8-3 平面应力状态分析-图解法
工程力学(高教版)教案:8.2 平面应力状态
第二节 平面应力状态如图8-3(a)所示的单元体,因外法线与z 轴重合的平面上其剪应力、正应力均为零,说明该单元体至少有一个主应力的为零,因此该单元体处于平面应力状态。
为便于研究,取其中平面abcd 来代表单元体的受力情况(图8-3b )。
任意斜截面的表示方法及有关规定如下:(1)用x 轴与截面外法线n 间的夹角α表示该截面。
(2)α得正负号:由x 轴向n 旋转,逆时针转向为正,顺时针转向为负(图8-3b 的α角为正)。
(3)ασ得正负号:拉应力为正,压应力为负(图8-3的x σ、y σ、ασ均为正值)。
(4)ατ得正负号:ατ对截面内此任一点的力矩转向,顺时针转向为正,逆时针转向为负(图8-3的x τ、ατ均为正值,y τ为负值)。
图8-3一、任意斜截面上的应力计算任意斜截面上应力有两种方法:解析法和图解法。
(一)解析法因研究的构件是平衡的,因此从构件内一点取单元体,并从单元体上取一部分(图8-3c ),则该部分也处于平衡。
由平衡条件可以求得平面应力状态下单元体任一斜截面上的应力计算公式ατασσσσσα2sin 2cos 22x yx yx --++= (8-1)ατασστα2cos 2sin 2x yx +-=(8-2)应用上式 计算ασ、ατ时,各已知应力x σ、y σ、x τ和α均用其代数值。
例8-1 求图8-4所示各点应力状态下斜截面上的应力(各应力单位是Mpa ),并用图表示出来。
解 (1) 已知:x σ=30Mpa ,y σ=-40 Mpa ,x τ=60 Mpa ,α=30º,将各数值代入式(8-1)、(8-2)得斜截面上的应力46.3960sin 6060cos 240302403030-=-++-=σ Mpa 31.6060cos 6060sin 2403030=++= τ Mpa将 30σ、 30τ方向画在斜截面上,如图8-4(1-b)所示。
(2)已知:x σ=-80Mpa ,y σ=0 Mpa ,x τ=-40 Mpa ,α=120º,将各数值代入式(8-1)、(8-2)得斜截面上的应力64.54240sin 40240cos 280280120-=+-+-=σ Mpa 64.54240cos 40240sin 280120=--=τ Mpa将 120σ、 120τ方向画在斜截面上,如图8-4(2-b)所示。
一点应力状态概念及其表示方法
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
材料力学第8章应力状态分析
点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正
材料力学应力状态分析
y
对上述方程消参数(2),得:
o
x
x
x
x y 2 2 x y 2 2 ( ) ( ) xy 2 2
这个方程恰好表示一个圆,这个圆称为应力圆
圆心:
y
(
x y
2
,0)
半径:
R (
x y
2
) xy
2
2
应力圆:
y
x
x
B2
C
D( x , xy )
x
x
o
B1
o
y
( y , yx ) D’
三、证明:
OC OB1 B1C OB1 OB2 OB1 2 x y x y x 2 2
证得圆心位置:
2 1
A2 B2
C
D ( x , xy )
A1 B1
xy
x
D
A
R (
x y
2
)2 2 xy
x
R
c
D (x ,xy)
(y ,yx)
x y
2
D’
绘制步骤:
1、取直角坐标系—— o
x y x y 2 2 xy 2 2
30
单位:MPa 1 、 2、 3 ?
