五年级公因数与公倍数
五年级(公因数、公倍数)专项练习题
五年级(公因数、公倍数)专项练习题五年级(公因数、公倍数)专项练习题例题:1、一个房间长450厘米,宽330厘米,现在计划用方砖铺地,问:需要边长最大为多少厘米的方砖多少块(整块)正好将房间的地面铺满?2、两个自然数的最小公倍数是180,最大公因数是12,并且小数不能整除大数,求这两个数各是多少?3、有一个数在700—800之间,用15、18和24去除,都不能整除。
如果在这个数上加1,就能同时倍15,18和24整除.这个数是多少?提高拔尖:1、三个连续自然数的最小公倍数是168,那么这三个自然数的和是多少?2、有一个四位数,千位上的数字和百位上的数字都被擦掉了,只知道十位上的数字是1,个位上的数字是2。
如果这个数减去7就能被7整除,减去8就能被8整除,减去9就能被9整除,那么这个四位数是多少?3、一个数乘2是4的倍数,乘3是9的倍数,乘4是16的倍数,乘5是25的倍数,乘6是36的倍数,乘7是49的倍数,乘8是64的倍数,乘9是81的倍数。
这个数最小是多少?4、三个连续的自然数的最小公倍数是9828,这三个自然数的和是多少?5、从运动场一端到另一端全长96米,从一端起到另一端每隔4米插一面小旗。
现在要改成每隔6米插一面小旗,问:可以不拔出来的小旗有多少面?6、两个数的最大公因数是21,最小公倍数是126。
这两个数的和是多少?7、今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆。
每堆中这三种课本的数量分别相等,那么最多可分成多少堆?8、有一个电子钟,每走9分钟亮一次灯,每到整点响一次铃。
中午12点整,电子钟响铃又亮灯,问:下一次响铃又亮灯是几点钟?9、有一些小朋友排成一行,从左面第一个人开始每隔2人发一个苹果,从右面第一个人开始每隔4人发一个橘子,结果有10个小朋友苹果和橘子都拿到。
那么这些小朋友最多有多少人?10、有一个大于1的整数,除300,262,205,得到相同的余数,这个数是多少?11、两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公因数,得到两个商的和是16。
五年级最大公因数和最小公倍数
五年级最大公因数和最小公倍数公因数问题1:用短除法求下列各组数的最大公因数。
①12和18 ②34和102 ③15和50 ④12、24和36想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。
两个数的最大公因数用( )表示。
1218269323①②34102217511713③④155053101224362612182369312(34、102)= 2×17=34(15、50)= 5(15、24、36)= 2×2×3=123试一试:求下列各组数的最大公因数(用短除法)①20和30②28和84③54和90④30、45和60问题2:求24、60和132三个数,共有多少个公因数?其中最大的公因数是多少?想:这道题可用列举法来解答,但比较麻烦。
我们可以用短除法求出这三个数的最大公因数,然后根据几个自然数最大公因数的因数个数等于这几个自然数公因数的个数的规律,找到这三个数的公因数。
24601322123066261533325(24、60、132)= 2×2×3=12,因为24、60和132的最大公因数是12,而12=22×3,得(2+1)×(1+1)=6,所以,24、60和132共有6个公因数,最大公因数是12。
解:11试一试:先用短除法求出每一组数的最大公因数,再求出每组数中公因数的总个数。
解:同时除以公因数2同时除以公因数2同时除以公因数3除到三个商只有公因数1为止(12、18)= 2×3=6①16和24 ②28和70 ③150和180 ④60、75和150问题3:有三根木棒,分别长12厘米,44厘米,56厘米,把它们都截成同样长的小棒(整厘米),不许有剩余,每根小棒最长能有多少厘米?想:把每根木棒截成同样长的小棒后不许有剩余,每根小棒的长度必须是各自木棒长度的因数;把三根小棒截成同样长的小棒,不许有剩余,每根小棒的长就是这三根小棒的公因数;每根小棒最长多少厘米,就是求这三根小棒的最大公因数。
五年级公因数和公倍数的题120道
五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
五年级下册数学最大公因数和最小公倍数
他们共同的休息日:12,24 这些数和4,6有什么关系?
4和6的公倍数:
……
4和6的公倍数还能找出一些来吗? 可以找多少?
其中最早的一天: 12 最小公倍数:
4的倍数:4,8,12,16,20,24,28,… 6的倍数:6,12,18,24,30,… 4和6的公倍数:12, 24,… 4和6的最小公倍数:12
要求把它剪成若干个大小相同的最大正方形,实际上就是求硬纸板的 长和宽的最大公因数。(60, 56)=4,所以最大正方形的边长是 4 厘米。 答:最大正方形的边长是 4 厘米。
例2:甲、乙、丙三辆汽车在环形马路上同向行驶,甲车行 一周要36分钟,乙车行一周要30分钟,丙车行一周要48分钟。 三辆汽车同时从同一个起点出发,问:这三辆汽车至少要多 长时间才能同时回到出发地?
