数据通信原理第四章 差错控制(一)

合集下载

通信原理教程信道编码和差错控制课件

通信原理教程信道编码和差错控制课件
常见信道编码技术
总结词
线性分组码是一种通过将信息位与固定数量的冗余位进行线性组合来检测和纠正错误的编码方式。
详细描述
线性分组码将信息位和冗余位组成一个更大的分组,然后使用线性方程组来描述这些位之间的关系。通过检测这些方程的满足情况,可以在一定程度上检测和纠正错误。常见的线性分组码包括汉明码和格雷码等。
差错控制
在计算机通信、网络通信等领域应用广泛,用于保证数据传输的正确性和完整性。
应用场景比较
信道编码在长距离、高噪声环境下具有优势,而差错控制更适合短距离、低噪声环境。
应用场景比较
随着通信技术的发展,信道编码技术也在不断进步,如LDPC码、Turbo码等新型编码技术的出现,提高了数据传输的可靠性和速率。
奇偶校验
总结词:高效可靠
详细描述:循环冗余校验是一种通过模2除法运算来检测错误的方法。发送方计算数据的CRC值并附加在数据后面,接收方通过同样的方式计算接收到的数据的CRC值并与附加的CRC值进行比较。如果两个值相等,则数据被认为是正确的;否则,数据被认为有错误。CRC是一种高效的差错控制方法,能够检测出大部分错误。
03
信道编码分类
线性编码
线性编码是指将输入信息序列映射为线性码字序列的过程。常见的线性编码包括奇偶校验码、循环冗余校验码等。
非线性编码
非线性编码是指将输入信息序列映射为非线性码字序列的过程。常见的非线性编码包括卷积码、交织码等。
信道编码在数据传输中广泛应用,如TCP/IP协议中的差错控制机制、无线通信中的QPSK、QAM等调制方式。
01
差错控制
在数据传输过程中,对传输的数据进行检测、纠正和恢复,以确保数据的完整性和准确性。
02
差错产生原因

数据通信原理课程

数据通信原理课程

(学时: 50 )数据通信原理课程是面向电子信息工程、网络工程等专业开设的一门必修的专业基础课程,是该专业的主干课程,共 50 学时, 3.0 学分,其中实验课程 10 学时。

本课程在电子信息工程专业教学计划中是一门专业基础课程,又是一门专业的数字信号传输的理论课,它是为满足通信领域对应用人材的需要而设置的。

通过本课程的学习,为以后学习计算机通信网络和计算机通信接口技术等后继课程打下必备的基础,并且为以后从事计算机通信工作提供一定的技术支持。

1.基本要求通过本课程的学习,要求学生掌握数据通信的构成原理和工作方式;掌握数据信号的传输理论:基带传输和频带传输;掌握差错控制的基本原理和工作方式,理解常用差错控制码的构成原则;理解数据交换的原则,掌握分组交换的基本内容,了解分组交换网的构成。

本课程是一门原理性的课程,要求学生掌握数据通信较完整的概念和构成。

2.基本方法本课程的教学方式和方法主要以课堂讲授为主,并以课堂讨论和习题课为辅。

1.授课教材《数据通信原理》詹仕华主编,中国电力出版社(2022 年第 1 版)。

2.主要参考书目《数据通信技术教程》蒋占军编著,机械工业出版社(2022 年第 2 版)。

《数据通信原理》毛京丽等编著,北京邮电大学出版社(2000 年第二版);《数据通信原理》杨世平等编著,国防大学出版社(2001 年第一版);《现代通信原理》钱学荣编,清华大学出版社(1999 年)。

本课程共 3.0 学分,总教学共 50 学时,具体学时分配如下表:各章节内容学时数第一章:绪论 4第二章:数据通信基础知识 6第三章:数据信号的基带传输 8第四章:数据信号的频带传输 8第五章:差错控制与信道编码 8第六章:物理层接口与传输控制规程 2第七章:分组交换数据网 4实验 10第一章绪论(4 学时)1、目的要求:本章介绍数据通信有关的重要概念和定义,要求理解数据通信系统的构成、数据传输速率、方式、质量和信道容量的基本内容。

通信原理—差错控制编码基本理论

通信原理—差错控制编码基本理论

差错控制概述1。

差错的概念所谓差错,就是在通信接收端收到的数据与发送端实际发出的数据出现不一致的现象.2。

差错类型通信信道的噪声分为热噪声和冲击噪声两种。

由这两种噪声分别产生两种类型的差错,随机差错和突发差错.热噪声是由传输介质导体的电子热运动产生的,它的特点是:时刻存在,幅度较小且强度与频率无关,但频谱很宽,是一类随机噪声。

由热噪声引起的差错称随机差错。

此类差错的特点是:差错是孤立的,在计算机网络应用中是极个别的。

与热噪声相比,冲击噪声幅度较大,是引起传输差错的主要原因。

冲击噪声的持续时间要比数据传输中的每比特发送时间要长,因而冲击噪声会引起相邻多个数据位出错。

冲击噪声引起的传输差错称为突发差错。

常见的突发错是由冲击噪声(如电源开关的跳火、外界强电磁场的变换等)引起,它的特点是:差错呈突发状,影响一批连续的bit(突发长度)。

计算机网络中的差错主要是突发差错。

通信过程中产生的传输差错,是由随机差错和突发差错共同构成的.3。

误码率数据传输过程中可用误码率Pe来衡量信道数据传输的质量,误码率是指二进制码元在数据传输系统中出现差错的概率,可用下式表达:4。

差错控制差错控制是指在数据通信过程中能发现或纠正差错,将差错限制在尽可能小的允许范围内。

差错检测是通过差错控制编码来实现的;而差错纠正是通过差错控制方法来实现的。

差错控制编码差错控制编码的原理是:发送方对准备传输的数据进行抗干扰编码,即按某种算法附加上一定的冗余位,构成一个码字后再发送。

接收方收到数据后进行校验,即检查信息位和附加的冗余位之间的关系,以检查传输过程中是否有差错发生。

差错控制编码分检错码和纠错码两种,检错码是能自动发现差错的编码,纠错码是不仅能发现差错而且能自动纠正差错的编码。

衡量编码性能好坏的一个重要参数是编码效率R:其中,n表示码字的位长,k表示数据信息的位长,r表示冗余位的位长.计算机网络中常用的差错控制编码是奇偶校验码和循环冗余码。

