截面惯性矩(材料力学) ppt课件
材料力学第六章 截面的几何性质惯性矩
IP
2dA
A
(y2
A
z2 )dA
IZ
Iy.
返回 下一张 上一张 小结
第三节 惯性矩和惯性积的 y1dA (y a)2 dA A
y2dA 2a ydA a2 dA
I z1 z a2 A; y1 y b2 A;
2dA
A
(y2
A
z2 )dA
IZ
Iy.
Izy
z y dA;
A
五、平行移轴公式:
I z1 z a2 A; y1 y b2 A;
I z1y1 I zy abA;
返回 下一张 上一张 小结
六、主惯性轴和主惯性矩: 主惯性轴(主轴)—使 I zoyo 0 的这对正交坐标轴; 主惯性矩(主惯矩)—截面对主惯性轴的惯性矩; 形心主惯性轴(形心主轴)—通过形心的主惯性轴; 形心主惯性矩(形心主惯矩)—截面对形心主轴的惯性矩。
I z1y1 I zy abA;
注意: y、z轴必须是形心轴。
二、转轴公式:
Iz1
A y12dA
( y cos z sin)2 dA;
A
I z1
Iz
Iy 2
Iz
Iy 2
cos 2
I zy
sin 2;
I y1
Iz
2
Iy
Iz
2
Iy
cos 2
I zy
sin 2;
I z1y1
Iz
Iy 2
三、惯性积:
定义:平面图形内, 微面积dA与其两个坐 标z、y的乘积zydA在整个图形内的积分称为 该图形对z、y轴的惯性积。
Izy
z y dA;
A
特点: ①惯性积是截面对某两个正交
《材料力学惯性矩》课件
PART 04
惯性矩的应用
REPORTING
弯曲应力计算
总结词
在计算梁的弯曲应力时,惯性矩是一 个重要的参数。
详细描述
通过利用惯性矩的计算公式,可以确 定梁在承受垂直或水平力时的弯曲应 力分布。惯性矩的大小决定了弯曲变 形的程度,进而影响应力分布。
剪切应力计算
总结词
在分析剪切应力时,惯性矩起到关键作用。
建筑结构中的惯性矩问题
高层建筑在风力和地震作用下,需要具备足 够的惯性矩来抵抗侧向和扭转力。建筑设计 时需充分考虑不同方向的惯性矩,以确保结
构安全。
利用惯性矩优化结构设计
优化截面尺寸
根据工程需求,调整结构件的截面尺寸,以改变其惯性矩,从而提高结构的承载能力和 稳定性。
减重与加强
在满足强度要求的前提下,通过优化结构设计,减小不必要的材料使用,降低结构重量 。同时,对关键部位进行加强,提高其惯性矩,确保结构安全。
应力分析是研究物体在受力后内部应力的分布和大小
的过程。
方法
02 通过理论分析、实验测试和数值模拟等方法进行应力
分析。
重要性
03
确保结构在各种工况下的安全性和可靠性,防止因应
力集中、疲劳或过载等原因导致的断裂或失效。
应变分析
定义
应变分析是研究物体在外力作用下产生的变形和位移的过程。
方法
通过测量物体的尺寸变化、观察表面变形和利用有限元等方法进 行应变分析。
在稳定性分析中,惯性矩是评估结构稳定性 的重要参数。
详细描述
结构的稳定性与惯性矩的大小密切相关。通 过分析不同受力情况下惯性矩的变化,可以 预测结构的失稳趋势,并采取相应的措施提 高结构的稳定性。
PART 05
《材料力学惯性矩》课件
3
常见形状的公式
通过一些形状特定的公式和密度计算,如长方形板、圆柱、圆盘等。
4
实例演示
解决一些实际问题,如自行车轮子的惯性矩计算。
惯性矩的特性
主要特性介绍
惯性矩决定物体在特定轴的旋转惯量。
对物体运动的影响
惯性矩越大,物体绕此轴旋转停止运动的关键物理量。
材料力学惯性矩
在物理学和工程学中,惯性矩是描述物体抵抗改变其状态的能力的量。本课 程将介绍惯性矩的概念、应用、计算和特性。
惯性矩的定义
1 定义
惯性矩是描述物体绕某 一轴旋转抵抗改变角动 量的能力的物理量。
2 公式推导
3 单位
惯性矩的公式和系统的 形状、大小、密度相关, 可以通过积分法来计算。
惯性矩的单位通常是千 克·米^2或克·厘米^2。
惯性矩的实际应用
惯性矩在物理学、工程学等 领域中有着广泛的实际应用。
惯性矩的未来发展 趋势
惯性矩的计算方法、应用领 域等方面将继续得到研究和 发展。
问题和思考
1. 惯性矩和质量的区别? 2. 惯性矩的计算方法有哪些? 3. 如何利用惯性矩解决工程问题?