要把96朵红玻瑰花和72朵白玫瑰花做成花束,且每束花里的红玻瑰花朵数相同, 白玫瑰花朵数也相同,那么做成花束的个数一定是96和72 的公因数,又要求花束 的个数最多,所以花束的个数应是96和72的最大公因数。 解:最多可以做多少个花束?(96,72)=24(个) 每个花束里有几朵红玫瑰花? 96÷24=4(朵) 每个花束里有几朵白玫瑰花? 72 ÷ 24=3(朵) 每个花束里至少有几朵花? 4+3=7(朵) 答:最多可以做24个花束,每个花束里至少有7朵花。
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 8和12的公因数: 1,2,4。
最大公因数
有三根铁丝,分别长8厘米、12厘米、 6厘米,要把它们截成同样大小的小段 (取整厘米数),不能有剩余,每段铁丝 最长多少厘米?
8的因数: 1,2,4,8。 12的因数:1,2,3,4,6,12。 6的因数: 1,2,3,6。
五年级数学下册最大公因数最小公倍数知识点
五年级数学下册『最大公因数·最小公倍数·知识点』一、公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
几个数的公倍数也是无限的。
二、公因数:两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,两个数的公因数也是有限的。
例如:求24和36的公因数和最大公因数24的因数:1、2、3、4、6、12、2436的因数:1、2、3、4、6、9、12、18、3624和36的公因数:1、2、3、4、6、1224和36的最大公因数:12三、最小公倍数与最大公因数的求法:1.用大数除以小数,若能整除,最小公倍数就是大的那个,最大公因数就是小的那个。
2.若不能整除,再看两数是否互质,若互质,最小公倍数是两数相乘,最大公因数是1。
3.若不互质,运用短除法计算。
2 | 24 36 将两个数同时除以相同的质因数,所得结果2 |12 18 对齐写在相应的数字下面,直到不能分解为止3 |6 9 最大公因数:2×2×3=122 3 最小公倍数:2×2×3×2×3=72五年级数学下册『最大公因数·最小公倍数·知识点』一、公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
二、公因数:两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,。
例如:求24和36的公因数和最大公因数24的因数:1、2、3、4、6、12、2436的因数:1、2、3、4、6、9、12、18、3624和36的公因数:1、2、3、4、6、1224和36的最大公因数:12三、最小公倍数与最大公因数的求法:1.用大数除以小数,若能整除,最小公倍数就是大的那个,最大公因数就是小的那个。
2.若不能整除,再看两数是否互质,若互质,最小公倍数是两数相乘,最大公因数是1。
五年级数学最大公因数和最小公倍数知识点份
五年级数学最大公因数和最小公倍数知识点份 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第三单元最大公因数和最小公倍数知识点:一、公倍数:2×4=8,8既是2的倍数,也是4的倍数,那么就称8是2和4的公倍数。
2和4的公倍数不止一个,还有4、12、16、20……,其中最小的那个叫做2和4的最小公倍数。
(两个数的公倍数的个数是无限的)二、公因数:2既是8的因数,也是12的因数,那么就称2是8和12的公因数。
8和12的公因数不止一个,还有 1、4,其中最大的那个就叫做8和12的最大公因数。
(两个数的公因数的个数是有限的)例如:求24和36的公因数和最大公因数24的因数:1、2、3、4、6、12、2436的因数: 1、2、3、4、6、9、12、18、3624和36的公因数:1、2、3、4、6、1224和36的最大公因数:12【练习】1.写出下面每组数的最大公因数。
3和5 () 4和8 () 1和13 ()13和26 () 4和9 () 17和51 ()21和36 () 22和55 ()2.写出下面每组数的最小公倍数。
3和5 () 4和8 () 1和13 ()13和26 () 22和55 () 21和36 ()4和9 () 17和51 () 30和45 ()三、最小公倍数与最大公因数的求法:1.用大数除以小数,若能整除,最小公倍数就是大的那个,最大公因数就是小的那个。
2.若不能整除,再看两数是否互质,若互质,最小公倍数是两数相乘,最大公因数是1。
3.若不互质,运用短除法计算。
2 ∣24 36 将两个数同时除以相同的质因数,所得结果2 |12 18 对齐写在相应的数字下面,直到不能分解为止3 |6 9 最大公因数:2×2×3=122 3 最小公倍数:2×2×3×2×3=72四、性质一个数最小的倍数是它本身,没有最大的倍数。
五年级数学最大公因数和最小公倍数应用题
1、一张长方形纸,长96厘米,宽60厘米,如果把它裁成同样大小且边长为整厘米的最大正方形,且保持纸张没有剩余,每个正方形的边长是几厘米?每个正方形的面积是多少?可以裁多少个这样的正方形?2、有一块长方形纸板,长24厘米,宽15厘米,将这块纸板裁成同样大小的正方形,不能有剩余,每块小正方形的边长是最长是多少?