数据通信原理复习资料整理(期末考试必备)

数据通信原理复习资料整理(期末考试必备)

第一章概述1、数据通信——依照通信协议,利用数据传输技术在两个功能单元之间传递数据信息;2、传输代码常用的传输代码有:·国际5号码IA5(7单位代码)——ASCII码(常在后面加1位奇偶校验码)·国际电报2号码ITA2(5单位代码)·EBCDIC码(8单位代码)·信息交换用汉字代码(7单位代码)3、数据通信系统的构成●数据终端设备DTE·数据输入、输出设备——数据数据信号·传输控制器-—主要执行与通信网络之间的通信过程控制(即传输控制),包括差错控制、终端的接续控制、传输顺序控制和切断控制等(完成这些控制要遵照通信协议)。

●数据电路·传输信道——为数据通信提供传输通道·数据电路终接设备(DCE)(《综合练习习题与解答》简答题第2题)-—是DTE与传输信道之间的接口设备,其主要作用是将来自DTE的数据信号进行变换,使之适合信道传输。

当传输信道为模拟信道时,DCE是调制解调器(MODEM),发送方将DTE送来的数据信号进行调制,将其频带搬移到话音频带上(同时变成模拟信号)再送往信道上传,收端进行相反的变换。

当传输信道是数字信道时,DCE是数字接口适配器,其中包含数据服务单元与信道服务单元。

前者执行码型和电平转换、定时、信号再生和同步等功能;后者则执行信道均衡、信号整形等功能。

●中央计算机系统主机——进行数据处理通信控制器(又称前置处理机)——用于管理与数据终端相连接的所有通信线路,其作用与传输控制器相同.●数据电路与数据链路的关系——数据链路由数据电路及两端的传输控制器组成.●只有建立了数据链路通信双方才能有效、可靠地进行数据通信。

4、信道类型物理实线电话网传输信道;数字数据传输信道;5、传输损耗传输衰减=网络的输入端功率—输出端功率;传输损耗:;信噪比:;6、计算机通信网包含数据通信网;计算机通信网不等于计算机网络,前者明显地参与管理;7、数据传输方式●并行传输与串行传输(按代码传输的顺序分)1、并行传输概念—-并行传输指的是数据以成组的方式,在多条并行信道上同时进行传输。

差错控制

差错控制

数据后,只等待判断信号。反馈重传纠错方式的缺点 是实时性较差。 2,前向纠错技术 工作原理:在前向纠错方式中,发送端对数据进行 校验和纠错编码,接收端收到这些编码后,根据约定 的规则进行译码。译码过程不但可以发现错误,而且 能够自动地进行纠错。在前向纠错的工作中,发送端 不需要等待接收端反馈信号,因此也就不需要专门的 反馈信道。 前向纠错方法的最大好处是不用重传出错的数据帧, 而是利用校验码在检测出错的同时还能确定出错比特 的位置,将出错比特取反即可纠正传输错误的冗余码 元比较多,效率相对而言也比较低,从而使传输通信 数据的效率大为下降,复杂运算的数据处理工作
要求;对较长的数据帧则使用循环冗余校验方法,附 加位数不会太多,而且检错能力强,其数字逻辑电路 也易于实现,是现在网络通信中进行数据帧校验的主 要方法。循环冗余校验是一种利用多项式除法进行冗 余码生成、接收方检验传输是否出错的有效方法。 练习:
1,(信源)是产生和发送信息的一端,(信宿)是接收信息的 一端。通信是在(信源)和(信宿)之间建立数据传输的 (信道)。 2,(误码率)是衡量数据传输可靠性的一个参数,它是指二进 制码元在传输系统中被传错的概率。 3,一个通信系统至少应包含3个部分:(发送设备)、(传输介 ,一个通信系统至少应包含3 质)和(接收设备) 4,数字信号调制成模拟信号常有(移幅)、(移频)、和(移 相)三种方法 5,按照信息同时传输的方向分为(单工)、(半双工分为垂直奇偶校 验、水平奇偶校验和水平垂直奇偶校验3 验、水平奇偶校验和水平垂直奇偶校验3种。 ①水平奇偶校验:是将若干字符组成一个信息块,对 该信息块的字符中对应的位分别进行奇偶校验。 ②垂直奇偶校验是以字符为单位的校验方法。例如, 传输数据为“1010001” 传输数据为“1010001”;采用偶校验时,附加位为 “1”,则发送信息变为“10100011”;采用奇校验时, ,则发送信息变为“10100011” 附加位为“ 发送信息变为“10100010” 附加位为“0”发送信息变为“10100010”。 ③水平垂直奇偶校验是把水平垂直两个方向的奇偶校 验结合起来构成的,即纵向每个字符校验一次,水平 方向每个信息块发送完后其对应位也校验一次(发送 一个校验码)。

差错控制方式

差错控制方式
• 发送端发出能够检错的码,接收端检验,接收端发出反馈应答信号, 发送端重新传输 直到正确接收为止 • 工作原理简单,正向信道+反向信道,传输效率低
– 混合纠错(HEC:hybrid error correction)
• 前向纠错方式和检错重发方式的结合与折衷 • 外层先采用前向纠错,当前向纠错不能解决问题时,内层再采用检错 重发。
通信原理简明教程(第2版)
1 差错控制方式
• 常用的差错控制方式有三种:
– 前向纠错(FEC:forward error correction)
• 发送能纠错的码,在译码时自动发现并纠正传输中的错误 • 只需正向信道,实时性好 • 编译码设备复杂,适合单向信道和一发多收系统
– 检错重发(ARQ:automatic repeat request)
返回重发和选择重发方式需要全双工数据链路,而
停发等候重发方式 只要求半双工的数据链路。
通信原理简明教程(第2版)
检错重发 – 优点
• 只需少量的多余码元(一般为总码元的5%~20%)就能获得 极低的误码率;
• 要求使用的检错码基本上与信道的差错统计特性无关,即对 各种信道的不同差错特性,有一定的自适应能力; • 其检错译码器与前向纠错法中的纠错译码器相比,成本和复 杂性均低得多;
– 缺点
• 有反向信道,不能用于单向传输系统,也难以用于广播(一 发多收)系统,并且实现重发控制比较复杂; • 当信道干扰增大时,整个系统可能处于重发循环中,因而通 信效率降低,甚至不能通信; • 不太适合严格实时传输的系统;
1
通信原理简明教程(第2版)
Hale Waihona Puke (a) FEC方式(b) ARQ方式
(c) HEC方式

