含字母参数的一元一次不等式
含字母系数的_一元一次不等式组111111111111111111111
x 2m 1 • 若不等式 x 2m 3 的解集中的任
• 何一个x值均不在1<x<3范围内, 则m的取值范围为 .
x 2 1.若不等式组 x a 只含有六个整数解-1,0,1,2,3和4,
4a5 则a, 2.若不等式组 x a
解:由方程组得
∵x+y<0
1 解之得 k 3
1 k 1 7k 0 4 4
1 k x 4 1 7 k y 4
x y 1 a (2)求使方程组: 的 x y 3a 5 解x为正数,y是非负数,求a的取值范
围。
的解集是-1<x<2,则m=____, n=____. 这里是一个含x 的一元一次不等 解: 解不等式①,得,x>m-2 解不等式②,得,x < n + 1 因为不等式组有解,所以 m-2 <x< n + 1 又因为 -1<x<2
-1
式组,将m,n看 作两个已知数, 求不等式的解集
<
x
<
2
m-2 n+1 m-2= -1 , n + 1 = 2 所以, m=1 , n=1
方法总结: 把已知或能算出的解表示在数轴上, 让 带字母的解在数轴上移动,观察何时满足 题目要求,尤其注意界点能否取到.
例4、已知不等式组
的整数 解只有5、6。求a和b的范围.
x 2 a • 解:解不等式组得 b 1 , x 2
•
x 2 a 2 x 1 b
m为何值时,关于x、y的方程组 2 x 3 y 3m 1 的解满足x 0, y 0? 4 x 5 y m 9 9m-16
x= 11 解:解此法方程组得 y 5m 7 11
一元一次不等式组的知识点及其经典习题讲解
一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:,。
要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。
解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。
知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。
要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。
第4讲 含参不等式--尖子班
第4讲 含参的不等式知识点1 含参的一元一次不等式含参的一元一次不等式(1)含未知数项的系数不含参数,如x >a ,(其中a 为常数);(2)含未知数项的系数含参数,如mx >n ,(其中m 为参数、n 为常数).【典例】1.已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,则m 的值为 . 【答案】94.【解析】解:去括号,得2m ﹣2x+1>3x ﹣2, 移项,得3x+2x <2m+1+2, 合并同类项,得,5x <2m+3, 系数化为1,得,x <2m+35,∵不等式2(m ﹣x )+1>3x ﹣2的解集是x <32, ∴2m+35=32,解得m=94.2.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是____________.【答案】a<﹣1.【解析】解:∵当a+1=0,即a=-1时,0>0不成立,∴当a+1=0时,不等式(a+1)x>a+1无解集,∴a+1≠0,∵不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴未知数x的系数(a+1)为负,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.3.关于x的两个不等式①3x+a2<1与②1﹣3x>0.(1)若两个不等式的解集相同,求a的值.(2)若不等式①的解都是②的解,求a的取值范围.【答案】略.【解析】解:(1)由①得:x<2−a3,由②得:x<13,由两个不等式的解集相同,得到2−a3=13,解得:a=1;(2)由不等式①的解都是②的解,得到2−a3≤13,解得:a≥1.4.若关于x,y的方程组{3x+y=1−ax+3y=3的解满足x+y<2,则a的取值范围为.【答案】a>﹣4.【解析】解:{3x+y=1−a ①x+3y=3 ②,①+②得:4(x+y)=4﹣a,则x+y=14(4﹣a ), 则14(4﹣a )<2,解得:a >﹣4. 故答案是:a >﹣4.【方法总结】1. 已知一元一次不等式(系数不含参)及其解集,求参数的值的思路. 如已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,求m 的值,①求不等式2(m ﹣x )+1>3x ﹣2的解集为x <2m+35,②令2m+35=32,从而不难求出m 的值,2. 求一元一次不等式ax >b(a ,b 是常数)解集的思路.需要借助分类讨论思想,①若a >0,则不等式ax >b 的解集为x >ba ;②若a <0,则不等式ax >b 的解集为x <ba ;③若a=0,b <0,则不等式ax >b 的解集为任意实数;若a=0,b ≥0,则不等式ax >b 无解集.3. 已知一元一次不等式①和②的解集相同,求参数的值的思路.如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若两个不等式的解集相同,求a 的值.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3=13,从而不难求出a 的值.4. 已知一元一次不等式①的解都是②的解,求参数的取值范围的思路. 如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若不等式①的解都是②的解,求a 的取值范围的思路.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3≤13,从而不难求出a 的取值范围.【随堂练习】1.如果关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,试求关于x的不等式mx>n的解集.【解答】解:移项得(2m﹣n)x>5n﹣m,∵关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,∴2m﹣n<0,且x<,∴=,整理得n=m,把n=m代入2m﹣n<0得,2m﹣m<0,解得m<0,∵mx>n,∴mx>m,∴x<.∴关于x的不等式mx>n的解集是x<.知识点2 含参的一元一次不等式组含参的一元一次不等式组常考题型1.给出不等式组解集的情况,求参数取值范围2.给出不等式组的解集,求参数的值3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围4.给出不等式组整数解的个数,确定参数的取值范围【典例】1. 若关于x 的一元一次不等式组{x −2m <0x +m >2有解,则m 的取值范围为 .【答案】m >23.【解析】解:{x −2m <0⋯①x +m >2⋯ ②,解①得:x <2m , 解②得:x >2﹣m ,∵关于x 的一元一次不等式组{x −2m <0x +m >2有解,∴2m >2﹣m ,解得:m >23. 故答案是:m >23.2.已知不等式{2x −a <1x −2b >3的解集为﹣1<x <1,求(a+1)(b ﹣1)的值为 .【答案】﹣6.【解析】解:由2x −a <1,解得x <a+12.由x −2b >3,解得x >3+2b .∵不等式{2x −a <1x −2b >3的解集为﹣1<x <1,∴a+12=1,3+2b=﹣1,解得a=1,b=﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6, ∴(a+1)(b ﹣1)的值为﹣6. 故答案为﹣6.3.如果关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,则a 的取值范围是 .【答案】﹣4<a <5. 【解析】解:{x +y =3 ①x −2y =a −2②,①﹣②得3y=5﹣a ,则y=5−a 3, 把y=5−a 3代入①得x=3﹣5−a 3=4+a 3.则方程组的解是{x =4+a3y =5−a 3,∵关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,∴{4+a3>05−a 3>0, 解得﹣4<a <5. 故答案是:﹣4<a <5.4.不等式组{3x −5>15x −a ≤12有2个整数解,则实数a 的取值范围是 .【答案】8≤a <13.【解析】解:解不等式3x ﹣5>1,得:x >2, 解不等式5x ﹣a ≤12,得:x ≤a+125,∵不等式组有2个整数解,∴不等式组{3x −5>15x −a ≤12整数解为3和4,则4≤a+125<5,解得:8≤a <13, 故答案为:8≤a <13.【方法总结】1.给出不等式组解的情况,求参数取值范围,解题思路如下:①分别求出不等式组中每个不等式的解集,②确定参数的取值范围,记住:“大小小大有解;大大小小无解.”注意:端点值另外考虑.2.给出不等式组的解集,求参数的值,解题思路如下:①先求出含参不等式组中每个不等式的解集;②再利用已知解集和所求解集之间的对应关系,建立方程(组);③解方程(组),从而求出参数的值.3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围,解题思路如下:①先求含参数的方程组的解,方程组的解用含参的式子表示出来;②列出题目中解满足的不等关系,将含参数的式子代入,转化为关于参数的不等式(组),③解不等式(组),从而求出参数的取值范围.4.给出不等式组整数解的个数,确定参数的取值范围,解题思路如下:①先求出不含参数的不等式的解集;②再结合题意,在不含参数的不等式解集范围内找出连续的几个整数解;③参数的范围就在最后一个整数解差一个单位长度的范围内(借助数轴解决问题),注意:端点值特殊考虑.【随堂练习】1.已知关于x,y的方程组,其中﹣3≤a≤1.(1)当a=﹣2时,求x,y的值;(2)若x≤1,求y的取值范围.【解答】解:(1),①﹣②,得:4y=4﹣4a,解得:y=1﹣a,将y=1﹣a代入②,得:x﹣1+a=3a,解得:x=2a+1,则,∵a=﹣2,∴x=﹣4+1=﹣3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴﹣3≤a≤0,即1≤1﹣a≤4,则1≤y≤4.2.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)在(2)的条件下,化简:|m+2|﹣|2m﹣6|.【解答】解:(1)将方程组中的两个方程相加,得3(x+y)=6m+1,将x+y=1代入,得6m+1=3,解得m=;(2)将方程组中的两个方程相减,得x﹣y=2m﹣1,解不等式组﹣1<2m﹣1<5,得0<m<3;(3)当0≤m≤3时,|m+2|-|2m﹣6|=(m+2)+(2m﹣6)=3m-4.知识点3 一元一次不等式的应用一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【典例】1.某中学计划用2500元购买一批名著和辞典作为奖品,其中名著每套60元,辞典每本40元,现已购买名著24套,学校最多还能买多少本辞典?【答案】略.【解析】解:设学校能买x本辞典,∵名著每套60元,现已购买名著24套,辞典每本40元,学校能买x本辞典,∴购买24套名著费用=24×60(元),购买x本辞典费用=40x(元),∵购买24套名著费用与购买x本辞典费用和不超过2500元,,∴可列出关于x的一元一次不等式:40x+24×60≤2500,解得:x≤2612∵x为整数,∴x=26.答:学校最多能买26本辞典.【方法总结】一元一次不等式的应用解决此类问题关键在于掌握解列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【随堂练习】1.为了开展全校学生阳光体育运动活动,增强学生身体素质,张老师所在的学校需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65750第二次37780第三次78742(1)张老师是第三次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,张老师决定从该商场一次性购买足球和篮球50个,且总费用不能超过2200元,那么最多可以购买多少个篮球.【解答】解:(1)张老师是第三次购买足球和篮球时,遇到商场打折销售.理由:∵张老师在某商场购买足球和篮球共三次,只有一次购买时,足球和篮球同时打折,其余两次均按标价购买,且只有第三次购买数量明显增多,但是总的费用不高,∴按打折价购买足球和篮球是第三次购买;故答案为:三;(2)设足球的标价为x元,篮球的标价为y元.根据题意,得,解得:.答:足球的标价为50元,篮球的标价为90元;(3)设购买a个篮球,依题意有0.6×50(50﹣a)+0.6×90a≤2200,解得a≤29.故最多可以买29个篮球.2.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?【解答】解:(1)当x≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样;(2)当50<x≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;(3)当累计购物超过100元时,即x>100元,甲商场消费为:100+(x﹣100)×0.9元,在乙商场消费为:50+(x﹣50)×0.95元.