可以裁成多少块?3、王师傅找到一块长72厘米,宽60厘米,高48厘米的长方体木料,王师傅把它锯成同样大小的正方体木块,木块的体积最大,不能有剩余,算一算,可以锯成多少块?4、五(1)班给每个同学买了1个练习本,共花去9.30元钱,已知每个练习本的价钱比学生人数少,五(1)班共有多少个学生?5、张林、李强都爱在图书馆看书,张林每4天去一次,李强每6天去一次,有一次他们两人在图书馆相遇,至少再过多少天他们又可以在图书馆相遇?6、有一包奶糖,无论分给6个小朋友,8个小朋友,还是10个小朋友,都正好分完,这包糖至少有多少块?7、某公共汽车站有三条不同线路,1路车每隔6分钟发一辆,2路至少再车每隔10分钟发一辆,3路车每隔12分钟发一辆,三路车在早上8点同时发车后,到什么时候又可以同时发车?8、一个班不足50人,上体育课站队时,无论每行站16人,还是每行站24人,都正好是整行,这个班有多少人?9、用一个数去除52,余4,再用这个数去除40,也余4,这个数最大是多少?10、把19支钢笔和23个软面抄平均奖给几个三好学生,结果钢笔多出了3支,软面抄也多出了3个,得奖的学生最多有几人?11、一个自然数,去除22少2,去除34也少2,这个自然数最大是几?12、一个数除73余1,除98余2,除147余3,这个数最大应是多少?13、有一批作业本,无论是平均分给10个人,还是12个人,都剩余4本,这批作业本至少有多少本?14、有一箱卡通书,把它平均分给6个小朋友,多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多1本,这箱卡通书最少有多少本?15、五年级同学参加社区服务活动,人数在40和50之间,如果分成3人一组,4人一组或6人一组都正好缺一人,五年级参加活动的一共有多少人?16、有一篮鸡蛋,两个两个去数,余1个;三个三个去数,余2个;四个四个去数,余3个,这篮鸡蛋至少有多少个?17、有两根钢管,一根长25米,一根长20米,把它们锯成同样长的小段,使每根不许有剩余,每段最长几米?一共要锯几次?18、李老师要把84本语文课本,70本数学课本,56本自然课本,平均分为若干堆,每堆中这三种课本的数量分别相等,那么最多可以分成多少堆?每堆中有语文、数学、自然课本各多少本?19、缝纫店有一块长40分米,宽25分米的布料,现在顾客要求把它裁成正方形小布块(不能有剩余),块数又要求最少,那么裁成的正方形不布块面积有多大?20、一盒铅笔,可以平均分给4,5,6个小朋友,都没有剩余,这盒铅笔最少有多少只?21、某学校暑假期间安排王老师生4天值一次班,李老师每6天值一次班,张老师每8天值一次班,如果7月1日他们三人同一天值班,下一次他们三人同一天值班是几月几日?22、开学初,学校准备了96个黑板擦,72把扫帚,48个纸篓,平均分给各个班。
五年级下期数学专项复习——公倍数和公因数
公倍数和公因数基础知识回顾1、公倍数和最小公倍数的意义:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做它们的最小公倍数。
2、公倍数的特征:一个数的倍数的个数是无限的,因此两个数的公倍数的个数也是无限的,只有最小公倍数,没有最大公倍数。
3、求两个数的最小公倍数的两种特殊情况:(1)如果两个数中较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
(2)如果两个数只有公因数1,那么这两个数的最小公倍数就是它们的乘积。
4、公因数和最大公因数的意义:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做它们的最大公因数。
5、公因数的特征:一个数的因数的个数是有限的,因此两个数的公因数的个数也是有限的,最小的公因数是1。
6、求两个数的最大公因数的特殊情况:(1)当两个数成倍数关系时,较小数就是这两个数的最大公因数;较大数就是这两个数的最小公倍数。
(2)如果两个数只有公因数1,那么这两个数的最大的公因数是1;最小公倍数是它们的乘积。
(3)如果两个数都是质数或者两个数是连续的自然数,那么这两个数的乘积就是它们的最小公倍数。
7、公倍数是最小公倍数的倍数,最小公倍数是公倍数的因数。
8、素数:一个数,如果只有1和它本身两个因数的数叫做素数。
合数:除了1和它本身外还有另外的因数叫做合数。
9、公有的质因数和各自独有的质因数的乘积就是它们的最小公倍数。
例如:6和8都是合数,6的质因数有2、3 ;8的质因数有:2、2、2;6和8的最小公倍数是2*3*2*2=24 24是它们的最小公倍数。
10、两个合数,如果它们只有公因数1,那么最大公因数也是1。
11、1与任意非零自然数的公因数只有1个,就是1。
12、用短除法求两个数的最大公因数和最小公倍数时,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数乘起来,就得到这两个数的最大公因数。
而把所有的除数与它们只有公因数1时的数相乘就是它们的公倍数。
五年级春季第二讲公因数和公倍数
五年级春季第二讲公因数和公倍数一、公因数与公倍数的定义1、公因数:几个数公有的因数叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。
2、公倍数:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
3、互质数:只有公因数1的两个数叫做互质数。
二、公因数与公倍数的求法例1. 分别求出下列各组数的公因数与公倍数。
12和18 15和30 5和6 解:(1)12的因数有(1、2、3、4、6、12); 12的倍数有(12、24、36、48、60、72……);18的因数有(1、2、3、6、9、18); 18的倍数有(18、36、54、72、90……);12和18的公因数是(1、2、3、6); 12和18的公倍数是(36、72……);其中最大的公因数是(6)。
其中最小的公倍数是(36)。
三、用短除法求几个数的最大公因数和最小公倍数。
注意:用短除法求最大公因数或最小公倍数时,要除到商的每两个数是互质数为止。
四、两种特殊情况的最大公因数和最小公倍数的求法。
1. 如果两个数成倍数关系,那么较小数就是它们的最大公因数,较大数就是它们的最小公倍数。
2. 如果两个数是互质数,那么它们的最大公因数就是1,最小公倍数就是它们的乘积。
例2. 分别求出下列各组数的最大公因数和最小公倍数。
