扫描电镜及能谱分析—南理工
南京理工大学分析测试中心仪器设备展示
南京理工大学分析测试中心仪器设备展示X射线光电子能谱仪(XPS)简介1.仪器名称:全自动聚焦扫描微区光电子能仪(XPS)2.产品型号:PHI QuanteraⅡ3.品牌:日美纳米表面分析仪器公司4.产地:日本5.主要技术指标系统到达真空<5×10-10 torr;Ag样品XPS光电子能量分辨率Ag 3d 5/2 峰半高宽FWHM < 0.50 eV ;PET 样品XPS光电子能量分辨率C 1s的O=C-O峰半高宽FWHM < 0.85 eV ;最小X射线斑束<9.0μm 在x方向;<9.0μm 在y方向;XPS灵敏度> 15kcps <10.0 μm能量分辨率<0.60 eV离子枪最大电流>5.0 μA @ 5 kV ;6.仪器使用范围电子能谱仪可以对固体样品的表面元素组成进行定性和定量分析,还可以对样品表面原子的化学态及分子结构进行分析研究。
利用氩离子深度剖析技术和角分辨XPS技术,可以获得样品表面不同深度的组成变化情况。
利用小束斑X射线,可以对样品表面进行微区分析和元素及化学态成像分析。
利用原位处理反应池,可在不同温度及压力下对样品进行不同气氛的处理,以获得实际使用气氛对样品表面组成及状态变化的动态影响信息。
适用于高分子材料、催化、电化学、半导体、金属、合金以及生物医学材料等。
管理员:白华萍X射线衍射仪(XRD)一仪器型号:D8 ADVANCE二制造厂商:德国布鲁克公司三主要技术指标:测量精度:角度重现性±0.0001°;测角仪半径≥200mm,测角圆直径可连续改变;最小步长0.0001°;角度范围(2θ):-110~168°;最大扫描速度或最高定位速度:1500°/分;温度范围:室温~900℃;环境压力:1mbar-10bar;最大输出:18KW;稳定性:±0.01%;管电压:20~60kV(1kV/1step);管电流:10~300mA四功能及应用范围:仪器功能:X射线衍射仪对单晶、多晶和非晶样品进行结构参数分析,如物相鉴定和定量分析、室温至高温段的物相分析、晶胞参数测定(晶体结构分析)、多晶X-射线衍射的指标化以及晶粒尺寸和结晶度的测定等。
扫描电镜图像的分析
100 150 200 250 300 350 400 颗粒个数N
个
数 均 D n 5.57 5.30 5.40 5.57 5.50 5.57 5.64
μ
m
体 均 D v 8.33 8.20 8.06 8.16 8.08 8.09 8.14
μ
m
D50 μm 8 . 11 8 . 1 0 7 . 8 0 7 . 9 2 7 . 9 1 7 . 9 2 7 . 9 5
图4.12 500X 解理和沿晶断裂
图4.13 钢管旳断口 500X
图4.14 钢材腐蚀表面 1000X
图4.15 750X 沿晶断裂
图4.16 550X 解理断裂
图4.17 1000X 解理+准解理
图4.18 500X 解理+沿晶断口(拉长韧窝)
图4.19 高岭土 3000X
图4.20 高岭土5000X
图4.22 Mg-Zn-Y合金二次电子照片
图4.23 合金旳背散射电子照片 500X
图4.24 Mg-Zn-Y合金旳背散射电子照片 图4.25 Mg-Zn-Y合金旳背散射和二次电子照片
图4.26 铝钴镍合金二次电子照片
图4.27 铝钴镍合金背散射电子照片
4 粒度分布测量
大规模集成电路板上旳沟槽深、线宽、圆直径、正方形、长方形边长等旳测量;粉体(尤其是纳米)颗粒 粒度测量、原则粒子微球旳粒度定值;复合材料(如固体推动剂)中某种颗粒组份粒度分布测量、样品表 面孔隙率测定等…,都能够使用图像处理、分析功能,有自动和手动。目前旳EDS中都有该软件包供选择, 用SEM测量测定粉体颗粒粒度是精确、以便和实用旳。测量旳粒度范围能够从几十纳米到几种毫米,是 任何专用粒度仪所无法胜任旳。尤其当分析样品旳粒度不大于3um(例如:超细银粉、碳粉、钴蓝、 Fe2O3、SiO2等)时,超细颗粒极易汇集、团聚(如下图)、在水中尤其难于分散旳特征,老式旳湿法 粒度分析(例如:Coulter计数法、激光散射法、动态光子有关法)就无法得到真实旳粒度成果。而扫描 电镜粒度分析法(简称SEM法)却不受这些限制,比较灵活,完全能适应这些特殊样品旳粒度分析,同 步它属于绝对粒度测量法。为克服SEM粒度分析法所存在旳测定样品量太少、成果缺乏代表性旳缺陷, 在实际操作时,要多制备些观察试样,多采集些照片,多测量些颗粒(300个以上)。超细粉体样品一般 制备在铜柱表面上,希望颗粒单层均匀分散、彼此不粘连。这么,在不同倍数下得到照片,便于图象处理 和分析功能自动完毕;不然,就要手工测量每个颗粒旳粒度,然后进行统计处理。
(精品)扫描电子显微镜SEM和能谱分析技术EDS
EDS
能量分辨率:132eV 分析范围:Be-U
JEOL-6380/SEM的工作界面
颗粒
10,0000-Au 6,0000-纳米晶 金刚石
薄膜及涂层材料
昆虫
生物材料 头发
EDAX-EDS的工作界面---谱线收集
能谱谱线收集实例
Element CK OK AlK SiK MoL CrK MnK FeK
6 能谱仪(EDS)的结构
7 能谱仪(EDS)的特点
优点
1)快速并且可以同时探测不同能量的X-光能谱 2)接受信号的角度大。 3)仪器设计较为简单 4)操作简单
性能 分析时间 检测效果 谱鉴定 试样对检测影响 探测极限 定量分析精度
