《创新设计》2018版高考数学(文)北师大版(全国)一轮复习练习第二章函数概念与基本初等函数I2-1Word版含
创新大课堂2018届高三数学文一轮复习课件:第2章 函数、导数及其应用 第8节 精品

【例 1】 (1)(2016·合肥模拟)若偶函数 f(x)满足 f(x-1)=f(x
+1),且在 x∈[0,1]时,f(x)=x2,则关于 x 的方程 f(x)=110x 在
0,130上的根的个数是( A.1
) B.2
C.3
D.4
(2)(2016·郑州质检)对实数 a 和 b,定义运算“⊗”=a⊗
[解析] 由本例(1)解析知 f(x)=110|x|在[-3,3]上有六个不 同根,不妨设为 x1<x2<x3<x4<x5<x6,由图象关于 y 轴的对 称性知:x1+x6=0,x2+x5=0,x3+x4=0,所以 x1+x2+x3+ x4+x5+x6=0.
[答案] 0
【名师说“法”】
(1)判断函数y=f(x)零点个数的常用方法: ①直接法.令f(x)=0,则方程实根的个数就是函数零点的 个数. ②零点存在性定理法.判断函数在区间[a,b]上是连不断 的 曲 线 , 且 f(a)·f(b) < 0 , 再 结 合 函 数 的 图 象 与 性 质 ( 如 单 调 性、奇偶性、周期性、对称性)可确定函数的零点个数. ③数形结合法.转化为两个函数的图象的交点个数问题 (画出两个函数的图象,其交点的个数就是函数零点的个数)
[解析] 法一:当 x∈1e,e时,函数图象是连续的,且 f′(x) =13-1x=x-3x3<0,所以函数 f(x)在1e,e上单调递减.又 f1e= 13e-ln1e>0,f(1)=13>0,f(e)=13e-ln e<0,所以函数有唯一的 零点在区间(1,e)内.故选 D.
法二:令 f(x)=0 得13x=ln x.作出函数 y=13x 和 y=ln x 的 图象,如图,显然 y=f(x)在1e,1内无零点,在(1,e)内有零点.故 选 D.
创新设计(全国通用)2018版高考数学一轮复习 第二章 函数概念与基本初等函数I 第3讲 函数的奇偶

第二章 函数概念与基本初等函数I 第3讲 函数的奇偶性与周期性练习 理 北师大版基础巩固题组(建议用时:40分钟)一、选择题1.(2017·肇庆三模)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是( )A.3B.2C.1D.0 解析 y =x cos x 为奇函数,y =e x +x 2为非奇非偶函数,y =lg x 2-2与y =x sin x 为偶函数.答案 B2.(2015·湖南卷)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A.奇函数,且在(0,1)内是增函数B.奇函数,且在(0,1)内是减函数C.偶函数,且在(0,1)内是增函数D.偶函数,且在(0,1)内是减函数解析 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数,又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数,所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数.答案 A3.(2017·赣中南五校联考)已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为( )A.5B.1C.-1D.-3 解析 ∵y =f (x )是奇函数,且f (3)=6.∴f (-3)=-6,则9-3a =-6,解得a =5. 答案 A4.已知函数f (x )=x ⎝⎛⎭⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( ) A.x 1>x 2B.x 1+x 2=0C.x 1<x 2D.x 21<x 22 解析 ∵f (-x )=-x ⎝ ⎛⎭⎪⎫1e x -e x =f (x ). ∴f (x )在R 上为偶函数,f ′(x )=e x -1e x +x ⎝ ⎛⎭⎪⎫e x +1e x , ∴x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数,由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,∴x 21<x 22.答案 D5.(2017·西安一模)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A.2B.1C.-1D.-2 解析 ∵f (x +1)为偶函数,∴f (-x +1)=f (x +1),则f (-x )=f (x +2),又y =f (x )为奇函数,则f (-x )=-f (x )=f (x +2),且f (0)=0.从而f (x +4)=-f (x +2)=f (x ),y =f (x )的周期为4.∴f (4)+f (5)=f (0)+f (1)=0+2=2.答案 A二、填空题6.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.解析 由于f (-x )=f (x ),∴ln(e -3x +1)-ax =ln(e 3x+1)+ax , 化简得2ax +3x =0(x ∈R ),则2a +3=0,∴a =-32. 答案 -327.(2017·合肥质检)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________. 解析 由于函数f (x )是周期为4的奇函数,所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516. 答案 5168.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析 由奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函数y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <0或x >12三、解答题9.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当 -1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.解 (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ).又f (x +2)=f (x ),∴f (-x )=f (x ).又f (x )的定义域为R ,∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ;进而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0],x ,x ∈(0,1),-x +2,x ∈[1,2].10.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图像知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].能力提升题组(建议用时:20分钟)11.(2017·南昌一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( ) A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)解析 ∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4.答案 A12.对任意的实数x 都有f (x +2)-f (x )=2f (1),若y =f (x -1)的图像关于x =1对称,且f (0)=2,则f (2 015)+f (2 016)=( )A.0B.2C.3D.4解析 y =f (x -1)的图像关于x =1对称,则函数y =f (x )的图像关于x =0对称,即函数f (x )是偶函数,令x =-1,则f (-1+2)-f (-1)=2f (1),∴f (1)-f (1)=2f (1)=0,即f (1)=0,则f (x +2)-f (x )=2f (1)=0,即f (x +2)=f (x ),则函数的周期是2,又f (0)=2,则f (2 015)+f (2 016)=f (1)+f (0)=0+2=2.答案 B13.(2017·东北四市联考)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________. 解析 因为当0≤x <2时,f (x )=x 3-x .又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,则f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,∴f (3)=f (5)=f (1)=0,故函数y =f (x )的图像在区间[0,6]上与x 轴的交点有7个.答案 714.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图像与x 轴所围成图形的面积.解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).故知函数y =f (x )的图像关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图像关于原点成中心对称,则f (x )的图像如下图所示.当-4≤x ≤4时,f (x )的图像与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.。
2018版高考数学文北师大版全国一轮复习练习 第二章 函

第2讲 函数的单调性与最大(小)值基础巩固题组(建议用时:40分钟)一、选择题1.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为( )A .-2B .2C .-6D .6解析 由图像易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6. 答案 C2.(2016·北京卷)下列函数中,在区间(-1,1)上为减函数的是( )A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x解析 ∵y =11-x 与y =ln(x +1)在(-1,1)上为增函数,且y =cos x 在(-1,1)上不具备单调性.∴A ,B ,C 不满足题意.只有y =2-x =⎝ ⎛⎭⎪⎫12x 在(-1,1)上是减函数.答案 D3.定义新运算“⊕”:当a ≥b 时,a ⊕b =a 2;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),在区间[-2,2]上的最大值等于( )A .-1B .1C .6D .12解析 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案 C4.已知函数y =f (x )的图像关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c解析 ∵函数图像关于x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 B5.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎨⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案 B 二、填空题6.(2017·郑州模拟)设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析由题意知g (x )=⎩⎨⎧x 2 (x >1),0 (x =1),-x 2 (x <1),函数的图像如图所示的实线部分,根据图像,g (x )的减区间是[0,1). 答案 [0,1)7.(2017·南昌调研)函数f (x )=⎝ ⎛⎭⎪⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析 由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3. 答案 38.(2017·潍坊模拟)设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.解析 作出函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.答案 (-∞,1]∪[4,+∞) 三、解答题9.已知函数f (x )=1a -1x (a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. (1)证明 设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0, ∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.(2)解 ∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,又由(1)得f (x )在⎣⎢⎡⎦⎥⎤12,2上是单调增函数,∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,易知a =25. 10.已知函数f (x )=2x -ax 的定义域为(0,1](a 为实数). (1)当a =1时,求函数y =f (x )的值域;(2)求函数y =f (x )在区间(0,1]上的最大值及最小值,并求出当函数f (x )取得最值时x 的值.解 (1)当a =1时,f (x )=2x -1x ,任取1≥x 1>x 2>0,则f (x 1)-f (x 2)=2(x 1-x 2)-⎝ ⎛⎭⎪⎫1x 1-1x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫2+1x 1x 2. ∵1≥x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0.∴f (x 1)>f (x 2),∴f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值1,所以f (x )的值域为(-∞,1].(2)当a ≥0时,y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;当a <0时,f (x )=2x +-ax , 当-a2≥1,即a ∈(-∞,-2]时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ; 当-a 2<1,即a ∈(-2,0)时,y =f (x )在⎝⎛⎦⎥⎤0,-a 2上单调递减,在⎣⎢⎡⎦⎥⎤-a 2,1上单调递增,无最大值,当x =-a2时取得最小值2-2a . 能力提升题组(建议用时:20分钟)11.(2017·郑州质检)若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =( )A .4B .2 C.12 D.14解析 当a >1,则y =a x 为增函数,有a 2=4,a -1=m ,此时a =2,m =12, 此时g (x )=-x 在[0,+∞)上为减函数,不合题意. 