24和48 17和18 9、18和36 解:(1)因为48是24的倍数,所以24和48的最大公因数是24,最小公倍数是48。
(2)因为17和18是互质数,所以17和18的最大公因数是1,最小公倍数是17×18=306。
(3)因为36是18的倍数,18是9的倍数,所以它们的最大公因数是9,最小公倍数是36。
使学生明确:①因为两个数最大公因数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公因数。
②而两个数的最小公倍数不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的最小公倍数。
人教版五年级下册数学《最大公因数和最小公倍数》知识点和精选练习题
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。
因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1。
(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。
B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小.( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。
五年级数学公因数与公倍数
4、房间面积=每块地面砖面积×块数 5、相遇问题: 相遇问题: 相遇问题
相遇的路程=(甲速度+乙速度)×相遇的时间=甲速度×时间+乙速度× 时间 相距的路程=(甲速度—乙速度)×时间=甲速度×时间—乙速度×时间 6、植树问题: 植树问题: 路长÷间隔长=间隔数 间隔长×间隔数=路长 解题思路分析: 根据要求列式计算 1.按要求填空. ①粮食加工厂原有 4 台碾米机,每天可以碾米 48 吨,现在增加了 3 台 同样的碾米机,每天可碾大米多少吨? 要求:求出原来每台可碾米多少,列式________________________ 第二步:求出现在碾米机的台数,列式________________________ 第三步:求出现在每天可碾米数量,列式________________________ 列综合式:________________________________________________ ②小明看一本故事书,如果每天看 15 页,20 天可以看完,如果每天 比原来多看 5 页,现在几天可以看完? 要求出现在几天看完,就要先求出书的总页数和现在每天看的页数。 第 一 步 : ________________________ 第 二 步 : ________________________ 第三步:________________________ 列综合式:__________________________________________________ 2.根据应用题,写出每个算式表示的意义. ①学校食堂买来大米 560 千克,计划吃 14 天,实际每天比原计划少吃 5 千克,这批大米实际吃了多少天? 560÷14=40(千克) __________________________________________ 40-5=35(千克) _____________________________________________ 560÷35=16(天) ____________________________________________
五年级最大公因数和最小公倍数
第四讲最大公因数和最小公倍数经典例题:例1.求下面各组数的最大公因数和最小公倍数。
15和12 90和45 42和70 39和65例2.一块长方体木料,长72厘米,宽60厘米,高36厘米,请你把它锯成同样大小的正方体木块,且木块的体积要最大,木料又不能剩。
算一算可以锯成几块?例3. 两个数的最大公因数是15,最小公倍数是90,求这两个数的和是多少?例4. 三位朋友每人隔不同的天数到图书馆去看书,甲3天去一次,乙4天去一次,丙5天去一次。
一个星期一,他们三人在图书馆相遇,至少再过多少天他们又在图书馆相遇?例5.有一个自然数,被10除余7,被7除余4,被4除余1.这个自然数最小是多少?巩固练习:1.两个数的最大公因数是9,最小公倍数是90,求这两个数分别是多少?4. 教师节那天,某校工会买了320个苹果、240个桔子、200个鸭梨,用来慰问退休的教职工。
问用这些果品,最多可以分成多少份同样的礼物(同样的礼物指的是每份礼物中苹果、桔子、鸭梨的个数彼此相等)?在每份礼物中,苹果、桔子、鸭梨各多少个?5. 一张长方形的纸,长为96厘米,宽为60厘米,把它裁成同样大小且边长为整厘米数的正方形而无剩余,问至少可以裁多少张?6. 有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?9.从甲地到乙地原来每隔45米栽一根电线杆,连同两端共有53根电线杆,现在改为每隔60米栽一根电线杆。
除两端的两根不需移动,中间还有多少根不需移动?10.大雪后的一天,亮亮和爸爸从同一点出发沿同一个方向分别用脚步测量一个圆形花圃的周长,亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印。
问:这个花圃的周长是多少米?。
最大公因数和最小公倍数优质教案五年级上册数学北
最大公因数和最小公倍数优质教案五年级上册数学北一、教学内容本节课选自五年级上册数学教材第十一章“数的整除”,详细内容为最大公因数和最小公倍数的概念及其求法。
具体涉及章节为第1节“最大公因数”和第2节“最小公倍数”。
二、教学目标1. 理解最大公因数和最小公倍数的概念,能够熟练运用求最大公因数和最小公倍数的方法。
2. 能够运用最大公因数和最小公倍数解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和合作意识。