当100+(x﹣100)×0.9>50+(x﹣50)×0.95,解得:x<150,当100+(x﹣100)×0.9<50+(x﹣50)×0.95,解得:x>150,当100+(x﹣100)×0.9=50+(x﹣50)×0.95,解得:x=150.综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.知识点4 一元一次不等式组的应用一元一次不等式组的应用对具有多种不等关系的实际应用问题,通常列一元一次不等式组,并求解.一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【典例】1.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【答案】略.【解析】解:设有x个学生,那么共有(3x+8)本书,∵如果前面的每个学生分5本,那么最后一人就分不到3本,∴可知最后一人分到书的数的数量大于等于0且小于3,即0≤书的总数-(x-1)×5<3,∴可列不等式组为{3x+8−5(x−1)≥03x+8−5(x−1)<3,解得5<x≤6.5,∵x为整数,∴x=6,∴共有6×3+8=26本,答:有26本书,6个学生.【方法总结】一元一次不等式组的应用解题思路①将题目中所给信息与数学思想联系起来,读懂题,列出不等式关系;②根据不等关系,列一元一次不等式组;③解一元一次不等式组;④从不等式组解集中找出符合题意的答案,并作答.【随堂练习】1.青县祥通汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3,∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;2.义安中学工会“三八妇女节”共筹集会费1800元,工会决定拿出不少于270元,但不超过300元的资金为“优秀女职工”购买纪念品,其余的钱用于给50位女职工每人买一瓶洗发液或护发素,已知每瓶洗发液比每瓶护发素贵9元,用200元恰好可以买到2瓶洗发液和5瓶护发素.(1)求每瓶洗发液和每瓶护发素价格各是多少元?(2)有几种购买洗发液和护发素的方案?哪种方案用于为“优秀女职工”购买纪念品的资金更充足?【解答】解:(1)设每瓶洗发液和每瓶护发素价格分别为x元和y元,则,解得.答:每瓶洗发液和每瓶护发素的价格分别为35元和26元.(2)设购买洗发液t瓶,购买护发素(50﹣t)瓶,则1800﹣300≤35t+26(50﹣t)≤1800﹣270解得22≤t≤25,因为t为正整数,所以t=23,24,25,即有三种方案:第一种方案:购买洗发液23瓶,护发素27瓶,余下资金293元.第二种方案:购买洗发液24瓶,护发素26瓶,余下资金284元.第三种方案:购洗发液25瓶,护发素25瓶,余下资金275元.综合运用1.若不等式(k﹣4)x>﹣1的解集为x<−1k−4,则k的取值范围是.【答案】k<4.【解析】解:∵不等式(k﹣4)x>﹣1的解集为x<−1k−4,∴k﹣4<0,解得:k<4.故答案为k<4.2.关于x的两个不等式3x+a2<1与3﹣3x>0的解集相同,则a= .【答案】-1.【解析】解:由3x+a2<1得:x<2−a3,由3﹣3x >0得:x <1, 由两个不等式的解集相同,得到2−a 3=1,解得:a=-1. 故答案为:-1.3.已知关于x ,y 的方程组{3x +y =1+3a ①x +3y =1−a ②(1)由方程①﹣②,可方便地求得x ﹣y= ;(2)若方程组的解满足x+y >0,则a 的取值范围是 . 【答案】2a ; a >﹣1.【解析】解:(1){3x +y =1+3a ①x +3y =1−a ②,①﹣②得,2x ﹣2y=1+3a ﹣1+a , 即x ﹣y=2a ;(2)①+②得,4x+4y=1+3a+1﹣a , 即x+y=12a+12; ∵x+y >0,∴12a+12>0,解得a >﹣1; 故答案为2a ;a >﹣1.4.已知不等式组 {x +1<a3x +5>x −7无解,则a 的取值范围是 .【答案】a ≤﹣5【解析】解:解不等式x+1<a ,可得:x <a ﹣1;解不等式3x+5>x ﹣7,可得:x >﹣6, 因为不等式组 {x +1<a3x +5>x −7无解,所以a ﹣1≤﹣6, 解得:a ≤﹣5, 故答案为:a ≤﹣55.关于x 的不等式组{x −a >01−x >0的整数解共有3个,则a 的取值范围是 .【答案】﹣3≤a <﹣2.【解析】解:由不等式①得x >a , 由不等式②得x <1,所以不等式组的解集是a <x <1,∵关于x 的不等式组{x −a >01−x >0的整数解共有3个,∴3个整数解为0,﹣1,﹣2, ∴a 的取值范围是﹣3≤a <﹣2.6.已知不等式组{x +2>m +nx −1<m −1的解集为﹣1<x <2,则(m+n )2018=_________.【答案】1.【解析】解:解不等式x+2>m+n ,得:x >m+n ﹣2, 解不等式x ﹣1<m ﹣1,得:x <m ,∴不等式组{x +2>m +nx −1<m −1的解集为m+n ﹣2<x <m ,∵不等式组的解集为:﹣1<x <2, ∴m+n ﹣2=﹣1,m=2, 解得:m=2,n=﹣1,则(m+n )2018=(2﹣1)2018=1, 故答案为:1.7.已知关于x ,y 的二元一次方程组{4x +y =k +2x +4y =3的解满足0<x+y <1,则k 的取值范围是 . 【答案】﹣5<k <0.【解析】解:将两方程相加可得5x+5y=k+5, ∴x+y=k+55,∵0<x+y <1,∴{k+55>0k+55<1,解得﹣5<k <0,∴k 的取值范围是﹣5<k <0, 故答案为:﹣5<k <0.8.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_________元出售该商品. 【答案】6.【解析】解:设降价x 元出售该商品,,则降价出售获得的利润是(22.5﹣x ﹣15)元,根据利润率不低于10%,列出不等式得,22.5﹣x﹣15≥15×10%,解得x≤6,故该店最多降价6元出售该商品.故答案为:6.9.某种毛巾的原零售价为每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠方案:(1)两条按原价,其余按七折优惠;(2)全部按八折优惠.若在购买相同数量的毛巾的情况下,要使方案(1)比方案(2)合算,则最少要购买毛巾___________条.【答案】7.【解析】解:设购买毛巾x条,∵根据题意可得不等关系:2条毛巾的价格+(x﹣2)条毛巾的价格×0.7<x条毛巾打8折的价格,∴可列出不等式为:6×2+6×0.7(x﹣2)<6×0.8x,解得x>6,∵x为最小整数,∴x=7,故答案为:7.<1与②2(x﹣2)>3x﹣6.10.关于x的两个不等式:①a+2x3(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解与不等式②的正整数解之和小于4,求a的取值范围.【答案】略.,【解析】解:(1)由①得:x<3−a2由②得:x<2,由两个不等式的解集相同,得到3−a=2,2解得:a=﹣1.故a的值为﹣1;(2)由不等式①的解与不等式②的正整数解之和小于4,得到3−a+1<4,2解得a>﹣3.故a的取值范围是a>﹣3.11.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.【答案】略.【解析】解:设用A型货厢x节,则用B型货厢(50﹣x)节,∵甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,∴x节A型货厢可装甲种货物35x吨,乙种货物15x吨;(50-x)节B型货厢可装甲种货物25(50-x)吨,乙种货物35(50-x)吨;∴x节A型货厢和(50﹣x)节B型货厢共装甲种货物为[35x+25(50-x)]吨,x节A型货厢和(50﹣x)节B型货厢共装乙种货物为[15x+35(50-x)]吨,∴{35x+25(50−x)≥153015x+35(50−x)≥1150解得28≤x≤30,∵x为整数,∴x只能取28,29,30,∴当x=28时,则50-x=22,当x=29时,则50-x=21,当x=30时,则50-x=20,共有三种调运方案:第一种调运方案:用A型货厢28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,B型货厢20节.12.某工厂生产A、B两种产品共50件,其生产成本与利润如下表:若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?【答案】略.【解析】解:设生产A产品x件,则生产B产品(50﹣x)件,∴该工厂生产A种产品和B种产品一共投入资金为[0.6x+0.9(50-x)]元,∵该厂生产A种产品和B种产品投入资金不超过40万元,且希望获利超过16万元,∴可列不等式组为:{0.6x+0.9(50−x)≤40 0.2x+0.4(50−x)>16,解得:50≤x<20,3∵x取整数,∴x可取17、18、19,共三种方案:①A 17件,B 33件;②A 18件,B 32件;③A 19件,B 31件;第一种方案获利:0.2×17+0.4×33=16.6万元;第二种方案获利:0.2×18+0.4×32=16.4万元;第三种方案获利:0.2×19+0.4×31=16.2万元;故可得方案一获利最大,最大利润为16.6万元.答:工厂有3种生产方案,第一种方案获利润最大,最大利润是16.6万元.21。
【期末复习】浙教版八年级上册提分专题:一元一次不等式(组)常见题型(解析版)
【期末复习】浙教版八年级上册提分专题:一元一次不等式(组)常见题型类型一“程序”类问题1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.12.75<x≤24.5B.x<24.5C.12.75≤x<24.5D.x≤24.5【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得:,解不等式①得,x≤48,解不等式②得,x≤24.5,解不等式③得,x>12.75,所以,x的取值范围是12.75<x≤24.5.故选:A.2.如图所示的是一个运算程序:例如:根据所给的运算程序可知:当x=10时,5×10+2=52>37,则输出的值为52;当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.若数x需要经过三次运算才能输出结果,则x的取值范围是()A.x<7B.﹣≤x<7C.﹣≤x<1D.x<﹣或x>7【分析】根据该程序运行三次才能输出结果,即可得出关于x的一元一次不等式组,解之即可得出结论.【解答】解:依题意得:,解得:﹣≤x<1.故选:C.3.如图是一个运行程序,从“输入整数x”到“结果是否>19”为一次操作程序,若输入x后程序操作仅进行了二次就停止,则输入整数x的值可能是()A.7B.7或9C.9或11D.13【分析】根据程序操作仅进行了二次就停止,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再对照四个选项即可找出可能输入的整数值.【解答】解:依题意得:,解得:7<x≤11.又∵x为整数,∴x可以为8,9,10,11,故选:C.4.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【解答】解:我们用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是,∴满足条件所有x的值是131或26或5或.故答案为:131或26或5或.类型二“字母系数”类问题5.根据不等式的基本性质,可将“mx<2”化为“x”,则m的取值范围是.【分析】利用不等式的基本性质求出m的范围即可.【解答】解:∵根据不等式的基本性质,可将“mx<2”化为“x”,∴m<0,故答案为:m<06.解关于x的不等式ax﹣x﹣2>0.解:移项、合并同类项,得(a﹣1)x>2.当a﹣1>0,即a>1 时,不等式的解集为;当a﹣1=0,即a=1时,0>2 不成立,所以原不等式无解;当 a ﹣1<0,即 a <1 时,不等式的解集为x <.【解决问题】(1)解关于x 的不等式 ax ﹣x ﹣2<0;(2)若关于x 的不等式 a (x ﹣1)>x +1﹣2a 的解集是 x <﹣1,求a 的取值范围.【分析】(1)由ax ﹣x ﹣2<0知(a ﹣1)x <2,再分a ﹣1>0、a ﹣1=0和a ﹣1<0三种情况分别求解即可;(2)原不等式依次去括号、移项、合并同类项得出(a ﹣1)x >﹣(a ﹣1),结合不等式的解集为x <﹣1得出关于a 的不等式,解之即可.【解答】解:(1)∵ax ﹣x ﹣2<0,∴(a ﹣1)x <2,当a ﹣1>0,即a >1时,x <; 当a ﹣1=0,即a =1时,0<2恒成立,不等式的解集为全体实数;当a ﹣1<0,即a <1时,x >;(2)∵a (x ﹣1)>x +1﹣2a ,∴ax ﹣a >x +1﹣2a ,∴ax ﹣x >1﹣a ,则(a ﹣1)x >﹣(a ﹣1),∵不等式的解集为x <﹣1,∴a ﹣1<0,解得a <1.类型三 “双向不等式”类问题 7.解下列双向不等式5-1214233- +≤-≤x x x x <②<①【分析】双向不等式其实就是不等式组,当只有中间有未知数时,可以直接解答,不需要拆分成不等式组;但是当两边或者三边都有未知数时,通常转化为普通一元一次不等式组来求解 【解答】解:①∵14233-<-≤x ;2310-6310-243212-412343-≤≤∴≤≤+≤≤+⨯-≤⨯x x x x 即<②原不等式可转化为⎩⎨⎧+≤②①<5-1-12x x x x ; 解不等式①得:31<x ;解不等式②得:2≥x ; ∴该不等式的解集为:312-<x ≤类型四 “新定义”类问题 8.