参考资料
• 熊华忠. 刚体惯性矩的共性分析及计算[J ]. 研究与进展, 2007. • 罗万波, 黄勋. 材料力学基础[M]. 高等教育出版社, 2015. • R.C. Hibbeler, Engineering Mechanics: Statics & Dynamics.
惯性矩的应用
刚体动力学
惯性矩作为物体旋转难度的衡量,可以帮助体操 运动员、花样滑冰运动员等提高技术。
材料力学
惯性矩作为材料抵抗变形的能力指标,可以帮助 工程师在桥梁等建筑结构设计中选择合适的材料。
截面模量和惯性矩的关系
截面模量(Section modulus) 和惯性矩(Moment of Inertia) 是材料力学中常用的两个参数,它们主要用于评估材料在受力作用下的挠曲和弯曲性能。
截面模量(S) 是表示材料在受力作用下挠曲性能的参数,它是材料截面的特征尺寸(如厚度、宽度等)与材料的弹性模量(Young's modulus) 的函数,具体来说,截面模量的计算公式为S = I / y, 其中I 是截面惯性矩,y 是截面中心距轴线的距离。
惯性矩(I) 是表示材料在受力作用下弯曲性能的参数,它是材料截面的特征尺寸(如厚度、宽度等)与材料密度的函数。
简单来说截面模量S表示材料在挠曲载荷下的强度,而惯性矩I表示材料在弯曲载荷下的刚度。
因此,截面模量和惯性矩是材料力学中相互关联的两个参数,它们都是用来评估材料在受力作用下的性能。
《材料力学》课程讲解课件附录I平面图形几何性质
解:
y
d
S x
yd A
A
2 yb( y) d y
0
b(y)
C
xc
yc
d
2 y2
R2 y2 d y d3
0
12
x
d
yc
Sx A
d3 12 πd 2 8
2d 3π
b( y) 2 R2 y2
29
yc
Sx A
d3 12 πd 2 8
2d 3π
y
2、求对形心轴 xc 的惯性矩
Ix
πd 4 64 2
3、惯性积是对轴而言。
y
z
dA
4、惯性积的取值为正值、负值、零。
y
5、规律:
o
z
20
5、规律:
Izy
zydA
A
0
y
dA z z dA
y
y
z
o
两坐标轴中,只要有一个轴为图形的对称轴,则 图形这一对坐标轴的惯性积为零。
21
对比记忆 静矩、形心;惯矩和惯性半径;它们都是反映截
面面积关于坐标轴分布情况的物理量。 静矩=(面积)(形心坐标) 惯矩=(面积)(惯性半径)2
z
o
dA y
z
全面积对z轴的惯性矩: I z y2dA,
2 z2 y2
全面积对y轴的惯性矩: I y A z2dA
A
15
Iz y2dA, I y z2dA
A
A
y
z
dA
y
o
z
2、量纲:[长度]4;单位:m4、cm4、mm4。 2 z2 y2
3、惯性矩是对轴而言(轴惯性矩)。
A
材料力学 截面的几何性质
1、矩形截面 h
Iz
y2dA
A
2 h
y 2bdy
h
2
dy y
b y 3 2 1 bh3 3 h 12
2
同理
Iy
z2dA 1
A
12
hb3
b h z
y
26
2、实心圆截面
y
已知
IP
A2dA
D 4 32
D
z
则 I P A2 d A A y 2 d A A z 2 d I A z I y
A
Iz Iy
此式说明了极惯性矩与轴惯性矩之间的关系。
z
y
o
A dA
z
y
惯性积
定义
Iyz
yzdA
A
z y
A dA
为图形对y、z轴的惯性积 。
z
o
y
惯性积的数值可正,可负,也可为零。惯性积的量纲是[长 度]4 ,常用单位为m4和mm4。
定理:若有一个轴是图形的对称轴,则图形对这对轴 的惯性积必然为零。
4.3 形心主惯性轴和形心主惯性矩
若主惯性轴通过形心,则该轴称为形心主惯性轴(principal centroidal axis)。
图形对形心主惯性轴的惯性矩称为形心主惯性矩。 由于图形对于对称轴的惯性积等于零,而对称轴又过形心,所以,图形 的对称轴就是形心主惯性轴。
形心主惯性轴的特点可归纳为以下几点: ⑴形心主惯性轴是通过形心,由角定向的一对互 相垂直的坐标轴。
32