三、教学难点与重点重点:最大公因数和最小公倍数的概念及求法。
难点:求法中的分解质因数方法及其应用。
四、教具与学具准备教具:黑板、粉笔、多媒体设备。
学具:练习本、笔、计算器。
五、教学过程1. 实践情景引入通过一个例子,让学生了解最大公因数和最小公倍数在实际生活中的应用。
2. 新课导入(1)回顾因数和倍数的概念。
(2)引出最大公因数和最小公倍数的概念。
(3)讲解最大公因数和最小公倍数的求法。
3. 例题讲解(1)求两个数的最大公因数。
(2)求两个数的最小公倍数。
4. 随堂练习(2)运用最大公因数和最小公倍数解决实际问题。
5. 小组讨论学生分小组讨论如何快速求最大公因数和最小公倍数。
六、板书设计1. 最大公因数和最小公倍数的概念。
2. 最大公因数和最小公倍数的求法。
3. 例题解答步骤。
七、作业设计1. 作业题目(2)小华和小红同时做家务,小华每3天做一次,小红每4天做一次。
他们同时做家务的最小公倍数是多少?2. 答案(1)18和24的最大公因数是6,最小公倍数是72;28和35的最大公因数是7,最小公倍数是140;30和45的最大公因数是15,最小公倍数是90。
(2)小华和小红同时做家务的最小公倍数是12。
八、课后反思及拓展延伸1. 反思通过本节课的学习,让学生回顾最大公因数和最小公倍数的概念和求法,加深对这两个概念的理解。
2. 拓展延伸引导学生思考如何求三个或更多数的最大公因数和最小公倍数,激发学生的学习兴趣和探究精神。
五年级下册数学:找最大公因数和最小公倍数的几种方法
找最大公因数和最小公倍数的几种方法(质数又叫做素数,公因数又叫做公约数)一、找最小公倍数的方法1、列举法方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它 们的(最小公数)。
方法2: 先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们 的(最小公倍数)这种方法是分解质因数后,找出二个数相同的(质因数) ,及二个数各自 独有的(质因数),然后把二个数相同的(质因数,只取一个。
)和二个数各自 独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。
6862、60 禾口 42的最小公倍数=2X 3 X 2X 5X 7=420。
3、短除法。
用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数)一直除到所得的两个商(只有公因数 1)为止。
把所有的(除数)和最后的两个4、特殊方法(观察法)1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。
2)两个数是互质数的(互质数就是两个数只有公因数 1),它们的最小公倍数是 二个数的(乘积)。
2 1为 18和24的最小公倍数是 2X 3X 3X 4=72(商)连乘起来,就得到这两个数的 (最小公倍二、找最大公因数的方法1、列举法先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)2、分解质因数法。
用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的(质因数),把相同的(质因数)相乘,所得的积就是这两个数的最大公因数。
3、短除法。
用短除法求二个数的最大公因数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。
然后把最后所有的(除数)连乘,就得到了二个数最大公因数。
例题9:用短除法求16和24的最大公因数:2 16 24 .2 8 12 .2 4 62 3最后所有的除数有2、2、2.所以16和24的最大公因数是2^2X2=84、观察法1)两个数具有倍数关系的,它们的最大公因数就是其中(较小)的数。
五年级 第4讲 最大公因数与最小公倍数(教师版)【修订版1.0】
第4讲最大公因数与最小公倍数一、教学目标1.掌握公因数与公倍数、最大公因数与最小公倍数的概念.2.学会求多个数的最大公因数与最小公倍数的方法.3.学会利用最大公因数与最小公倍数解决实际应用题.二、知识要点1.公因数与最大公因数:公因数,亦称“公约数”,即多个自然数公共的因数.它是一个能同时整除若干个整数的整数.其中最大的一个,叫做这几个数的最大公约数,a、b 的最大公因数记作:(a,b).公因数只有1的两个数,叫互质数.例如,8和9是一组互质数,也可以说8和9互质.注意:对任意的若干个正整数,1总是它们的公因数.2.最小公倍数:同理,公倍数即几个自然数公有的倍数,叫做这几个数的公倍数,其中最小的一个自然数,叫做这几个数的最小公倍数,a、b的最小公倍数记作:[a,b].3.短除法:短除符号与除式倒过来的符号十分相似,待分解的数放在被除数位置,除数位置放能整除待分解数的一个共有约数,一直除到商互质为止.格式如图:口诀:最大公因算一边,最小公倍算一圈.被除数待分解21812396324.最大公因数的性质:①几个数都除以它们的最大公约数,所得的几个商是互质数;①几个数的公约数,都是这几个数的最大公约数的约数;①几个数都乘一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n.5.最小公倍数的性质:①两个数的任意公倍数都是它们最小公倍数的倍数.①两个互质的数的最小公倍数是这两个数的乘积.①两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数.三、例题精选【例1】51与87的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(51,87)=3,[51,87]=1479.51=3×17,87=3×29,(51,87)=3,[51,87]=3×17×29=1479.