数据通信与计算机网络--04差错控制

数据通信与计算机网络--04差错控制

课堂小结
理解循环冗余码 理解帧的构成
数据通信与计算机网络-04差错控制
2021/7/16
内容:
同步的基本概念 海明码 循环冗余码
目的与要求:
掌握帧同步的基本概念; 掌握海明码编码原理; 掌握循环冗余码编码原理;
重点与难点:
重点:循环冗余码、海明码; 难点:循环冗余码。
课堂讨论:
海明码? 循环冗余码?
现代教学方法与手段:
投影 PowerPoint幻灯课件
误需要通过反馈重发来纠错
编码效率 R k k
n kr
基本概念
差错控制的编码方式:
自动请求重发ARQ(automatic request for repeat) 向前纠错FEC(Foeward Error Correcytion)
常用的简单差错控制编码
水平奇偶校验:
在面向字符的数据传输中,在每个字符的7位信息码 后附加一个校验位0或1,使整个字符中“1”的个数构成 奇数个(奇校验)或偶数个(偶校验)。
填充的位
字符计数法
在帧头中使用一个字段来标明帧内的字 符数,通常该字段称为帧长字段。 如果发生传输错误,则可能更改帧长的 值,从而导致帧的同步出现问题。 该方法通常与上述其他方法结合使用。
发送: 接收:
计数
计数
计数
第1帧 5个字符
第2帧 5个字符
出错!
第3帧 8个字符
1个字符计数??
7
1
第1 帧正确!
海明码
③为了知道编号为K的数据位对哪些检测 位有影响,将编号K 改写成2的幂的和 (如:11=1+2+8, 29=1+4+8+16),1个位只由 扩展式中所示编号的位检测(编号为11 的位,只能由1,2,8 检测位检测)