新定义:对非负数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若,则(x )=n .如(0.46)=0,(3.67)=4.下列结论:①(2.493)=2;②(3x )=3(x );③若,则x 的取值范围是6≤x <10;④当x ≥0,m 为非负整数时,有(m +2022x )=m +(2022x );其中正确的是 (填写所有正确的序号).【分析】对于①可直接判断,②可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【解答】解:①(2.493)=2,故①符合题意;②(3x )≠3(x ),例如当x =0.3时,(3x )=1,3(x )=0,故②不符合题意;③若(x ﹣1)=1,则,解得:6≤x <10,故③符合题意;④m 为非负整数,故(m +2020x )=m +(2020x ),故④符合题意;综上可得①③④正确.故答案为:①③④.9.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①2x ﹣1<0,②x ≤2,③x ﹣(3x ﹣1)<﹣5中,不等式x ≥2的“云不等式”是 ;(填序号)(2)若关于x 的不等式x +2m ≥0不是2x ﹣3<x +m 的“云不等式”,求m 的取值范围;(3)若a ≠﹣1,关于x 的不等式x +3≥a 与不等式ax ﹣1<a ﹣x 互为“云不等式”,求a 的取值范围.【分析】(1)根据云不等式的定义即可求解;(2)解不等式x +2m ≥0可得x ≥﹣2m ,解不等式2x ﹣3<x +m 得x <m +3,再根据云不等式的定义可得﹣2m >m +3,解不等式即可求解;(3)分两种情况讨论根据云不等式的定义得到含a 的不等式,解得即可.【解答】解:(1)不等式2x ﹣1<0和不等式x ≥2没有公共解,故①不是不等式x ≥2的“云不等式”; 不等式x ≤2和不等式x ≥2有公共解,故②是不等式x ≥2的“云不等式”;不等式x ﹣(3x ﹣1)<﹣5和不等式x ≥2有公共解,故③是不等式x ≥2的“云不等式”;故答案为:②③;(2)解不等式x +2m ≥0可得x ≥﹣2m ,解不等式2x ﹣3<x +m 得x <m +3,∵关于x 的不等式x +2m ≥0不是2x ﹣3<x +m 的“云不等式”,∴﹣2m ≥m +3,解得m≤﹣1,故m的取值范围是m≤﹣1;(3)①当a+1>0时,即a>﹣1时,依题意有a﹣3<1,即a<4,故﹣1<a<4;②当a+1<0时,即a<﹣1时,始终符合题意,故a<﹣1;综上,a的取值范围为a<﹣1或﹣1<a<4.10.设x为实数,我们用{x}表示不小于x的最小整数,如:{3.2}=4,{﹣2}=﹣2.在此规定下,任一实数都能写成x={x}﹣a的形式.(1)若﹣1.2={﹣1.2}﹣a,则a=;(2)直接写出{x}、x与x+1这三者的大小关系:;(3)满足{2x+5}=4的x的取值范围是;满足{2.5x﹣3}=4x﹣的x的取值是.【分析】(1)利用{x}表示不小于x的最小整数,可得方程﹣1.2=﹣1﹣a,解方程即可求解;(2)利用x={x}﹣b,其中0≤b<1得出0≤{x}<x+1,进而得出答案;(3)利用(2)中所求得出2x+5≤4<2x+5+1,进而得出即可;利用(2)中所求得出2.5x﹣3≤4x﹣<(2.5x﹣3)+1,进而得出即可.【解答】解:(1)∵﹣1.2={﹣1.2}﹣a,∴﹣1.2=﹣1﹣a,解得a=0.2;(2)x≤{x}<x+1,理由:∵x={x}﹣b,其中0≤b<1,∴b={x}﹣x,∴0≤{x}<x+1,∴x≤{x}<x+1;(3)依题意有2x+5≤4<2x+5+1,解得:﹣1<x≤﹣;依据题意有2.5x﹣3≤4x﹣<(2.5x﹣3)+1且4x﹣为整数,解得:﹣≤x<﹣,∴﹣≤4x﹣<﹣,∴整数4x﹣为﹣6,﹣5,解得:x=﹣或x=﹣.故答案为:0.2;x≤{x}<x+1;﹣1<x≤﹣,﹣或﹣.11.阅读与思考请仔细阅读材料,并完成相应任务.好学善思的小明和小亮同学阅读数学课外书时,看到这样一道题:解关于x的不等式:>0两位同学认为这道题虽然没学过,但是可以用已学的知识解决.小明的方法:根据“两数相除,同号得正”,可以将原不等式转化为或解得……小亮的方法:将原不等式两边同时乘以(3x﹣2),得x+1>0,解得……任务一:你认为小明和小亮的方法正确吗?若正确请补充完整解题过程;若不正确,请说明理由.任务二:请尝试利用已学知识解关于x的不等式:<2.【分析】根据两数相除,同号得正,分类讨论求出不等式的解集即可.【解答】解:任务一:小明的方法正确,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>或x<﹣1;小亮的方法错误;不符合不等式的性质.任务二:<2,整理得﹣2<0,即>0,根据“两数相除,同号得正”,可以将原不等式转化为或,解得x>﹣3或x<﹣8.类型五“含字母参数”类不等式解的问题12.已知不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,则a的取值范围为()A.2<a≤3B.2≤a<3C.0<a≤3D.0≤a<3【分析】先求出不等式的解集,再根据其非负整数解列出不等式,解此不等式即可.【解答】解:解不等式2(x+3)﹣5x+a>0得到:x<a+2,∵不等式2(x+3)﹣5x+a>0的解集中恰有3个非负整数,∴3个非负整数解是0,1,2,∴2<a+2≤3,解得0<a≤3.故选:C.13.下面说法错误的个数有()①若m>n,则ma2>na2;②如果>,那么a>b;③x>4是不等式x+3≥6的解的一部分;④不等式两边乘(或除以)同一个数,不等号的方向不变;⑤不等式x+3<3的整数解是0.A.1个B.2个C.3个D.4个【分析】利用不等式的基本性质,解集与解的定义判断即可.【解答】解:①若m>n且a≠0,则ma2>na2,故错误,符合题意;②如果>,那么a>b,故正确,不符合题意;③∵不等式x+3≥6的解集为x≥3,∴x>4是不等式x+3≥6的解的一部分,故正确,不合题意;④不等式两边乘(或除以)同一个正数,不等号的方向不变,故错误,符合题意;⑤∵不等式x+3<3的解集为x<0,故错误,符合题意.故选:C.14.关于x的不等式3x﹣m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8【分析】解出不等式,然后根据不等式的最小整数解为2,即可列出关于m的不等式,从而求出m的取值范围.【解答】解:3x﹣m+2>0,3x>m﹣2,,∵不等式的最小整数解为2,∴,解得:5≤m<8,故选:A.15.已知关于x的不等式组恰有4个整数解,则m的取值范围为()A.<m<B.≤m<C.<m≤D.≤m≤【分析】根据关于x的不等式组的解集和整数解的个数确定关于m的不等式组,再求出解集即可.【解答】解:关于x的不等式组有解,其解集为8<x≤4m﹣2,∵关于x的不等式组恰有4个整数解,∴12≤4m﹣2<13,解得≤m<,故选:B.16.已知关于x的不等式组的所有整数解的和为﹣5,则m的取值范围为()A.﹣6<m≤﹣3或3<m≤6B.﹣6≤m<﹣3或3≤m<6C.﹣6≤m<﹣3D.﹣6<m≤﹣3【分析】分别求出每一个不等式的解集,根据不等式组的整数解的情况列出关于m的不等式,解之即可.【解答】解:由3x﹣m<0,得:x<,又x>﹣4,且不等式组所有整数解的和为﹣5,∴不等式组的整数解为﹣3、﹣2或﹣3、﹣2、﹣1、0、1,∴﹣2<≤﹣1或1<≤2,解得﹣6<m≤﹣3或3<m≤6,故选:A.17.若实数m使得关于x的不等式组无解,则关于y的分式方程的最小整数解是.【分析】先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程,从而确定y的取值范围,即可得到答案.【解答】解:解不等式2x>2得:x>1,解不等式3x<m+1得:,∵不等式组无解,∴,解得m≤2;,去分母得2y=4﹣m,解得,∵m≤2,∴4﹣m≥2,∴,又∵y﹣1≠0,∴y>1,∴y的最小整数解为2,故答案为:2.18.若关于x的不等式组有解,且关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,则符合条件的所有整数k的和为.【分析】先根据不等式组有解得k的取值,利用方程有非负整数解,将k的取值代入,找出符合条件的k值,并相加.【解答】解:,解①得:x≥4k+1,解②得:x<5k+5,关于x的不等式组有解,∴5k+5>4k+1,∴k>﹣4,解关于x的方程kx=2(x﹣2)﹣(3x+2)得,x=﹣,因为关于x的方程kx=2(x﹣2)﹣(3x+2)有非负整数解,当k=﹣3时,x=3当k=﹣2时,x=6,∴﹣2﹣3=﹣5;故答案为:﹣5.类型六“分配”问题19.有一家人参加登山活动,他们要将矿泉水分装在旅行包内带上山.若每人带2瓶,则剩余3瓶;若每人带3瓶,则有一人带了矿泉水,但不足2瓶,则这家参加登山的人数为()A.4人B.5人C.3人D.5人或6人【分析】设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,根据题意列出不等式组,再解即可.【解答】解:设这家参加登山的人数为x人,则矿泉水有(2x+3)瓶,由题意得:,解得:4<x<6,∵x为整数,∴x=5,故选:B.20.我校团委组织团员志愿者在重阳节乘车前往敬老院慰问孤寡老人,参加的团员志愿者不足50人,联系“小白”车若干辆,每辆车如果坐6人,就剩下18人无车可坐;每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满.则参加次活动的团员志愿者有()名.A.54B.48C.46D.45【分析】设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,根据“参加的团员志愿者不足50人,每辆车坐10人,那么其余的车坐满后,仅有一辆车不空也不满”,即可得出关于x的一元一次不等式组,解之取其正整数值即可得出结论.【解答】解:设联系“小白”车x辆,则参加次活动的团员志愿者有(6x+18)名,依题意,得:,解得:<x<.∵x为正整数,∴x=5,∴6x+18=48.故选:B.21.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数5x+12﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【解答】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.22.在“新冠肺炎”这场没有硝烟的战争中,各行各业都涌现出了一批“最美逆行者”,其中抗疫最前沿的就是护士.某医院安排护士若干名负责护理新冠病人,每名护士护理4名新冠病人,有20名新冠病人没人护理,如果每名护士护理8名新冠病人,有一名护士护理的新冠病人多于1人不足8人,这个医院安排了名护士护理新冠病人.【分析】设医院安排了x名护士,由题意列出不等式组,则可得出答案.【解答】解:设医院安排了x名护士,由题意得,1<4x+20﹣8(x﹣1)<8,解得,5<x<6,∵x为整数,∴x=6.故答案为:6.23.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【分析】设有x个学生,根据“每人分3本,还余8本”用含x的代数式表示出书的本数;再根据“每人分5本,最后一人就分不到3本”列不等式.【解答】解:设有x个学生,那么共有(3x+8)本书,则:,解得5<x≤6.5,所以x=6,共有6×3+8=26本.答:有26本书,6个学生.类型七“方案设计类”问题24.2020年7月27日,金华城东东湖畈地力提升项目现场,金色的早稻田一望无际.大型收割机依次排开,在田间来回穿梭,伴随着机器轰鸣的声音,金灿灿的稻谷被尽数收入“囊中”.已知1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷.(1)每台大型收割机和小型收割机1小时可收割水稻多少公顷?(2)大型收割机每小时费用300元,小型收割机每小时费用为200元,两种型号的收割机一共10台,要求2小时完成8公顷水稻的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用【分析】(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,根据“1台大型收割机和3台小型收割机1小时可以收割1.4公顷,2台大型收割机和5台小型收割机1小时可以收割水稻2.5公顷”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,根据要求2小时完成8公顷水稻的收割任务且总费用不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出方案的个数,设总费用为w元,根据总费用=每台机器1小时所需费用×使用机器的数量×2,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设每台大型收割机1小时可收割水稻x公顷,每台小型收割机1小时可收割水稻y公顷,依题意得:,解得:.答:每台大型收割机1小时可收割水稻0.5公顷,每台小型收割机1小时可收割水稻0.3公顷.(2)设参加收割的大型收割机有m台,则小型收割机有(10﹣m)台,依题意得:,解得:5≤m≤7.又∵m为整数,∴m可以取5,6,7,∴共有3种方案.