【巩固1】24与60的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(24,60)=12,[24,60]=120.24=23×3,60=22×3×5,(24,60)=22×3=12,[24,60]=23×3×5=120.【例2】12、28与36的最大公因数与最小公倍数分别是?【①①①①①】【解析】(12,28,36)=4,[12,28,36]=252.12=22×3,28=22×7,36=22×32;(12,28,36)=22=4,[12,28,36]=22×32×7=252.【巩固2】15、20与45的最大公因数与最小公倍数分别是?【①①①①①】【解析】(15,20,45)=5,[15,20,45]=180.15=3×5,20=22×5,45=32×5;(15,20,45)=5,[15,20,45]=22×32×5=180.【例3】有三根铁丝,长度分别是120厘米、180厘米和300厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】60厘米,10段.需要截成相等的小段且无剩余,则每段长度必须是120、180、300的公因数.又要求每段尽可能长,则所求应为其最大公因数.(120,180,300)=60,所以每小段最长为60厘米.(120+180+300)÷60=10(段)【巩固3】长48分米,宽40分米的长方形卧室铺地砖,请问最大可以选用边长为多少分米的方砖,能铺的又整齐又节约?【①①①①①】【解析】8分米.正方形边长相等,所以要求的边长长度必须是48和40的公因数,又问边长最大可取多少,则所求应为其最大公因数.(48,40)=8,所以边长最大可取8分米.【例4】一次会餐供有三种饮料.餐后统计,三种饮料共用了65瓶.平均每2个人饮用一瓶A饮料,每3人饮用一瓶B饮料,每4人饮用一瓶C饮料.问参加会餐的人数是多少人?【①①①①①】【解析】60人.由题意可知,参加会餐人数应是2、3、4的公倍数,首先求出2、3、4的最小公倍数:[2,3,4]=12,故参加会餐的人数应是12的倍数,又12人共需:12÷2+12÷3+12÷4=13(瓶),即12人需要13瓶饮料.一共用了65瓶饮料,65÷13=5,则知参加会餐的总人数应是12的5倍,12×5=60(人),即得参加会餐的总人数为60人.【巩固4】加工某种机器零件,要经过三道工序.第一道工序每个工人每小时可完成3个零件,第二道工序每个工人每小时可完成10个,第三道工序每个工人每小时可完成5个,要使加工生产均衡,三道工序至少各分配几个工人?【①①①①①】【解析】第一道工序10人,第二道工序3人,第三道工序6人.要使加工生产均衡,各道工序生产的零件总件数应是3、10、5的公倍数.要求三道工序“至少”要多少工人,首先求3、5、10的最小公倍数.[3,5,10]=30,均衡各道工序,一轮最少应加工30个零件,各道工序最少需要:3÷3=10(人),30÷10=3(人),30÷5=6(人)【例5】两个自然数的和是125,它们的最大公约数是25,两个数是多少?【①①①①①】【解析】25、100或50、75.125÷25=5,5=1+4=2+3,所以两数可以为1×25=25、4×25=100或2×25=50、3×25=75.【巩固5】已知两数的最大公约数是21,最小公倍数是126,求这两个数的和是多少?【①①①①①】【解析】105或147.假设这两个数是21a和21b,易得21×a×b=126,所以a×b=6,由a和b互质,就有6=1×6=2×3这两种情况.所以甲乙是21×1=21、21×6=126或21×2=42、21×3=63这两种情况,它们的和是147或105.【例6】在一根长木棍上用红、黄、蓝三种颜色做标记,分别将木棍平均分成了10等份、12等份和15等份.如果沿这三种标记把木棍锯断,木棍总共被锯成多少段?【①①①①①】【解析】28段.首先求10、12、15最小公倍数:[10,12,15]=60.60÷10=6、60÷12=5、60÷15=4,则知将木棍分成60小份后,每隔6小份有一个红标记,5小份有一个黄标记,4小份有一个蓝标记,因此断点为:4,5,6,8,10,12,15,16,18,20,24,25,28,30,32,35,36,40,42,44,45,48,50,52,54,55,56,则知木棍一共被锯成28段.【巩固6】父子二人在雪地散步,父亲在前,每步80厘米,儿子在后,每步60厘米.在120米内一共留下多少个脚印?【①①①①①】【解析】301个.首先求60、80最小公倍数:[60,80]=240.则知每240厘米,即2.4米有一个脚印踩到了一起,120÷2.4=50,则知120米可以分成50个2.4米,每2.4米中,爸爸脚印有240÷80=3(个),儿子脚印有240÷60=4(个),排除重复脚印则一共有3+4-1=6(个),50个2.4米则有50组6步,故有50×6=300(个),又在0米处二人开始走时也有一个脚印,即共有脚印300+1=301(个).四、回家作业【作业1】18与48的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(18,48)=6,[18,48]=144.18=2×32,48=24×3,(18,48)=2×3=6,[18,48]=24×32=144.【作业2】12、24与36的最大公因数与最小公倍数分别是多少?【①①①①①】【解析】(12,24,36)=12,[12,24,36]=72.12=22×3,24=23×3,36=22×32;(12,24,36)=12,[12,24,36]=23×32=72.【作业3】有三根棉线,长度分别是9厘米、18厘米和36厘米.现在要把它们截成相等的小段,每根都不能有剩余,每小段最长多少厘米?一共可以截成多少段?【①①①①①】【解析】7段.