32
圆环形对y(或z)轴的惯性矩为
IyIz1 2Ip6 D4414
由于y轴为对称轴,故
Iyz 0
z
y
d D
截面惯性矩(材料力学)
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 x Fy 0
FN1 cos 45 FN 2 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
截面上的应力
A 1
45°
C
2
FN1
y
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
20 100 50=32 104mm3
§I-2 惯性矩、惯性积、极惯性矩
1、惯性矩:(惯性矩是一个物理量,通常被用作描述一个物 体抵抗扭动,扭转的能力 )
它是图形面积与它对轴的距离的平方之积表达式为
Ix y2dA
A
I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
F 压为负
Fx 0 FN F 0
FN F
4、轴力图:轴力沿杆件轴 线的变化
轴力和轴力图
例题3-1
A
F1 F1 F1
FN kN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
1 F2
2
F3
2
2
I Z1
Iy
IZ 2
Iy
IZ 2
cos 2a
I yz sin 2a
2.三个公式:设新坐标系由原坐标系逆转α角而得,且有
I y1
Iy
IZ 2
Iy
IZ 2
c os 2a
截面惯性矩(材料力学)
A 1
45°
C
2
FN1
y
FN 2 45° B
F
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
F 用截面法取节点B为研究对象
Fx 0 x Fy 0
b2h23 12
20Байду номын сангаас
20
100
3
12
16.67 105
3)求对整个截面形心ZC轴的惯性矩 IzC (Iz1 a12 A1) (Iz2 a22 A2 ) 66.67103 302 200016.67105 302 2000 53.34105 mm4
F
F 作用线也与杆件的轴线重
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
F 压为负
Fx 0 FN F 0
FN F
4、轴力图:轴力沿杆件轴 线的变化
轴力和轴力图
例题3-1
A
F1 F1 F1
FN kN
1 B 2 C 3D
已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画
杆件的基本变形: 拉(压)、剪切、扭转、弯曲
拉压变形
剪切变形
扭转变形
弯曲变形
二、杆件的轴向拉压变形分析
一、轴向拉伸和压缩的概念
特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
杆的受力简图为
拉伸
材料力学课件PPT
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一
试
件
和
实
常
验
温
条
、
件
静
载
材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r
—
抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob
材料力学第六章
极惯性矩: d r d d4 2dA=2d/2r2· ddr = z Ip= A r· 0 0 32 C 轴惯性矩: Ip=IZ+IY d4 IZ= IY = Ip/2= 64 2 sin· cos· ddr =0 12 r· r· 惯性积:IZY= AyzdA= 0 d/2 r· 0
z h 2
h1 2
C b 2 b 2
11
例6-4 圆形对其对称轴的几何性质
