流体力学课后第七章

合集下载

流体力学专题课程第七章孔口、管嘴出流与有压管流

流体力学专题课程第七章孔口、管嘴出流与有压管流

ε=0.6f4 0.82
ε=1
(3) 与孔口的对比: 1> 公式形式相同,但系数不同: 2> H0 相同时,若A 也相同,则管嘴出流是孔口出流 量的1.32倍。
二、 收缩断面的真空
与自由出流一致
结论 1、流量公式:
QA 2gH0
2、自由式与淹没式对比: 1> 公式形式相同;
2> φ、μ基本相同,但 H0不同;
3> 自由出流与孔口的淹没深度有关, 淹没出流与上、下游水位差有关。
H v0
z
v0
v2
自由式:
H0 = H +
v02 2g
淹没式:
H0 =
z
+
v02 2g

v22 2g
pg AzA2 vg A 2 pg CzC2 vC g 22 vC g 2
pC pa
zAzCpA gpa2 vg A 2 12 vC g 2
H0——自由出流的作用水头
H0
1
vC2
2g
物理意义:促使流体克服阻力,流入大气的全部能量
特例 自由液面:PA=Pa,液面恒定:vA=0
H 0zAzCH
收缩断面流速
一、概念
1、孔口出流 ——容器壁上开孔,流体经容器壁上所开 小孔流出的水力现象,称孔口出流。
2、管嘴出流 ——在孔口上对接长度为3-4倍孔径的短管, 流体经容器壁上所接短管流出的水力 现象,称管嘴出流。
二、任务: 计算过流量Q。 三、依据:
(1)能量方程; (2)总流的连续性方程; (3)能量损失计算式。
vC
1
1
2gH 0 2gH 0
φ——孔口的流速系数,φ=0.97。

流体力学讲义 第七章 孔口及管嘴不可压缩流体恒定流

流体力学讲义 第七章 孔口及管嘴不可压缩流体恒定流

第七章孔口及管嘴不可压缩流体恒定流本章主要介绍流体力学基本方法和水头损失计算方法在孔口与管嘴出流中的应用,得出了孔口、管嘴出流的基本公式。

概念一、孔口出流(orifice discharge):在容器壁上开孔,水经孔口流出的水力现象就称为孔口出流,如图7-1。

应用:排水工程中各类取水,泄水闸孔,以及某些量测流量设备均属孔口。

图7-11.根据d/H的比值大小可分为:大孔口、小孔口大孔口(big orifice):当孔口直径d(或高度e)与孔口形心以上的水头高H的比值大于0.1,即d/H>0.1时,需考虑在孔口射流断面上各点的水头、压强、速度沿孔口高度的变化,这时的孔口称为大孔口。

小孔口(small orifice ):当孔口直径d(或高度e)与孔口形心以上的水头高度H的比值小于0.1,即d/H<0.1时,可认为孔口射流断面上的各点流速相等,且各点水头亦相等,这时的孔口称为小孔口。

2.根据出流条件的不同,可分为自由出流和淹没出流自由出流(free discharge):若经孔口流出的水流直接进入空气中,此时收缩断面的压强可认为是大气压强,即p c=p a,则该孔口出流称为孔口自由出流。

淹没出流(submerged discharge):若经孔口流出的水流不是进入空气,而是流入下游水体中,致使孔口淹没在下游水面之下,这种情况称为淹没出流。

3.根据孔口水头变化情况,出流可分为:恒定出流、非恒定出流恒定出流(steady discharge):当孔口出流时,水箱中水量如能得到源源不断的补充,从而使孔口的水头不变,此时的出流称为恒定出流。

非恒定出流(unsteady discharge):当孔口出流时,水箱中水量得不到补充,则孔口的水头不断变化,此时的出流称为非恒定出流。

二、管嘴出流:在孔口周边连接一长为3~4倍孔径的短管,水经过短管并在出口断面满管流出的水力现象,称为管嘴出流。

圆柱形外管嘴:先收缩后扩大到整满管。

流体力学 第七章

流体力学 第七章
u2 h C 2
u2 dq d( ) 0 2 dp
等熵流动,dq=0
dp
u2 d( ) 0 2
积分形式

dp
u2 d( ) C 2
基本方程建立了速度、温度、压力、密度 的相互关系。即使用于可逆的绝热流动过 程,又适用于不可逆的绝热流动过程。
第三节 一元气体的流动特性
微分形式的可压缩气体总流的连续性方程 沿流管流体的速度、密度和流管的断面面积这 三者之间的相对变化量的代数和必然为0
二 可压缩气体的能量方程
由于气体的密度很小,所以质量力可以忽略不计。 气体是一维定常流动,则欧拉运动微分方程为
du dp u dx dx
积分
2
du 1 dp u 0 dx dx
以上分析表明:亚声速运动的点扰动源,扰动点始终 位于扰动波内,在足够长的时间以后,它的扰动总可 以传播到整个空间。因此亚声速运动的点扰动源的影 响域也是全流畅。 3)超声速运动的点扰动源的影响域 扰动点的运动速度 v大于声速c,设 t=0时刻点扰动位 于o点,在3t时刻 扰动到达半径为 3ct的o3球面上
( p dp) A PA dpA
沿活塞运动方向列动量方程
dpAdt cdtA(du 0)
dp du c
cd du d
dp cd c d
c
dp d (1 ) d
因为活塞速度很小,气体受到的扰动也很微弱, 其状态变化量很小,dρ/ρ可以忽略不计
C0 kRT0 1.4 287T0 20.1 273 20 343m / s
C1 kRT1 1.4 287T1 20.1 273 55 296m / s