设总费用为w元,则w=2×[300m+200(10﹣m)]=200m+4000,∵200>0,∴当m=5时,w取得最小值,最小值=200×5+4000=5000(元),即当使用5台大型收割机、5台小型收割机时,总费用最低,最低费用为5000元.25.小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为1800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:制作普通花束(束)制作精致花束(束)所用时间(分钟)10256001530750请根据以上信息,解答下列问题:(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?(2)2019年11月花店老板要求小华本月制作普通花束的总时间x不少于3000分钟且不超过5000分钟,则小华该月收入W最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?【分析】(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,根据小华制作两种花束的数量与所用时间的关系表,即可得出关于m,n的二元一次方程组,解之即可得出结论;(2)根据小华本月的总收入=基本工资+制作花束的数量×每束的提成,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设小华每制作一束普通花束需要m分钟,每制作一束精致花束需要n分钟,依题意,得:,解得:.答:小华每制作一束普通花束需要10分钟,每制作一束精致花束需要20分钟.(2)20×8×60=9600(分钟).依题意,得:W=1800+2×+5×=﹣+4200(3000≤x≤5000).∵﹣<0,∴W的值随x值的增大而减小,∴当x=3000时,W取得最大值,最大值为4050元.3000÷10=300(束),(9600﹣3000)÷20=330(束).答:小华该月收入W最多是4050元,此时小华本月制作普通花束300束,制作精致花束330束.26.某网红蛋糕店的蛋糕十分畅销,供不应求,主原料为鸡蛋和面粉,一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克,再添加不同的辅料,做成A、B、C三款蛋糕,毛利润分别为6元、9元、8元.(1)求一份蛋糕含鸡蛋、面粉各多少克?(2)若一天卖出500份蛋糕,A款与B款的份数之和比C款多60份,毛利润为3800元,求A款、B款、C款各卖了多少份?(3)若一天卖出n份蛋糕,A款与B款的份数之比为3:4,毛利润为4200元,且每款蛋糕的份数不少于145份,则n的最小值是(直接写出答案).【分析】(1)设一份蛋糕含鸡蛋x克,面粉y克,根据“一份蛋糕含鸡蛋和面粉共390克,鸡蛋比面粉多90克”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,根据“三款蛋糕共卖出500份,A款与B 款的份数之和比C款多60份,毛利润为3800元”,即可得出关于a,b,c的三元一次方程组,解之即可得出结论;(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,根据毛利润为4200元,即可得出关于m,n的二元一次方程,变形后可用含m的代数式表示出n值,结合每款蛋糕的份数不少于145份,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合3m,4m,(525+m)均为正整数,即可得出m的值,进而可得出n的值,取n的最小值即可得出结论.【解答】解:(1)设一份蛋糕含鸡蛋x克,面粉y克,依题意得:,解得:.答:一份蛋糕含鸡蛋240克,面粉150克.(2)设A款蛋糕卖了a份,B款蛋糕卖了b份,C款蛋糕卖了c份,依题意得:,解得:.答:A款蛋糕卖了160份,B款蛋糕卖了120份,C款蛋糕卖了220份.(3)设卖出A款蛋糕3m份,则卖出B款蛋糕4m份,卖出C款蛋糕(n﹣7m)份,依题意得:6×3m+9×4m+8(n﹣7m)=4200,∴n=525+m.又∵每款蛋糕的份数不少于145份,∴,即,解得:≤m≤,又∵3m,4m,(525+m)均为正整数,∴m可以为52,56,∴n的值为538或539.答:n的最小值为538.27.某手机经销商计划同时购进一批甲、乙两种型号手机,若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元.(1)求甲、乙型号手机每部进价各为多少元?(2)该店计划购进甲乙两种型号的手机销售,预计用不多于5.52万元且不少于5.28万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若甲型号手机的售价为4500元,乙型号手机的售价为4200元,为了促销,无论采取哪种进货方案,公司决定每售出一台乙型号手机,返还顾客相同现金a元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求a的值.【分析】(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,根据“若购进2部甲型号手机和1部乙型号手机,共需要资金8400元;若购进3部甲型号手机和2部乙型号手机,共需要资金13800元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,根据总价=单价×数量结合总价不多于5.52万元且不少于5.28万元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m的整数即可得出进货方案的数量;(3)设获得的利润为w元,根据总利润=单部利润×数量,即可得出w关于m的函数关系式,由w的值与m 无关,即可求出a值.【解答】解:(1)设甲型号手机每部进价为x元,乙型号手机每部进价为y元,依题意,得:,解得:.答:甲型号手机每部进价为3000元,乙型号手机每部进价为2400元.(2)设购进甲型号手机m部,则购进乙型号手机(20﹣m)部,依题意,得:,解得:8≤m≤12,∵m为整数,∴m=8,9,10,11,12,∴共有5种进货方案.(3)设获得的利润为w元,依题意,得:w=(4500﹣3000)m+(4200﹣2400﹣a)(20﹣m)=(a﹣300)m+36000﹣20a,∵w的值与m无关,∴a﹣300=0,解得:a=300.答:a的值为300.28.在利川市开展“六城同创”城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如表:A地B地C地运往D地(元/立方米)222020运往E地(元/立方米)202221在(2)的条件下,请说明哪种方案的总费用最少?【分析】(1)设运往E地x立方米,由题意可列出关于x的方程,求出x的值即可;(2)根据C地运往D地的数量小于A地运往D地的2倍,其余全部运往E地,且C地运往E地不超过12立方米列出关于a的一元一次不等式组,求出a的取值范围,再根据a是整数可得出a的值,进而可求出答案;(3)根据(2)中的两种方案分别求出其费用,比较即可.【解答】解:(1)设运往E地x立方米,由题意得,x+2x﹣10=140,解得:x=50,则2x﹣10=90.答:共运往D地90立方米,运往E地50立方米;(2)由题意可得,,解得:20<a≤22,∵a是整数,∴a=21或22,∴有如下两种方案:第一种:A地运往D地21立方米,运往E地29立方米;C地运往D地39立方米,运往E地11立方米;第二种:A地运往D地22立方米,运往E地28立方米;C地运往D地38立方米,运往E地12立方米;(3)第一种方案共需费用:22×21+20×29+30×20+22×10+39×20+11×21=2873(元),第二种方案共需费用:22×22+28×20+30×20+22×10+38×20+12×21=2876(元),所以,第一种方案的总费用最少.29.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖的纸盒.(1)现有正方形纸板162张,长方形纸板340张,若要做两种纸盒共100个,设竖式纸盒x个,需要长方形纸板张,正方形纸板张(请用含有x的式子表示);(2)在(1)的条件下,有哪几种生产方案?(3)若有正方形纸板162张,长方形纸板a张,做成上述两种纸盒,纸板恰好用完.已知290<a<300,求a 的值.【分析】(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,根据每个长方形、正方形纸板使用长方形、正方形纸板的数量,即可得出结论;(2)根据使用正方形纸板不超过162张、长方形纸板不超过340张,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数,即可得出各生产方案;(3)设可以生产竖式纸盒m个,横式纸盒个,得出a关于m的函数关系式,结合290<a<300,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出结论.【解答】解:(1)设生产竖式纸盒x个,则生产横式纸盒(100﹣x)个,∴长方形纸板用了(x+300)张,正方形纸板用了(200﹣x)张.故答案为:(x+300),(200﹣x);(2)依题意得:,解得38≤x≤40.∵x为整数,∴x=38,39,40,∴共有3种生产方案,方案1:生产竖式纸盒38个,横式纸盒62个;方案2:生产竖式纸盒39个,横式纸盒61个;方案3:生产竖式纸盒40个,横式纸盒60个;(3)设可以生产竖式纸盒m个,横式纸盒个,依题意得:a=4m+=m+243.∵290<a<300,∴,解得18.8<m<22.8,∵m为正整数,∴m=20,22,∴a=293,298.答:a的值为293或298.。
带参数的一元一次不等式
含参数的一元一次不等式组的解集(预习学案)1、⑴不等式组⎩⎨⎧-≥>12x x 的解集是 . ⑵不等式组⎩⎨⎧-<-<12x x 的解集是 .⑶不等式组⎩⎨⎧≥≤14x x 的解集是 . ⑷不等式组⎩⎨⎧-≤>45x x 的解集是 . 2、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( )A. 4B. 5C. 6D. 74、不等式组⎩⎨⎧--≤-.32,281x >x x 的最小整数解是( )A .-1B .0C .2D .35、满足21≤<-x 的所有整数为___________ __.6、满足21≤≤-x 的所有整数为________________ __.7、请写出一个只含有三个整数1、2和3的解集为 。
(1)若不等式组⎩⎨⎧≥>ax x 2的解集是2>x ,则a 的取值范围为(2)若不等式组⎩⎨⎧≥≤a x x 2的解集时2≤≤x a ,则a 的取值范围为 (3)若不等式组⎩⎨⎧≥≤ax x 2无解,则a 的取值范围为变式1:若不等式组⎩⎨⎧≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:若不等式组⎩⎨⎧<>ax x 0只含有三个整数1、2和3,则a 的取值范围为 ;变式3:关于x 的不等式组010x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是( ) A. -3≤a ≤-2 B. -3≤a <-2 C. -3<a ≤-2 D. -3<a <-2例3、拓展应用(1)若不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围是( ).A .m<2B .m≥2C .m<1D .1≤m<2(2)不等式组⎩⎨⎧<->-10a x a x 的解集中的任一个x 值均不在2≤x ≤5范围内,则a 的范围为 。
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
初一数学下含参问题之代数篇
初一数学下含参问题之代数篇初一数学下,代数是一个重要的内容,涉及到含参问题的解答和应用。
本篇文档将介绍一些常见的含参问题及其解法。
含参问题的基本含义含参问题是指问题中涉及了未知数(通常用字母表示)的问题。
我们需要通过给定的条件和方程式来推导并求解未知数。
在初一数学中,我们通常解答一元一次方程、一元一次不等式、简单的二元一次方程等含参问题。
一元一次方程的解法一元一次方程是一个常见的含参问题。
通常的形式为:\[ax+b=c\],其中\[a, b, c\]为已知数,\[x\]为未知数。
我们可以通过移项和合并同类项的方法来解答这类问题。
具体的求解步骤如下:1. 移项将\[ax\]项分离到一个侧边:\[ax=c-b\]2. 合并同类项:\[x=\frac{c-b}{a}\]将\[a, b, c\]的具体数值代入上述公式,即可得到未知数\[x\]的解。
一元一次不等式的解法一元一次不等式也是我们常见的含参问题。
与一元一次方程相比,不等式的解可能不止一个。
通常的形式为:\[ax+bc\],其中\[a, b, c\]为已知数,\[x\]为未知数。
我们可以通过移项和合并同类项的方法来解答这类问题。
具体的求解步骤如下:1. 移项将\[ax\]项分离到一个侧边:\[axc-b\]2. 合并同类项:\[x\frac{c-b}{a}\]根据不等式的性质,我们可以得到\[x\]的解集。
需要注意的是,由于不等式可能包含大于等于或小于等于的情况,解集可能是一个区间。
二元一次方程的解法二元一次方程是稍微复杂一些的含参问题。
通常的形式为:\[\begin{cases} ax+by=c \\ dx+ey=f \end{cases}\],其中\[a, b, c, d, e, f\]为已知数,\[x, y\]为未知数。
我们可以通过联立方程、消元和代入法来求解这类问题。