面积: A=AdA=d2/4 2 sin· ddr =0 静矩: SZ=AydA=0 d/2r· r· 0
2 SY=AzdA= 0 d/2r· cos· ddr =0 r· 0
dA=rddr y dr
计算主惯性矩的一般公式
由式: 2 IZY tg20 = IZ IY 2 IZY sin20 = ( IZ IY)2+4 I2ZY cos20 = 2 ( IZ IY) ( IZ IY)2+4 I2ZY
可得:
代入上节的IZ1、 IY1计算式便可得: IZ+ IY 1 + ( IZ IY)2+4 I2ZY IZ0= 2 2 IZ+ IY 1 – ( IZ IY)2+4 I2ZY IY0= 2 2
例6-5
23
a1 zO a2 z
截面对yO轴的惯性矩为两个矩形面积对yO轴的惯性矩之 和: 0.120.63 0.40.23 IZo= II + III = + =0.242 10-2m4 YO YO 12 12
24
求图示图形的形心主轴位置和形心主惯性矩。 6 解:该图形由I、II、III三个 y 矩形组成组合图形。显然组 合图形的形心与矩形II的形 I C1 心重合。 为计算形心主轴的位置及 b1 形心主惯性矩 ,过形心选择 一对便于计算惯性矩和惯性 C z 积的z、y轴如图示。 II 矩形I、III的形心坐标为: 2 a1=0.04m a3=-0.04m C3 III b1=-0.02m b3=0.02m b3 组合截面对z、y轴的惯性矩 尺寸单位 cm 6 和惯性积分别为
4-截面惯性矩材料力学
x S yC A xC SxC A yC 3
Sy AxC Ai xCi xdA
A
2.形心公式
Sx AyC Ai yCi ydA
A
xC
Ai xi A
yC
Ai yi A
ydA
yC A A
3.结论
xdA
xC A A
当坐标轴过形心时,图形对自身形心轴的面积矩等于 零;反之,若图形对某轴的面矩为零时,此轴必过图形 的形心。
2
IZ
sin 2a
I yz
c os 2a
3.主轴及主惯性矩:
1)主轴:图形若对坐标轴的惯矩为零时,这对坐标轴就称为
主轴.且当主轴为形心轴时,就称为形心主轴.用α0来表示 主轴的方向.
2)主惯性矩:相对主轴的惯性矩就称为主惯性矩.
15
杆件的拉压变形及强度计算
16
杆件的拉压变形及强度计算
一、概述 二 、杆件的轴向拉压变形分析 三、材料在拉伸和压缩时的力学性质 四、拉(压)杆的强度计算
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。
47
1、材料拉伸时的试件
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
试 件 和 实 验 条 件
§2-4
常 温 、 静 载
48
2、材料拉伸时的设备
49
3、材料拉伸时的应力-应变曲线
求出内力即轴力的值 36
由于外力的作用线与
m
杆件的轴线重合,内力的
F
F 作用线也与杆件的轴线重
m
合。所以称为轴力。
F FN
FN
3、轴力正负号:拉为正、
《材料力学惯性矩》课件
了解不同材料的弹性模量、泊松比和剪切 模量等力学性能参数,以便更好地理解和 应用材料力学的相关公式和定理。
掌握梁的弯曲和轴的扭转的基本 原理
通过学习梁的弯曲和轴的扭转的基本原理 ,掌握如何利用惯性矩解决工程实际问题 的方法和技巧。
实践应用
通过实践应用,将所学知识应用于解决实 际问题中,提高解决实际问题的能力和实 践经验。
计算方法
矩形截面
对于矩形截面,可直接计算其惯性矩。
圆环形截面
对于圆环形截面,其惯性矩等于圆环面积与圆周率π的乘积。
任意形状截面
对于任意形状截面,需要采用积分法计算其惯性矩。
分类与特性
分类
根据转动轴的位置,惯性矩可分为极惯性矩、静惯性矩和动惯性矩。
特性
惯性矩具有对称性,即当物体绕对称轴转动时,其惯性矩为零。此外,惯性矩 还具有叠加性,即多个物体组合时,其总惯性矩等于各个物体惯性矩之和。
航空航天器中的惯性矩应用
总结词
飞行稳定性、导航控制
详细描述