0 45 ;
0
空间应力状态: y y
x
z
x 40, y 60, xy 40, z 100(MPa)
z
xy 平面内的主应力:
x
max 80.7MPa, min 60.7MPa
一点应力状态概念及其表示方法
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体任意一点取矩为顺时针者为正,反之为负。
应力与应变状态分析
ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L
点应力状态概念及其表示方法
一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。
因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。
例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。
2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。
应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。
如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。
如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。
特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。
§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。
1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。
由剪应力互等定理,有:,,。
2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。
3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。
材料力学 第八章:应力状态分析
2 )2
材料力学
整理可得:
(
x
2
y
)2
2
(
x
2
y
)2
x2
(3)
(3)式为以 、为变量的圆方程。
圆心坐标
(
x
y
,0)
横坐标为平均应力
2
半径
(
x
2
y
)2
2 x
为最大剪应力
材料力学
x x
y
x y
2
(
x
2
y
)2
2 x
材料力学
方法一:
27.5
x
2
y
x
y
2
cos(2 27.5) x
sin(2 27.5)
70 70 cos55 50sin 55 22
96MPa
96MPa
27.5
70MPa
62.5 50MPa 26MPa
117.5
x
上的应力对应-坐标系中的Dy点。Dy
点的横坐标
OF
、纵坐标
y
FDy
y
;连接
Dx、Dy与轴的交点C为圆心 , CDx 或
CDy 为半径画一圆,这个圆是该单元
体所对应的应力圆。
材料力学
n
y
x
y
x
x
y
F o
Dy
(y,y)
Dx(x,x) CK
材料力学
证明:
DxCK DyCF (对顶角) Dy FC DxKC (直角)
第八章 应力应变状态分析
o
C
(σ x + σ y ) / 2
σ
半径为
Rσ = (
σ x −σ y
2
2 )2 + τ x
目录
应力圆(图解法) §8.3 应力圆(图解法)
二.应力圆的绘制与应用
σy σα τα σy τy
n
τ
σα τα
H(任意斜截面α) D(x截面对应)
τx
τx
t
-τ x
σx
α
2α
C
σx
τx=τy DF=EG
将第一式移项后两边平方与第二式两边平方相加
σ x +σ y
σ x −σ y
(σ α −
σ x +σ y
2
) =(
2
σ x −σ y
2
cos 2α − τ x sin 2α ) 2
τα = (
2
σ x −σ y
2
sin 2α + τ x cos 2α ) 2
目录
应力圆(图解法) §8.3 应力圆(图解法)
τ max σ x −σ y 2 2 = ±CK = ± ( ) +τ x τ min 2
所在截面互相垂直,并与正应力极值截面呈45 °夹角。
目录
§8.4 极值应力与主应力
二.主应力
由图可知,正应力极值所在截面的切应力为零。 ab,bc,cd,da 均为主平面。 微体的前、后 两面不受力, 切应力也为零。 主平面:切应力为零的截面。 主平面微体:三对互相垂直的主平面所构成的微体。
三.纯剪切状态的最大应力与圆轴扭转破坏分析
σ 3 = −τ
τ τ A(0,τ)
−45
弹塑性力学第08章
应力偏量不变量
§8-2 八面体应力 应力强度
1.八面体应力 2.应力强度(或等效应力)
1.八面体应力
等倾面 八面体应力:ζ 8(ζ oct) 和η 8 (η oct) 设坐标轴x、y、z与应 力主轴方向一致
2 2 2
l mn
1 3
1 8 1l 2 m 3 n 1 2 3 m ? 3 1 2 2 2 2 2 2 2 2 2 2 p8 f nx f ny f nz 1l 2 m 3 n 1 2 3
2 2 1 3 2 3 S 2 S3 2 1 2 1 1 3 1 3 S1 S 3 MP 1 M P2
§8-4 应力空间
如同在三维空间中x、y、z三 个坐标值可以确定空间一个 点的位置一样,一点的应力 状态可以用九维或六维应力 空间中的一个点来表示。应 力空间中任一点都表示一个 应力状态。由于我们讨论的 是各向同性体,与方向无关。 因此只要注意主应力的大小, 而不考虑它们在物理空间中 的方向。这样,我们就可以 采用主应力空间。
J 1 e x e y e z e1 e 2 e 3 0 1 2 2 2 2 2 2 J 2 e x e y e y e z e z e x 6 e xy e yz e zx 6 1 3 2 2 2 2 2 2 x y y z x x xy yz zx 6 2 1 2 2 2 1 2 2 3 3 1 6 e 1 e 2 e 2 e 3 e 3 e1 1 1 1 1 2 2 2 J e x e y e z xy yz zx e x yz e y zx e xy 3 4 4 4 4 e1 e 2 e 3
工程力学第八章 应力应变分析 强度理论
第八章 应力状态分析与强度理论
§8-1 概述 §8-2 平面应力状态下的应力分析
§8-3 空间应力状态分析简介
§8-4 广义胡克定律 §8-5 强度理论
§8-1 概
一、应力状态的概念
述
研究拉压、剪切、扭转、弯曲等基本变形构件的强度问题 时已经知道,这些构件横截面上的危险点处只有正应力或切应 力,相应的强度条件为
c. 若三个主应力都不等于零,称为三向应力状态,三向 应力状态是最复杂的应力状态。
2 1
3 1
3 2
§8-2 平面应力状态下的应力分析 §8.2.1 平面应力状态应力分析的解析法
平面应力状态的普遍形式如图所示 。单元体上有x ,xy 和 y , yx
一、斜截面上的应力
y x
πD F p 4
′
p
A πD
πD 2 F p 4 pD A πD 4
n
D
(2)假想用一直径平面将圆筒截分为二,并取下半环为研究对象
"
p
直径平面
FN
O
FN
d
y
D Fy 0 0 pl 2 sin d plD pD 2 l plD 0 2
π
三、点的主应力与应力状态的分类
1、主单元体 主平面 主应力 主单元体 各侧面上切应力均为零的单元体 主平面 主应力 切应力为零的截面 主面上的正应力
说明:一点处必定存在这样的一个单元体, 三个相互垂直的面 均为主平面, 三个互相垂直的主应力分别记为1 ,2 , 3 且规定按 代数值大小的顺序来排列, 即
y
n
A
y
x
t
北航 材料力学 第八章 应力状态分析
应力应变状态分析
y
y x
§8-2
y
dx dy
平面应力状态应力分析
什么是平面应力状态?