需要截成相等的小段且无剩余,则每段长度必须是9、18、36的公因数.又要求每段尽可能长,则所求应为其最大公因数.(9,18,36)=9,所以每小段最长为9厘米.(9+18+36)÷9=7(段)【作业4】一个汽车站有1路车和3路车,1路车每隔20分钟发一辆车,3路车每隔25分钟发一辆车.已知上午8时正1路车和3路车同时出发,再过多长时间两车又同时从车站出发?是几时几分?【①①①①①】【解析】100分(1时40分)后,9时40分;首先求20、25最小公倍数:[20,25]=100.则知100分后辆车又同时出发,100分=1时40分.8时+1时40分=9时40分.【作业5】已知两个自然数的最大公约数为4,最小公倍数为60,两个数是多少?【①①①①①】【解析】4与60、12与20.这两个数分别除以最大公约数所得的商乘积等于最小公倍数除以最大公约数的商,60÷4=15,将30分解成两个互质数的乘积,有1、15,3、5。
五年级奥数第八讲(公因数公倍数)
五年级第八讲 最大公因数数和最小公倍数我与知识手拉手★知识提要★求两个数的最大公因数和最小公倍数的方法可以用短除法、分解质因数法或辗转相除法。
辗转相除法还可以判断两个数是否成互质关系。
★ 知识一、分数有关知识是公因数和公倍数的应用1、( )的分数,叫做最简分数,把一个分数约分应用分子、分母的( )分子、分母。
2、一个最简分数,它的分子和分母的积是24,这个分数是( )或( )3、分母是8的所有最简真分数的和是( ).4、一个最简分数,把它的分子扩大3倍,分母缩小2倍,是 ,原分数是( ),它的分数单位是( ).5、5738 的分子、分母的最大公因数是( ),约成最简分数是( ). 6、通分时选用的公分母一般是原来几个分母的( ).★ 知识点二、学习分解质因数及利用分解质因数的方法求最大公因数和最小公倍数例1 甲、乙两个数的最大公因数是12,最小公倍数是144,已知甲数是36,求乙数。
例2 甲、乙两个数的最大公因数是12,最小公倍数是252,求甲、乙两个数分别是多少?(甲比乙小)例3 已知A 、B 两个自然数的和为50,它们的最大公因数是5,求这两个自然数分别是多少?例4 甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次。
如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日?例5 做衬衣需要三道工序,第一道工序每人每小时可完成15件,第二道工序,每人每小时可完成9件,第三道工序每人每小时可以完成12件,现在要均衡生产,三道工序至少各配多少名工人?1、两个自然数的最大公因数是7,最小公倍是210,已知这两个数的和为77,求这两个数。
2、A 、B 两个数的最小公倍数除以它们的最大公因数商是12。
A 、B 两数差为18,求A 、B 两个数各是多少?3、用一个数分别去除31、61、76,所得的商都余1,这个数最大是多少?4、一个数被8除余6,被7除余5,被6除余4,这个数最小是多少?★★★★ 四星擂台 E5、一个数减去1后是2的倍数,减去2后是3的倍数,减去3后是4的倍数,减去4后是5的倍数,减去5后是6的倍数,减去6后是7的倍数。
五年级下册数学课件-第3单元3 复习公因数和公倍数
(左侧3个数与下边2个数之积)。
• 通过对短除法的复习,我们用短除法来完成练习题,帮助大家加强巩固练习。
8.有3根钢管,它们的长度分别是50厘米,75厘米和
100厘米,如果把它们截成同样长的小段,且不能有剩余,
每小段最长可以是多少厘米?可以截成几段? 50,75,100的最大公因数是25,每小段最长可以是25厘米。 50÷25=2(段) 75÷25=3(段)
);
12和8的公倍数有( 24,48,72,… );
12和8的最小公倍数是( 24 )。
求最大公因数与最小公倍数方法之短除法
• 短除符号就是除号倒过来,在除法中写除数的地方写两个数共有的质因数,然后写下 两个数被公有质因数整除的商,之后再除,以此类推,直到结果互质为止。如:
(
)
• 24和36最小公倍数是2×2×3×2×3=72 • 或 [ 24 , 36 ]=72
江苏版-五年级-下
第3单元
公因数和最大公因数、公倍数和最小公 倍数
知识点1:公因数的含义
1.填一填。
14的因数有( 1,2,7,1)4,16的因数有
( 1,2,4,8,16 ),14和16的公因数有(1,2
)。
知识点2:求两个数的公因数和最大公因数的方法 2.填一填。 21的因数有( 1,3,7,21 )。 18的因数有( 1,2,3,6,9,18 )。 21和18的公因数有( 1,3 )。 20÷25=4(段) 2+3+4=9(段) 答:每小段最长可以是25厘米。可以截成9段。
6.五(2)班有不少于40名的学生,按每组4人或每组6 人都能恰好分成若干组。五(2)班至少有多少人?
4和6的最小公倍数是12 12×4=48(人) 答:五(2)班至少有48人。
五年级上册第14讲 公因数与公倍数
(377,221)= 13
(511,1314)= 1
互质
6
【典型例题】
例3:老师在阿呆班发水果,一共有59个苹果,97个梨,平均分给班上的学生, 最后还剩5个苹果,7个梨。请问班里(最多)一共有多少名学生。
苹果: 梨:
59-5=54 (个) 97-7=90 (个)
人数是54和90的公因数。
(54,90)= 18
2
互质
三个数最 大公因数 是1
两两互质
(120,264)= 2×2×2×3=24 [ 120,264] = 2×2×2×3×5×11=1320
(240,80,96)= 2×2×2×2=16 240,80, 96] = 2×2×2×2×5×3×2=480
5
【典型例题】
例2:求下列各组数的最大公因数。
13
【课堂精练】
5.用一张长1072毫米、宽469毫米的长方形纸,剪成面积相等的正方形,并且 最后没有剩余,这些正方形的边长最长是多少?