EDS 几分钟 100% 简单 较小
700ppm ±5-10%
缺点
1)能量解析度有限 2)对轻元素的探测能力有限
3)探测极限 4) 定量能力有限
8 仪器功能介绍及应用
型号 日本电子JEOL-6380LV 美国EDAX GENESIS 2000
SEM/EDS的主要性能指标
SEM
分辨率:高真空模式:3.0nm;低真空模式:4.0nm 低真空:1-270Pa 加速电压:0.5KV-30KV 放大倍数:5倍-30万倍 电子枪:W发卡灯丝式 检测器:高真空模式和低真空模式下的二次电子检测,
号,大小和极性相同,而对于形貌信
息,两个检测器得到的信号绝对值相
同,其极性相反。
Al
Sn
二次电子图像 VS. 背散射电子图像
4 扫描电镜对样品的作用--
物镜光栏、工作距离与样品之间的关系
物镜光栏的影响
工作距离的影响
5 能谱仪(EDS)的工作原理
SEM扫描电镜能谱(EDS)分析技术
SEM扫描电镜能谱(EDS)分析技术来源:Labs科技⽂摘如果要分析材料微区成分元素种类与含量,往往有多种⽅法,打能谱就是我们最常⽤的⼿段。
能谱具有操作简单、分析速度快以及结果直观等特点,最重要的是其价格相⽐于⾼⼤上的电镜来说更为低廉,因此能谱也成为了⽬前电镜的标配。
今天这篇⽂章集齐了有关能谱(EDS)的各种问题,希望能给⼤家带来帮助。
Q1:能谱的缩写是EDS还是EDX?开始的时候能谱的缩写有很多,⽐如EDS,EDX,EDAX等,⼤家对此也都⼼照不宣,知道ED 就是Energy Dispersive,后⾯因为X-ray Analysis和Spectrum这⼏个词的不同⽤法,导致了缩写的不同。
⽽且相应的汉译也有很多,⽐如能量⾊散谱,能量散射谱等等。
不过,到了2004年左右,相关协会规定,EDS就是能谱或者能谱仪,EDX就是能谱学,Dispersive就不去翻译。
这样EDS就应该是⽂章⾥的正规⽤法,⽽现在有很多⽂章仍然使⽤其他说法,有约定俗成的味道,⼤家知道怎么回事就⾏了。
Q2:TEM的能谱误差⽐SEM的⼩吗?A2:因为很多⼈知道TEM的分辨率⾼,所以认为TEM所配能谱的分辨率⾼于SEM。
这可以说是⼀个⾮常错误的论断。
同样⼚家的能谱,同⼀时期的产品,⽤于TEM的分辨率通常要低于SEM⼏个eV,诚然,TEM可能会观察到更⼩的细节,但这只是能谱分析范围的精准,并不代表能谱的分辨率⾼。
SEM的样品⽐较容易制备,⽽且跟厚度关系不⼤,⼀般电⼦束深⼊样品的⾼度为⼏个微⽶,定量时可以放相应样品的标样(⽐如纯Si就⽤纯Si标样,MgO就⽤MgO标样,有很多国家级标样供选择)来做校正。
⽐较重的元素诸如很多⾦属和稀⼟元素的分析结果可以认为是定量的。
上海硅酸盐研究所的李⾹庭教授对SEM和电⼦探针的EDS分析结果做过⽐较系统的讲述,我摘抄如下:EDS分析的最低含量是0.x%(注:这个x是因元素不同⽽有所变化的。
)“电⼦探针和扫描电镜X射线能谱定量分析通则”国家标准,规定了EDS的定量分析的允许误差(不包括含超轻元素的试样)。
场发射扫描电镜及能谱仪的使用实验报告
场发射扫描电镜及能谱仪的使用实验报告本次实验是使用场发射扫描电镜及能谱仪,在该实验中,我们使用了分别大小不同的4种不同样品,来研究场发射扫描电镜的原理和能谱仪的使用方法以及样品的成分。
首先,我们使用场发射扫描电镜来观察样品的表面形态。
在观察的过程中,我们需要将样品放置在扫描电子显像样品台上,示波器显示出各类电子的轨迹和位置,样品的表面形态被非常清楚地显示在了电子显像器上。
在观察样品表面形态的过程中,我们发现样品的表面形态非常复杂,有些微观结构上的细节在肉眼里并不能看得出来,但是在电杆极电子轨道的照射下,这些细节清晰可见,非常充分地展现了物质的微观结构。
接着,我们使用场发射扫描电镜来对样品的表面进行能谱分析。
能谱仪是将能量较低的电子通过质谱仪来进行测量,通过利用不同电子在材料中相互作用时发生的产生与到达位置的变化,可以精确地测量到样品中不同元素的元素组成比例。
通过能谱仪的测量,我们得到了样品的化学元素组成和相对含量,从而进一步确认样品的型号和质
量。
在使用能谱仪进行样品分析的过程中,我们需要注意到样品表面
的污染和样品本身的含水率等因素,这些都可能导致测试结果的偏差。
总的来说,使用场发射扫描电镜和能谱仪进行样品分析是一种非
常有效的分析方法。
场发射扫描电镜不仅可以将物质的微观结构清晰
地呈现出来,还可以用来确认样品的型号,而能谱仪则可以帮助我们
进一步了解样品的元素组成和含量,这对于对样品进行研究和分析非
常有帮助。
当然,在进行分析前,我们还需要对每个样品的具体情况
进行细致的分析和考虑,并采取相应的措施来避免测试误差的发生,
保证测试结果的准确性。
场发射扫描电镜及能谱仪的使用实验报告(一)
场发射扫描电镜及能谱仪的使用实验报告(一)场发射扫描电镜及能谱仪使用实验报告实验目的1.了解场发射扫描电镜及能谱仪的基本原理和使用方法;2.熟悉场发射扫描电镜及能谱仪的操作流程;3.掌握利用场发射扫描电镜及能谱仪对样品进行表征的技能。
实验器材1.场发射扫描电镜及能谱仪;2.样品;3.电脑。
实验步骤一、准备工作1.打开电脑,登录操作系统;2.打开场发射扫描电镜及能谱仪的相关软件;3.将样品放置在台面上,并对其进行定位和调整。
二、场发射扫描电镜成像1.点击场发射扫描电镜软件界面上的“成像”按钮;2.调整样品位置和姿态,确保取得清晰的图像;3.根据需要进行调整,如放大、缩小、改变灰度等。