具体的求解步骤如下:1. 通过联立方程的方法,我们可以得到一个由\[x\]或\[y\]表示的方程。
一元一次不等式组的解法经典例题透析
经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。
思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。
解析:解不等式①,得x≥-;解不等式②,得x<1。
所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。
总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。
有等号画实心圆点,无等号画空心圆圈。
举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。
解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。
即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。
所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。
思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。
不等式
一、专题精讲题型一:含有参数的一元一次不等式【例1】 若a <0,关于x 的不等式ax+1>0的解集是( ) A .B .C .D . x >【例2】 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A . a >0B . a <0C . a >﹣1D . a <﹣1【例3】 如果关于x 的不等式(a+2012)x >a+2012的解集为x <l .那么a 的取值范围是( ) A . a >﹣2012B . a <﹣2012C . a >2012D . a <2012【例4】 关于X 的不等式322x a -≤-的解集如图,则a 是值是【例5】 若关于x 的不等式2m 一1<x <m+l 无解,则m 的取值范围是 . 【例6】 若不等式m (x ﹣2)>x+1和3x ﹣5<0是同解不等式,求m 的值.【例7】 已知|3m ﹣n+1|+(2m+3n ﹣25)2=0,解不等式2mx ﹣7(x ﹣n )≥19.题型二:一元一次不等式与方程(组)已知方程ax+12=0的解是x=3,求不等式(a+2)x <﹣6的解集.● 已知关于x 的方程3232xm x x -=--的解是非负数,m 是正整数,求m 的值.● 已知方程组:的解x ,y 满足2x+y ≥0,则m 的取值范围是( )A m ≥﹣B . m ≥C . m ≥1D . ﹣≤m ≤1● 若关于的二元一次方程组的解满足x+y <2,则a 的取值范围为( ) A . a <4 B . a >4C . a <﹣4D . a >﹣4二、专题过关1、 若关于x 的方程332x a +=的解是正数,a 的取值范围范围是2、 已知不等式x+8>4x+m (m 是常数)的解集是x <3,m 的取值范围范围是 .3、 已知不等式(a+1)x >2的解集是x <﹣1,则( ) A . a >2B . a ≤﹣3C .a=3 D . a =﹣34、 已知x <a 的解集中的最大整数为3,则a 的取值范围是______;5、 已知x >a 的解集中最小整数为-2,则a 的取值范围是______6、 若关于x 的不等式(a ﹣1)x ﹣a 2+2>0的解集为x <2,则a 的值为( ) A .0 B .2 C . 0或2D .7、 已知m ,n 为常数,若mx+n >0的解集为x <,则nx ﹣m <0的解集是( ) A . x >3B . x <3C . x >﹣3D . x <﹣38、 当310)3(2k k -<-时,求关于x 的不等式k x x k ->-4)5(的解集.9、 解关于x 的不等式mx ﹣2>3m+5x (m ≠5)10、 解关于x 的不等式2x +1≥m (x -1).(m ≠2)11、 若关于x ,y 的方程组的解使4x+7y >2,则k 的取值范围是.12、 已知关于x 、y 的方程组的解适合不等式2x ﹣y >1,求a 的取值范围.13、 如果关于x 的方程5432bx a x +=+的解不是负值,那么a 与b 的关系是( ) (A)b a 53>(B)a b 53≥(C)5a =3b (D)5a ≥3b14、 已知二元一次方程组2310432x y x y +=⎧⎨-=⎩的解满足不等式,求的取值范围。
专题10 一元一次不等式(组)(归纳与讲解)(解析版)
专题10 一元一次不等式(组) 【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)【注意】1. 不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2. 用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤: (1)审题; (2)设未知数;(3)找出能够包含未知数的不等量关系; (4)列出不等式(组); (5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值; (7)写出答案(包括单位名称).【技巧归纳】技巧1:一元一次不等式组的解法技巧 【类型】一、解普通型的一元一次不等式组1.不等式组⎩⎪⎨⎪⎧-2x <6,x -2≤0的解集,在数轴上表示正确的是( )2.解不等式组,并把解集表示在数轴上.⎩⎪⎨⎪⎧2x +5≤3(x +2),①1-2x 3+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是( )A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________. 5.用两种不同的方法解不等式组-1<2x -13≤5.【类型】三、“绝对值”型不等式转化为不等式组求解. 6.解不等式⎪⎪⎪⎪3x -12≤4.【类型】四、“分式”型不等式转化为不等式组求解 7.解不等式3x -62x +1<0.参考答案 1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1:原不等式组可化为下面的不等式组⎩⎨⎧-1<2x -13,①2x -13≤5.②解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由⎪⎪⎪⎪3x -12≤4,得-4≤3x -12≤4.则原不等式可转化为⎩⎨⎧3x -12≥-4,①3x -12≤4.②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:解题时要先将不等式转化为不等式组再进行求解. 7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:(Ⅰ)⎩⎪⎨⎪⎧3x -6>0,2x +1<0或(Ⅱ)⎩⎪⎨⎪⎧3x -6<0,2x +1>0.解(Ⅰ)的不等式组得⎩⎪⎨⎪⎧x >2,x <-12.∴此不等式组无解. 解(Ⅱ)的不等式组得⎩⎪⎨⎪⎧x <2,x >-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用 【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2; (2)4x -13-x >1; (3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x5.解:去分母,得5(4-3x)-1<3(7+5x). ① 去括号,得20-15x -1<21+15x. ② 移项,合并同类项,得-30x <2. ③ 系数化为1,得x >-115. ④【类型】二、解含字母系数的一元一次不等式 3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5.二元一次方程组⎩⎪⎨⎪⎧2x +3y =10,4x -3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来. 【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围. 8.关于x 的两个不等式①3x +a2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围. 参考答案1.解:(1)x >13x -2,23x > -2, x > -3.这个不等式的解集在数轴上的表示如图所示.(2)4x -13-x >1,4x -1-3x > 3,x > 4.这个不等式的解集在数轴上的表示如图所示.(3)x +13≥2(x +1),x +1≥ 6x +6, -5x ≥ 5, x ≤ -1.这个不等式的解集在数轴上的表示如图所示.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x). 去括号,得20-15x -15<21+15x. 移项,合并同类项,得-30x <16. 系数化为1,得x >-815.3.解:移项,合并同类项得,(a -1)x >2,当a -1>0,即a >1时,x >2a -1; 当a -1=0,即a =1时,x 无解; 当a -1<0,即a <1时,x <2a -1. 4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:解方程组⎩⎪⎨⎪⎧ 2x +3y =10,4x -3y =2,得⎩⎪⎨⎪⎧x =2,y =2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13, 去括号,得9-3x +1<13, 移项,合并同类项,得-3x <3, 系数化为1,得x >-1. 在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用 【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是( )A .m >-2B .m <2C .m <-2D .m >22.已知方程组⎩⎪⎨⎪⎧x +y =-7-a ,x -y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围. 【类型】二、与不等式(组)的解集的综合问题 题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6.已知不等式组⎩⎪⎨⎪⎧x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87.如果不等式组⎩⎪⎨⎪⎧2x -a ≥0,3x -b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8.如果不等式组⎩⎪⎨⎪⎧x -1>0,x -a <0无解,则a 的取值范围是__________.9.若不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7 ②有解,求实数a 的取值范围.参考答案 1.B2.解:(1)解方程组得⎩⎪⎨⎪⎧x =-3+a ,y =-4-2a.∵x 为非正数,y 为负数,∴⎩⎪⎨⎪⎧-3+a ≤0,-4-2a <0,解得-2<a ≤3. (2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b ,得⎩⎪⎨⎪⎧a +b =-3,-3a +b =13,解得⎩⎪⎨⎪⎧a =-4,b =1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y4<2,解得-7<y <5.4.a <25.解:⎩⎪⎨⎪⎧2x -a <1.①,x -2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9. 6.A7.解:解不等式组得a 2≤x <b3.∵不等式组仅有整数解1,2,3, ∴0<a 2≤1,3<b3≤4.解得0<a ≤2,9<b ≤12. ∵a ,b 为整数,∴a =1,2,b =10,11,12. 8.a ≤19.解:⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②,解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<x <a -1,则a -1>-6,a >-5. 