边长是1072和469的最大公因数。
2 1072 938 2 134 134 0 (1072,469)= 67
469 3 402 67
答:这些正方形的边长最长是67毫米。
(54,90)= 18 [ 54,90] = 18×3×5=270
4
【典型例题】
(3)120和264 2 120 2 60 2 30 3 15 5 264 132 66 33 11 (4)240、80和96 240 2 120 2 60 2 30 5 15 33 1 80 40 20 10 5 1 1 96 48 24 12 6 6 2
互质
互质
(54,90)= 2×3×3=18 [ 54,90] = 2×3×3×3×5=270
小学五年级数学第三单元《公倍数和公因数》教案
小学五年级数学第三单元《公倍数和公因数》教案在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。
本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。
为以后进行通分、约分和分数四则计算作准备。
全单元的教学内容分三部分编排。
第22~25页教学公倍数。
主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。
第26~31页教学公因数。
包括两个数的公因数、最大公因数的意义,求最大公因数的方法。
在练习五里还安排了最小公倍数与最大公因数的比较。
第32~36页实践与综合应用。
利用邮政编码、身份证号码等实例,教学用数字编码表示信息。
在你知道吗里,介绍了我国古代曾经用辗转相除法求最大公因数,也介绍了现代人们经常用短除法求两个数的最大公因数和最小公倍数。
在阅读这篇材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。
但是,不要求全体学生掌握和使用短除法。
编排的一道思考题,是可以用公因数知识解决的实际问题。
1?在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。
例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。
例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。
再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度总结规律,为形成新的数学概念积累丰富的感性材料。
然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。
教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。
学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出为什么有时正好铺满、有时不能,什么时候正好铺满、什么时候不能这些有研究价值的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公因数和公倍数练习
一、写出下面每组数的最小公倍数(6分)。
(写出过程)
10和6 8和9 5和40
二、写出下面每组数的最大公因数(6分)(写出过程)
40和41 12和60 24和18
三、在()中写出两个数的最大公因数,在[ ]中写出最小公倍数(10分)
12和8 ()[ ] 9和12()[ ] 14和15()[ ] 17和51()[ ] 4和25()[ ]
四、填空(20分)
1、10的因数有(),15的因数有(),10和15的公因数有(),最大公因数()。
2、15的倍数有()(按顺序写4个),10的倍数有()(按顺序写4个),
15和10的公倍数有(),最小公倍数是()。
3、()和12的最大公因数是3,15和()的最小公倍数是15,10和()的公因数只有1,()和4的最小公倍数是12。
4、如果A=B-1(AB为大于1的自然数),A、B的最大公因数是(),最小公倍数是()。
5、如果A=4B(AB为非0的自然数),A、B的最大公因数是(),最小公倍数是()。
6、A的最大因数是12,B的最小倍数是8。
A、B的最大公因数是(),最小公倍数是()。
7、三个连续自然数的和是12,这三个自然数的最小公倍数是()。
8、61是两个素数的和,这两个数的最小公倍数是()。
五、填图(6)分
16和12的公因数 50以内 9和6的公倍数
六、判断(12分)
1、A、B 两数的最大公因数一定是这两个数的最小公倍数的因数。
()
2、两个数的公因数,一定比这两个数小。
()
3、两个素数的公因数只能是1。
()
4、如果两个数的积是它们的最小公倍数,那么这两个数的公因数只有1。
()
5、A是B的因数,B也是C的因数,那么C一定是A、B的公倍数。
()
6、两个偶数一定有公因数2 。
()
七、选择(10分)
1、括号中的数和8的公因数只有1的有()个。
(9,15,12,1)
A:1 B;2 C:3 D:4
2、A、B两个数的最小公倍数是8,下面哪个数不可能是A、B两个数的公倍数()
A;12 B:16 C:24 D:30
3、1、3、9都是9的()
A:公因数B:公倍数 C:因数D:倍数
4、A是B的倍数,B也是C的倍数,那么这三个数的最小公倍数是()
A:A B:B C:C D:无法确定
5、6和A 的公因数一共有4个,6一定是A 的()
A:因数 B:倍数C:最大公因数 D :最小公倍数
八、解决问题(30分)
1、有一筐鸡蛋,6个6个的数还少一个,4个4个的数也少一个。
这筐鸡蛋总数在30---40之间,这筐鸡蛋有多少个?
2、把长48厘米和40厘米的两根绳子剪成同样长的小段,并且没有剩余。
每段长多少米/可以剪几段?
3、从一张长30厘米,宽14厘米的长方形纸上剪下几个同样大的小正方形后,正好剩下一张长14厘米,宽2厘米的纸条。
算一算,小正方形的边长是多少?剪了几个这样的正方形?
4、小红、小名、小华三人相约4月1日到图书馆。
之后,小红过2天后去1次,小名过3天后去1次,小华过5天后去1次。
下一次他们同时会面是几号?
5、有若干张长9厘米,宽6厘米的长方形纸片。
用这种纸片拼成一个正方形,至少需要多少张?正方形的边长是多少?。