当0<a <1,则y =a x 为减函数, 有a -1=4,a 2=m ,此时a =14,m =116.此时g (x )=34x 在[0,+∞)上是增函数.故a =14. 答案 D12.(2017·枣阳第一中学模拟)已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若存在f (a )=g (b ),则实数b 的取值范围为( )A .[0,3]B .(1,3)C .[2-2,2+2]D .(2-2,2+2)解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1, 若f (a )=g (b ),则g (b )∈(-1,1], 即-b 2+4b -3>-1,即b 2-4b +2<0, 解得2-2<b <2+ 2.所以实数b 的取值范围为(2-2,2+2). 答案 D13.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________. 解析 依题意,h (x )=⎩⎨⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, ∴h (x )在x =2时,取得最大值h (2)=1. 答案 114.已知函数f (x )=lg(x +ax -2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)由x +ax -2>0,得x 2-2x +a x>0,当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +ax -2,当a ∈(1,4),x ∈[2,+∞)时,∴g ′(x )=1-a x 2=x 2-ax 2>0.因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=ln a2.(3)对任意x ∈[2,+∞),恒有f (x )>0. 即x +ax -2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞).由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数,∴h (x )max =h (2)=2. 故a >2时,恒有f (x )>0.因此实数a 的取值范围为(2,+∞).。
2018届高考数学一轮复习第二章函数2.9实际问题的函数建模课件文北师大版

②当 23<x≤30 时,p(x)=4 1 + ������ (127-x)=4 126 +
设 h(x)=
127 -x,则有 ������
1
h'(x)=- ������2 -1<0,
127 -30 30
127
127 -������ ������
.
故 h(x)在(23,30]上为减函数,则 p(x)在(23,30]上也是减函数, 所以当 x=30 时,p(x)min=4 126 + =40015>400.
1
-18考点1 考点2 考点3 考点4
解 (1)由题意知 p(x)=f(x)g(x) =4
1 1+ ������
(104-|x-23|)(1≤x≤30,x∈N*). 4 4
1 1+ ������ 1 1 + ������
(2)由 p(x)=
(81 + ������)(1 ≤ ������ ≤ 23,������∈N* ), (127-������)(23 < ������ ≤ 30,������∈N * ).
1 4
-16考点1 考点2 考点3 考点4
令√������ =t,t∈[0,3√2], 则 y= (-t2+8t+18)
1 2 17 =-4(t-4) + 2 . 17 时,ymax= 2 =8.5, 1 4
故当 t=4
此时 x=16,18-x=2. 所以当 A,B 两种产品分别投入 2 万元、16 万元时,可使该企 业获得最大利润 8.5 万元.
y=logax (a>1) 单调递增 越来越慢 随 x 的增大逐 渐表现为与 x 轴 平行
2018版高考数学文北师大版大一轮复习讲义教师版文档

1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x +h )2+k (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图像和性质2.幂函数(1)定义:形如函数y =x α(α∈R )叫作幂函数,其中x 是自变量,α是常量. (2)幂函数的图像比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图像过定点(1,1);③当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.【知识拓展】1.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧ a >0,Δ<0时恒有f (x )>0,当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.2.幂函数的图像和性质(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图像的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数y =122x 是幂函数.( × )(5)如果幂函数的图像与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × )1.(教材改编)已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3答案 D解析 函数f (x )=x 2+4ax 的图像是开口向上的抛物线,其对称轴是x =-2a , 由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3,故选D.2.幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的图像是( )答案 C解析 设f (x )=x α,则4α=2,∴α=12,∴f (x )=12x ,对照各选项中的图像可知C 正确.3.已知函数f (x )=ax 2+x +5的图像在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 如图,由图像可知m 的取值范围是[1,2].5.若幂函数y =222(33)m m m m x ---+的图像不经过原点,则实数m 的值为________. 答案 1或2解析 由m 2-3m +3=1,得m =1或m =2, 又当m =1时,m 2-m -2<0, 当m =2时,m 2-m -2=0, 图像均不过原点, 所以m =1或m =2.题型一 求二次函数的解析式例1 (1)(2016·太原模拟)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1,得a =1,所以f (x )=x 2+2x .(2)已知二次函数f (x )的图像经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式. 解 ∵f (2+x )=f (2-x )对任意x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图像被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又f (x )的图像过点(4,3), ∴3a =3,a =1,∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.思维升华 求二次函数解析式的方法(1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.答案 (1)x 2+2x +1 (2)-2x 2+4解析 (1)设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a , 由已知f (x )=ax 2+bx +1,∴a =1, 故f (x )=x 2+2x +1.(2)由f (x )是偶函数知f (x )的图像关于y 轴对称, ∴-a =-(-2ab ),即b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4], ∴2a 2=4,故f (x )=-2x 2+4. 题型二 二次函数的图像和性质 命题点1 二次函数的单调性例2 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0] D .[-3,0]答案 D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a 2a,由f (x )在[-1,+∞)上递减,知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知a <0, 又3-a2a=-1,∴a =-3. 命题点2 二次函数的最值例3 已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. 解 (1)当a =0时,f (x )=-2x 在[0,1]上是减少的, ∴f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图像开口向上 且对称轴为x =1a.①当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的对称轴在[0,1]内,∴f (x )在[0,1a ]上是减少的,在[1a ,1]上是增加的.∴f (x )min =f (1a )=1a -2a =-1a.②当1a >1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧,∴f (x )在[0,1]上是减少的. ∴f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图像开口向下 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上是减少的, ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a ,a ≥1.命题点3 二次函数中的恒成立问题例4 (1)已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.答案 (1)(-∞,-1) (2)⎝⎛⎭⎫-∞,12 解析 (1)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. ∵g (x )=x 2-3x +1-m 在[-1,1]上是减少的, ∴g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1). (2)2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12.综上,实数a 的取值范围是 ⎝⎛⎭⎫-∞,12. 思维升华 (1)二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .(1)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞ 解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. (2)已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. 解 ∵函数f (x )=x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不一定在区间[-2,a ]内,∴应进行讨论,当-2<a ≤1时,函数在[-2,a ]上是减少的,则当x =a 时,f (x )取得最小值,即f (x )min =a 2-2a ;当a >1时,函数在[-2,1]上是减少的,在[1,a ]上是增加的,则当x =1时,f (x )取得最小值,即f (x )min =-1. 综上,当-2<a ≤1时,f (x )min =a 2-2a , 当a >1时,y min =-1.题型三 幂函数的图像和性质例5 (1)(2016·济南诊断测试)已知幂函数f (x )=k ·x α的图像过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32D .2 (2)若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2) D.⎣⎢⎡⎭⎪⎫5-12,2答案 (1)C (2)D解析 (1)由幂函数的定义知k =1.又f ⎝⎛⎭⎫12=22, 所以⎝⎛⎭⎫12α=22,解得α=12,从而k +α=32.(2)因为函数y =x 12的定义域为[0,+∞), 且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1,解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12;解2m +1>m 2+m -1,得-1<m <2, 综上所述,m 的取值范围是5-12≤m <2. 思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.(2016·昆明模拟)幂函数的图像经过点(4,2),若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f (1a )<f (1b )B .f (1a )<f (1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f (1a )D .f (1a )<f (a )<f (1b )<f (b )答案 C解析 设幂函数为f (x )=x α,将(4,2)代入得α=12,所以f (x )=x 12,该函数在(0,+∞)上为增函数, 又0<a <b <1,所以1a >1b >1,即a <b <1b <1a,所以f (a )<f (b )<f (1b )<f (1a).3.分类讨论思想在二次函数最值中的应用典例 (10分)已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 思想方法指导 已知函数f (x )的最值,而f (x )图像的对称轴确定,要讨论a 的符号. 规范解答解 f (x )=a (x +1)2+1-a .[1分](1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;[3分](2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;[6分](3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.[9分]综上可知,a 的值为38或-3.[10分]1.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( ) A .-3 B .13 C .7 D .5 答案 B解析 ∵函数f (x )的图像关于直线x =-2对称, ∴m =-8,∴f (1)=2+8+3=13.2.