三、能谱仪分析1.点击能谱仪软件界面上的“能谱分析”按钮;2.设置分析参数,如电子束的加速电压、电子束的工作距离、收集角度等;3.等待采集数据,得到样品的能谱图;4.根据能谱图进行分析和判断,如分析样品的成分元素和结构等。
四、关闭仪器1.关闭软件界面;2.关闭仪器的主电源;3.给样品台面等部件进行清洁。
实验结果通过场发射扫描电镜及能谱仪的使用,我们成功得到了样品的形态、结构特征以及成分等信息。
实验结果表明,场发射扫描电镜及能谱仪是非常重要的材料表征手段,对于材料的表征、研究和开发具有非常重要的作用和意义。
实验总结1.场发射扫描电镜及能谱仪的操作流程相对简单,但在实验操作时需要非常注意;2.实验中需要格外注意操作的安全性和环境的卫生;3.实验结果的可靠性需要通过多次实验进行验证;4.实验工作需要团队合作,大家需要相互配合协作,以确保取得预期的实验结果。
实验注意事项1.实验者需要对仪器有一定的了解,以免操作不当造成设备损坏或人身伤害;2.实验时需要保持实验场地的卫生,避免样品受到污染;3.实验数量不能过多,要保证每次实验充分利用设备和样品;4.实验时需认真遵守实验室安全操作规程,不得离开实验室;5.实验结束后,需仔细清洁实验场地和仪器。
扫描电镜 能谱
扫描电镜能谱
扫描电子显微镜(Scanning Electron Microscope,SEM)是一种分析仪器,
通过对物质表面的电子扫描获取其结构和形态的物理方法。
该仪器可以用于测量、表征和分析物质以及进行物质表征与表面分析技术。
扫描电子显微镜可以在以微米尺度分布的表征数据上有效把握和描述物质表面形貌特征,例如,它能够提供定性、定量的表征数据,对于对细胞等微小物体的形貌结构的分析具有非常重要的意义和作用。
扫描电子显微镜的应用范围广泛,可应用于科学研究和工程应用。
在科学研究
领域中,它可用于研究微观细胞的形貌与结构,检测致病基因的表达情况,研究新材料的性能特征,研究细菌等对外界环境适应性,以及分析样本中复杂有机混合物中有机聚合物分子结构等。
在工程应用领域,扫描电子显微镜可用于分析材料表面失效、机械零部件损伤机理、润滑油添加剂分布、滤料介质损伤、材料表面腐蚀等。
扫描电子显微镜能够探测到的粒度微小,最小能谱量级可达1nm,非常精确。
它还具有高效率,转换效率高达99%,可将细胞、芯片、涂层、聚合物等小物体的
结构特征进行查看、分析和测量。
此外,它还具有高精确度,能够提供0.1nm的分辨率,可以测量特定物质的原子排布情况,同时具有操作简便性,可以自由调整对特定物质的扫描和深度,以实现更精细的分析。
扫描电镜能谱仪原理
扫描电镜质谱仪原理一.样品表面产生信号电子的过程真空状态下加热钨灯丝时会产生电子束,电子束照射于样品上,和样品相互作用产生信号电,包括:二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子、透射电子等。
通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。
能谱图:横轴为X射线能量(KeV),纵轴为X射线光子数。
当用强电子束照射试样,产生大量的特征X射线。
对于试样产生的特征X射线,有两种展成谱的方法:X射线能量色散谱方法(EDS:energy dispersive X-ray spectroscopy)和X射线波长色散谱方法(WDS:wavelength dispersive X-ray spectroscopy)。
在分析电子显微镜中均采用探测率高的EDS。
强电子束照射试样,同时产生二次电子和特征X射线,二次电子用于成像,X射线用于能谱的成分分析。
二. 扫描电镜成像原理二次电子信号闪烁晶体转换为光子光电倍增管放大并转换为电流信号电信号放大器转换成信号电压送到信号处理和成像系统,完成成像信息的电子学过程三.X射线能谱仪原理样品的X射线信号冷冻的锂漂移硅检测器产生空穴-电子对外加偏压下移动而形成电荷脉冲前置放大器电压脉冲,经放大、整形多道脉冲高度分析器计算机处理谱线(横坐标代表能量,纵坐标代表X 射线光子数目)注意:每一个X射线光子产生的电子-空穴对在外加偏压下移动而形成一个电荷脉冲。
四.不同信号电子的产生原理1.二次电子入射电子受样品的散射与样品的原子进行能量交换,使样品原子的外层电子受激发而逸出样品表面,这些逸出样品表面的电子就叫二次电子。
还有一部分二次电子是背散射电子逸出样品表面时激发的,在成像时形成本底。
从样品得到的二次电子产率既与样品成分有关,又与样品的表面形貌有更密切的关系。
2.特征X射线特征X射线:是原子的内层电子受到激发之后,在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射,其波长极短约0.1nm左右。
扫描电镜中的能谱分析
衬底介质
铝 碳 铜 粘接剂 双面胶带 金属胶带 蜡或油基的衬底介质
X-射线信号的产生
X-射线信号的产生
信号源 空间分辨率 信号的方向性 粗糙表面或颗粒的分析
交互作用区
一次电子束 ~ 10 nm: 二次电子 ~ 1~2 µm: 背散射电子
~ 2~5 µm: X-射线/阴极荧光 交互作用区
电子进入样品后的情形
Energy Dispersive X-ray Spectrometric Microanalysis (EDX) with SEM 扫描电镜中的能谱分析
谭立和博士
Ph.D. Cambridge EDAX Inc.