《工程流体力学》第七章 粘性流体动力学

《工程流体力学》第七章  粘性流体动力学

x方向 : 1)表面力:作用在左右两面上力的合力:
作用在上下两面上力的合力:
作用在前后两面上力的合力:
作用在整个六面体上表面力沿x轴方向的合力:
2) x方向质量力 : 单位质量流体受到的质量力分量:X;
六面体受到的质量力: Xrdxdydz
牛顿第二定律:
—— 以应力形式表示的粘性流体运动微分方程 再把表面应力和变形率之间关系代入上3式:
应力:各向同性
运动粘性流体:存在法向、切向表面力 应力:各向异性
流体中:任一点c :绕c任意方位
c点应力定义: 要计算两个向量的比值
用作用在dAx, dAy, dAz上的dFx, dFy, dFz:定义c上的应力
需要2个下标表示:9个应力分量
第1个下标i:应力作用方向 第2个下标j:作用面方向
第七章 粘性流体动力学
运动粘性流体与理想流体的差别: 1. 粘性切应力:存在 2. 物面上流体速度:为零 —— 壁面无滑移条件 运动性质存在重大区别
第一节 粘性流体中作用力
一、粘性应力: 1.质量力:与流体质量有关
与流体粘性无关 粘性流体中质量力考虑方法:和理想流体相同
2. 表面力: 静止和运动理想流体:仅存在指向作用面法向表面力
由于外部无粘流:受到分离流的排挤 明显改变:其中压强分布 实际计算:用实测物面压力分布计算分离点前附面层流动 附面层分离:使流体一部分机械能损失在涡流中
绕流物体阻力增加 流体机械效率降低 甚至产生不稳定流动 导致机器损坏 防止或推迟附面层分离现象发生:是工程上一个重要问 题
边界层分离后:形成尾涡区 尾涡区压强:基本上等于分离点压强 压强:上下对称 若将压强在圆柱面上积分:则得压差阻力
流体在y+l层时均速度:

流体力学第七章不可压缩流体动力学基础

流体力学第七章不可压缩流体动力学基础

第七章不可压缩流体动力学基础在询面的章节中,我们学习了理想流体和粘性流体的流动分析,按照水力学的 观点,求得平均量。

但是,很多问题需要求得更加详细的信息,如流速、压强等 流动参数在二个或三个坐标轴方向上的分布情况。

本章的容介绍流体运动的基本 规律、基本方程、定解条件和解决流体问题的基本方法。

第一节流体微团的运动分析运动方式:①移动或单纯的位移(平移)②旋转③线性变形④角变形。

位移 和旋转可以完全比拟于刚体运动,至于线性变形和脚变形有时统称为变形运动则 是基于液体的易流动性而特有的运动形式,在刚体是没有的。

在直角坐标系中取微小立方体进行研究。

(b)谥.A n(d)一. 平移:如果图(a )所示的基体各角点的质点速度向量完全相同时,则构成(c)A B(a)A了液体基体的单纯位移,其移动速度为心、®、“,。

基体在运动中可能沿直线也 可能沿曲线运动,但其方位与形状都和原来一样(立方基体各边的长度保持不 变)。

二、 线变形:从图(b )中可以看出,由于沿y 轴的速度分量,B 点和C 点都比 A 点和D 点大了竺如 而比就代表〃y = l 时液体基体运动时,在单位时间沿勿dyy 轴方向的伸长率。

du x °"、. du : dxdydz三、 角变形(角变形速度)—BIA ■ dp -------------------------------- Jda-0 = dp + 00 =J"些+些k dz. dx四、旋转(旋转角速度)1O = —0 =—21勿du vdx—dx角变形:血 A那么,代入欧拉加速度表达式,得:du r du Tdu r八 八5=说=古叫 云+"卑+"0+-叭巴加、6仇 du Ya v = ----- = — + u v ---------- + U.0, +ii t a ). -iLCoydt dt dy “'2 …加.du diL q 。

工程流体力学第七章 理想不可压缩流体的有旋流动和无旋流动讲解

工程流体力学第七章  理想不可压缩流体的有旋流动和无旋流动讲解
式的连续性方程

x
vx


y
v y

z
vz



t
0

(v) 0
t
连续性方程表示了单位时间内控制体内流体质量的增量等于流体在控
制体表面上的净通量。它适用于理想流体和粘性流体、定常流动和非定常
流动。
在定常流动中,由于 0 t
x