函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是( ) A .m =-2 B .m =2 C .m =-1 D .m =1答案 A解析 已知函数f (x )=x 2+mx +1的图像关于直线x =1对称,则m =-2;反之也成立. 所以函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是m =-2.3.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a的取值范围是( ) A .[0,+∞) B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)答案 C解析 由题意可知函数f (x )的图像开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图像观察可知0≤a ≤4.4.若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是( ) A .[0,4] B .[32,4]C .[32,+∞)D .[32,3]答案 D解析 二次函数图像的对称轴为x =32且f (32)=-254,f (3)=f (0)=-4,由图得m ∈[32,3].5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B .1 C .2 D .-2答案 B解析 ∵函数f (x )=x 2-ax -a 的图像为开口向上的抛物线, ∴函数的最大值在区间的端点处取得, ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1.6.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,x 2-3,x <2,若关于x 的方程f (x )=k 有三个不等的实根,则实数k 的取值范围是( ) A .(-3,1) B .(0,1) C .(-2,2) D .(0,+∞)答案 B解析 由函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,x 2-3,x <2的图像可知,要使关于x 的方程f (x )=k 有三个不等的实根,则需直线y =k 与函数f (x )的图像有三个不同的交点,所以有0<k <1,所以实数k 的取值范围是(0,1). 7.(2016·烟台模拟)已知幂函数f (x )=12x -,若f (a +1)<f (10-2a ),则a 的取值范围为________.答案 (3,5)解析 ∵幂函数f (x )=12x-是减函数,定义域为(0,+∞),∴由f (a +1)<f (10-2a ),得⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得3<a <5.8.当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________________.答案 h (x )>g (x )>f (x )解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图像,由此可知,h (x )>g (x )>f (x ).9.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立, ∴mx <-x 2-4对x ∈(1,2)恒成立, 即m <-(x +4x)对x ∈(1,2)恒成立,令y =x +4x ,则函数y =x +4x 在x ∈(1,2)上是减函数.∴4<y <5,∴-5<-(x +4x )<-4,∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,f (x )<0恒成立⇔⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0⇒⎩⎪⎨⎪⎧m ≤-5,m ≤-4⇒m ≤-5.10.“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内递增”的________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) 答案 充要解析 当a <0时,函数f (x )=|(ax -1)x |在(0,+∞)内是增加的;当a =0时,f (x )=|x |,f (x )在区间(0,+∞)内是增加的;当a >0时,函数f (x )=|(ax -1)x |在(0,12a )和(1a ,+∞)上为增函数,在(12a ,1a )上为减函数,故“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内递增”的充要条件.11.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5]. ∵f (x )的对称轴为x =1, ∴当x =1时,f (x )取最小值1; 当x =-5时,f (x )取最大值37.(2)f (x )=x 2+2ax +2=(x +a )2+2-a 2的对称轴为x =-a , ∵f (x )在[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≤-5或a ≥5. 故实数a 的取值范围为a ≤-5或a ≥5.12.已知幂函数()21()m m f x x -+=(m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图像经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解 (1)因为m 2+m =m (m +1)(m ∈N +),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数,所以函数f (x )=x (m 2+m )-1(m ∈N +)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图像经过点(2,2), 所以2=21()2m m -+,即122=21()2m m -+,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N +,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图像经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).13.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解 要使f (x )≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f (x )的最小值为g (a ). (1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73,故此时a 不存在;(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2, 又-4≤a ≤4,故-4≤a ≤2;(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4,综上得-7≤a ≤2.。
2018版高考数学文北师大版全国一轮复习练习 第二章 函

第8讲 函数与方程、函数的应用基础巩固题组(建议用时:40分钟)一、选择题1.(2017·赣中南五校联考)函数f (x )=3x -x 2的零点所在区间是( )A .(0,1)B .(1,2)C .(-2,-1)D .(-1,0)解析 由于f (-1)=-23<0,f (0)=30-0=1>0, ∴f (-1)·f (0)<0.则f (x )在(-1,0)内有零点. 答案 D2.已知函数f (x )=⎩⎨⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .0解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 答案 D3.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0,所以0<a <3. 答案 C4.(2017·德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4 L ,则m 的值为( )A .5B .8C .9D .10解析 ∵5 min 后甲桶和乙桶的水量相等, ∴函数y =f (t )=a e nt 满足f (5)=a e 5n =12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12, 因此,当k min 后甲桶中的水只有a4 L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12=14a ,即⎝ ⎛⎭⎪⎫12=14, ∴k =10,由题可知m =k -5=5. 答案 A5.(2017·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14 B.18 C .-78D .-38解析 令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78. 答案 C 二、填空题6.(2016·浙江卷)设函数f (x )=x 3+3x 2+1,已知a ≠0,且f (x )-f (a )=(x -b )(x -a )2,x ∈R ,则实数a =________,b =________. 解析 ∵f (x )=x 3+3x 2+1,则f (a )=a 3+3a 2+1, ∴f (x )-f (a )=(x -b )(x -a )2=(x -b )(x 2-2ax +a 2) =x 3-(2a +b )x 2+(a 2+2ab )x -a 2b =x 3+3x 2-a 3-3a 2. 由此可得⎩⎨⎧2a +b =-3,①a 2+2ab =0,②a 3+3a 2=a 2b .③∵a ≠0,∴由②得a =-2b ,代入①式得b =1,a =-2. 答案 -2 17.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求(已知lg 2≈0.301 0,lg 3≈0.477 1). 解析 设过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案 88.(2015·安徽卷)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图像只有一个交点,则a 的值为________.解析 函数y =|x -a |-1的图像如图所示,因为直线y =2a 与函数y =|x -a |-1的图像只有一个交点,故2a =-1,解得a =-12.答案 -12 三、解答题9.已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,求实数a 的取值范围.解 (1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题. 依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝ ⎛⎭⎪⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f ⎝ ⎛⎭⎪⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪12<a <34. 10.(2017·陕西实验中学月考)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s ,故有a +b log 39010=1,整理得a +2b =1.解方程组⎩⎨⎧ a +b =0,a +2b =1,得⎩⎨⎧a =-1,b =1.(2)由(1)知,v =-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则有v ≥2,即-1+log 3Q 10≥2,即log 3Q10≥3,解得Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=⎩⎨⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)解析 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x =⎩⎨⎧x ,x ≤0,e x +x ,x >0的大致图像(图略).观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点. 答案 D12.(2017·合肥质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎨⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎨⎧7a +b =0.1,9a +b =-0.3,解得⎩⎨⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝ ⎛⎭⎪⎫t 2-152t +22516+4516-2=-15⎝ ⎛⎭⎪⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟. 答案 B13.(2015·湖南卷)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.解析 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图像,如图所示.则当0<b <2时,两函数图像有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 答案 (0,2)14.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图像;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ), 得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图像可知,当0<m <1时,函数f (x )的图像与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.。
创新设计(全国通用)2018版高考数学一轮复习 第二章 函数概念与基本初等函数I 第3讲 函数的奇偶性与周期性

(2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x), 因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函 数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是 偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|], f(x)|g(x)|是奇函数,C正确; |f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.