内容梗概
扫描电子显微分析基本概念 能谱分析技术理论基础 分析软件结构与操作
– – –
SE 频数 Auger BSE
0
50 eV
2 kV 电子能量
EPE
真空环境下二次电子成像与探头
Everhart- Thornley 二次电子探头
真空度要求高
由于探头本身的暴露式的高压元件
ETD 对光敏感,进而对加热也敏感 对样品的要求高
耐真空,保真空,无污染和导电
真空环境下二次电子成像与探头
样品室真空 < 8x10-5 Torr 电子收集器 光电倍增管 光管 闪烁器电压 +10 到 +12 仟伏
按原子序数顺序的K 线峰的位置
0 ~ 10 kV之间可见谱线
K 线系 - Be ( Z = 4 ) 到 Ga ( Z = 31 ) L 线系 - S ( Z = 16 ) 到 Au ( Z = 79 ) M 线系 - Zr ( Z = 40 ) 到最高可能出现的原子 序号。
每一个元素(Z > 3)在0.1 到 10 keV 都具有至少 一个可见谱线。对一些重叠状态,可能需要在10 到 20 keV 的范围进行测定。
扫描电镜加能谱
扫描电镜加能谱扫描电镜和能谱是一种常用的材料表面分析技术。
它们在材料科学、生物学、化学、地质学等领域具有广泛的应用。
下面将从扫描电镜和能谱的原理、特点、应用等方面进行介绍。
一、扫描电镜原理扫描电镜是一种利用电子束扫描样品表面,通过检测电子与样品相互作用产生的信号,来获取样品表面形貌和信息的显微镜。
扫描电镜主要由电子枪、透镜系统、扫描系统、信号检测系统和成像系统等组成。
1. 电子枪:产生电子束,电子束经过透镜系统聚焦后,照射到样品表面。
2. 透镜系统:对电子束进行聚焦,使电子束在样品表面形成高分辨率的光斑。
3. 扫描系统:控制电子束在样品表面的扫描路径,实现样品表面的逐点扫描。
4. 信号检测系统:检测电子束与样品相互作用产生的信号,如二次电子、背散射电子等。
5. 成像系统:将检测到的信号转换为图像,显示在显示器上。
二、能谱原理能谱是一种通过分析样品在电子束照射下产生的特征X射线,来确定样品元素组成和含量的分析方法。
能谱仪主要由样品室、X射线探测器、信号放大器和数据处理系统等组成。
1. 样品室:放置样品,样品在电子束照射下产生特征X射线。
2. X射线探测器:检测样品产生的特征X射线,将X射线能量转换为电信号。
3. 信号放大器:放大电信号,提高信噪比。
4. 数据处理系统:处理放大后的电信号,绘制能谱图,分析样品的元素组成和含量。
三、扫描电镜加能谱的特点1. 高分辨率:扫描电镜可以实现高分辨率的表面形貌观察,能谱可以精确地分析样品的元素组成和含量。
2. 空间分辨率:扫描电镜具有较好的空间分辨率,可以观察到样品表面的微小区域。
3. 灵敏度高:能谱对微量元素的检测灵敏度高,可以检测到样品中的微量元素。
4. 无损检测:扫描电镜和能谱都是无损检测技术,对样品没有损伤。
5. 适用范围广:扫描电镜和能谱可以应用于各种材料,包括金属、非金属、生物样品等。
四、扫描电镜加能谱的应用1. 材料科学:研究材料的微观形貌、晶体结构、相组成等。
扫描电镜能谱分析实验报告
扫描电镜能谱分析实验报告实验报告篇一:扫描电镜能谱分析实验能谱分析对于确定样品的结构与组成有着重要意义。
本实验通过探究硅片中磷原子的能级结构,得出结论。
具体实验方案如下: 1.扫描电镜分析:采用SPZ100型旋转扫描电子能谱仪,按国家标准,完成了对Z型和P型样品的能量分析。
2.测试分析:采用德国克劳斯特K40光谱仪测试待测样品,得出其成分分析值为:样品组成为:Si85%~91%、 Al2O31.5~3%、 Sn1.0~2.3%、 Fe0.6~0.7%、 S0.2~0.3%、 Cl0.4~0.8%、 Cu0.02~0.1%。
扫描电镜主要由真空系统、电子学系统和信号处理及图像采集系统组成。
与光学显微镜相比,电子显微镜具有极大的优越性,这是因为电子束具有极高的速度,可在瞬间获得数百万的信息,放大倍率一般在1万倍左右。
它是一种多功能的高分辨显微镜。