0
对于不可压缩流体 vr 1 v vz vr 0
r r z r
式中 r 为极径; 为极角
球坐标系中的表示式为:
1 (vrr 2 ) 1 (v sin ) 1 v 0
t r 2 r
r sin
r sin
在某流场O点邻近的任意点A上的速度可以分成三个部分: 分别为与O点相同的平移速度(平移运动);绕O点转动在A点 引起的速度(旋转运动);由于变形(包括线变形和角变形) 在A点引起的速度(变形运动)。
第三节 有旋流动和无旋流动
根据流体微团在流动中是否旋转,可将流体的流动分为两 类:有旋流动和无旋流动。

vx y





2 x

2 y


2 z
前面在流体微团的分析中,已给出E点的速度为 :
vxE

vx

vx x
dx

vx y
dy

vx z
dz

v yE

vy

vy x
dx
vy y
dy

vy z
dz

vzE

流体力学 第七章 波浪理论

流体力学  第七章  波浪理论

第七章波浪理论课堂提问:为什么海面上“无风三尺浪”船舶与海洋工程中:船舶摇摆和拍击,船舶稳性,兴波阻力。

沿岸工程中:波浪对港口、防波堤的作用。

离岸工程中:钻井平台,海工建筑、海底油管等水波起制约作用的物理因素是重力,粘性力可略而不计,因此可用理想流体的势流理论来研究波浪运动的规律。

本章内容:着重介绍小振幅波(线性波)理论,相关内容为:1.小振幅波的基本方程和边界条件2.波浪运动的有关概念(波速、波长、周期、波数、频率、深水波、浅水波等)3. 流体质点的轨道运动4. 前进水波中的压力分布5. 波群与波群速6. 船波7. 波能传递与兴波阻力7-1 微振幅波的基本方程与边界条件§一简谐前进波沿x轴正向移动,h—水深(从平均水平面到底部的距离)η(x , t)—自由面在平均水面以上的瞬时垂直距离a—振幅H—波高,对于小振幅波 H = 2aL—波长(两相邻波峰或波谷间的距离)T—周期(固定点处重复出现波峰(或波谷)的时间间隔,或波形传播一个波长所需的间。

C—波速,或相速度(波阵面的传播速度) C = L/T (7-2)k—波数(2π距离内波的数目)K = 2π/L (7-3)σ—圆频率(2π时间内波振动的次数)σ=2π/T (7-4)微振幅波理论的基本假设1.理想不可压缩流体,重力不能忽略;2.运动是无旋的,具有速度势;3.波浪是微振幅波(线性波),即H<<L (7-5) 速度势φ(x ,z ,t ),满足xz v x v z ϕϕ∂=∂∂=∂ (7-6)且满足Laplace 方程:22220x zϕϕ∂∂+=∂∂(, )h z x η-<<-∞<<+∞ (7-7)底部条件(不可穿透条件):0z v z ϕ∂==∂( z = -h ) (7-8)自由表面边界条件:1z g t ηϕη=∂=-∂(7-10)令z=η,自由表面上相对压力p=0。

为使边界条件线性化,假定速度平方v 2→0 而得到。

《工程流体力学》第七章 粘性流体动力学

《工程流体力学》第七章  粘性流体动力学
附面层厚度d:从外边界到物面的垂直距离
2.附面层位移厚度d*: 设物面P点附面层厚度d ,在垂直于纸面方向取单位宽度,
则该处通过附面层的质量流量:
通过同一面积理想流体流量:
ro, Vo —— 附面层外边界处理想
流体的密度和速度
以d*高度作一条线平行于物面,
使两块阴影处面积相同:
即在流量相等条件下将理想流体流动区从物面向外移动了
流体绕物体流动,整个流场分为三个区域:
1)附面层: 流速:由壁面上零值急剧增加到自由来流速度同数量级值 沿物面法线方向:速度梯度很大
即使流体粘性系数小:粘性应力仍可达到一定数值
由于速度梯度很大: 使得通过附面层物体 涡旋强度很大,流体 是有旋的
2)尾迹流: 附面层内流体:离开物体流入下游,在物体后形成尾迹流
各物理量都是统计平均值, \ 瞬时物理量=平均物理量+脉动物理量, 对整个方程进行时间平均的运算。
一、常用时均运算关系式:
时均运算规律:
推论:脉动量对空间坐标各阶导数的时均值=0。
二、连续方程:对二维流动,瞬态运动连续方程 进行时均运算:
\ 可压缩紊流运动连续方程:
进行时均运算: 上两式相减:
\ 附加法向应力
法向应力: l: 比例系数,与体积变化率有关
三个法向应力平均值的负值:为粘性流体在该点压强
最后得表面应力与变形率之间的关系:
第二节 粘性流体运动的基本方程
一、连续方程:
粘性流体运动:服从质量守恒定律 连续方程:不涉及力的作用 仍能得出与理想流体相同形式的方程
二、运动微分方程: 粘性流体中:微元六面体 微元六面体中心:c
三、雷诺方程: 二维不可压缩粘性流,不考虑质量力,N-S为:
对上式进行时均运算:

流体力学课后答案第七章

流体力学课后答案第七章

1. 已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu xx +=∂∂=2θ 54+=∂∂=xy yu y y θ角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为z y u x 32+=,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫⎝⎛∂∂-∂∂=x u z u z x y ω2121=⎪⎪⎭⎫⎝⎛∂∂-∂∂=y u x u xyz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫⎝⎛∂∂+∂∂=x u z u z x y ε2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y u x u x y z ε 由zyxdzdydxωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为:0=∂∂-∂∂=zu y u yz x Ω22zy cz xu z u zx y +=∂∂-∂∂=Ω22zy cyy u xu x y z +-=∂∂-∂∂=Ω 旋转角速度分别为:0=x ω222zy cz y +=ω222zy cy z +-=ω则涡线的方程为:c dzdyzy+=⎰⎰ωω即c y dzz dy +-=⎰⎰可得涡线的方程为:c z y =+224.求沿封闭曲线222b yx =+,0=z 的速度环量。

《流体力学》第七章不可压缩流体动力学基础分解

《流体力学》第七章不可压缩流体动力学基础分解
✓对于有旋流动,其流动空间既是速度场,又 是涡量场,涡量场中的涡线,涡管,涡通量分 别与流速场中的流线,流管和流量的概念相对 应而涡线方程和涡通量方程分别与流线方程和 元流连续性方程相对应。
通常涡通量是利用速度环量这个概念来计算 的。
在流场中任取一封闭曲线s,则流速沿曲线s 的积分称为曲线s上的速度环量。
F B
F’
B’
B
F
B’ B’’ F’ F’’ C’’
C’’
A
M
A’’
C= A
A’
C’
MC
+ A’
A’’
D’’
C’
yE E’’
D
D’’
(a)
D
E
D’
E’
(b)
D’ E’’ E’
(c)
0
x
图7-2 流体徽团的旋转运动和变形运动
对于三元流动,可得流体微团旋转角速度分量为:
X
1 (uz 2 y
uy ) z
第七章 不可压缩流体动力学基础
许多实际流体的流动差不多都是空间的 流动。
流体的三元流动。
本章的主要内容是有关流体运动的基本 概念和基本原理,以及描述不可压缩流 体流动的基本方程和定解条件。
第一节 流体微团运动的分析
刚体的运动: 平移和旋转
流体的运动: 平移、旋转、变形(线变 A 形和角变形)
uds
s
s uxdx uydy uzdz
规定积分沿s逆时针方向绕行为 s的正方向
斯托克斯定理
沿任意封闭曲线s的速度环量等于通过 以该曲线为边界的曲面A的涡通量。
汤姆逊定理
s J A
在理想流体的涡量场中,如果质量力具有 单值的势函数,那么,沿由流体质点所组 成的封闭曲线的速度环量不随时间而变。

《环境流体力学》第七章 各向同性均匀湍流

《环境流体力学》第七章 各向同性均匀湍流

形式(7-3-9)不变,2 阶张量的一般形式可以直接写作
Aij f (xi xi )xi x j g(xi xi )ij C(xi xi )ijk rk
(7-3-14)
7.4 各向同性湍流的相关张量函数及其性质
根据各向同性湍流场的定义,各向同性湍流场中 n 阶相关的表达式必为
Ri1i2 in Ri1i2 in (ξ1, ξ2 , , ξn1) 。 称 ξ i 为相关向量。应用张量函数表达式,可以导出各向同性湍流场的各阶相关函数张量的
1)两点速度相关张量具有反对称性
Ri, j (ξ) ui (x)u j (x ξ) ui (x'ξ)u j (x') Rj,i (ξ)
2)一点自相关函数总是大于等于两点自相关函数
(7-2-1)
Rii (ξ) Rii (0)
(7-2-2)
对一般 2 阶互相关 Rij (ξ) ui (x)u j (x ξ) 应用 Schwartz 不等式,有
定义 1:沿相对向量方向的脉动速度分量的 2 阶相关称作两点纵向相关 R(ll ξ)。
定义 2:垂直于相对向量方向脉动速度分量的 2 阶相关称作两点横向相关 Rn(n ξ)。 由(7-4-1),有 R(ll ξ) ξ2 f (ξ) g(ξ), Rnn (ξ) g(ξ) 。
可以解出 f (ξ) (Rll (ξ) Rnn (ξ)) / ξ2 和 g(ξ) Rn(n ξ),它们分别称为纵向相关系数和横向
我们还要利用第二个重要原理:如果左边 Bi C j 是多重线性的,则右边也应是多重线
性的。这样我们就可以排除 Bi Bi 等高次幂函数, BiCi 必然出现为线性乘子。也就是说,函
数式中只能包含 n 个向量的线性积。所以(7-3-2)成为