差错控制系统的组成与作用原理

差错控制系统的组成与作用原理

差错控制系统的组成与作用原理引言差错控制系统是一种用于检测和纠正数据传输过程中产生的错误的技术。

在数据通信中,数据经常会受到不同因素的干扰,如噪声、干扰信号等,这些干扰可能导致传输过程中的数据错误。

差错控制系统的作用就是通过增加冗余信息和使用纠错码等手段,实现检测和纠正数据传输中产生的错误,提高数据传输的可靠性和正确性。

组成差错控制系统主要由以下几个组成部分组成:1.冗余信息生成器:冗余信息是指在数据传输过程中添加的额外的、用于检测和纠正错误的信息。

冗余信息生成器负责在数据传输前生成相应的冗余信息,并将其与原始数据一同传输。

2.接收端:接收端负责接收传输过来的数据和冗余信息,并进行相应的差错控制处理。

它主要包括错误检测和纠正的算法和逻辑。

3.纠错码生成器:纠错码是一种特殊的编码方式,通过在数据中添加纠错码实现检测和纠正错误。

纠错码生成器负责根据接收到的数据和冗余信息计算纠错码,并将其添加到原数据中进行传输。

4.错误检测和纠正算法:差错控制系统使用一些特定的算法来检测和纠正数据传输中的错误。

常见的算法包括循环冗余检验(CRC)、海明码(Hamming Code)等。

作用原理差错控制系统主要通过以下原理来实现检测和纠正传输过程中的错误:1.冗余信息检验:差错控制系统通过在原始数据中添加冗余信息的方式来检测错误。

接收端根据接收到的数据和冗余信息计算得到一个校验和,然后将计算得到的校验和与传输过程中接收到的冗余信息进行比较。

如果两者一致,说明传输过程中没有错误;如果不一致,说明传输过程中存在错误。

2.纠错码校验:差错控制系统通过使用纠错码来检测和纠正错误。

纠错码是一种特殊的编码方式,能够在数据中添加一些冗余信息以实现错误的检测和纠正。

接收端会根据接收到的数据和冗余信息计算得到纠错码,并与传输过程中接收到的纠错码进行比对。

如果两者一致,说明传输过程中没有错误;如果不一致,说明传输过程中存在错误。

差错控制系统的作用原理可以简单总结为:通过增加冗余信息和使用纠错码等技术手段,实现数据传输过程中错误的检测和纠正,提高数据传输的可靠性和正确性。

数据通信原理

数据通信原理

数据通信原理数据通信原理是指通过传输介质将数据从一个地点传递到另一个地点的过程。

在数据通信中,数据被分割为一系列的数据包,并通过网络传输到目的地。

数据通信原理主要涉及以下几个方面:1.调制解调:调制解调是将要传输的数据从数字信号转换为模拟信号的过程,然后将模拟信号传输到接收方后再进行解调还原为数字信号。

调制的目的是将数字信号转换为适合传输的频率范围内的模拟信号,解调则是将接收到的模拟信号转换为可供使用的数字信号。

2.传输介质:数据通信中使用的传输介质有多种,包括电缆、光纤、无线信号等。

不同的传输介质具有不同的特点和适应场景,如电缆传输适合短距离高带宽传输,光纤传输适合长距离高速传输等。

3.编码和解码:为了提高数据传输的可靠性和效率,数据在传输过程中会进行编码和解码。

编码将原始数据转换为特定编码格式,使其具备一定的容错能力,能够纠正一定数量的传输错误;解码则是将接收到的编码数据转换为原始数据。

4.传输协议:数据通信中使用的传输协议规定了数据在网络中的传输方式和规则。

常见的传输协议包括TCP/IP协议,用于互联网传输;以太网协议,用于局域网传输等。

5.差错控制:在数据通信过程中,可能会因为传输噪声、干扰等原因导致数据传输错误。

差错控制技术可用于检测和纠正传输过程中的错误,常见的差错控制技术包括奇偶校验、CRC校验等。

6.流量控制:为了保证数据传输的平稳进行,需要对数据的传输速度进行控制。

流量控制技术可用于调节发送方的传输速度,防止接收方无法及时处理数据导致的数据丢失或堆积等问题。

7.路由选择:在数据通信中,如果传输路径有多个选择,需要选择最佳的传输路径。

路由选择技术可用于确定数据传输的最佳路径,提高数据传输的效率和稳定性。

数据通信原理包括调制解调、传输介质、编码和解码、传输协议、差错控制、流量控制和路由选择等方面的内容,对于数据的可靠传输和高效传输起着重要的作用。

第四章 数据通信

第四章  数据通信

图4-4 信号的频谱图
信道的宽度是指信道频率响应曲线上幅度取其频 带中心处倍的两个频率之间的区间宽度。如图 4-5所示。
图4-5 信道带宽
数据通信的主要质量指标
1.工作速率 工作速率主要包括符号速率和信息传输速率。 符号速率又叫信号速率,记为N。它表示单位时 间内(每秒)信道上实际传输的符号个数或脉冲个 数(可以是多进制)。符号速率的单位是波特,即 每秒的符号个数。信息传输速率,简称传信率, 通常记为R。
3.波分多路复用(WDM) 所谓波分多路复用,是指在一根光纤上同时 传输多个波长不同的光载波。实际上WDM是 FDM的一个变种,用于光纤信道。 波分多路复用的工作原理:要传输的光波的 波长(频率)是不同的,它们通过合波器(通常 是棱镜或光栅)后,就可使用一条共享的光纤传 输,到达目的地结点后,再经过分波器(棱镜或 光栅)分成多束光波。
4.1.6 差错控制
差错控制首先要进行差错控制编码,一般采 用抗干扰编码或纠错编码。下面介绍其中的奇偶 检验码、方块码、定比码和循环冗余码。 1.奇偶校验码 内存中最小的单位是比特,也称为“位”, 每个位只有两种状态分别以1和0来表示,每8个 连续的比特叫做一个字节(byte)。不带奇偶 校验的内存每个字节只有8位,如果其某一位存 储了错误的值,就会导致其存储的相应数据发生 变化,进而导致应用程序发生错误。
2.单工、半双工和全双工通信 单工方式,信息只能在一个方向上传送。发送方 只能发送,不能接收。如无线电广播和电视广播 都是单工通信。 半双工方式,通信双方可以交替发送和接收信息, 但不能同时发送和接收。这种方式一般用于计算 机网络的非主干线路中。 全双工方式,是一种可以同时进行双向信息传送 的通信方式。这种通信方式主要用于计算机与计 算机之间的通信。

计算机网络通信技术第04章纠错

计算机网络通信技术第04章纠错
内容提要:
差错控制的基本方式

反馈重发纠错(ARQ)方式 前向纠错(FEC)方式 混合纠错(HEC)方式 奇偶监督码 行列监督码 恒比码 海明码
常用检错码:

数据通信中的差错控制技术

在数据传输中,可靠性是一个重要的性能指标,
由于传输信道不理想以及来自各个方面的干扰,出现错误 码元是不可避免的。

行列监督码在某些条件下还能纠错。
突发差错行列监督码

行列监督码也常用于检查或纠正突发差错。可以检查 出错误码元长度小于或等于码组长度的所有错码,并纠正 某些情况下的突发差错。

3.

恒比码(3:2)
恒比码又称等比码或等重码(非零码组中“1”码的个数 称为码重)。恒比码的每个码组中,“1”和“0”的个数之 比都是恒定的。

方阵码只是对构成矩形四角的错码无法检测,故
其检错能力较强。
使误码率降至原误码率的百分之一到万分之一。
行列监督码(含突发错码)

当差错个数恰为4的倍数,且差错位置正好构成矩形的四个角时(如上
图所示方阵码中标有D的码元),方阵码检查不出错误。
含突发错码行列监督码
行列监督码

接收端按同样行列排成方阵,发现不符合行列 监督规则的判决有错。
恒比码

恒比码在检测时,通过计算接收码组中“1”
的数目,判定传输有无错误。这种码除了“1” 错成“0”和“0”错成“1”成对出现的错误以外, 还能发现其他所有形式的错误,故检错能力很 强。

应用这类码后,国际电报的误字率保持在
10-6以下。
4.5.3
纠错编码

现行的抗干扰编码发展成为两大类:分组码和卷积码。

数据交换技术及差错控制概述

数据交换技术及差错控制概述
• 不适用于计算机通信:因为计算机数据具有突发性的 特点,真正传输数据的时间不到10%。
▪ 例如:建立连接的时间为0.5s,计算机以1Mb/s的速率发送 10KB。线路利用率=?
2
▪ 电话网络中的电路交换
呼叫时建立的 物理铜质连接
交换局
▪ 电路交换也能在多路复用信道上实现
• 在物理线路的Βιβλιοθήκη 个信道上建立连接数据交换技术及差错控制
▪ 什么是交换?
• 按某种方式动态地分配传输线路资源。
▪ 例如,电话交换机在用户呼叫时为用户选择一条可 用的线路进行接续。用户挂机后则断开该线路,该 线路又可分配给其他用户。
▪ 最初的交换:人工转接交换
▪ 为什么要采用交换技术?
• 节省线路投资,提高线路利用率。
▪ 实现交换的方法主要有:电路交换、报文 交换和分组交换。
• 整个报文(Message)作为一个整体一起发送。
• 优缺点:
▪ 没有建立和拆除连接所需的等待时间; ▪ 线路利用率高; ▪ 传输可靠性较高; ▪ 报文大小不一,造成存储管理复杂; ▪ 大报文造成存储转发的延时过长,且对存储容量要求较高; ▪ 出错后整个报文全部重发。
• 类比:下载时若无断点续传功能,一旦出错你会怎样做?
1
▪ 电路交换
• 在通信双方之间建立一条临时专用线路的过程。
▪ 可以是真正的物理线路,也可以是一个复用信道。
• 特点:数据传输前需要建立一条端到端的通路。—— 称为“面向连接的”(典型例子:电话)
• 过程:建立连接→通信→释放连接
• 优缺点:
▪ 建立连接的时间长; ▪ 一旦建立连接就独占线路,线路利用率低; ▪ 无纠错机制; ▪ 建立连接后,传输延迟小。
4