2
∴f(log2a)+f(-log2a)≤2f(1)⇒f(log2a)≤f(1), 又 f(log2a)=f(|log2a|)且 f(x)在[0,+∞)上递增, ∴|log2a|≤1⇔-1≤log2a≤1.解得12≤a≤2. 答案 (1)D (2)C
规律方法 (1)函数单调性与奇偶性的综合.注意函数单调性 及奇偶性的定义以及奇、偶函数图像的对称性. (2)周期性与奇偶性的综合.此类问题多考查求值问题,常利 用奇偶性及周期性进行变换,将所求函数值的自变量转化 到已知解析式的函数定义域内求解. (3)单调性、奇偶性与周期性的综合.解决此类问题通常先利 用周期性转化自变量所在的区间,然后利用奇偶性和单调 性求解.
5.(2014·全国Ⅱ卷)偶函数y=f(x)的图像关于直线x=2对称, f(3)=3,则f(-1)=________. 解析 ∵f(x)为偶函数,∴f(-1)=f(1). 又f(x)的图像关于直线x=2对称, ∴f(1)=f(3).∴f(-1)=3. 答案 3
考点一 函数奇偶性的判断 【例 1】 判断下列函数的奇偶性: (1)f(x)= 3-x2+ x2-3; (2)f(x)=lg|(x-12-|-x22); (3)f(x)=x-2+x2x+,xx,<x0>,0.
2018版高考数学理北师大版全国一轮复习练习 第二章函

基础巩固题组(建议用时:40分钟)一、选择题1.(2017·郑州外国语学校期中)已知α∈{-1,1,2,3},则使函数y=xα的值域为R,且为奇函数的所有α的值为()A.1,3B.-1,1C.-1,3D.-1,1,3解析因为函数y=xα为奇函数,故α的可能值为-1,1,3.又y=x-1的值域为{y|y≠0},函数y=x,y=x3的值域都为R.所以符合要求的α的值为1,3.答案 A2.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0解析因为f(0)=f(4)>f(1),所以函数图像应开口向上,即a>0,且其对称轴为x=2,即-b2a=2,所以4a+b=0.答案 A3.在同一坐标系内,函数y=x a(a≠0)和y=ax+1a的图像可能是()解析若a<0,由y=x a的图像知排除C,D选项,由y=ax+1a的图像知应选B;若a>0,y=x a的图像知排除A,B选项,但y=ax+1a的图像均不适合,综上选B.答案 B4.(2017·焦作模拟)函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在区间(1,+∞)上一定( ) A.有最小值 B.有最大值 C.是减函数D.是增函数解析 ∵f (x )=x 2-2ax +a 在(-∞,1)上有最小值,且f (x )关于x =a 对称,∴a <1,则g (x )=x +ax -2a (x >1).若a ≤0,则g (x )在(1,+∞)上是增函数, 若0<a <1,则g (x )在(a ,+∞)上是增函数, ∴g (x )在(1,+∞)上是增函数,综上可得g (x )=x +ax -2a 在(1,+∞)上是增函数. 答案 D5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A.(-∞,-2) B.(-2,+∞) C.(-6,+∞)D.(-∞,-6)解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2. 答案 A 二、填空题6.已知P =2-32,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.解析 P =2-32=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数,且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q . 答案 P >R >Q7.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数, ∴由g (x )=ax +1在[1,2]上是减函数可得a >0, 故0<a ≤1. 答案 (0,1]8.已知函数y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n≤f (x )≤m 恒成立,则m -n 的最小值为________. 解析 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.∴m -n 的最小值是1. 答案 1 三、解答题 9.已知幂函数f (x )=x(m 2+m )-1(m ∈N +)的图像经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围. 解 幂函数f (x )的图像经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1.∴m 2+m =2.解得m =1或m =-2. 又∵m ∈N +,∴m =1.∴f (x )=x 12,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f (2-a )>f (a -1)得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.10.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域; (2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3], ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15.(2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知,a =-13或-1.能力提升题组 (建议用时:20分钟)11.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝ ⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A12.(2017·合肥一中期中测试)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,则f (a )+f (b )的值( ) A.恒大于0 B.恒小于0 C.等于0D.无法判断解析 依题意,幂函数f (x )在(0,+∞)上是增函数,∴⎩⎨⎧m 2-m -1=1,4m 9-m 5-1>0,解得m =2,则f (x )=x 2 015. ∴函数f (x )=x 2 015在R 上是奇函数,且为增函数. 由a +b >0,得a >-b , ∴f (a )>f (-b ),则f (a )+f (b )>0. 答案 A13.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是______.解析 作出函数y =f (x )的图像如图.则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根. 答案 (0,1)14.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1, F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解 (1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。
创新大课堂2018届高三数学文一轮复习课件:第2章 函数、导数及其应用 第6节 精品

◆考纲·了然于胸◆ 1.了解幂函数的概念. 2.结合函数 y=x,y=x2,y=x3,y=1x,y=x12 的图象, 了解它们的变化情况. 3.理解并掌握二次函数的定义、图象及性质. 4.能用二次函数、方程、不等式之间的关系解决简单问题.
[要点梳理]
考点三 二次函数的图象与性质(高频型考点——全面发 掘)
[考情聚焦] 二次函数的图象与性质与一元二次方程、一元二次不等式 等知识交汇命题是高考考查频率非常高的一个热点,考查求解 一元二次不等式、一元二次不等式恒成立及一元二次方程根的 分布等问题.
归纳起来常见的命题角度有: (1)二次函数的最值问题; (2)二次函数中恒成立问题; (3)二次函数的零点问题
角度二 二次函数中恒成立问题 3.已知 a 是实数,函数 f(x)=2ax2+2x-3 在 x∈[-1,1]上 恒小于零,求实数 a 的取值范围.