在航空航天器设计中,惯性矩对飞行稳定性和导航控制具有 重要影响。通过合理设计和控制航空航天器的惯性矩,可以 提高飞行器的飞行稳定性,保证导航控制的精度和可靠性, 确保飞行安全。
06 总结与展望
本章总结
惯性矩的概念
惯性矩是描述物体转动惯性的物理量,与物体的质量分布和旋转 轴的位置有关。
《材料力学惯性矩》PPT课件
目录
• 引言 • 材料力学基础 • 惯性矩概念 • 惯性矩的应用 • 案例分析 • 总结与展望
01 引言
课程简介
材料力学是研究材料在各种外力作用下产生的应 变、应力、强度、刚度和稳定性等行为的科学。
惯性矩是材料力学中的一个重要概念,它描述了 物体在受到外力矩作用时抵抗转动的能力。
材料力学第四章截面的几何性质
在材料力学中,剪切中心是剪切应力作用下截面 发生剪切变形的点。通过计算截面的形心,可以 近似确定剪切中心的位置。
确定截面的质心
质心是截面质量的中心点,通过计算截面的形心, 可以近似确定质心的位置,这对于动力学分析和 稳定性分析非常重要。
03 主轴和主惯性矩
主轴的定义与计算
主轴
截面上的各点处到截面形心距离最大的方向。
预测物体的变形和破坏
通过分析截面的几何性质,可以预测 物体在不同受力条件下的变形和破坏 行为,为工程实践提供指导。
02 截面的面积和形心
截面面积的定义与计算
截面面积的定义
截面面积是指通过截面边界轮廓 线围成的区域面积。
截面面积的计算
可以通过测量截面轮廓线的长度 ,然后使用公式计算面积。对于 不规则形状,可以使用微元法或 积分法计算。
截面几何性质的应用前景
随着科技的发展和工程需求的提高,截面几何性质在材料力学中的重要性将更加凸 显,其在航空航天、交通运输、建筑等领域的应用将更加广泛。
随着新型材料的不断涌现,截面几何性质的研究将有助于深入了解这些材料的力学 行为,为新型材料的优化和应用提供理论支持。
随着数值模拟和计算机技术的发展,截面几何性质的研究将更加精确和深入,有助 于提高工程结构的分析和设计水平。
在实际工程中,主轴和主惯性矩也是 进行有限元分析时的重要输入参数, 用于模拟结构的力学行为并优化设计。
在结构设计时,根据主轴和主惯性矩 可以合理地选择材料的类型和截面的 形状,以提高结构的刚度和稳定性。
04 极惯性矩和惯性积
极惯性矩的定义与计算
极惯性矩
截面对任意直径的极惯性矩等于截面 面积与该直径的平方的乘积。
截面是确定物体受力分布和变形程度 的关键因素,通过研究截面的几何性 质,可以深入了解物体的力学性能, 为工程设计和安全评估提供依据。
材料力学惯性矩ppt课件
取微面积dA=dzdy,则:I zy 0;
例5-3 圆形截面对其形心轴的惯性矩。 解:取yoz坐标系。取微面积dA=2zdy,则:
2 R 2 2 2
I z y dA 2 y R y dy ; A R 4 64 D 4 由对称性:I y I z ; 由几何关系: 2=y 2 z 2 , 64
返回 下一张 上一张 小结
3
第二节 惯性矩和惯性积
一、极惯性矩: 定义:平面图形中任一微面积dA与它到坐 标原点O的距离ρ平方的乘积ρ2dA,称为该面积 dA对于坐标原点o的极惯性矩。
截面对坐标原点o的极惯性矩为:
I P 2 dA;
A
简单图形的极惯性矩可由定义式积分计算。
实心圆截面: I P 2dA 32 ; D 4 d 空心圆截面: I P (1 4 ); ( )
5
例5-2 求矩形截面对其对称轴的惯性矩和惯性积。 解:取yoz坐标系。取微面积dA=bdy,则:
bh3 I z y dA y bdy ; A h / 2 12
2 h/2 2
取微面积dA=hdz,则:
2 b/2 2
hb3 I y z dA z hdz ; A b / 2 12
2 I z1 z a 2 A; y1 y b A;
I z1 y1 I zy abA ;
注意:y、z轴必须是形心轴。 二、转轴公式:
2
I z1 y1 dA ( y cos z sin ) 2 dA;
I z1
I y1
Iz Iy
R 4
D 4
I P 2 dA ( y 2 z 2 )dA I Z I y .