数据通讯技术基础

数据通讯技术基础
4、信息交换用汉字编码

用于我国明码电报通信中;
用4位十进制数组成的代码表示一个汉字,然后用ASCII码或波多码再 表示出十进制数字,最后变换成电信号传输;

汉字变成代码的过程分两步实现,即采用“外码”和“内码”组成的
两级编码方法。外码是计算机与人之间进行交换的一种代码形式,与 汉字的录入方式有直接关系,录入的方式不同则汉字的外码就不同;

第一节 传输信道概述
三、传输介质
2、无线传输介质
卫星通信 卫星通信就是利用位于3万6千公里高空的人造地球同步卫星作 为太空无人值守的微波中继站的一种特殊形式的微波接力通信。卫 星通信可以克服地面微波通信的距离限制,其最大特点就是通信距 离远,且通信费用与通信距离无关。

优点:卫星通信的频带比微波接力通信更宽,通信容量更大,信号 所受到的干扰也较小,误码率也较小,通信比较稳定可靠;
数据通信技术基础
第一节 传输信道概述
一、信道的类型
2、按照传输的信号类型分类

模拟信道:传输的是在幅度和时间上都连续变化的模拟信号。如电话 线就是一个模拟信道。

数字信道:在信道上只能传输数字信号的信道。如数字电话信道、计
算机组成的局域网等。
3、按照信道的使用方式分类

专用信道:两点或多点之间的线路是固定不变的。如民航系统、金融 系统内部自己组建的网络等。
实际的信道总要受到各种噪声的干扰,香农则进一步研究了受随机
噪声干扰的信道的情况,给出了计算信道容量的香农公式:
C =B×log2(1+S/N) (bps) 其中S表示信号功率,N为噪声功率,S/N则为信噪比。由于实际使用
的信道的信噪比都要足够大,故常表示成10log10(S/N),以分贝(dB)为

第4-2讲 差错控制技术

第4-2讲 差错控制技术
-14
CRC检验:示例
1101010110←Q 商 除数P→110101 101000110100000←XrM 被除数 数据:M=1010001101 110101 除数P(生成多项式)= X5+X4+X2+X0 111011 XrM(X)=P(X)Q(X)+R(X) 110101 111010 模 2 运算:加法不进位,减法和加法一样, 110101 例如:1111 + 1010 = 0101 111110 冗余码(R(X))称为帧检验序列 FCS 110101 101100 T(X)=XrM(X) + R(X)称为循环码 110101 接收端运算:[XrM(X) + R(X)] / P(X) = Q(X), 110010 有错:余数R(X) !=0; 110101 01110←R 余数 无错:余数R(X) =0,去掉尾部r位便得到信息码
垂直冗余检验(Vertical Redundancy Checking, VRC) 水平(纵向)冗余检验(Longitudinal Redundancy Checking,LRC) 垂直水平冗余检验
-10
奇偶检验:垂直冗余检验
原理:将整个发送的信息分为长度为p位的若干段,如q段, 每段后面按“1”的个数为奇数或偶数的规律加上一位奇偶 位,其有(pq) 个信息位,每段由p位构成,共q段。
解决方法:用序号、计时器和确认共同检测,通 过重传的方法来纠正错误
-5
差错类型(续)
根据差错的表现形式 ,可分为四类(3)
重复(Duplication) 定义:多次收到同样的信息 主要原因:
是差错控制机制本身,如果发送方错误地认为数据丢 失了,因而重传了它,就可能造成接收方收到重复的 信息 路由选择机制引起的重复帧,如使用基于扩散的路由 选择策略(如洪泛法)

通信原理教程信道编码和差错控制PPT课件

通信原理教程信道编码和差错控制PPT课件

人工智能在信道编码和差错控制中的应用
01
人工智能技术在信道编码和差错控制领域的应用逐渐
成为研究热点。
02
通过机器学习和深度学习算法,可以自动优化信道编
码方案,提高编码性能和纠错能力。
03
人工智能技术也可以用于差错控制中的信号处理和数
据恢复,例如利用神经网络进行信号去噪和恢复。
THANKS
感谢观看
包。
当接收端发现数据包丢失时, 会发送一个重传请求给发送端

发送端收到重传请求后,会重 新发送丢失的数据包。
ARQ通过快速重传丢失的数据 包来保证数据的可靠传输。
前向纠错(FEC)
01 FEC是一种差错纠正算法,用于在数据传 输过程中纠正错误。
02 FEC通过在数据中添加冗余信息来实现纠 错。
03
链路自适应技术
总结词
链路自适应技术可以根据信道状态自适 应地调整传输参数,以优化传输性能。
VS
详细描述
链路自适应技术是一种可以根据信道状态 自适应地调整传输参数的差错控制技术。 它通过实时监测信道状态,并根据信道质 量的好坏调整传输速率、调制方式和功率 等参数,以优化传输性能并降低误码率。 链路自适应技术可以有效地适应不同的信 道条件,提高数据传输的可靠性和效率。
02
信道编码原理
线性分组码
总结词
线性分组码是一种将信息序列分成固定长度的组,然后对每组进行线性编码的 方法。
详细描述
线性分组码通过将信息序列分成固定长度的组,然后对每组进行线性编码,以 增加信息在传输过程中的抗干扰能力。线性分组码包括汉明码、奇偶校验码等。
循环码
总结词
循环码是一类具有循环特性的线性码,其编码后的码字仍具有循环移位的性质。