[解] 2ax2+2x-3<0 在[-1,1]上恒成立. 当 x=0 时,适合; 当 x≠0 时,a<321x-132-16,因为1x∈(-∞,-1]∪[1,+ ∞),当 x=1 时,右边取最小值12,所以 a<12. 综上,实数 a 的取值范围是-∞,12.
A.-3
B.1
C.2
D.1 或 2
[解析] 选 B 由于 f(x)为幂函数,所以 n2+2n-2=1,解
得 n=1 或 n=-3,经检验只有 n=1 适合题意,故选 B.
[答案] B
1
3.(2015·山西太原模拟)当 0<x<1 时,f(x)=x2,g(x)=x2 , h(x)=x-2,则 f(x),g(x),h(x)的大小关系是______________.
[题组集训] 1.幂函数 y=f(x)的图象过点(4,2),则幂函数 y=f(x)的图 象是( )
2018高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示教师用书 文 北师大版

第二章函数、导数及其应用[深研高考·备考导航] 为教师备课、授课提供丰富教学资源 [五年考情][重点关注]1.从近五年全国卷高考试题来看,函数、导数及其应用是每年高考命题的重点与热点,既有客观题,又有解答题,中高档难度.2.函数的概念、图像及其性质是高考考查的主要内容,函数的定义域、解析式、图像是高考考查的重点,函数性质与其他知识的综合是历年高考的热点.3.导数的几何意义,导数在研究函数单调性、极值、最值、函数的零点等方面的应用是高考的重点与热点.4.本章内容集中体现了四大数学思想:函数与方程、数形结合、分类讨论、转化与化归的思想,且常与方程、不等式、导数等知识交汇命题,体现了综合与创新.[导学心语]1.注重基础:对函数的概念、图像、性质(单调性、奇偶性、周期性)、导数的几何意义、导数在研究函数单调性、极值、最值、函数的零点等方面的应用,要熟练掌握并灵活应用.2.加强交汇,强化综合应用意识:在知识的交汇点处命制试题,已成为高考的一大亮点,函数的观点和方法贯穿于高中数学的全过程,因此,应加强函数与三角函数、数列、不等式、解析几何、导数等各章节之间的联系.3.把握思想:数形结合思想、函数与方程思想、分类讨论思想和等价转化思想在解决各种与函数有关的问题中均有应用,复习时应引起足够重视.第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫作自变量,集合A 叫作函数的定义域;集合{f (x )|x ∈A }叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有列表法、图像法和解析法. 3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2017·南昌一模)已知函数f (x )=⎩⎨⎧x ,x >0,2-x,x ≤0,则f (f (-4))=________.4 [∵f (-4)=24=16,∴f (f (-4))=f (16)=16=4.]4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________.【导学号:66482021】① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确.](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f xx -1的定义域是________.(1)[-3,1] (2)[0,1) [(1)要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,得(x -1)(x +3)≤0,即-3≤x ≤1,故所求函数的定义域为[-3,1].(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.[变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【导学号:66482022】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________.【导学号:66482023】(2)已知函数f (x )的定义域为(0,+∞),且f (x )=2·f ⎝ ⎛⎭⎪⎫1x·x -1,则f (x )=________.(1)x 2-1(x ≥1) (2)23 x +13(x >0) [(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1), 所以f (x )=x 2-1(x ≥1).(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)在f (x )=2f ⎝ ⎛⎭⎪⎫1x·x -1中,用1x代替x , 得f ⎝ ⎛⎭⎪⎫1x =2f (x )·1x-1,由⎩⎪⎨⎪⎧f x =2f ⎝ ⎛⎭⎪⎫1x ·x -1,f ⎝ ⎛⎭⎪⎫1x =2f x 1x-1,得f (x )=23 x +13(x >0).]☞角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( )A .-2B .-3C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=( )A .2 016B .14 C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝ ⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4.] ☞角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( )A .1B .1或-1 C. 3D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D.(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.] ☞角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________.(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎨⎧ex -1,x <1,x,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x ≤2,x ≤23=8,∴1≤x ≤8. 综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.[思想与方法]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础,对函数性质的讨论,必须在定义域内进行.3.求函数解析式的几种常用方法:待定系数法、换元法、配凑法、构造法.4.分段函数问题要分段求解.[易错与防范]1.求函数定义域时,不要对解析式进行化简变形,以免定义域发生变化.2.用换元法求函数解析式时,应注意元的范围,既不能扩大,又不能缩小,以免求错函数的定义域.3.在求分段函数的值f (x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;如果x0的范围不确定,要分类讨论.。
2018版高考数学文北师大版大一轮复习讲义教师版文档

1.分数指数幂(1)规定:正数的正分数指数幂的意义是m na =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是m na=1n a m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)幂的运算性质:a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,其中a >0,b >0,m ,n ∈R .2.指数函数的图像与性质【知识拓展】1.指数函数图像画法的三个关键点画指数函数y =a x (a >0,且a ≠1)的图像,应抓住三个关键点:(1,a ),(0,1),(-1,1a ).2.指数函数的图像与底数大小的比较如图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图像,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b .由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,且a ≠1)的图像越高,底数越大.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂m na 可以理解为mn个a 相乘.( × )2142(3)(1)(1)-=-=( × )(4)函数y =a -x 是R 上的增函数.( × )(5)函数21x y a +=(a >1)的值域是(0,+∞).( × ) (6)函数y =2x-1是指数函数.( × )1.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图像经过点P (2,12),则f (-1)等于( )A.22 B. 2 C.14D .4 答案 B解析 由题意知12=a 2,所以a =22,所以f (x )=(22)x ,所以f (-1)=(22)-1= 2. 2.(2016·青岛模拟)已知函数f (x )=a x -2+2的图像恒过定点A ,则A 的坐标为( ) A .(0,1) B .(2,3) C .(3,2)D .(2,2)答案 B解析 由a 0=1知,当x -2=0,即x =2时,f (2)=3,即图像必过定点(2,3).3.已知113344333(),(),(),552a b c ---===则a ,b ,c 的大小关系是( )A .c <a <bB .a <b <cC .b <a <cD .c <b <a答案 D解析 ∵y =(35)x 是减函数,11034333()()(),555--∴>>即a >b >1,又30433()()1,22c -==<∴c <b <a .4.计算:1103437()()826-⨯-+=________.答案 2解析 原式=1131334422()122() 2.33⨯+⨯-=5.