自从上世纪90年代以来,随着电子显微镜技术的发展,扫描电镜作为现代显微分析领域中研究生命科学和材料科学等方面的有力工具,已广泛应用于各个领域,而且,扫描电镜能谱分析技术也已被应用到众多领域。
例如:样品制备的表征,多元素同时分析,信号提取和图像重建,表面形貌和孔洞分析等。
对于石墨材料的扫描电镜能谱分析的目的主要是: 1、进行表面扫描电镜( SEM)和反射电镜( RIM)表面组成的表征; 2、确定石墨材料中的杂质类型及含量; 3、观察石墨层中二维或三维缺陷及结构缺陷; 4、确定石墨中裂纹的存在位置和走向。
扫描电镜(SEM)是当前应用最为广泛的表面结构研究手段之一。
扫描电镜能谱分析技术包括X射线光电子能谱和俄歇电子能谱,其中俄歇电子能谱又称“无损定量分析”。
俄歇电子能谱实际上是一种能量分析方法,它只分析特定能量的电子。
在原子吸收测量中,测量电子的能量范围约在0.1~0.45ev,此时单能态分辨能力较差,因此,采用双能级分析(即俄歇电子能谱),能够更好地对样品进行表征。
扫描电镜成分分析实验报告
扫描电镜成分分析实验报告一、实验目的本实验旨在通过使用扫描电子显微镜(Scanning Electron Microscope,SEM)对材料的成分进行分析与表征,探究扫描电镜在材料科学研究中的应用。
二、实验原理扫描电镜是一种利用电子束与物质相互作用产生的信号来观察样品表面形貌和成分的高性能显微镜。
它不仅能提供高分辨率的图像,还可以通过能谱仪分析不同元素的含量。
三、实验器材和试剂1. 扫描电子显微镜2. 样品3. 金和银溅射镀膜刀具4. 研磨纸(各种粒度)5. 丙酮6. 无水乙醇7. 电子导电胶布8. 剪刀四、实验步骤1. 样品处理a. 将待分析样品切割成合适尺寸并用研磨纸磨光表面。
b. 使用丙酮清洗样品,去除表面油脂等污染。
c. 使用无水乙醇反复清洗样品,使其干燥。
d. 使用金或银溅射镀膜刀具,在样品表面均匀切割一层金(或银)薄膜。
e. 使用剪刀将样品切割成合适大小并粘贴在电子导电胶布上。
2. SEM成像a. 将样品放入扫描电镜样品舱中。
b. 开始真空抽气,调节电压和电流至合适数值。
c. 调整焦距和亮度,选取合适的观察位置。
d. 利用附带的摇杆,调节样品位置,使待观察的区域位于镜头中心。
e. 点击扫描按钮,获取样品的图像。
3. 成分分析a. 运用能谱仪获取样品的X射线能谱信息。
b. 分析能谱图,得到样品中不同元素的相对含量,并记录下来。
c. 结合成像结果,分析样品中特定成分在不同区域的分布情况。
五、实验结果与讨论在本次实验中,我们选择了一块具有复杂结构的材料进行分析。
通过SEM观察到,材料表面具有许多微小的颗粒,且表面呈现出较粗糙的特征。
通过能谱分析发现,样品主要含有铁、硅、氧和碳等元素,其中铁元素相对含量最高。
这与材料的使用环境和预期的组成相吻合。
进一步分析样品不同区域的成分分布,发现在某些区域,铁元素含量明显较高,与材料的颜色和纹理变化相对应。
此外,硅元素在整个样品表面均有分布,而氧和碳元素则主要集中在较粗糙的表面区域。
扫描电子显微镜SEM和能谱分析技术EDS
EDS
能量分辨率:132eV 分析范围:Be-U
JEOL-6380/SEM的工作界面
颗粒
10,0000-Au 6,0000-纳米晶 金刚石
薄膜及涂层材料
昆虫
生物材料 头发
EDAX-EDS的工作界面---谱线收集
能谱谱线收集实例
Element CK OK AlK SiK MoL CrK MnK FeK
(3)粉末样品的制备:
导电胶--粘牢粉末--吸耳球--观察 悬浮液--滴在样品座上--溶液挥发--观察
(4)不导电样品:
通常对不导电样品进行喷金、喷碳处理或使用导电胶 形貌观察:喷金处理 成分分析:喷碳处理
样品制备注意事项
a 显露出所欲分析的位置 b 不得有松懈的粉末或碎屑 c 需耐热,不得有熔融蒸发的现象 d不能含有液状或胶状物质,以免挥发 e非导体表面需镀金或镀碳 f 磁性材料会影响聚焦,成像效果不好
阴极 控制极
阳极 电子束 聚光镜
试样
样品表面激发的电子信号
特征X射线
二次电子、背散射电子和特征X射线
二次电子
它是被入射电子轰击出来的样品核外电子.