流体力学第七章详解

流体力学第七章详解

π为无量纲数。分别求出各个π再回代即得。 例如, f (X1, X 2 , X 3, X n) 0,若选基本量为 X1、X2、X3、
F(1, 2 , 3, n3) 0
X1 、X2 、X3独立。
确定各指数,得各π值,再回代F得物理方程式。
1
X4
X X X 1
1
1
1
2
3
2
X5
X X X 2
2
4 a4 d b4 c4
F(1, 2 , 3, 4) 0
⑷ 确定各π项指数
1 [p] []a1[d ]b1[ ]c1
[M L1T 2] [LT ]1 a1[L]b1[M L ]3 c1
M : 1 c1
L : -1 a1 b1 3c1
T : - 2 a1
a1 2 b1 0
解: f (Q, H,b, g) 0
Q K ba g H
L3 T [L] [LT 2] [L]
根据量纲和谐原理,有:
解得:
[L]: 3 [T ]: 2 1
1, 2.5
2
根据实验知α=1,从而得
3 2
,令
k
2m,所以:
Q mb
2g
3
H2
例2 求水轮机输出功率的表达式。
7 量纲分析和流动相似原理
7.1 量纲分析的意义和量纲和谐原理 7.1.1 量纲和单位 量纲——是指撇开单位的大小后,表征物理量的性质和 类别。 如长度量纲为[L]。 ——“质”的表征。(物理的属性, 物理量的实质,不含人为的影响) 单位——量度各种物理量数值大小的标准量,称单位。 如长度单位为m或cm等。——“量”的表征。(人为规定的量 度 标准) 基本量纲和导出量纲——具有独立性的,不能由其他 量纲推导出来的量纲叫做基本量纲。一般取长度、质量、 时间,即[LMT]。

流体力学第七章

流体力学第七章

扰动因素
对比 抗衡
v
粘性稳定
d
惯性力 vd Re 粘性力
利于稳定
圆管中恒定流动的流态转化仅取决于雷诺数,这是客观规律 用无量纲量表达的又一例证,也是粘性相似准则的实际应用。
圆管中恒定流动的流态发生转化时对应的雷诺数称为临界雷 诺数,又分为上临界雷诺数和下临界雷诺数。上临界雷诺数表示 超过此雷诺数的流动必为紊流,它很不确定,跨越一个较大的取 值范围。有实际意义的是下临界雷诺数,表示低于此雷诺数的流 ReC 2320 动必为层流,有确定的取值,圆管定常流动取为
流动中流体所承受的阻力来自于流体质点间及流体和管壁间摩擦阻力,称为 沿程阻力。
l v2 h d 2g
称为沿程水头损失
2. 非均匀流动和局部损失hζ
在非均匀流动中,各流段所形成的阻力是各种各样的,但都集中在很 短的流段内,这种阻力称为局部阻力。
v2 h 2g
称为局部水头损失
§7-1 流动状态实验——雷诺实验
第七章 流体在管路中的流动
流动阻力和水头损失
层 流 与 紊 流 圆 管 中 的 层 流 运动 圆管中的紊流运动 局 部 水 头 损 失
实际流体具有粘性,单位重量的流体在运动过程中因克 服粘性阻力而耗损的机械能称为水头损失。为了使流体能维 持自身的运动,就必须从外界给流体输入一定的能量以补偿 水头损失。例如,为保证管路正常通水,就得通过水泵给水 管输入能量。因此,水头损失的研究具有重要的意义。
五. 紊流运动中的水头损失
影响的因素
f (Re, / r )
对Hale Waihona Puke 流64 Re对紊流
f (Re, / r )
§7-7
管中流动沿程阻力系数的确定

流体力学第7章不可压缩理想流体的平面运动(简化版)

流体力学第7章不可压缩理想流体的平面运动(简化版)

AB AB dvx x lim t 0 xt dx
把εx叫做线段AB在x轴的线变形速度。
6
对于三维问题则有
v y vx vz x , y , z x y z
下标x,y,z表示变形发生的方向。 对于不可压缩流体,在变形过程中,体积不 发生改变,则有
dy
A
o
dx vx
II
流线
x
在虚线AB上取一微元弧段dl,显然,vxdy是经 dl从区I进入区II的流量, vydx是经dl从II区 进入I 区的流量,那么经dl从I区进入II区的净流量为
33
dq vx dy v y dx
对虚线积分可得到两条流线之间的总流量
q dq vx dy v y dx d B A
15

例:如图一维剪切流动中,流体速度分布为
v x cy, v y 0
其中c为常数。判断流动是否无旋? v0 y x vx
16
由判断条件
1 v y v x 1 z ( ) c0 2 x y 2
故运动是有旋的。
17
例:图示为流体质点绕某一圆心的旋转运动。已知 流体速度分布为
工程上有许多问题可简化为理想流体的
无旋流动问题,如流体机械内的流动。利 用无旋流动的特性,可建立线性运动方程 来求解流体的速度分布,从而避开求解欧 拉方程的困难。
20
7.3.1速度势函数
对于无旋流动,速度的旋度为零,即
v 2 0
此时流体质点都要满足以下条件
v x v y v z v x v y v z , , y x x z z y
39
练习
试求下面不可压缩流场的流函数及速度势:

流体力学 第七章 孔口、管嘴出流和有压管道 (2)

流体力学 第七章  孔口、管嘴出流和有压管道  (2)