若函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________________. 答案 (-2,-1)∪(1,2)解析 由y =(a 2-1)x 在(-∞,+∞)上为减函数,得0<a 2-1<1,∴1<a 2<2,即1<a <2或-2<a <-1.题型一 指数幂的运算 例1 化简下列各式:122.5053(1)[(0.064)]π;-211113322---解 (1)原式=211535326427[()]()110008-⎧⎫⎪--⎨⎬⎪⎭⎩ 1521()33523343[()][()]1102⨯-⨯=--=52-32-1=0. (2)原式=111133221566a b a ba b--⋅1111153262361.aba---+-=⋅= 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(2016·江西鹰潭一中月考)计算:220.533342(1)(3)(5)(0.008);8925---+⨯(2)已知11223,x x-+=计算:x 2+x -2-7x +x -1+3.解 (1)原式221332274982()()()89100025--=-+⨯2213233323722[()][()][()]231025--=-+⨯=(32)-2-73+(210)-2×225 =49-73+2=19. 112122(2)()29,x x x x --+=++=所以x +x -1=7.(x +x -1)2=x 2+x -2+2=49,所以x 2+x -2=47.所以原式=47-77+3=4.题型二 指数函数的图像及应用例2 (1)已知实数a ,b 满足等式2 017a =2 018b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个(2)已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2cD .2a +2c <2答案 (1)B (2)D解析 (1)如图,观察易知,a ,b 的关系为a <b <0或0<b <a 或a =b =0.(2)作出函数f (x )=|2x -1|的图像,如图,∵a <b <c 且f (a )>f (c )>f (b ),结合图像知, 0<f (a )<1,a <0,c >0, ∴0<2a <1.∴f (a )=|2a -1|=1-2a <1, ∴f (c )<1,∴0<c <1.∴1<2c <2,∴f (c )=|2c -1|=2c -1, 又∵f (a )>f (c ),∴1-2a >2c -1, ∴2a +2c <2,故选D.思维升华(1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除.(2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解.(1)函数f(x)=a x-b的图像如图,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0(2)(2016·衡水模拟)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.答案(1)D(2)[-1,1]解析(1)由f(x)=a x-b的图像可以观察出,函数f(x)=a x-b在定义域上是减少的,所以0<a<1.函数f(x)=a x-b的图像是在f(x)=a x的基础上向左平移得到的,所以b<0,故选D.(2)曲线|y|=2x+1与直线y=b的图像如图所示,由图像可知:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].题型三指数函数的性质及应用命题点1指数函数单调性的应用例3(1)(2016·威海模拟)下列各式比较大小正确的是()A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1答案 B解析选项B中,∵y=0.6x是减函数,∴0.6-1>0.62.(2)(2016·陕西西安七十中期中)解关于x 的不等式311x xa a-+≤(其中a >0且a ≠1). 解 ①当a >1时,x -3x +1≤-1,∴x -3x +2≤0,∴x 2+2x -3x ≤0,∴(x +3)(x -1)x≤0, ∴x ≤-3或0<x ≤1;②当0<a <1时,x -3x +1≥-1,∴x 2+2x -3x ≥0,∴-3≤x <0或x ≥1.综上,当a >1时,x ∈(-∞,-3)∪(0,1]; 当0<a <1时,x ∈[-3,0)∪[1,+∞). 命题点2 复合函数的单调性 例4 (1)已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. (2)函数2211()()2x x f x -++=的单调减区间为____________________.答案 (1)(-∞,4] (2)(-∞,1]解析 (1)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上是增加的,在区间(-∞,m2]上是减少的.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4]. (2)设u =-x 2+2x +1,∵y =⎝⎛⎭⎫12u在R 上为减函数, ∴函数2211()()2x x f x -++=的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1], ∴f (x )的减区间为(-∞,1]. 引申探究 函数f (x )=4x -2x+1的单调增区间是________.答案 [0,+∞)解析 设t =2x ,则y =t 2-2t 的单调增区间为[1,+∞), 令2x ≥1,得x ≥0, ∴函数f (x )=4x -2x+1的单调增区间是[0,+∞).命题点3 函数的值域(或最值)例5 (1)函数y =⎝⎛⎭⎫14x -⎝⎛⎭⎫12x+1在区间[-3,2]上的值域是________.(2)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.答案 (1)⎣⎡⎦⎤34,57 (2)13或3 解析 (1)令t =⎝⎛⎭⎫12x,因为x ∈[-3,2], 所以t ∈⎣⎡⎦⎤14,8,故y =t 2-t +1=⎝⎛⎭⎫t -122+34. 当t =12时,y min =34;当t =8时,y max =57.故所求函数的值域为⎣⎡⎦⎤34,57. (2)令a x =t ,则y =a 2x +2a x -1=t 2+2t -1 =(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈[1a ,a ],又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上是增加的, 所以y max =(a +1)2-2=14,解得a =3(负值舍去). 当0<a <1时,因为x ∈[-1,1],所以t ∈[a ,1a ],又函数y =(t +1)2-2在[a ,1a ]上是增加的,则y max =(1a +1)2-2=14,解得a =13(负值舍去).综上,a =3或a =13.思维升华 (1)在利用指数函数性质解决相关综合问题时,要特别注意底数a 的取值范围,并在必要时进行分类讨论;(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,要化归于指数函数来解.(1)已知函数f (x )=⎩⎪⎨⎪⎧-(12)x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3}(2)(2015·福建)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上递增,则实数m 的最小值等于________. 答案 (1)B (2)1解析 (1)当0≤x ≤4时,f (x )∈[-8,1], 当a ≤x <0时,f (x )∈[-(12)a ,-1),所以[-12a ,-1)[-8,1],即-8≤-12a <-1,即-3≤a <0,所以实数a 的取值范围是[-3,0).2.指数函数底数的讨论典例 (2016·日照模拟)已知函数22x x y b a +=+(a ,b 为常数,且a >0,a ≠1)在区间[-32,0]上有最大值3,最小值52, 则a ,b 的值分别为________.错解展示解析 令t =x 2+2x =(x +1)2-1, ∵-32≤x ≤0,∴-1≤t ≤0.∵1a ≤a t ≤1,∴b +1a ≤b +a t ≤b +1, 由⎩⎪⎨⎪⎧b +1a =52,b +1=3,得⎩⎪⎨⎪⎧a =2,b =2.答案 2,2现场纠错解析 令t =x 2+2x =(x +1)2-1, ∵x ∈[-32,0],∴t ∈[-1,0].①若a >1,函数f (x )=a t 在[-1,0]上为增函数,∴a t∈[1a ,1],221[1]x xb a b b a∈+++,+,依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.②若0<a <1,函数f (x )=a t 在[-1,0]上为减函数, ∴a t ∈[1,1a ],则221[1]x xb ab b a∈+++,+,依题意得⎩⎨⎧b +1a =3,b +1=52,解得⎩⎨⎧a =23,b =32.综上①②,所求a ,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎨⎧a =23,b =32.答案 2,2或23,32纠错心得 与指数函数、对数函数的单调性有关的问题,要对底数进行讨论.1.(2016·吉林扶余一中月考)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0,若f [f (-1)]=1,则a 等于( )A.14 B.12 C .1D .2答案 A解析 根据题意可得f (-1)=21=2, 所以f [f (-1)]=f (2)=a ·22=1, 解得a =14,故选A.2.函数f (x )=2|x -1|的图像是( )答案 B解析 ∵|x -1|≥0,∴f (x )≥1,排除C 、D. 又x =1时,|f (x )|min =1,排除A. 