惯性矩
截面惯性矩编辑同义词截面矩一般指截面惯性矩计算公式编辑常见截面的惯性矩公式矩形b*h^3/12 其中:b—宽;h—高三角形b*h^3/36 其中:b—底长;h—高圆形π*d^4/64 其中:d—直径圆环形π*D^4*(1-α^4)/64; α=d/D 其中:d—内环直径;D—外环直径惯性矩编辑惯性矩I=质量X垂直轴二次)the moment of inertiacharacterize an object's angular acceleration due to torque.静矩静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx= ydF。
截面惯性矩截面惯性矩(I=面积X面内轴二次)截面惯性矩:the area moment of inertiacharacterized an object's ability to resist bending and is required to calculate displacement.截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y↑2dF。
截面极惯性矩截面极惯性矩(Ip=面积X垂直轴二次)。
扭转惯性矩Ip: the torsional moment of inertia极惯性矩the polar moment of inertia截面各微元面积与各微元至垂直于截面的某一指定轴线二次方乘积的积分Ip= P↑2dF。
a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.相互关系截面惯性矩和极惯性矩的关系截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。
材料力学课件PPT
对于低碳钢这类塑性材料,其拉伸和压缩试样都会发生显著 的塑性变形,有时并会发生屈服现象,构件也因之而失去正常 工作能力,变得失效。 由是观之,材料破坏按其物理本质而言,可分为脆断破坏和 屈服失效两种类型。 同一种材料在不同的应力(受力)状态下, 可能发生不同类型的破坏。如有槽和无槽低碳钢圆试样;圆柱
必须指出,即使是同一材料,在不同的应力状态下也可 以有不同的破坏形式。如铸铁在单向受拉时以断裂的形式破 坏。而在三向受压的应力状态下,脆性材料也会发生塑性流 动破坏。又如低碳钢这类塑性材料,在三向拉伸应力状态下 会发生脆性断裂破坏。
§6-3 构件的强度条件
安全系数和许用应力
要使构件有足够的强度工作应力应小于材料破坏时的极限应力 工作应力
b.塑性流动(剪切型)——材料有显著的塑性变形(即屈 服现象),最大剪应力作用面间相互平行滑移使构件丧 失了正常工作的能力。塑性流动主要是由剪应力所引起 的。 例如:低碳钢试件在简单拉伸时与轴线成 45方向上出现滑 移线就属这类形式。
按破坏方向可分为断裂破坏(沿法向) 和剪切破坏(沿切向)
二、强度理论
解:由M C 0, 得: N AB P 75 kN
N AB 75 10 4.687 10 4 m2 4.687cm2 A 6 [ ] 160 10 选边厚为3mm的4号等边角钢, 其A 2.359 cm2
3
例2:图示起重机,钢丝绳AB的直径 d=24mm,[σ]=40MPa,试求该起重机 容许吊起的最大荷载P。
形大理石试样有侧压和无侧压下受压破坏。
四种常用的强度理论
(一)关于脆性断裂的强度理论 1.第一强度理论(最大拉应力理论) 这一理论认为最大拉应力是引起材料脆性断裂破坏的主 要因素,即不论材料处于简单还是复杂应力状态,只要最大 拉应力 1 达到材料在单向拉伸时断裂破坏的极限应力,就会 发生脆性断裂破坏。
《材料力学 第2版》_顾晓勤第05章第2节 截面的惯性矩、惯性积和惯性半径
2 2 2 22
64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
例 5-4 如图所示,计算圆形截面对于 x 轴和 y轴
的惯性矩、惯性半径,以及极惯性矩、第一象限部
分对 x、y轴的惯性积。
解 取平行于 x 轴的狭
长条作为微面积 dA,则
dA b(y)dy 2 d 22 y2dy
dy
dA bdy
y
矩形截面对于 x 轴的惯性矩为
H
Ix A y2dA 2h2 y2bdy 2 2b [( H )3 ( h )3 ] 32 2 b (H 3 h3) 12
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
矩形截面对于 x 轴的惯性半径为
ix
Ix A
b 12
圆形截面对于 x 轴的惯性矩为
Ix A y2dA
d2
d 2
y2
2
d 2 2 y2 dy
πd 4 64