解:倒虹吸管一般作短管计算。本题管道出口淹没在水下;
而且上下游渠道中流速相同,流速水头消去。 因 所以 而
Q c A 2 gz c
d 4Q
d 2
4
2 gz
c 2 gz
c
1 l d
因为沿程阻力系数λ或谢才系数C都是d 的复杂函数,
因此需用试算法。
先假设d=0.8m,计算沿程阻力系数:
v 1 l 1 d
1 1 l d
2 gH 0
通过管道流量 Q
c
1
A 2 gH 0
c A 2 gH0
式中
l 1 d
称为管道系统的流量系数。
当忽略行近流速v时,流量计算公式变为 Q c A 2gH
2、淹没出流
列断面1-1和2-2能量方程
z 3 1 105 85 20m
hw14 为吸水管及压力管水头损失之和。已求得吸水管
水头损失为 0.22m,当压力管按长管计算时,整个管道的 水头损失为
hw14
Q 0.22 2 l K
2
压力管的流量模数
K A2C2 3.14 0.52 1 0.5 2 3 R2 ( ) 4 0.013 4
g
lB v zs (1 e b ) hv d 2g
即 而
lB v2 z s hv (a e b ) d 2g
2
lB v2 hv (1 e b ) d 2g
20 7 (1 0.024 0.5 0.365) 1 1.9852 6.24m 2 3.14 1 2 2 9.8( ) 4
2

流体力学第七章(旋转流体动力学)

流体力学第七章(旋转流体动力学)
12
万有引力(地心引力)与惯性离心力 合成重力项,于是:
F
2 R
g
dV 1 2 g p V 2 V dt
旋转流体力学运动方程
13
地转偏向力的讨论:
①引进了旋转坐标系之后或者说考虑了地球的旋转效 应之后,出现了地转偏向力(或称柯氏力)。地转偏 向力与流速相垂直,且它只改变流速的方向,并不改 变流速矢量的大小;沿着流向观测,对于地球流体运 动而言,地转偏向力使流体向右偏转(北半球)。
重力为有势力
方程变为: 2k V 1 G ( ' , p ' ) z R0 Fr
31
1 z ' ' 2k V G ( , p ) Fr R0
梯度取旋度为零
对上式取旋度 (k V ) 0
U L V 1 1 g 2 (V )V p 2 L g L2 V 2k V U L UT t L
RO
1/Fr
Ek
1 1 L V 1 2 R0 (V )V p g Ek V 2k V Fr UT t R0
实际应用中:
大尺度运动(L大),流速缓慢(U小), RO 1,旋转效应重要,采 用旋转流体运动方程; 中小尺度运动,流速快, RO 1,可以不考虑地球的旋转效应,采用 一般的流体运动方程。
22
2.埃克曼数
特征粘性力 U / L2 Ek 特征偏向力 U L2
反映了旋转流体中粘性的相对重要性
1 g 重力项: Fr

《流体力学导论》第七章(第一、二讲)+黏性流动-2015.12.24-26

《流体力学导论》第七章(第一、二讲)+黏性流动-2015.12.24-26

1) 不可压缩流体 2) 均质流体 3) 因为粘性系数主要 随温度改变而改变,当 温度的空间分布变化不 大时,可以把粘性系数 看作常数。
Cv
dT 1 1 k 2T dt
2 2 Sij
1. 控制方程
1.1 控制方程及定解条件
(1) 初始条件
V V ( x, y, z;0), p p( x, y, z;0), T T ( x, y, z;0)
V 0 V 1 2 t (V )V p V f
p ui 1 1 T uj k q t x j xi xi xi 0 d dT d dT Cv dt t dt T dt dt
u ( y, t ) f ( y, t , ) , U
u U df , t 2 t d

y 2 t
2u U d 2 f 2 y 4 t d 2
u U df , y 2 t d
f ( ) 2 f ( ) 0
边界条件:
f (0) 1, f () 0
3. 非定常平行剪切流动 自由表面的瞬时变化
3. 非定常平行剪切流动
3.1 斯托克斯(Stokes)第一问题
假设有一块无限大平板浸没在无界的静止流体中。突然,平板以速度U沿 其自身平面运动,且一直保持着这一速度。 求:平板起动后流体运动的演化过程。
y
U U
o u u( y, t ), v w 0, p const.
流体力学导论
Introduction of Fluid Mechanics
中国科学院大学工程科学学院
《流体力学导论》 第七章 粘性不可压缩流动