【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2 -3 【详解】解:由题意得:1?30? x abx->⎧⎨+≥⎩①②解不等式① 得: x>1+a ,解不等式①得:x≤3 b -不等式组的解集为: 1+a<x≤3 b -不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为: -2, -3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m的取值范围是().A.m>3B.m≥3C.m≤3D.m<3【答案】C【解析】详解:841x xx m+<-⎧⎨>⎩①②,解①得,x>3;解①得,x>m,①不等式组841x xx m+<-⎧⎨>⎩的解集是x>3,则m①3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A .13 B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 100 5 120x x -+>, 15 220x >,解得:443x >, 根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是( ). A .2121m n -+>-+ B .1144m n ++> C .m a n b +>+ D .am an -<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、①m >n ,①-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意; B 、①m >n ,①m +1>n +1,则1144m n ++>,故该选项成立,符合题意; C 、①m >n ,①m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、①m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意; 故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件, 根据题意,得:100x +80(10﹣x )≤900, 故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是( )A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集. 【详解】由30x +>得:3x >- 由50x -≤得:5x ≤ ①35x -<≤ 故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键. 4.不等式3﹣x <2x +6的解集是( )A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可. 【详解】解:326x x -<+, 移项得362x x -<+, 合并同类项得33x -<, 系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键. 5.在数轴上表示不等式1x >-的解集正确的是( ) A . B .C .D .【答案】A【分析】根据不等式解集的表示方法依次判断. 【详解】解:在数轴上表示不等式x >−1的解集的是A . 故选:A .【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A ,B 两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A 种西瓜__________kg .【答案】120【分析】设批发A 种西瓜x kg ,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A 种西瓜x kg ,则 (6-4)x +120043x-×(4-3)≥1200×40%, 解得x ≥120.答:该超市至少批发A 种西瓜120kg . 故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解. 7.不等式2103x --<的解集为____. 【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解. 【详解】解:去分母,得:230x --<, 移项,得:23x <+, 合并同类项,得:5x <. ①不等式的解集为:5x <. 故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意①不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【分析】先求出每个一元一次不等式的解集,再求两个解集的公共部分,即是不等式组的解集. 【详解】解:解不等式36x x -≤,得:3x ≥, 解不等式312(1)x x +>-,得:3x >-, ①3x ≥与3x >-的公共部分为3x ≥, ①不等式组的解集是:3x ≥. 在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)一、单选题1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示; ①将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴①; ①平移数轴①使点A 位于点B 的正下方,如图2所示;①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧. 则整数k 的最小值为( )A .511B .510C .509D .500【答案】A【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解. 【详解】解:依题意,4AC =,2042AB =①扩大数轴①的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧, ∴k ⋅AC AB >,即42042k >, 解得15102k >,k 为正整数,①k 的最小值为511, 故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -, 移项,得:3+2<1x x -, 合并同类项,得:<1x -, 系数化为1,得>1x -, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b+=.则下列结论正确的是( )A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c =【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b+=,得出c b <;B.根据112a cb +=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b+=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断. 【详解】A.①0a b >>, ①11a b <, ①112a c b+=,①11c b>, ①c b <,故A 错误;B.①112a cb +=,即2a c ac b+=, ①()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,①a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误. 故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是( ) A .﹣5 B .﹣3C .0D .2【答案】D【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8, 解不等式①得:y ≤a ,①原不等式组的解集为:﹣8<y ≤a , ①不等式组至少有3个整数解, ①a ≥﹣5, 1133x ax x++=--, 去分母得①1﹣x ﹣a =x ﹣3,解得:x 42a-=, ①分式方程有非负整数解, ①x ≥0(x 为整数)且x ≠3, ①42a-为非负整数,且42a -≠3, ①a ≤4且a ≠﹣2,①符合条件的所有整数a 的值为:﹣4,0,2,4, ①符合条件的所有整数a 的和是:2, 故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是( ) A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c =-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数, 则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩, 解得37711c ≤≤, ①3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c =﹣2+3c,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是 _____. 【答案】254m >-## 6.25m >-##164m >- 【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得. 【详解】解:根据题意得254()0m =-->Δ, 解得,254m >-, 故答案为:254m >-. 【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算. 7.若关于x 的分式方程232x mx -=-的解是非负数,则m 的取值范围是________. 【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解. 【详解】解:关于x 的分式方程232x mx -=-的解为:x =6−m , ①分式方程有可能产生增根2, ①6−m ≠2, ①m ≠4,①关于x 的分式方程232x mx -=-的解是非负数, ①6−m ≥0, 解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4. 故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元. ①求w 与a 的函数关系式(不要求写出a 的取值范围);①若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+①购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1)根据总数,设立未知数,建立分式方程,即可求解.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式. ①根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解. (1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元. 依题意得100100510x x =++. 解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元; (2)解:①“神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.①购进“神舟”模型的数量不超过“天宫”模型数量的13. ()12003a a ∴≤-. 解得:50a ≤.51000w a =+.50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩ 【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解. 【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②, 解不等式①,得 1x ≥-,解不等式①,得 >7x -,①该不等式组的解集为 1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
第03讲 含参数一元一次不等式(组)(教师版)A4
含参数一元一次不等式(组)含参数一元一次不等式(组)一.含参一元一次不等式(组)含字母系数的一次不等式(组):未知数的系数含有字母或常数项含有字母一次不等式(组). 任何一个含有字母系数的一元一次不等式都可以化为ax b >的一般形式,在这个形式中:若0a >,那么ax b >的解为b x a >;若0a <,那么ax b >的解为b x a<;若0a =,则当0b ≥时,ax b >无解,当0b <时,ax b >的解为任何实数.一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合.三.易错点:注意参数取值范围导致的变号问题.知识图谱知识精讲三点剖析题模精讲题模一:解含参一元一次不等式(组)例1.1.1 已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >- 【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >- 例1.1.2 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x > 【解析】 原不等式组可化为323x a x >+⎧⎨>⎩. 当323a +>,即13a >时,不等式组的解集为32x a >+. 当323a +≤,即13a ≤时,不等式组的解集为3x > 题模二:参数与解集之间的关系例1.2.1 例若关于x 的不等式组3(2)224x x a x x --<⎧⎪⎨+>⎪⎩有解,则实数a 的取值范围是__________. 【答案】 4a >【解析】 由3(2)2x x --<得2x >,由24a x x +>得12x a <,因为不等式组有解,所以122a >,解得4a >.题模三:整数解问题例1.3.1 已知关于x 的不等式40x a -≤只有四个正整数解1、2、3、4,求正数a 的取值范围.