通信原理教程信道编码和差错控制

通信原理教程信道编码和差错控制

.
2
➢ 编码序列的参数
n - 编码序列中总码元数量 k - 编码序列中信息码元数量
r - 编码序列中差错控制码元数量 (差错控制码元,以后称为监督码元或监督位 )
k/n - 码率 (n - k) / k = r / k - 冗余度
.
3
➢ 自动要求重发(ARQ)系统 停止等待ARQ系统
以降低系统的总误码率。
.
10
10.3 纠错编码系统的性能
10-1
10.3.1 误码率性能和带宽的关系
10-2
采用编码降低误码率
10-3
所付出的代价是带宽的增大。 Pe
10-4
10-5
10-6
• 2PSK A •E
•B 编码后 • •C
D
Eb/n0 (dB)
编码和误码率关系
.
11
10.3.2 功率和带宽的关系
a5
111
a6
000
无错码
例:若接收码组为0000011,则按上三式计算得到:S1 = 0,S2 = 1,S3 = 1。这样,由上表可知,错码位置在a3。
(0,1,1)
(1,1,1)
(0,0,0)
(1,0,0) a2
a0 (0,0,1) (1,0,1)
一般而言,码距是 n 维空间中单位正多面体顶点之间的汉 明距离。
.
8
一种编码的纠检错能力:决定于最小码距d0的值。 为了能检测e个错码,要求最小码距
d0 e1
01 A
e
23 B 汉明距离
d0
码距等于3的两个码组 为了能纠正 t 个错码,要求最小码距
ARQ和前向纠错比较:
优点 监督码元较少,即码率较高 检错的计算复杂度较低 能适应不同特性的信道

差错控制与信道编码数据通信原理

差错控制与信道编码数据通信原理

差错控制与信道编码数据通信原理1. 引言在数据通信中,差错控制和信道编码是两个重要的概念。

差错控制是指通过在发送端和接收端添加一些冗余信息,以检测和纠正数据传输中出现的错误。

信道编码则是通过对数据进行编码,在发送端添加一些冗余信息,以提高在有噪声或其他干扰的信道中的传输质量。

本文将介绍差错控制和信道编码的基本原理及其在数据通信中的应用。

2. 差错控制差错控制是一种在数据传输中检测和纠正错误的技术。

它可以有效地减少在数据传输过程中产生的差错,提高数据传输的可靠性。

差错控制一般包括两个主要方面:错误检测和错误纠正。

2.1 错误检测错误检测是指通过在数据中添加冗余信息,使接收端能够检测出在传输过程中是否发生了错误。

常见的错误检测方法包括纵向冗余校验(Vertical Redundancy Check,简称VRC)、循环冗余校验(Cyclic Redundancy Check,简称CRC)等。

在VRC中,数据在传输前会添加一个校验位,该校验位是通过对数据中每个字节进行奇偶校验得到的。

接收端在接收到数据后,会重新计算校验位,并与接收到的校验位进行比较,从而判断出是否存在错误。

在CRC中,数据在传输前会进行一系列的运算,生成一段校验码,并将该校验码添加到数据中。

接收端在接收到数据后,会重新进行运算,生成校验码,并与接收到的校验码进行比较,从而判断是否存在错误。

CRC具有更高的错误检测能力,广泛应用于数据通信中。

2.2 错误纠正错误纠正是指通过添加冗余信息,使接收端能够检测出并纠正在传输过程中发生的错误。

常见的错误纠正方法包括海明码(Hamming Code)和奇偶校验码等。

在海明码中,数据会经过一系列的运算,生成一段冗余码,并将该冗余码添加到数据中。

接收端在接收到数据后,会进行一系列的运算,检测并纠正数据中的错误。

海明码具有较好的纠错能力,广泛应用于存储介质和数据通信中。

在奇偶校验码中,数据在传输前会进行奇偶校验处理,生成一个校验位,并将该校验位添加到数据中。

《差错控制编码》课件

《差错控制编码》课件

01
传感器网络
利用差错控制编码提高传感器网络的数据传输可靠性。
02
无线通信
在物联网的无线通信中应用差错控制编码,确保数据传输的准确性。
差错控制编码的实现
硬件架构
介绍差错控制编码硬件实现的架构,包括编码器和解码器等主要组件。
硬件优化
探讨如何优化硬件架构,提高差错控制编码的效率。
硬件实现难点
分析差错控制编码硬件实现过程中可能遇到的难点和挑战。
介绍差错控制编码的常用算法,如奇偶校验码、汉明码等。
软件算法
详细描述差错控制编码软件实现的流程,包括数据输入、编码处理和数据输出等步骤。
图像传输中的差错控制编码概述:在图像传输过程中,由于图像数据量大、传输带宽有限等因素,容易发生传输错误。差错控制编码在图像传输中用于提高图像的传输质量和完整性。
差错控制编码的未来发展
算法优化
研究更高效的算法,提高编码和解码速度,降低计算复杂度。
03
数据存储
在物联网的数据存储中应用差错控制编码,增强数据存储的可靠性。
纠错能力
纠错能力是指纠错码能够纠正的错误比特数的最大值。不同的纠错码具有不同的纠错能力。
编码效率
编码效率是指数据比特数与校验比特数之比。编码效率越高,表示在传输同样多的数据时需要的额外比特数越少。
复杂度
复杂度是指实现纠错编码和解码所需的计算量和存储量。对于大规模集成芯片和实时系统,复杂度是一个重要的考虑因素。
软件实现流程
探讨如何优化软件算法,提高差错控制编码的准确性和效率。
软件优化
Байду номын сангаас
动态调整
探讨如何根据实际情况动态调整差错控制编码的参数,以适应不同的通信环境和数据传输需求。