工程流体力学第七章理想流体二元不可压缩流动

工程流体力学第七章理想流体二元不可压缩流动

二、与时间无关的非牛顿流体
三、与时间有关的非牛顿流体
四、本构方程
xy
1 2
(1
2 )
1 2
( uy x
ux y
)
3、旋转角速度
若偏转角不等 d d 变形前后角分线AC的指向变化,表 示该微团旋转。
旋转角速度:夹角的分角线的旋转角速度定义为绕z轴的旋 转角速度。(相互垂直的两边的旋转角速度的平均值)
z
1 2
(1
2)
1 ( uy 2 x
ux y
)
x y
例题
第七章 理想流体二元 不可压缩流动
主要内容
➢流体微团运动的分析,势流、涡流 ➢平面势流(势函数和流函数;简单不可 压平面有势流动) ➢势流的迭加原理 ➢绕流的升力和阻力
§7-1 流体微团运动的分析,势流和涡流
一、概论
2、由于绕流流场的研究涉及到流体微团的运动状况及变形特点,故 要从一般流体微团运动出发,区别有旋和无旋性质。
2、角变形率 C’
B和A,C和D在y方向的位移量不等, 发生偏移。
y方向的速度差
uBy
uAy
u y x
dx
uCy
uDy
u y y
dx
(ux
ux y
dy)dt
B’ y
d
B
C A’ d D’
A
D
uxdt
AD→A’D’单位时间的转角或旋转角速度为ω1
x
1
d dt
ux y
同理
2Leabharlann d dtuy x角变形率:单位时间的角变形之半。
平动
线变形
角变形
转动
流体微团运动形式
1、线变形率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 已知平面流场的速度分布为xy x u x +=2,y xy u y 522+=。

求在点(1,-1)处流体微团的线变形速度,角变形速度和旋转角速度。

解:(1)线变形速度:y x xu x x +=∂∂=2θ 54+=∂∂=xy y u yy θ 角变形速度:()x y y u x u x y z +=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=222121ε 旋转角速度:()x y x u x u x y z -=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=222121ω 将点(1,-1)代入可得流体微团的1=x θ,1=y θ;23/z =ε;21/z =ω2.已知有旋流动的速度场为z y u x 32+=,x z u y 32+=,y x u z 32+=。

试求旋转角速度,角变形速度和涡线方程。

解:旋转角速度:2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=z u y u y z x ω 2121=⎪⎭⎫ ⎝⎛∂∂-∂∂=x u z u z x y ω 2121=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=y u x u x yz ω 角变形速度:2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=z u y u y z x ε 2521=⎪⎭⎫ ⎝⎛∂∂+∂∂=x u z u z x y ε 2521=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=y u x u x y z ε 由z y x dz dy dxωωω==积分得涡线的方程为:1c x y +=,2c x z +=3.已知有旋流动的速度场为22z y c u x +=,0=y u ,0=z u ,式中c 为常数,试求流场的涡量及涡线方程。

解:流场的涡量为:0=∂∂-∂∂=zu y u y z x Ω 22z y cz x u z u z x y +=∂∂-∂∂=Ω 22zy cy y u x u x yz +-=∂∂-∂∂=Ω 旋转角速度分别为:0=x ω222zy czy +=ω 222z y cyz +-=ω 则涡线的方程为:c dz dy z y +=⎰⎰ωω 即c y dz z dy +-=⎰⎰可得涡线的方程为:c z y =+224.求沿封闭曲线2 22b y x =+,0=z 的速度环量。

(1)Ax u x =,0=y u ;(2)Ay u x =,0=y u ;(3)0=y u ,r A u =θ。

其中A 为常数。

解:(1)由封闭曲线方程可知该曲线时在z =0的平面上的圆周线。

在z =0的平面上速度分布为:Ax u x =,0=y u涡量分布为:0=z Ω根据斯托克斯定理得:0==⎰z A z s dA ΩΓ(2)涡量分布为:A z -=Ω根据斯托克斯定理得:2b A dA z A z s πΩΓ-==⎰(3)由于0=r u ,r A u =θ 则转化为直角坐标为:22b Ay y r A u x -=-=,2bAx u y =则22bA y u x u x yz =∂∂-∂∂=Ω 根据斯托克斯定理得:A dA z A z s πΩΓ2==⎰5.试确定下列各流场是否满足不可压缩流体的连续性条件?答:不可压缩流体连续性方程 直角坐标:0=∂∂+∂∂+∂∂zu y u x u z y x (1) 柱面坐标:0=∂∂+∂∂+∂∂+zu r u r u r u z r r θθ (2) (1)0,,=-==z y x u ky u kx u 代入(1) 满足(2)y x u x z u z y u z y x +=+=+=,, 代入(1) 满足(3)0),(),(2222=+=-+z y x u y x k u y xy x k u 代入(1) 不满足(4)0,sin ,sin =-==z y x u xy k u xy k u 代入(1) 不满足(5)0,,0===z r u kr u u θ 代入(2) 满足(6)0,0,==-=z r u u rk u θ 代入(2) 满足 (7)0,sin 2,cos sin 22=-==z r u r u r u θθθθ 代入(2) 满足6.已知流场的速度分布为y x u x 2=,y u y 3-=,22z u z =。

求(3,1,2)点上流体质点的加速度。

解:y x y x x y xy y x zu u y u u x u u t u a x z x y x x x x 22322320320-=+⋅-⋅+=∂∂+∂∂+∂∂+∂∂= y z u u y u u x u u tu a y z y y y x yy 9=∂∂+∂∂+∂∂+∂∂= 38z zu u y u u x u u t u a z z z y z x z z =∂∂+∂∂+∂∂+∂∂= 将质点(3,1,2)代入a x 、a y 、a z 中分别得:27=x a ,9=y a ,64=z a7.已知平面流场的速度分布为2224y x y t u x +-=,222y x x u y +=。