背散射电子
它是被固体样品中原子反射回来的一部分 入射电子。
特征X射线
它是原子的内层电子受到激发之后, 在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射
6 能谱仪(EDS)的结构
7 能谱仪(EDS)的特点
优点
1)快速并且可以同时探测不同能量的X-光能谱 2)接受信号的角度大。 3)仪器设计较为简单 4)操作简单
性能 分析时间 检测效果 谱鉴定 试样对检测影响 探测极限 定量分析精度
EDS 几分钟 100% 简单 较小
扫描电镜分析实验
扫描电镜分析实验二.【实验目的】:1. 了解扫描电子显微镜的原理、结构;2. 了解能谱仪的原理、结构;3. 运用扫描电子显微镜/能谱仪进行样品微观形貌观察及微区成分的分析。
三.【实验原理】:扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。
试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。
其中二次电子是最主要的成像信号。
由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。
聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。
二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。
能谱仪(EDS)是利用X光量子有不同的能量,由Si(li)探测器接收后给出电脉冲讯号,经放大器放大整形后送入多道脉冲分析器,然后在显像管上把脉冲数-脉冲高度曲线显示出来,这就是X光量子的能谱曲线。
四.【实验仪器】:1. JEOL JSM-6460LV SEM 扫描电子显微镜(日本电子株式会社)2. OXFORD INCA EDS,能谱仪(英国牛津仪器公司)3. JFC-1600离子溅射仪(日本电子株式会社)五.【实验步骤】:1.样品的制备(1)基本要求:试样在真空中能保持稳定,含有水分的试样应先烘干除去水分。
表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干。
有些试样的表面、断口需要进行适当的侵蚀,才能暴露某些结构细节,则在侵蚀后应将表面或断口清洗干净,然后烘干。
(2)块状试样的制备:用导电胶把试样粘结在样品座上,即可放在扫描电镜中观察。
对于非导电或导电性较差的材料,要先进行镀膜处理。
(3)粉末样品的制备:在样品座上先涂一层导电胶或火棉胶溶液,将试样粉末撒在上面,待导电胶或火棉胶挥发把粉末粘牢后,用吸耳球将表面上未粘住的试样粉末吹去。
扫描电子显微镜SEM和能谱分析技术EDS
扫描电子显微镜SEM和能谱分析技术EDS 扫描电子显微镜(SEM)和能谱分析技术(EDS)是现代材料科学和纳米技术研究领域中常用的重要工具。
SEM通过扫描样品表面,利用高能电子束与样品表面相互作用产生的信号,从而获得样品高分辨率的图像。
而EDS则是一种能够定性和定量分析分布于材料样品中的元素种类以及其含量的分析技术。
SEM和EDS是相辅相成的技术,常常同时应用于样品的表征和分析。
SEM技术可以提供高分辨率的样品表面形貌信息。
通过SEM观察,我们可以了解材料表面的微观形貌、颗粒大小以及形态等。
SEM显微图像的分辨率通常达到纳米级别,这使得我们可以观察到许多微观细节。
此外,SEM还可以提供样品的三维形貌信息,通过倾斜样品或者旋转样品,可以获得不同角度的视图,从而形成立体效果。
通过SEM可以观察到各种不同材料的显微结构,如金属、陶瓷、聚合物等,因此被广泛应用于材料科学、能源材料、生物医学和纳米科技等领域。
然而,单纯的SEM观察只能提供样品形貌信息,并不能直接获得元素成分信息。
这时候EDS技术就派上用场了。
EDS技术利用特殊的X射线探测器,测量和分析样品表面上从中散射出的X射线,从而获得样品的化学元素成分及其含量信息。
当高能电子束作用在样品表面时,样品原子会被激发并跳跃到一个高能级,当原子从高能级退跃到低能级时会释放出能量,这个能量对应的就是一定能量的特定频率的X射线。
通过测量和分析这些特定频率的X射线,可以得到样品中各种元素的数据。
除了定性分析元素成分外,EDS还可以用于定量分析元素含量。
SEM和EDS技术的结合,可以实现样品表面形貌与元素成分的高分辨率综合分析。
通过SEM观察到的微观形貌结构可以与EDS获取的元素成分信息相印证,从而更全面地理解样品的特性。
比如,在材料科学中,研究人员可以通过SEM观察到材料的孔隙结构和相界面形貌,而通过EDS分析,可以确定材料中各个相的元素成分,进而推断材料的组成和性能。
扫描电镜与能谱在稀土生产中的应用
扫描电镜与能谱在稀土生产中的应用摘要:本文通过能谱与扫描电镜联合应用的实例,探讨了成分衬度像与能谱电分析技术相结合来进行稀土精矿微区分析的方法。
其中对成分衬度像拍照技巧,稀土精矿中各种元素的赋存状态识别等进行较深入的探索。
关键词:扫描电镜能谱稀土生产应用能谱仪(EDS, Energy Dispersive Spectrometer)是用来对材料微区成分元素种类与含量分析,其基本原理是通过电子束与样品相互作用后激发产生特征X射线能谱来鉴定组成元素种类并可同时测定组成元素的含量。
在稀土生产中可利用能谱仪配合扫描电镜对稀土精矿颗粒进行微区分析,从而确定其元素种类、含量。
依据稀土精矿微区分析数据,可达到对稀土精矿的相组成、结构特点等进行合理的统计分析,为有针对性的选择冶炼手段提供依据。