【答案】 1620a ≤<【解析】 解不等式得4a x ≥又因为有且只有4个正整数解,故45a <⨯且44a ≥⨯1620a ∴≤<例1.3.2 已知不等式组221x a x b ->⎧⎨+<⎩的整数解只有5、6,求a 和b 的范围 【答案】 23a ≤<,1315b <≤【解析】 解不等式组得212x a b x >+⎧⎪⎨-<⎪⎩,因为整数解只有5、6,所以425a ≤+<,1672b -<≤,故23a ≤<,1315b <≤.题模四:不等式与方程的综合例1.4.1 已知2310a x -+=,32160b x --=,且4a b ≤≤,求x 的取值范围.【答案】 23x -≤≤【解析】 由2310a x -+=可得312x a -=,由32160b x --=可得2163x b +=,又因为4a b ≤≤,所以31216423x x -+≤≤,解得23x -≤≤.例1.4.2 求使方程组24563x y m x y m +=+⎧⎨+=+⎩的解x 、y 都是正数的m 的取值范围. 【答案】 572m << 【解析】 解原方程组得725x m y m =-+⎧⎨=-⎩,由x 、y 都是正数可得70250m m -+>⎧⎨->⎩,解得572m <<例 1.4.3 已知非负数x 、y 、z 满足123234x y z ---==,设345w x y z =++,求w 的最大值与最小值.【答案】 最大值1063,最小值19 【解析】 设123234x y z k ---===,则21x k =+,23y k =-,43z k =+,所以1426w k =+,又因为x 、y 、z 都是非负数,所以210230430k k k +≥⎧⎪-≥⎨⎪+≥⎩,解得1223k -≤≤,当23k =时,w 取最大值1063,当12k =-时,w 取最小值19随堂练习随练1.1 已知不等式424233x x a +<-(x 是未知数)的解也是不等式12162x -<的解,求a 的取值范围.【答案】 7a ≥-【解析】 由12162x -<得1x >-,由424233x x a +<-得6x a >+,由题意得61a +≥-,故7a ≥- 随练1.2 若关于x 的不等式0mx n ->的解集是15x <,则关于x 的不等式()m n x n m +>-的解集是( ) A . 23x <- B . 23x >- C . 23x < D . 23x > 【答案】A 【解析】 该题考查的是含参的不等式.∵关于x 的不等式0mx >的解集是15x <,, ∴0m <,15n m =, ∴解关于x 的不等式()m n x n m +>-得,n m x n m -<+, ∴55253n x n n -<=-+, 故答案是A .随练1.3 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.随练1.4 当k 满足___________时,方程组24x y k x y +=⎧⎨-=⎩中x 大于1,y 小于1 【答案】 13k -<<【解析】 由24x y k x y +=⎧⎨-=⎩可得22x k y k =+⎧⎨=-⎩,所以2121k k +>⎧⎨-<⎩,解得13k -<<. 随练1.5 若关于x 的不等式423202x x x a ++⎧>⎪⎪⎨+⎪<⎪⎩的解集为x <2,则a 的取值范围是____. 【答案】 a≤-2【解析】 本题考查了不等式的性质、解一元一次不等式(组)的应用,关键是能根据不等式的解集得出关于a 的不等式,题目比较好,难度不大.根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律得出-a≥2,求出即可. 423202x x x a ++⎧>⎪⎪⎨+⎪<⎪⎩①②, 解不等式①得:x <2,解不等式①得:x <-a ,①不等式组的解集是x <2,①-a≥2,①a≤-2,故答案为:a≤-2随练1.6 已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解都为正数 (1)求a 的取值范围(2)化简454a a +--【答案】 (1)544a -<<(2)51a + 【解析】 先把a 看作常数,解方程组得454x a y a =+⎧⎨=-+⎩,由方程组的解都为正数可得45040a a +>⎧⎨-+>⎩,解得544a -<<,由45040a a +>⎧⎨-+>⎩可得4545a a +=+,44a a -=-,故45451a a a +--=+随练1.7 若关于x 的不等式0721x m x ⎧-<⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A . 6<m <7B . 6≤m <7C . 6≤m ≤7D . 6<m ≤7【答案】D 【解析】 本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m 的不等式组,再借助数轴做出正确的取舍.首先确定不等式组的解集,先利用含m 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.由(1)得,x <m ,由(2)得,x≥3,故原不等式组的解集为:3≤x <m ,①不等式的正整数解有4个,①其整数解应为:3、4、5、6,①m 的取值范围是6<m≤7.故选D .随练1.8 已知关于x 的不等式组4(1)23617x x x a x -+>⎧⎪-⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.【答案】 1≤a <2【解析】解不等式4(x -1)+2>3x ,得:x >2,解不等式x -1<67x a -,得:x <7-a , ①此不等式组有且只有三个整数解,①这三个整数解为3,4,5,①5<7-a≤6,解得1≤a <2.①实数a 的取值范围是1≤a <2.随练1.9 已知2310a x -+=,32160b x --=,且4a b ≤<,求x 的取值范围.【答案】 23x -<≤【解析】 由2310a x -+=可得312x a -=,由32160b x --=可得2163x b +=,又因为4a b ≤<,所以31216423x x -+≤<,解得23x -<≤自我总结拓展1 若关于x 的不等式21a x ->的解集是1x <,则a 的值是( )A . 1a =B . 1a >C . 1a <D . 1a =-【答案】A【解析】 该题考查的是含参数的不等式.∵21a x ->,∴21x a <-,∵1x <,∴211a -=,解得1a =.故答案是A .拓展2 10.(3分)(2016•江西校级模拟)已知关于x 的不等式组1x a x ⎧>⎨>⎩的解集为x >1,则a 的取值范围是_____________.【答案】 a ≤1【解析】 由关于x 的不等式组1x a x ⎧>⎨>⎩的解集为x >1,得 a ≤1,拓展3 若关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是__________.能力拓展【答案】 2a ≤【解析】 由题意可知232a a +≥-,解得2a ≤拓展4 若不等式组200x b x a -≥⎧⎨+≤⎩的解集为3≤x ≤4,则不等式ax+b <0的解集为____. 【答案】 x >32【解析】200x b x a -≥⎧⎨+≤⎩①② ①解不等式①得:x≥2b , 解不等式①得:x≤-a ,①不等式组的解集为:2b ≤x≤-a , ①不等式组200x b x a -≥⎧⎨+≤⎩的解集为3≤x≤4, ①2b =3,-a=4, b=6,a=-4, ①-4x+6<0,x >32, 故答案为:x >32拓展5 如果方程组32335x y k x y +=+⎧⎨+=⎩的解为x 、y ,且9k ≤时,求x y -的取值范围 【答案】 8x y -≤【解析】 由原方程组可得()222x y k -=-,所以1x y k -=-,由9k ≤得8x y -≤拓展6 若关于x 的不等式组430x x m -≥⎧⎨≥⎩有2个整数解,则m 的取值范围是( ) A . 1m >- B . 0m ≥ C . 10m -<≤ D . 10m -≤≤【答案】C【解析】 该题考察的是一元一次不等式组的整数解.解不等式430x -≥得43x ≤,故不等式组的解集为:43m x ≤≤, 因为不等式组只有2个整数解, 所以这两个整数解为:0,1,因此实数m 的取值范围是10m -<≤. 故选答案是C .拓展7 关于x 的不等式组232x a x a <+⎧⎨≥-⎩只有非负数解,求a 的取值范围. 【答案】 223a ≤< 【解析】 232320a a a +>-⎧⎨-≥⎩. 223a ∴≤<拓展8 适当选择a 的取值范围,使1.7x a <<的整数解:(1)x 只有一个整数解(2)x 一个整数解也没有【答案】 (1)23a <≤(2)1.72a <≤【解析】 (1)由1.7x a <<,x 只有一个整数解,即2x =,得到23a <≤;(2)由1.7x a <<,x 一个整数解也没有得到1.72a <≤.拓展9 已知关于x ,y ,z 的方程组212325x y z x y z -+=⎧⎨+-=⎩满足524x y ≥⎧⎨≤<⎩,求3S x y z =+-的取值范围. 【答案】 41115S ≤< 【解析】 解方程组得到417527z x z y -⎧=⎪⎪⎨-⎪=⎪⎩,根据题意415752247z z -⎧≥⎪⎪⎨-⎪≤<⎪⎩,解得1665z ≤<,而5S z =+.。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
一元一次不等式字母取值范围专题知识讲解
类型一 已知不等式组的解集求字母的取值
例1 .若关于x的不等式组 2 x a 1
x
2b
3
解集为-1<x<1,则(a+1)(b-1)的值是__。
练习1
若不等式组
x x
m m
n n
的解是 3x5
,求不等式 mxn 的解.
解题步骤:
1、求出未知数x的取值范围形如 bxa
方法总结 1、把方程中的未知数用含待定字母的代数式表示;
2、把两个代数式代入已知不等式,转化成含待定字母的 不等式;
3、解不等式求出范围。
类型三 已知不等式组的解的情况求字母的取值范围
•例3不等式组
x x
9 5x m1
1,
的解集是x>2,求m的取值范围.
a 练习3
若不等式组
x a 0 1 2x x 2
•练习4
若关于x的不等式组
x 15 2
x 3,
2
x 3
2
xቤተ መጻሕፍቲ ባይዱ
a
只有4个整数解,求a的取值范围.
解题步骤
1、求出未知数x的取值范围形如 bxa
2、根据整数解的个数,借助数轴,确定字母a、b的值;
(a、b一定是两个相邻整数)
3、确定哪边取等号。 (很重要,不能忘记,用数值代入检验确定)
巩固练习 x a 2
有解,则
的取值范围是( ).
解题步骤:
1、分别求出不等式组中两个不等式的解;
2.再 确定“<”还是“>” 3.最后确定”=“是否取到
注意:借助数轴分析第2步骤
(
类型四 已知不等式组的整数解个数求字母的取值范围
一元一次不等式的定义和解法教学提纲
3m 4 3
例11 当x取何正整数时,代数式 x 5
的值比 3 x 2 的值大1?
3
2
解:根据题意,得
x 5 3x 2
>1,
3
2
2(x+5)-3(3x-2)>6,
2x+10-9x+6>6,
-7x+16>6,
-7x>-10,
得
10
x<
7
所以,当x=1时,满足题意要求.
教学目 标
一、利用不等式的解集求字母的值:
A. 2x+1≤-3
B. 2x-1≥-3
C. -2x+1≥3
D. -2x-1≤3
3.已知(a-3)xb+2<2是一元一次不等式,那么此时,
a ≠3 ,b =-1
.
教学目 标
4.不等式x+1<3的解集是 ( A )
A. x < 2
B. x≥2
C. x≤-1
D. x≥-1
5.不等式3x+2<2x+3的解集在数轴上表示的是( D )
去分母 去括号 移项 合并同类项
X>1
系数化1
0
1
9. m取何值时,关于x的方程
x3m1x7m1的解大于2.
63
2
解:解这个方程
x 2 ( 3 m 1 ) 6 x 3 ( 7 m 1 )
x3m1
根据题意,得
3m12
解得 m>1
9.(1)解不等式 x3 6x ,并把它的解
23
在数轴上表示出来.
合并同类项,得
-3<3x
两边都除以3,得 -1<x
即
x>-1
这个不等式的解集在数轴上表示如下图:
-2 -1 0 1 2 3 4 5 6 7 8 9 10
含参数的不等式的
(3)当 8 k 0 时,不等式解集为
(4)当 k 0 时,不等式解集为 x x 0 (5)当 k 0 时,不等式解集为
k k 2 8k k k 2 8k x x 4 4
例题讲解
2 ax (a 1) x 1 0. 例4:解关于 x 的不等式: {x | x 1}. 解: (一)当 a 0 时, 原不等式即为 x 1 0 解集为: (二)当 a 0 时, 原不等式变形为: (ax 1)(x 1) 0
2 k 8k 0 (3)当 即
k 0 或 k 时 8 ,
k k 2 8k k k 2 8k x x 4 4
原不等式解集为
综上所述, (1)当 k 8 时,不等式解集为
k k 2 8k k k 2 8k x x 4 4 (2)当 k 8 时,不等式解集为 x解集为: x | x 2a或x 3a
a 0时,原不等式解集为: x | x 3a或x 2a
例题讲解
例3:解关于 x 的不等式2 : x
2
2
kx k 0
分析:由于 x 的系数大于0,对应方程的根只需考虑△的符号. 解: k 2 8k
问题2
若关于x的一元二次不等式(m-2)x2+
2(m-2)x+4>0的解集为R,求m的取值范围.
问题3 若关于x的一元二次不等式 (m-2)x2+
2(m-2)x+4≤0 的解集为, 求m的取值范围. 问题4 若二次函数y=(m-2)x2+2(m-2)x+4
的值恒为非负,求m的取值范围.