故选B.3.已知a =40.2,b =0.40.2,c =0.40.8,则( ) A .a >b >c B .a >c >b C .c >a >b D .b >c >a答案 A解析 由0.2<0.8,底数0.4<1知,y =0.4x 在R 上为减函数,所以0.40.2>0.40.8,即b >c . 又a =40.2>40=1,b =0.40.2<1, 所以a >b .综上,a >b >c .4.函数y =16-4x 的值域是( ) A .[0,+∞) B .[0,4] C .[0,4) D .(0,4) 答案 C解析 因为4x >0,所以16-4x <16.又因为16-4x ≥0,所以0≤16-4x <16,即0≤16-4x <4,即y ∈[0,4).5.(2015·山东)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案 C解析 ∵f (x )为奇函数,∴f (-x )=-f (x ), 即2-x +12-x -a =-2x +12x -a,整理得(a -1)(2x +1)=0, ∴a =1,∴f (x )>3即为2x +12x -1>3,当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1; 当x <0时,2x -1<0,∴2x +1<3·2x -3,无解. ∴x 的取值范围为(0,1).6.(2016·济南模拟)已知g (x )=ax +1,f (x )=⎩⎪⎨⎪⎧2x-1,0≤x ≤2,-x 2,-2≤x <0,对任意x 1∈[-2,2],存在x 2∈[-2,2],使g (x 1)=f (x 2)成立,则a 的取值范围是( ) A .[-1,+∞) B .[-1,1] C .(0,1] D .(-∞,1]答案 B解析 由题意可得g (x ),x ∈[-2,2]的值域为f (x ),x ∈[-2,2]的值域的子集. 经分析知f (x ),x ∈[-2,2]的值域是[-4,3], 当a =0时,g (x )=1,符合题意;当a >0时,g (x ),x ∈[-2,2]的值域是[-2a +1,2a +1],所以⎩⎪⎨⎪⎧-2a +1≥-4,2a +1≤3,则0<a ≤1;当a <0时,g (x ),x ∈[-2,2]的值域是[2a +1,-2a +1],所以⎩⎪⎨⎪⎧2a +1≥-4,-2a +1≤3,则-1≤a <0.综上可得-1≤a ≤1.7.设函数113e ,1(),1x x f x x x -⎧⎪=⎨⎪⎩<,≥,则使得f (x )≤2成立的x 的取值范围是________.答案 (-∞,8]解析 当x <1时,由e x -1≤2,得x ≤1+ln 2,∴x <1时恒成立;当x ≥1时,由13x ≤2,得x ≤8,∴1≤x ≤8. 综上,符合题意的x 的取值范围是x ≤8.8.若直线y =2a 与函数y =|a x -1|(a >0且a ≠1)的图像有两个公共点,则a 的取值范围是________. 答案 (0,12)解析 (数形结合法)由图像可知0<2a <1,∴0<a <12.9.(2016·江西鹰潭一中月考)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.答案 (-∞,-1) 解析 设x <0,则-x >0. 因为f (x )是奇函数,所以f (x )=-f (-x )=-(1-2x )=2x -1. 当x >0时,1-2-x ∈(0,1),所以不等式f (x )<-12,即当x <0时,2x -1<-12,解得x <-1.10.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是________. 答案 (-1,2)解析 原不等式变形为m 2-m <⎝⎛⎭⎫12x , 因为函数y =⎝⎛⎭⎫12x 在(-∞,-1]上是减函数,所以⎝⎛⎭⎫12x ≥⎝⎛⎭⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝⎛⎭⎫12x 恒成立等价于m 2-m <2,解得-1<m <2. 11.已知函数f (x )=(23)|x |-a .(1)求f (x )的单调区间;(2)若f (x )的最大值等于94,求a 的值.解 (1)令t =|x |-a ,则f (x )=(23)t ,不论a 取何值,t 在(-∞,0]上是减少的, 在[0,+∞)上是增加的, 又y =(23)t 是减少的,因此f (x )的单调递增区间是(-∞,0], 单调递减区间是[0,+∞).(2)由于f (x )的最大值是94,且94=(23)-2,所以g (x )=|x |-a 应该有最小值-2,即g (0)=-2, 从而a =2.12.已知函数2431()().3ax x f x -+=(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值. 解 (1)当a =-1时,2431()()3x x f x --+=,令t =-x 2-4x +3,由于函数t =-x 2-4x +3在(-∞,-2)上是增加的,在(-2,+∞)上是减少的,而y =⎝⎛⎫13t在R 上是减少的,所以f (x )在(-∞,-2)上是减少的,在(-2,+∞)上是增加的, 即函数f (x )的单调递增区间是(-2,+∞), 单调递减区间是(-∞,-2).(2)令g (x )=ax 2-4x +3,则f (x )=⎝⎛⎭⎫13g (x ), 由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值为1. 13.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域; (2)若关于x 的方程f (x )=0有解,求a 的取值范围. 解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,x ∈[-3,0],则t ∈[18,1].故f (t )=2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解, 设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解. 记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立. 当a <0时,开口向下,对称轴m =14a <0,过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a >0,过点(0,-1),必有一个根为正,所以a >0.。
《创新设计》数学一轮(文科)北师大配套精品课件第2章第7讲函数的图像

第7讲A (厂夯基释疑]®J I ® |>考点突破〕一W(A课堂小结〕函数的图像判断正误(在括号内打“3或“X”)⑴当x£(0, +00)时,函数J = l/*(x)l与y=/(Lrl)的图象相同・(X) ⑵函数丿=/(无)与丿=—/3)的图象关于原点对称.(X)⑶若函数y =/(x)W足/(I +兀)=/( 1 —x),贝U函数/(x)的图象关于直线兀=1对称.(“) ⑷若函数y =/(x)W足冷一1)=/(无+1),则函数/(兀)的图象关于直线兀=1对称.(X)⑸将函数j=/(—X)的图象向右平移1个单位得到函数丿= A-x-1)的图象.(X)考点突破考点一简单函数图象的作法讨论绝对值,化为基本初等函数,figx,兀y解(l)j = llgxl =\[-lgx, 0<x<l,作出图象如图1・f【例1】作出下列函数的图象:(1亡回;(2)尸芒|・考点突破考点一简单函数图象的作法丿将其图象向右平移1个单位,再向上平移1个单位,兀+2即得的图象,如图2・【例1】作出下列函数的图象:⑴y = llgrl ; (2)兀+2y~x-V化为基本初等函数, 再通过图像的变换得到3 3(2)因y=l+二7十先作出丿=匚的图象, 图2O规律方法(1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幕函数、形如丿=兀+学(加>0)的函数是图象变换的基础.(2)常聶平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.解⑴将y=2"的图象向左平移2个单位•图象如图1・图]~3' 图2考点突破考点二函数图象的辨识【例2]⑴(2014•成都三诊)函数丁=鉴!亍的部分图象大致为()A B C D⑵见下一页解析⑴依题意,注意到当兀>0时,2^-1>0, 2x lcos2x|>0,此时yNO; 当xVO时,2^-1<0, 2x lcos2x|>0,此Bty<0,结合各选项知,故选A.考点突破考点二函数图象的辨识规律方法函数图象的辨识可从以下方面入手: ⑴从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.⑷从函数的特征点,排除不合要求的图象.利用上述方法排除.筛选选项.解析因为A ―兀)=[1—cos(—x)]sin(—X)=—(1—cos x)* sin x =—f(x) f所以函数/仗)为奇函数,图象关于原点对称,排除B;当兀丘(0,龙)时,1—cosx>0, sinx>0,所以/匕)>0,排除A;又函数/*(兀)的导函数厂(兀)=sin2x—cos2x+cos x, 所以厂(0)=0,排除D.故选C.答案C解析⑴在同一直角坐标系下画出函数/仗)=2111兀与函数g(x)=x2—4兀+5=(兀一2)2+1的图象,如图所示. —V/(2)=21n2>g(2) = l,・\/(兀)与g(Q的图象的交点个数为2, 故选B.【例3】⑴函数/(x)=21nx 的图象与函数g(x)=x 2—4x+5的图象的交点个数为( ) A. 3 B ・2 C ・1 D ・0|兀2—⑵已知函数V=匚二f 的图象与函数y=kx-2的图象恰有两个交 点,则实数花的取值范围是 ___________ .(2)根据绝对值的意义, lx 2—11 [x+1 &>1 或xV —1),—x —1 (—・ 在直角坐标系中作出该函数的图象, 如图中实线所示. 根据图象可知, 当0 <k< 1或1 4时有两个交点. 答案(1)B (2)(0, 1)U(1, 4)8/ o A 3 2 1规律方法利用函数的图象可解决方程和不等式的求解问题,如判断方程是否有解,有多少个解.数形结合是常用的思想方法.