差错控制一般原理

差错控制一般原理

∑npz =1/pc
n=1

x+h 平均传送的比特数 m= pc 传送有效信息的比例f(x,h)= x m h 1/2 求使f(x,h)为极大值的x值,得到x=( p ) -h
第四章 差错控制一般原理
第一节 计算机系统可靠性
衡量计算机系统工作质量的两个主要方面: 1、有效性
2、可靠性 可靠性:是指一个系统能正确无误工作的可能性 计算机系统包含的环节多、数据传输运算速度快、信息处理量 大,因而无差错、无故障的可靠工作很重要。 故障间的系统平均工作时间(MTBF):表征系统正常工作的能力
用矩形脉冲表示二进制符号“1”或“0”的基带传输信号包含 无穷多高频分量成分,在实际信道中传输时,会发生畸变 失真,只能用于短距离、低速率的通道传送。 目前,许多计算机通信网络利用已有的载波话路或报路 进行数据传输。
在模拟信道中进行计算机数据传输,数字信号的调制方式 有三种: 1、幅度调制 2、频率调制
占空时间
发送 1
ACK
2
ACK
3
NAK
3
ACK
4
5
ACK
传输 接收 1 2 3 3 4
……
错误
等待式ARQ原理图
退N步ARQ系统:系统码组连续传送,当传送N个码组时, 必须保证收到第一个码组的肯定回执,否则需等待。如果收 到某个码组的否定回执,则需马上重传这个码组及其后面的 所有码组。特点是:传输效率高,发送端需要有一个暂存缓 冲器,当数据传输速率较高,往返延迟较大时,一旦发现错 码组就要重传许多无错码组。 重传(退7步) 往返时延 发送 传输 接收
突发错误:错误成串出现,前后之间有相关性。
例如电离层衰落引起的突发干扰,磁带局部缺陷引起的 突发干扰都可能造成突发错误。突发错误的影响用突发 长度b表示。 突发长度:第一个差错和最后一个差错之间的码元总数 上例的错误图样E中,突发长度b=8 实际的信道中往往随机错误与突发错误两者并存,不过 有的信道以某种错误为主。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 突发差错
– 一串串,甚至是成片出现的差错,差错之间有相关性, 差错出现是密集的 – 错误的信道称为有记忆信道或突发信道 – 如短波信道、散射信道 – 存储介质损坏或输出故障也可引发突发错误
一、差错分类和错误图样
• 发送数据序列: 000000001111111111 • 接收数据序列: 000010011111001011 • • • • 差错序列: 错误图样: 突发长度:12 练习: 发送数据序列:001000101111001111 接收数据序列:001000111111111111 • 错误图样:? 突发长度:? 1111111 7
一、检错和纠错的原理
• 码的差错和纠错能力是同信息量的冗余度 换取的 • 任何信息源发出的消息可以用“1”和“0”来 表示 • 对于最简单的只发送A和B两种消息,用“0” 代表A,“1”代表B
– 如果只传输一位二进制数,则无法判断是否为 错码
一、检错和纠错的原理
• 在信息码后添加一位监督码,形成11或00 两种码组,当接受端为10或01时则可判断 为错码; • 在信息码后添加两位监督码,形成111或 000,不仅可以判断错码,而且可以根据 “大数”法则纠正一个错误; • 以上例子中11、00或者111、000称为“许 用码组”,其余码组为“禁用码组”。
• 3种形式:
– 停发等候重发 – 返回重发 – 选择重发
• 停发等候 重发
• 返回重发
• 选择重发
(二)前向纠错
• 前向纠错系统(FEC)中,发送端的信道编码器 将输入数据序列变换成能够纠正错误的码,接收 端的译码器根据编码规律检验出错误的位置并自 动纠正。
– 优点:前向纠错方式不需要反馈信道,特别适合于只 能提供单向信道的场合。由于能自动纠错,不要求检 错重发,因而延时小,实时性好。 – 缺点:所选择的纠错码必须与信道的错误 特性密切配合, 否则很难达到降低错码率的要求;为了纠正较多的错 码,译码设备复杂,而要求附加的监督码元也较多, 传输效果就低。
(三)混合纠错检错
• 混合纠错检错方式是前向纠错方式和检错重发方 式的结合。
– 在这种系统中,发送端发出同时具有检错和纠错能力 的码,接收端收到码后,检查错误惰况,如果错误少 于纠错能力,则自行纠正;如果干扰严重,错误很多, 超出纠正能力,但能检测出来,则经反向信道要求发 端重发。 – 混合纠错检错方式在实时性和译码复杂性方面是前向 纠错和检错重发方式的折衷,
三、编码效率
• 编码效率是指一个码组中信息位所占的比 重,用R来表示 R=k/n
– k为信息码元的数目(信息位长度) – n为编码组码元的总数(编码后码组长度n=k+r) – r为监督码元的数目(监督位长度)。
四、纠错编码的分类
• 按码组的功能分
– 检错码 – 纠错码
• 按监督码与信息码元之间的关系分
二、码距与检错和纠错能力
• 码组中非零码元的数目为码组的重量,简称码重; • 两个码组中对应码位上具有不同二进制码元的位 数定义为两码组的距离,简称码距; • 任意两个码组间距离的最小值,即码组集合中任 意两元素间的最小距离称为汉明(Hamming)距 离,表示为dmin • 例:010和011的码重分别为1和2,码距为1。 • 练习:许用码组集合{111,001,010,100}中 • dmin =? ,各个许用码组的码重分别为? 2 3,1,1,1
五、恒比码
• 在恒比码中,每个码组中含“1”和含“0”数目的 比例是恒定的。由于恒比码备码组中的“1”(或 “0”)的个数是相同,因而也称等重码。 • 检测时,只要计算每个码组中“1”的数目是否对, 1” 就能判断有无错误。
五、恒比码
• 恒比码除了能检测出单个和奇数个错误, 还能部分检测出偶数个错误,但不能全部 检测出偶数个错误(如成对交换错误)。 • 恒比码的主要优点是简单,适于用来传输 电传机或其他键盘设备产生的字母和符号 • 但对于信源来的二进随机数字序列,恒比 码就不宜使用了。