问题5 若关于x的不等式(m-2)x2+2(m-2)x
一元一次不等式含参问题
一元一次不等式(组)专项培优【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用. 要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如,等都是一元一次不等式组.一元一次不等式的解法【学习目标】1.理解并掌握一元一次不等式的概念及性质;2.能够熟练解一元一次不等式;3. 掌握不等式解集的概念并会在数轴上表示解集.【要点梳理】要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数;③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系:相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向.要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:(或)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为(或)的形式(其中);(5)两边同除以未知数的系数,得到不等式的解集.要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. 2562010x x ->⎧⎨-<⎩7021163159x x x ->⎧⎪+>⎨⎪+<⎩2503x >a x <a x >ax b >ax b <0a ≠(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变.要点三、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.要点诠释:3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:(3)要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画.注意:在表示a 的点上画空心圆圈,表示不包括这一点.【典型例题】 类型一、一元一次不等式的概念1.下列式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?(1) (2)(3) (4) (5)0x >1x1->2x 2>3y x ->+1x -=类型二、解一元一次不等式2.求不等式﹣≤的非负整数解,并把它的解在数轴上表示出来.举一反三:【变式1】解不等式:【变式2】代数式的值不大于的值,求x 的范围.3.m 为何值时,关于x 的方程:的解大于1?举一反三:【变式】已知关于方程的解是非负数,是正整数,则 .4.(2016•杭州模拟)若关于x ,y 的二元一次方程组的解满足x ﹣y >﹣3.5,求出满足条件的m 的所有正整数解. 2x ]2)14x (32[23<---6151632x m m x ---=-x 3x 23m x 2x -=--m =m类型二、不等式的解及解集5.若关于的不等式只有三个正整数解,求的取值范围.举一反三:【变式】已知的解集中的最大整数为3,则的取值范围是 .类型四、逆用不等式的解集6. 若关于的不等式的解集为,则关于的不等式的解集 .一元一次不等式组【典型例题】类型一、解一元一次不等式组1.(2016•深圳)解不等式组:.x a x ≤a a x <a x n m x >53x <x 0n 5m x )n m 2(>-+-2. 不等式组是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.举一反三:【变式】(2015•北京)解不等式组,并写出它的所有非负整数解.3.试确定实数a 的取值范围.使不等式组 恰好有两个整数解.3(2)5(4) 2.......(1)562(2)1,........(2)32211............(3)23x x x x x x ⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩1023544(1)33x x a x x a +⎧+>⎪⎪⎨+⎪+>++⎪⎩类型二、解特殊的一元一次不等式组4.(2015•黔西南州)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.课堂练习类型一根据不等式租的整数解情况确定字母的取值范围例1.不等式组有3个整数解,则m的取值范围是.变式练习1.不等式组有3个整数解,则m的取值范围是.变式练习2.已知关于x的不等式组只有3个整数解,则实数a的取值范围是.变式练习3. 已知关于x 的不等式组{4x +2>3(x +a)2x >3(x −2)+5,仅有4个整数解,则实数a 的取值范围是 .变式练习4. 已知关于x 的不等式组{5x +2>3(x −1)12x ≤8−32x +2a ,仅有4个整数解,则实数a 的取值范围是 .类型二 根据不等式组的解集确定字母的取值范围例2.已知关于x 的不等式组无解,则a 的取值范围是 .变式练习1.若关于x 的不等式组有解,则实数a 的取值范围是 .变式练习2.若不等式的解集为x >3,则a 的取值范围是 .变式练习3.若关于x 的不等式的解集为x <2,则a 的取值范围是 .变式练习4.已知不等式组无解,则a 的取值范围是 .类型三 根据未知数解集或者未知数间的关系确定字母的取值范围例3. 已知方程组⎩⎨⎧-=++=+my x m y x 12312满足x +y <0,求m 的取值范围变式练习1.若关于x ,y 的二元一次方程组的解满足x +y <2,则a 的取值范围为 .2.已知⎩⎨⎧+=+=+12242k y x k y x 且的取值范围为则k y x ,01-〈-〈 .例4. 已知关于x的不等式(1﹣a)x>2的解集为x<,则a的取值范围是.变式练习1.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.2.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.3.若不等式ax+b<0的解集是x>﹣1,则a,b应满足的条件有.综合练习1.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14B.7C.﹣2D.22.不等式组的解集是x>﹣1,则a的取值范围是.3.若关于x的一元一次不等式组无解,则a的取值范围是.4.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.5.已知关于x的不等式组无解,则a的取值范围是.6.不等式组的解是0<x<2,那么a+b的值等于.7.已知关于x的不等式组只有3个整数解,则实数a的取值范围是.8.已知关于x的不等式组的整数解共有6个,则a的取值范围是.。
《一元一次不等式与不等式组》知识讲解(1)
3
初一实验班——荣伟伟
一元一次不等式的解法
要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,
2 x 50 是一个一元一次不等式. 3
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);
②只含有一个未知数; ③未知数的最高次数为 1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是 1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一 元一次方程表示相等关系,由等号“=”连接,等号没有方向.
移项、合并同类项得: − 3 x 6 4
系数化 1,得 x −8 故原不等式的解集是 x −8
例 3.m 为何值时,关于 x 的方程: x − 6m −1 = x − 5m −1 的解大于 1?
63
2
【答案与解析】
解: x-12m+2=6x-15m+3
5x=3m-1
x = 3m −1 5
要点二、一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为: x a (或 x a )的形式,解一元一次不等式的一般步骤为:
(1)去分母; (2)去括号; (3)移项;
(4)化为 ax b (或 ax b )的形式(其中 a 0 );
例
4.若关于
x、y
的二元一次方程组
3x + y x + 3y
=1+ =3
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
含字母参数的一元一次不等式
含字母参数的一元一次不等式(组)1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 .2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 .3、关于x 的不等式组24x a x b +<⎧⎨->⎩的解集是-3<x <5,则a-b = .4.关于x 的不等式组2x x a>⎧⎨>⎩的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组⎩⎨⎧>+>31x m x 的解集为x >3,则m 的取值范围是 . 6、关于x 的不等式组2x x m≤⎧⎨<⎩的解集为x <m , 则m 的取值范围是 .7、关于x 的不等式组⎩⎨⎧>+<mx x 282有解,则m 的取值范围是 .8、关于x 的不等式组⎩⎨⎧≤>-m x x 032无解,则m 的取值范围是 . 9.若关于x 的不等式组x m n x m n+<⎧⎨->⎩的解集是-2<x <4,则mn= .10.若关于x 的不等式组210x x a -<⎧⎨>⎩无解,则m 的取值范围是 . 11.若关于x 的不等式组0x a x ≤⎧⎨>⎩只有3个正整数解,则a 的取值范围是_ __.12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 .13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 .14、若关于x 的不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __.15、关于x 的不等式组⎩⎨⎧≤->03x a x 有三个整数解,则a 的取值范围是_ __.8、关于x 的不等式组⎩⎨⎧≤>-mx x 032无解,则m 的取值范围是 .9.若关于x 的不等式组x m n x m n +<⎧⎨->⎩的解集是-2<x <4,则mn= . 10.若关于x 的不等式组210x x a-<⎧⎨>⎩无解,则m 的取值范围是 .11.若关于x 的不等式组0x a x ≤⎧⎨>⎩只有3个正整数解,则a 的取值范围是_ __. 12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 .13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 .14、若关于x 的不等式组⎩⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __.15、关于x 的不等式组⎩⎨⎧≤->03x a x 有三个整数解,则a 的取值范围是_ __.含字母参数的一元一次不等式(组)1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 .2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 .3、关于x 的不等式组24x a x b +<⎧⎨->⎩的解集是-3<x <5,则a-b = .4.关于x 的不等式组2x x a>⎧⎨>⎩的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组⎩⎨⎧>+>31x m x 的解集为x >3,则m 的取值范围是 . 6、关于x 的不等式组2x x m≤⎧⎨<⎩的解集为x <m , 则m 的取值范围是 .7、关于x 的不等式组⎩⎨⎧>+<m x x 282有解,则m 的取值范围是 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含字母参数的一元一次不等式(组)
1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 .
2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 .
3、关于x 的不等式组24x a x b +<⎧⎨->⎩
的解集是-3<x <5,则a-b = . 4.关于x 的不等式组2x x a
>⎧⎨>⎩的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组⎩⎨⎧>+>3
1x m x 的解集为x >3,则m 的取值范围是 .
6、关于x 的不等式组2x x m ≤⎧⎨<⎩
的解集为x <m , 则m 的取值范围是 . 7、关于x 的不等式组⎩⎨⎧>+<m
x x 282有解,则m 的取值范围是 .
8、关于x 的不等式组⎩
⎨⎧≤>-m x x 032无解,则m 的取值范围是 . 9.若关于x 的不等式组x m n x m n
+<⎧⎨->⎩的解集是-2<x <4,则mn= .
10.若关于x 的不等式组210x x a
-<⎧⎨>⎩无解,则m 的取值范围是 .
11.若关于x 的不等式组0x a x ≤⎧⎨>⎩
只有3个正整数解,则a 的取值范围是_ __. 12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 .
13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 .
14、若关于x 的不等式组⎩
⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __. 15、关于x 的不等式组⎩⎨⎧≤->0
3x a x 有三个整数解,则a 的取值范围是_ __.
8、关于x 的不等式组⎩
⎨⎧≤>-m x x 032无解,则m 的取值范围是 . 9.若关于x 的不等式组x m n x m n
+<⎧⎨->⎩的解集是-2<x <4,则mn= .
10.若关于x 的不等式组210x x a -<⎧⎨>⎩
无解,则m 的取值范围是 . 11.若关于x 的不等式组0
x a x ≤⎧⎨>⎩只有3个正整数解,则a 的取值范围是_ __.
12、关于x 的不等式2x -a >0的负整数解为-1,-2,则a 的取值范围 .
13、关于x 的不等式x -4≤a 的正整数解为1, 2,3,则a 的取值范围 .
14、若关于x 的不等式组⎩
⎨⎧->-≥-1230x a x 的整数解共有5个,则a 的取值范围是_ __. 15、关于x 的不等式组⎩⎨⎧≤->0
3x a x 有三个整数解,则a 的取值范围是_ __.
含字母参数的一元一次不等式(组)
1、关于x 的不等式3x >m 的解集为x >6 ,则m 的值为 .
2、关于x 的不等式-2x +a ≥2的解集如图所示,则a 的值为 .
3、关于x 的不等式组24x a x b +<⎧⎨->⎩
的解集是-3<x <5,则a-b = . 4.关于x 的不等式组2x x a
>⎧⎨>⎩的解集是x > a,则a 的取值范围是 . 5、若关于x 的不等式组⎩⎨⎧>+>3
1x m x 的解集为x >3,则m 的取值范围是 .
6、关于x 的不等式组2x x m ≤⎧⎨<⎩
的解集为x <m , 则m 的取值范围是 . 7、关于x 的不等式组⎩⎨⎧>+<m x x 282有解,则m 的取值范围是 .。