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
圆形截面对于 x 轴的惯性半径为
ix
Ix A
πd 4 πd 2
64 4
d 4
x 轴和 y 轴都与圆的直径重合,由
于对称的原因,有
第 2 节 截面的惯性矩、惯性积和惯性半径 第五章 截面的几何性质
设任意平面图形其面积
为A。x 轴和 y 轴为图形所在 平面内的坐标轴。在 ( x ,y )
处取微面积 dA,则定义图形
对于x 轴和 y轴 y2dA I y A x2dA
注意
由于 x2 和 y 2总是正的,所以 I x 和 I y 也恒
是正值。
惯性矩的量纲为长度的四次方。
材料力学课件(上下册)
I z A y dA A i
2
2 z
iz
Iz A
2
极惯性矩:
(polar moment of inertia)
I P A r dA I P A ( y 2 +z 2 )dA I z I y
组合图形:
I z I zi
i 1
n
πd 4 IP 32 bh 3 Iz 12 bh 3 Iz 36
11.3
惯性积:
(product of inertia)
惯性积
z y dA z
I yz A yzdA
量纲:长度4
O
若y、z中有一个为对称轴,则惯性积为0
y
11.4
y1=y+b, z1=z+a
2
平行移轴定理
(parallel-axis theorem)
z
z1
I z1 A y12dA A y b dA I z 2bS z b2 A
i 1
Ai yCi Sz i 1n yC A Ai
i 1
n
可有负面积
11.2
(Second Axial moment ) 量纲:长度4
惯性矩和惯性半径
I y A z 2dA
z y dA z O y
惯性矩(二次轴矩): I z A y 2dA 类似转动惯量 惯性半径: 量纲:长度
Ai
i 1
0 270 50 150 90 mm 300 30 270 50
30 3003 270 503 7.03 107 mm 4 Iz0=Iz0(I)+Iz0(II) 12 12 300 303 902 300 30 Iy0=Iy0(I)+Iy0(II) 12 50 2703 8 4 602 270 50 2.04 10 mm 12
材料力学-截面几何特性
I 0 xC 2 yC 2
IxC IxC1 A1 yc21 IxC2 A2 yc22 1104 mm4 1200mm2 (15mm)2 28.58mm4 700mm2 (25mm)2 100.33mm4
64
9 /2
Ix2 Ix2C A2 (a xc2 )2 28mm 4 (80mm )2 (100 17)2 8 3467mm4
组合截面对x轴的惯性矩为
I x I x1 2I x2 5333mm4 23467mm4 12270mm4
§I-4 惯性矩和惯性积的转轴公式 ·截面 的主惯性轴和主惯性矩
A
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
I xC 2bSxC b2 A
Ix IxC 2bSxC b2 A
因为C为形心
SxC AyC 0
y
yC
x
dA
a
r
bC y
xC
x
I x I xC b2 A 同理:
I y I yC a2 A I xy I xC yC abA I p I pC (a2 b2 ) A
C1
80
x
图(b)
x
xi
Ai
x 1
A1x
2
A2
A
A1A2
409600 45 7700 19.7mm 9600 7700
y
yi Ai
y 1
A1
y
2
A2
A
A1 A2
609600 65 7700 39.7mm 9600 7700
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B)当图形至少有一条轴是图形的对称轴时,则有
I xy abA I xCyC 0
ppt课件
13
解例:组1)合写截出A面1,惯A性2及矩其的形计心算坐,标求a截1;面a2对ZC轴的y 惯性矩。
a1 20 10 30mm
20
a2 30mm
A1 A2 20100 2000mm2 100
y
I yz yzdA
A
3.说明: h
1)同一图形对不同轴的惯性积不同; A1 A2
z
2)惯性积可正,可负,可为零。
b
b
3)惯性积的单位:m4
4.结论:
当坐标系的两轴中的任一轴为图形的对称轴时,图形 对此轴的惯性积为零,反之,若图形对坐标系的惯性 积为零时,此坐标轴中必p有pt课一件 轴为图形的对称轴。 11
4.构件的强度计算
ppt课件
1
4.1截面的几何特征
§Ⅰ-2 惯性矩和惯性半径 §Ⅰ-3 惯性积 §Ⅰ-4的平行移轴公式
ppt课件
2
§Ⅰ-1 静矩和形心 1、静面矩(也叫面积矩简称静矩) y
