H, Ag2O, H2O2, Br2水 Tollene, Fehling试剂 说明 一级醇产物碳数不变 产物碳数不变 产物碳数不变, 其C=C, CC不受影响
四、烃基上的反应
二、芳香酸芳环上的取代(P188)
应用示例:
五、二元酸的特殊反应
乙二酸、丙二酸受热脱羧生成一元酸
COOH COOH H2C R2C COOH COOH COOH COOH CH3COOH + CO2 R2CHCOOH + CO2 HCOOH + CO2
1、脱羧(脱去CO2)
1)R=CO2H, CN, COR, NO2, CX3, 等吸电子基团. 2)反应条件:(i)加热;(ii)碱性条件NaOH,CaO;(iii) 碱性条件下加热;(iv)特殊催化剂.