求0=t 时,在(1,1)点上流体质点的加速度。

解:()()()⎥⎥⎦⎤⎢⎢⎣⎡+-+-++⎥⎥⎦⎤⎢⎢⎣⎡+⋅⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂=2222222222222420222244y x y y x y x x y x y x y x y t y u u x u u t u a x y x x x x 当0=t 时,()()322223222222)(84y x y x x y x xy a x +--+-= 将(1,1)代入得3=x a()()()22222222222224242240y x xy y x x y x x y x y x y t y u u x u u t u a y y y x yy +-⋅++⎥⎥⎦⎤⎢⎢⎣⎡+-+⎪⎪⎭⎫ ⎝⎛+-+=∂∂+∂∂+∂∂= 当t=0时,将(1,1)代入得:1-=y a8.设两平板之间的距离为2h ,平板长宽皆为无限大,如图所示。

试用粘性流体运动微分方程,求此不可压缩流体恒定流的流速分布。

解:z 方向速度与时间无关,质量力:g f x -=运动方程:z 方向:2210dxu d z p υρ+∂∂-= x 方向:→∂∂--=xp g ρ10 积分:)(z f gx p +-=ρ∴p 对z 的偏导与x 无关,z 方向的运动方程可写为z p dyu d ∂∂=μ122 积分:21221C x C x z p u ++∂∂=μ 边界条件:h x ±=,0=u得:01=C ,221h zp C ∂∂-=μ ∴⎥⎦⎤⎢⎣⎡-∂∂-=22)(12h x z p h u μ 9.沿倾斜平面均匀地流下的薄液层,试证明:(1)流层内的速度分布为()θμγsin y by u 222-=;(2)单位宽度上的流量为θμγsin 33b q =。

解:x 方向速度与时间无关,质量力θsin g f x =,θcos g f y -=运动方程:x 方向:221sin 0dyu d x p g υρθ+∂∂-= ① y 方向:yp g ∂∂--=ρθ1cos 0 ②②→积分)(cos x f gy p +-=θρb y = a p p = )(cos x f gb a +-=θρρ∴θρcos )(y h g p p a -+=∵=b 常数 ∴p 与x 无关 ①可变为μθρsin 22g dy u d -= 积分)21(sin 212C y C y g u ++-=μθρ 边界条件:0=y ,0=u ;b y =,0=dy du ∴b C -=1,02=C∴θμμθρsin )2(2)2(2sin 2y by r y b y g u -=-= θμγθμγsin 3sin )2(23200b dy y by udy Q b b =-==⎰⎰ 10.描绘出下列流速场 解:流线方程:y x u dy u dx = (a )4=x u ,3=y u ,代入流线方程,积分:c x y +=43直线族(b )4=x u ,x u y 3=,代入流线方程,积分:c x y +=283抛物线族(c )y u x 4=,0=y u ,代入流线方程,积分:c y =直线族(d )y u x 4=,3=y u ,代入流线方程,积分:c y x +=232抛物线族(e )y u x 4=,x u y 3-=,代入流线方程,积分:c y x =+2243椭圆族(f )y u x 4=,x u y 4=,代入流线方程,积分:c y x =-22双曲线族(g )y u x 4=,x u y 4-=,代入流线方程,积分:c y x =+22同心圆(h )4=x u ,0=y u ,代入流线方程,积分:c y =直线族(i )4=x u ,x u y 4-=,代入流线方程,积分:c x y +-=22抛物线族(j )x u x 4=,0=y u ,代入流线方程,积分:c y =直线族(k )xy u x 4=,0=y u ,代入流线方程,积分:c y =直线族(l )r c u r =,0=θu ,由换算公式:θθθsin cos u u u r x -=,θθθcos sin u u u r y += 220y x cx r x r c u x +=-=,220y x cy r y r c u y +=+= 代入流线方程积分:c y x =直线族(m )0=r u ,r c u =θ,220y x cx r x r c u x +-=-=,220y x cx r x r c u y +=+= 代入流线方程积分:c y x =+22同心圆11.在上题流速场中,哪些流动是无旋流动,哪些流动是有旋流动。

如果是有旋流动,它的旋转角速度的表达式是什么?解:无旋流有:x u y u y x ∂∂=∂∂(或rr u u r ∂∂=∂∂θθ) (a ),(f ),(h ),(j ),(l ),(m )为无旋流动,其余的为有旋流动对有旋流动,旋转角速度:)(21yu x u x y ∂∂-∂∂=ω (b )23=ω (c )2-=ω (d )2-=ω (e )27-=ω (g )4-=ω (i )2-=ω (k )x 2-=ω12.在上题流速场中,求出各有势流动的流函数和势函数。

解:势函数⎰+=dy u dx u y x ϕ流函数⎰-=dx u dy u y x ψ(a )⎰+=+=y x dy dx 3434ϕy x dx dy 4334+-=-=⎰ψ(e )e 为有旋流无势函数只有流函数xy xdx ydy y x 33400=--=⎰⎰ψ其他各题略13.流速场为rc u u a r ==θ,0)(,r u u b r 2,0)(ωθ==时,求半径为1r 和2r 的两流线间流量的表达式。

相关文档
最新文档