x
dz
x
•微体有一对平行表面不受力的应力状态。 由此推断
x
微体仅有四个面作用有应力; 应力作用线均平行于不受力表面; 平面应力状态的应力分析 问题:已知x , y, x , y, 求任 意平行于z轴的斜截面上的应力。
Page 2
第八章
应力应变状态分析
关于微体:
围绕杆件内某点所截取的一个边长无限小的长方体; 每个面上的应力分布差异可忽略,认为其均匀分布;
微体相对的两个面上的应力视为过该点的、法向相反的两 个平面在该点的应力,等值、反向 ; 微体三个相邻表面上的应力分别代表了过该点的、互相垂 直的三个平面在该点的应力状况; 微体的任意截面上的应力均匀,并且代表了同法向平面在 该点的应力
第八章
应力应变状态分析
第八章
§8-1 §8-2
应力应变状态分析
引言 平面应力状态应力分析
§8-3
§8-4 §8-5 §8-6 §8-7 §8-8
应力圆
平面应力状态的极值应力与主应力 复杂应力状态的最大应力 平面应变状态应变分析 各向同性材料的应力、应变关系 复杂应力状态下的应变能与畸变能
§8-9
复合材料的应力、应变关系
纯剪切受力状态
y
应力应变状态分析
单向受力状态
x x
双向等拉
x
R=x
R=x/2 o
C
C
o
o
x/2
Page16
第八章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R C
x y
2
圆心坐标: ( 半径: R
(
x y
2
,0)
2
x y
2
) 2 xy
二、应力圆的画法 y y yx xy D′ D d τxy a
o
x
τxy σy
Hale Waihona Puke b d′ σxc
x
oc ob bc ob oa ob
cd ca ad
σ1
2 xy x y x 2 x y
3、确定切应力极值 y y yx xy D′ D
g1 b1
d′ (σy,τyx)
c
π/2
d (σx,τxy) a1
o
x
x
σ2
g2
σ1
2
应力圆:a1和g1所对圆心角为逆时针π/2; 单元体:σ1所在主平面法线到τmax所在平 面法线夹角为逆时针的π/4。
1 oa1 x
x y 2
2
2 xy
2 ob1 x
(2)、确定主平面的方位
σ1
σy τ yx D′
σ2
d (σx,τxy)
D
τxy
0
σx
σ1
o
σ2
b1
d′ (σy,τyx)
c
2 0
e a 1
σ2
tan 2 0 xy
H
c
d′(y ,yx)
2
d (x ,xy)
x
2
y
2、转向对应:半径旋转方向与截面法线的旋转方向一致; 3、二倍角对应:半径转过的角度是截面法线旋转角度的两倍。
四、应力圆的应用 1、求单元体内任意斜截面上的应力
y y
yx
n
h
( a , a )
H
σα xy x τα x
c
2
d (x ,xy)
d) (y ,yx
x
2
y
点面相对应,首先找基准;转向要相同,夹角两倍整。
2、确定主应力和主平面的方位
(1)、确定主应力
y y
yx
o
b1
σ2 d′ (σy,τyx)
d (σx,τxy)
C
a1
D′ D
xy
x
x
σ1
2 x y 2 xy 2
x
对上述方程消参数(2),得:
y
2
(
x y
2
)
2
2
(
x y
2
)
2
xy
这个方程恰好表示一个圆,这个圆称为应力圆。
应力圆:
(
x y
2
)
2
2
(
x y
2
) 2 2 xy
R
(
x y
2
)2 2 xy
max x y 2 xy min 2
谢谢大家!
2 2
2 y x y 2 x y 2
2
2 x y 2 xy
三、几种对应关系
1、点面对应:应力圆上某一点的坐标值对应着单元体内某一截面上的应力 ;
y y
yx
n
xy x x
h
( a , a )
8-3 平面应力状态分析—图解法
一、应力圆
x y x y cos 2 xy sin 2 2 2 x y sin 2 cos 2 xy 2
(1)
y
y
x
yx
x
(2) o
xy