1材料与方法1.1样品原料和仪器实验用稀土矿有来源于内蒙古包头白云鄂博地区的稀土精矿。
日本SU8010型冷场扫描电镜配EDAX能谱仪。
德国D8 Advance型X射线衍射仪。
1.2稀土矿石能谱微区分析样品制备将样品撒在样品台的双面胶,用手指轻弹样品台四周,粉料会均匀的向胶面四周移动,铺平一层,倒置样品台,把多余材料抖掉,然后用纸边轻刮颗粒面,并轻压使其与胶面贴实,用洗耳球按由内至外方向吹掉粘结不牢的多余粉料。
2.结果与讨论2.1成分衬度像在微区分析中的应用成分衬度像:在检测表面光滑平整的样品时,没有微区形貌干扰,如果样品是由两种以上物质组成,则可以获得成分衬度像图。
背散射电子像就可以用来显示形貌衬度,也可以用来显示成分衬度,如图1中B、D。
2.1.1成分衬度像的拍照技巧直接拍成分衬度像,因图像立体感差不易调节清楚,通过不断摸索发现,可通过先选用高角度背散射模式附加二次电子上下探头模式,调节至图像清楚。
如图1中A、C,然后撤去二次电子,再稍加调节即可获得清晰的成分衬度像。
如图1中B、D。
通过上面两组图像的对比我们不难发现,表面较平整的颗粒其成分衬度像效果也较明显。
扫描电镜 能谱 含量
扫描电镜能谱含量
扫描电镜能谱分析是一种分析材料组成和结构的技术,可用于分析物质中各种元素的化学成分,并可定量地测定化学成分中碳、氧、氮等元素的含量。
能谱分析在进行元素分析时,会通过分析样品受到激发的特征X射线谱线来确定元素的含量,具有高效准确的特点。
扫描电镜能谱是一种分析材料组成和结构的技术,可用于分析物质中各种元素的化学成分,并可定量地测定化学成分中碳、氧、氮等元素的含量。
扫描电镜能谱分析具有较高的测定精度和可靠性。
能谱分析会通过分析样品受到激发的特征X射线谱线来确定元素的含量。
这种技术还可以根据衬度的变化判断元素的富集程度。
扫描电镜及能谱分析—南理工之欧阳地创编
扫描电镜及能谱分析实验报告书南京理工大学材料科学与工程学院2016.5. 30一、实验目的1. 了解扫描电子显微镜的基本结构和工作原理2. 了解扫描电镜的一般操作过程3. 了解扫描电镜的图像衬度和图像分析方法二、扫描电子显微镜的基本结构和工作原理1. 基本结构 镜筒:包括电子枪、聚光镜、物镜及扫描系统 电子信号收集与处理系统电子信号的显示与记录系统真空系统及电源系统 班级: 9131161502 学号: 913116150208 姓名: 安志恒实验仪器为美国 FEI 公司生产的场发射环境扫描电子显微镜(FEI Quanta 250 FEG),能高效地收集电子显微图像、衍射花样、元素分布等有用信息,并能直接进行纳米尺度的观察和研究,实现对金属或纳米材料在原子尺度上微结构和缺陷的表征。
主要技术指标:高真空模式二次电子(SE)像分辨率:30 kV 时优于 1.0 nm;高低真空模式背散射电子(BSE)像:30 kV 时优于 2.5 nm;加速电压:0.2 kV-30 kV;放大倍数: 14 倍-100 万倍;电子枪:Schottky 场发射电子枪,最大束流 200 nA;探测器:二次电子、背散射电子、红外 CCD 相机;能谱仪:分析型 SDD 硅漂移电制冷探测器,元素分析范围 Be(4)~Pu(94);EBSD 电子背散射衍射分析仪。
扫描电子显微镜的结构主要由电子光学系统;信号检测处理、图像显示和记录系统以及真空系统三大系统组成。
其中,电子光学系统是扫描电子显微镜的主要组成部分。
FEI Quanta 250 FEG 扫描电子显微镜的主要组成部分如图 1 所示,包括电子枪、两级聚光镜、扫描控制单元、物镜、样品室以及各类探测器等组成。
2. 工作原理电子枪产生束流细小稳定、角度分散性小的电子束,作为照明光源。
电子束首先进入由数级电磁透镜组成的聚光镜聚焦后形成纳米束斑照射于样品表面。
入射样品的电子与样品表面原子发生交互作用产生各种信号,如二次电子、背散射电子和特征 X射线。
扫描电镜讲义
x-射线波谱:光电倍增管
瞬间只接收一能量(波长)的x-射线,简称波谱
金
W、Si的波谱线扫描结果
断面背散射电子象和C、W、Si的波谱象 W
C
Si
SEM的新附件: EBSD 技术
(电子背散射衍射技术)
EBSD系统附件的构成
EBSD分析系统的构成
SEM所获得的EBSD花样
冷轧铝箔在再结晶初期的EBSD分析结果
(上图) 晶粒取向图(彩图) (下图) [111]方向极图
荷兰FEI公司 Sirion 扫描电子显微镜
日本电子 JSM-6700F 扫描电子显微镜
扫描电子显微镜的结构示意图
扫描电子显微镜的扫描成象方式
象电视的工作方式一样
扫描电子显微镜探测的三种主要分析模式
* 电子: 二次电子(SE) 背散射电子 (BE)(以及俄歇电子)
* x-射线: 特征x-射线
0.1m
* 不能分析化学成分
扫描电子显微镜解决问题的方法
* 用波长较短的电子束为光源 (25kV时,波长 =0.007nm ),分辨率可达 5nm,放大倍数
10-100000 * 扫描方式导致长物距
数十 m (1000 时) 不再要求金相准备
* 以电子束诱发原子内层电子跃迁,产生一定波长 的特征x-射线,测量其能量或波长分布,将微 区图象分析与成分分析相结合
(以及x-射线连续谱)
* 以及其他信号
如样品电流、电子磁场 偏转、通道花样、感生 电流、阴极荧光等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描电镜及能谱分析
实验报告书
班级:9131161502
学号:913116150208