真题练习
• 偶校验编码的码组中__的个数为偶数。 • 差错控制的基本原理是什么? • 一般来说,引入监督码元越多,码的检错 纠错能力__。 • 常用的差错控制方法主要有哪些? • 当最小码距dmin=4时,若只用于检错,则能 检出__位错码。 • 监督码不载荷信息,它的作用是用来监督 __在传输中有无差错。
• 某系统采用了选择重发的差错控制方式, 发送端要向接收端发送6个码组(序号0~ 5),其中2号码组出错,请在下图中示意 NAK信号。
• 系统码和非系统码 ,纠正随机错误的码和纠正突发错误 的码 ,二进制码与多进制码。
第三节 几种常用的简单差错控制码
• • • • • 奇偶监督码 水平奇偶监督码 水平垂直奇偶监督码 群计数码 恒比码
一、奇偶监督码
• 最简单的检错码,又称奇偶校验码,在计算机数 据传输中得到广泛应用。 • 先将所要传输的数据码元分组,在每组数据后面 附加一位监督位,使得该组码连同监督位在内的 码组中的“1”的个数为偶数(称为偶校验)或奇 数(称为奇检验),在接收端按同样的规律检查, 如发现不符就说明产生了差错,但是不能确定差 错的具体位置,即不能纠错。 • 例:1110011000偶校验的监督码为1 • 练习:1101001101偶校验的监督码为? 0
二、码距与检错和纠错能力
• 检错纠错能力与最小码距的数量关系
– 在一个码组内能检测e个错码,则要求最小码 距dmin≥e+1,或者说,若一种编码的最小距离 为dmin ,则它能检出≤dmin-1个错码。 – 一个码组内能纠正t个错码,则要求最小码距为 dmin≥2t+1 ,或者说,若一种编码的最小码距为 dmin ,则它能纠正≤(dmin -1)/2个错码。 – 在一个码组内能纠正t个错码,同时能检测 e(e>t)个错码,则要求最小码距为dmin≥e+t+1
(四)信息反馈
• 信息反馈方式(简称IRQ)又称回程校验
– 收端把收到的数据序列全部由反向信道送回发端,发端比较 发送的数据序列与送回的数据序列,从而发现是否有错误, 并把认为错误的数据序列的原数据再次传送,直到发端没有 发现错误为止。 – 优点:不需要纠错、检错的编译器,设备简单。 – 缺点:需要和前向信道相同的反向信道,实时性差。另外, 发送端需要一定容量的存储器以存储发送码组,环路时延越 大,数据速率越高,所需存储容量越大。 – IRQ方式仅适用于传输速率较低,数据信道差错率较低,且 具有双向传输线路及控制简单的系统中。
• 下图表示采用停发等候重发差错控制方式 的系统的工作思路,已知2号码组出错,请 在错误处打×(图中的数字代表码组序号)。
• 采用水平奇校验所得监督码元如表所列, 请在表中下划线处填写缺省的信息码元。
• 若要纠正一个错码,则分组码的最小码距 dmin为: 。 • 常用的简单差错控制码有奇偶监督码、水 平奇偶监督码、水平垂直奇偶监督码、群 计数码和 码。 • 简述前向纠错方式的基本思路。 • 码的检错和纠错能力是用信息量的_ 来换 取的。
• 简述奇偶监督码的编码规则。 • 差错编码的纠错和检错能力是利用信息量 的__来换取的。 • 如图所示的返回重发过程中,试填出空格 处的数据包序号。
• 码距是两个码组中对应码位上具有不同二 进制码元的 。 • 要能纠正t个错码,同时能检测e个错码 (e>t),分组码的最小码距应 。 • 常用的简单差错控制码有哪些? • 码重是码组中__的个数。 • 检错重发(ARQ)常用的三种实现形式是什么?
二、水平奇偶监督码
• 为了提高上述奇偶监督码的检错能力,特别是不能检测突 发错误的缺点,可以将经过奇偶监督编码的码元序列按行 排成方阵,每行为一组奇偶监督码,但发送时则按列的顺 序传输,接收端仍将码元排成发送时的方阵形式,然后按 行进行奇偶校验。 • 由于按行进行奇偶校验,因此称为水平奇偶监督码。 • 由于发端是按列发送码元而不是按码组发送码元,因此把 本来可能集中在某一个码组的突发错误分散在方阵的各个 码组,因而可得到整个方阵的行监督。 • 可以发现某一行上所有奇数个错误以及所有长度不大于方 阵中行数的突发错误。
第二节 检错和纠错的基本概念
• 香农的信道编码定理:
– 对于一个给定的有干扰信道,如信道容量为C, 只要发送端以低于C的速率R (R为编码器输入 的二进制码元速率),则一定存在一种编码方 法,使编码错误概率P随着码长n的增加,按指 数下降到任意小的值。 – 即可以通过编码是通信过程实际不发生错误, 或者使错误控制在允许的数值之下。
四、群计数码
• 监督码组中“1”的个数构成所谓群计数码。例如 一码组的信息码元为1010111,其中有5个“1”, 用二进制数字表示为“101”,将它作为监督码元 附加在信息码元之后,即传输码组为1010111101 • 群计数码有较强的检错能力,除了同时发生码组 中“1”变“0”和“0”变“1”的成对错误外,它能检 测出所有形式的错误。 • 为了提高检测突发错误的能力,也可仿照水平奇 偶监督方法,将信息码排成方阵,然后利用群计 数法来进行水平监督。
一、奇偶监督码
• 这种奇偶校验只能发现单个或奇数个错误,而不 能检测出偶数个错误,因而它的检错能力不高 • 绝大多数随机错误都能用简单奇偶校验查出,这 正是这种方法被广泛用于以随机错误为主的计算 机通信系统的原因 • 但这种方法难于对付突发差错,所以在突发错误 很多的信道中不能单独使用 • 奇偶校验码的最小码距为dmin=2
一、差错分类和错误图样
• 噪声大体分为两类:
– 随机噪声
随机差错 • 热噪声 • 散弹噪声 • 传输媒介引起的噪声等 突发差错 – 脉冲噪声 • 突然发生的噪声 • 如雷电、开关引起的瞬态电信号变化等
一、差错分类和错误图样
• 随机差错
– – – – 独立差错 独立地、稀疏地和互不相关地发生的差错 存在这种差错的信道称为无记忆信道或随机信道 如微波接力和卫星转发等信道
相关文档
最新文档