(与力矩类似)是面积与它到轴的距离之积。
定义 S y =∫A z dA Sz=∫A y dA
z dA y
z
例:矩形截面,面积为A。求: S y 、 Sz、 SzC
6
例1:求图示T形截面的形心及对z轴的静矩 y
1.求形心
100
知A=A1+A2 yC1=60 yC2=0
20
n Ai yCi
选坐标轴z1作为参考轴
yC i1 Ai
yC
20100 60 100 20 2
30mm
100
2、求静矩
•
•Ⅰ
•
ⅡyC1
zC
z1
B•
方法1) Sz yC
7
§I-2 惯性矩、惯性积、极惯性矩
1、惯性矩:(惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭 转的能力 )
它是图形面积与它对轴的距离的平方之积表达式为
Ix y2dA
A
I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
y
x dA
y
x
3)惯性矩的单位为m4; ppt课件
§Ⅰ- 4平行移轴公式
1.平行移轴定理:
y
yC
x
dA
a
Cy b
以形心为原点,建立与原坐标轴
平行的坐标轴如图
xaxC yb yC
I x
y 2dA
A
xC
A ( yC b)2 dA
A ( yC2 2byC b2 )dA
x
I xC 2bSxC b2 A
ppt课件
9
例求圆形截面对形心轴的惯性矩。 y
解: D
IP
A
2dA
2 0
2 2d
D4
32
o
z
IP Iy0 Iz0
I y0
Iz0
IP 2
D4
64
§ I-3 惯性积
1.定义:图形对两个坐标轴的两个坐标之积的积分。
ppt课件
10
§ I-3 惯性积
2.表达式:
3
2、形心:(等厚均质板的质心与形心重合。)
1)形心公式:
dm tdA
xdm
质心:
xC
m
m
等厚
ydm 均质
y
yC
m
m
xtdA
A
xdA
A
Sy
tA
A
A 等于形心坐标
ytdA
A
A ydA Sx
tA
AA
x dA
xC y yC
xC
A i
z
20
Sz =(50+30) 2( 100 20 )=32 104mm3
方法2)不求形心
方法3)负面积法
Sz = AiyCi=20 100 110+
Sz =(120 100 60)-2 ( 100 40 50 )= 32 104mm3
20 100 50=32 104mmpp3t课件
8
2、惯性半径(单位为m)
表达式为
y
ix
Ix A
iy
Iy A
3、极惯性矩:
x dA
y
它是图形面积对极点的二次矩。
x
IP 2dA
A
2 x2 y2 IP (x2 y2 )dA I y I x
A
IP Ix I y 图形对正交坐标轴的惯性矩之和等于它 对此二轴交点的极惯性矩
I I b A SxC AyCppt课0件
2
x
xC
返 12
§Ⅰ- 4平行移轴公式 y
yC
2.结论: I y I yC a2 A
I
x
I xC
b2A
I xy I xCyC abA
x
dA
a bC y
xC
x
A)在所有的平行轴中,图形对自身形心轴的惯性 矩为最小。
yC
xCi Ai
A (正负面积法公式 ) yCi Ai
A
S xppt课件yC A xC SxC A yC 4
Sy AxC Ai xCi xdA
A
2.形心公式
Sx AyC Ai yCi ydA
A
xC
Ai xi A
yC
Ai yi A
ydA
yC A A
3.结论
xdA
xC A A
当坐标轴过形心时,图形对自身形心轴的面积矩等于
零;反之,若图形对某轴的面矩为零时,此轴必过图形
的形心。
ppt课件
5
3.组合图形的形心和面积矩 1)组合图形
由简单图形(如三角形,圆形,矩形等)组合而成的 图形。
2)组合图形面积矩及形心的计算公式
2)求出A1和A2分别对自身形心 轴的惯性矩
A1 •••
Ⅱ
•
A2
100
Ⅰ
z1
a1 zc
30
a2
z2
z
I z1
b1h13 12
100 203 12
66.67 103
Iz2
y
yC
dz
hz
dy
a
y
0b
解: dA hdz
zC
Sy
b 0
zhdz
hb2 2
A b 2
z
Sz
ah
ybdy
a
b[(a
h)2 2
a2]
11))同同一 一截截面面对对不不同同轴轴的的静静 bh[ h a] A[ h a]
矩矩不不同同;;
2
2
2)静矩可为正,负值或零;ppt课3件)静矩的单位为m33;
等于各简单图形对同一轴的面积矩的代数和。即
SZ SZ1 SZ 2 ... SZn ydA ydA ... ydA Ai yCi
A1
A2Ann源自 yC SzAi yCi i1
Ai
Ai
n
ZC
Sy
Ai ZCi i1
Ai
Ai
ppt课件