姓名:安志恒
南京理工大学
材料科学与工程学院
2016.5. 30
一、实验目的
1. 了解扫描电子显微镜的基本结构和工作原理
2. 了解扫描电镜的一般操作过程
3. 了解扫描电镜的图像衬度和图像分析方法
二、扫描电子显微镜的基本结构和工作原理
1. 基本结构
镜筒:包括电子枪、聚光镜、物镜及扫描系统
电子信号收集与处理系统
电子信号的显示与记录系统
真空系统及电源系统
实验仪器为美国 FEI 公司生产的场发射环境扫描电子显微镜(FEI Quanta 250 FEG),能高效地收集电子显微图像、衍射花样、元素分布等有用信息,并能直接进行纳米尺度的观察和研究,实现对金属或纳米材料在原子尺度上微结构和缺陷的表征。
主要技术指标:高真空模式二次电子(SE)像分辨率:30 kV 时优于 1.0 nm;高低真空模式背散射电子(BSE)像:30 kV 时优于 2.5 nm;加速电压:0.2 kV-30 kV;放大倍数: 14 倍-100 万倍;电子枪:Schottky 场发射电子枪,最大束流 200 nA;探测器:二次电子、背散射电子、红外 CCD 相机;能谱仪:分析型 SDD 硅漂移电制冷探测器,元素分析范围 Be(4)~Pu(94);EBSD 电子背散射衍射分析仪。
扫描电子显微镜的结构主要由电子光学系统;信号检测处理、图像显示和记录系统以及真空系统三大系统组成。
其中,电子光学系统是扫描电子显微镜的主要组成部分。
FEI Quanta 250 FEG 扫描电子显微镜的主要组成部分如图 1 所示,包括电子枪、两级聚光镜、扫描控制单元、物镜、样品室以及各类探测器等组成。
2. 工作原理
电子枪产生束流细小稳定、角度分散性小的电子束,作为照明光源。
电子束首先进入由数级电磁透镜组成的聚光镜聚焦后形成纳米束斑照射于样品表面。
入射样品的电子与样品表面原子发生交互作用产生各种信号,如二次电子、背散射电子和特征 X射线。
扫描电子显微镜的探测器系统收集并放大各类信号,并转换成电压值(与信号强度成正比)传送到监视器,用于控制扫描点对应图像的亮度。
扫描控制单元产生信号,通过上下偏转线圈,使电子束产生偏转并以光栅模式样品表面选择区域内扫描。
扫描过程中,随着收集到信号的强度变化,探测器不断向显示器发生电压值,而监视器则把收集到的信号调制成与样品扫描区域相对应的图像。
因此,扫描电子显微镜的放大倍率,实际上为监视器图像扫描幅度A c与样品上同步扫描幅度A s的比值,即
A = A c/A s。
通过改变电子束在样品表面的扫描幅度,可以连续改变扫描电子显微镜的放大倍率。
图 1 扫描电子显微镜结构示意图
三、分析测试步骤
开机
1、接通循环水(流速1.5-2.0L/min)
2、打开主电源开关。
3、在主机上插入钥匙,旋至start位置。
松开后钥匙自动回到on位置,真空系统开始工作。
4、等待10秒钟后,打开计算机运行。
5、点击桌面的开始程序。
6、点击[JEOL.SEM]及[JSM-5000主菜单]。
7、约20分钟仪器自动抽高真空,真空度达到后,电子枪自动加高压,进入工作状态。
8、通过计算机可以进行样品台的移动,改变放大倍数、聚焦、象散的调整,直到获得满意的图
像。
9、对于满意的图像可以进行拍照、存盘和打印。
10、若需进行能谱分析,要提前1小时加入液氮,并使探测器进入工作状态。
11、打开能谱部分的计算机进行谱收集和相应的分析。
12、需观察背散射电子像时,工作距离调整为15mm,然后插入背散射电子探测器,用完后随时拔出。
更换样品
1、点击“ET/ON”,出现“ET/READY”。
2、点击“Sample”,再点击“Vent”。
3、50秒后拉出样品台,从样品台架上取出样品台。
4、更换样品后,关上样品室门,再点击“EVAC”,真空系统开始工作,重复开机10.1.8,10.1.9。
关机
1、点击[EXIT],再点击[OK],扫描电镜窗口关闭,回到视窗桌面上。
2、点击桌面上的[Start]。
3、推出视窗,关闭计算机。
4、关闭控制面板上的电源开关。
5、等待15分钟后关掉循环水。
6、关掉总电源。
四、分析与讨论
1、扫描电子显微镜的结构
扫描电子显微镜包括:(1)镜筒(包括电子枪、激光镜、物镜及扫描系统);(2)电子信号收集与处理系统;(3)电子信号的显示与记录系统;(4)真空系统与电源系统。
2、应对样品进行什么处理?
对样品表面进行导电处理,常用导电处理法包括:真空镀膜法和离子溅射镀膜法。
本次采用离子溅射镀膜法。
即在低真空状态下,在阴极与阳极两个电极之间加上几百至上千伏的直流电压时,电极之间会产生辉光放电。
在放电的过程中,气体分子被电离成带正电的阳离子和带负电的电子,并在电场的作用下,阳离子被加速跑向阴极,而电子被加速跑向阳极。
如果阴极用金属作为电极,那么在阳离子冲击其表面时,就会将其表面的金属粒子打出,这种现象称为溅射。
此时被溅射的金属粒子是中性,即不受电场的作用,而靠重力作用下落。
如果将样品置于下面,被溅射的金属粒子就会落到样品表面,形成一层金属膜。
3、表面形貌衬度观察有什么应用?
扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析,刑事案件侦破,病理诊断等技术部门已得到广泛应用。
在材料科学研究领域,表面形貌衬度在端口分析等方面显示有突出的优越性。
利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关样品的表面形貌信息。
根据表面的微观形貌特征可以分析样品的颗粒度。
如有侵权请联系告知删除,感谢你们的配合!。