【训练3】⑴已知函数y=/(x)的周期为2,当皿[―1, 1]时,/(x) =x2,那么函数y=/3)的图象与函数y = ll阴的图象的交点共有( )A. 10个B. 9个C. 8个D. 7个(2)(2014-黄冈调研)设函数/3)=比+创,g(x)=x—1,对于任意的兀GR,不等式/⑴冷3)恒成立,则实数°的取值范围是—解析⑴根据沧)的性质及/⑴在[一1, 1]上的解析式可作图如下可验证当*=10时,j = llnlOI = l;当兀>10时,llnxl>l・因此结合图像及数据特点知丁=/(对与y= llnxl的图象交点共有10个.17-1 O 1234 5678 9 10 兀【训练3】⑴已知函数y=/(x)的周期为2,当皿[―1, 1]时,/(x) =x2,那么函数y=/3)的图象与函数y = ll阴的图象的交点共有( )A. 10个B. 9个C. 8个D. 7个(2)(2014-黄冈调研)设函数/3)=比+创,g(x)=x—1,对于任意的兀G76不等^f(x)>g(x)恒成立,则实数“的取值范围是<(2)如图,要使沧)懣(兀)恒成立, 则一心1,..d>—1.答案(1)A (2)[-1, +o))1. 列表描点法是作函数图象的辅助手段,要作函数图象首 先要明确函数图象的位置和形状:⑴可通过研究函数的性质 如定义域、值域、奇偶性、周期性、单调性等;(2)可通过函 数图象的变换如平移变换、对称变换、伸缩变换等;(3)可通 过方程的同解变形,如作函数丿=7匸口的图象.2. 合理处理识图题与用图题(1)识图 对于给定函数的图象,要从图象的左右、上下分布范 围、变化趋势、对称性等方面研究函数的定义域、值域、单调 性、奇偶性、周期图 要用函数的思想指导解题,即方程的问题函数解(方 程的根即相应函数图象与兀轴交点的横坐标,或是方程变形后,应的两函数图象交点的横坐标),不等式的问题 函数解(不等式的解集即一个函数图象在另一个函数图象的上 方或下方时的相应兀的范围).⑴用描点法作函数图象时,要注意取点合理,并用“平滑,啲曲线连结,作完后要向两端伸展一下,以表示在整个定义域上的图象.(2)要注意一个函数的图象自身对称和两个不同的函数图象对称的区别.《课后限时刑療》(见教辅)/。
《创新设计》2018版高考数学(文)(江苏专用)一轮复习练习第二章函数概念与基本初等函数I2-7Word版含答案

第7讲函数的图象基础巩固题组(建议用时:40分钟)一、填空题1.(2017·扬州一检)把函数y=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.解析把函数y=f(x)的图象向左平移1个单位,即把其中x换成x+1,于是得y=[(x+1)-2]2+2=(x-1)2+2,再向上平移1个单位,即得到y=(x-1)2+2+1=(x-1)2+3.答案y=(x-1)2+32.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________(填序号).解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除①.因交通堵塞停留了一段时间,与学校的距离不变,排除④.后来为了赶时间加快速度行驶,排除②.故填③.答案③3.已知函数f(x)的图象如图所示,则函数g(x)=log2f(x)的定义域是________.解析 当f (x )>0时, 函数g (x )=log 2 f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].答案 (2,8]4.(2015·浙江卷改编)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为________(填序号).解析 (1)因为f (-x )=⎝ ⎛⎭⎪⎫-x +1x cos(-x )=-⎝ ⎛⎭⎪⎫x -1x cos x =-f (x ),-π≤x ≤π且x ≠0,所以函数f (x )为奇函数,排除①,②.当x =π时,f (x )=⎝ ⎛⎭⎪⎫π-1πcos π<0,排除③,故填④. 答案 ④5.(2017·桂林一调改编)函数y =(x 3-x )2|x |的图象大致是________(填序号).解析 由于函数y =(x 3-x )2|x |为奇函数,故它的图象关于原点对称.当0<x <1时,y <0;当x >1时,y >0. 排除①③④,故填②. 答案 ②6.(2017·南师附中调研)使log 2(-x )<x +1成立的x 的取值范围是________.解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).答案 (-1,0)7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0). 则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1,∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1(a ≠0). ∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤014(x -2)2-1,x >08.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________. 解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案 [-1,+∞) 二、解答题9.已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值. 解(1)函数f (x )的图象如图所示. (2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5]. (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3.10.已知f (x )=|x 2-4x +3|.(1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. 解(1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎨⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.能力提升题组 (建议用时:20分钟)11.(2017·平顶山二模改编)函数y =a +sin bx (b >0且b ≠1)的图象如图所示,那么函数y =log b (x -a )的图象可能是________(填序号).解析由题图可得a>1,且最小正周期T=2πb<π,所以b>2,则y=log b(x-a)是增函数,排除①和②;当x=2时,y=log b(2-a)<0,排除④,故填③. 答案③12.(2015·安徽卷改编)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论:①a>0,b>0,c<0;②a<0,b>0,c>0;③a<0,b>0,c<0;④a<0,b<0,c<0.其中正确的是________(填序号).解析函数定义域为{x|x≠-c},结合图象知-c>0,∴c<0.令x=0,得f(0)=bc2,又由图象知f(0)>0,∴b>0.令f(x)=0,得x=-ba,结合图象知-ba>0,∴a<0.答案③13.(2017·常州监测)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值范围为________.解析 对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|.因为f (x )的草图如图所示, 观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1的图象可知,当x =12时,函数f (x )max =14, 所以|k -1|≥14,解得k ≤34或k ≥54. 答案 ⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞14.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+ax ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围. 解 (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上, ∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x . (2)由题意g (x )=x +a +1x ,且g(x)=x+a+1x≥6,x∈(0,2].∵x∈(0,2],∴a+1≥x(6-x),即a≥-x2+6x-1. 令q(x)=-x2+6x-1,x∈(0,2],q(x)=-x2+6x-1=-(x-3)2+8,∴当x∈(0,2]时,q(x)是增函数,q(x)max=q(2)=7. 故实数a的取值范围是[7,+∞).。
创新设计 2018版高考数学(人教)大一轮复习配套课件:第二章 函数概念与基本初等函数I 第1讲

基础诊断
考点突第破八页,编辑于星期日课:六堂点总四十结四分。
3.(2017·青岛一模)函数 y=2x2-1-3xx-2 2的定义域为(
)
A.(-∞,1]
B.[-1,1]
C.[1,2)∪(2,+∞)
D.-1,-12∪-12,1
解析 由题意,得12- x2-x2≥ 3x-0,2≠0.
解之得-1≤x≤1 且 x≠-12.
解析 根据分段函数的意义,f(-2)=1+log2(2+2)=1+2=3.又 log212>1,6, 因此f(-2)+f(log212)=3+6=9.
答案 C
基础诊断
考点突第破二十三页,编辑于星课期日堂:总六点结四十四分。
命题角度二 求参数的值或取值范围
为________.
基础诊断
考点突第破十五页,编辑于星期课日:堂六总点 四结十四分。
4-|x|≥0, 解析 (1)要使函数 f(x)有意义,应满足x2-x-5x3+6>0, ∴|xx-|≤24>,0且x≠3,则 2<x≤4,且 x≠3. 所以 f(x)的定义域为(2,3)∪(3,4]. (2)因为函数 f(x)的定义域为 R,所以 2x2+2ax-a-1≥0 对 x∈R 恒成 立,则 x2+2ax-a≥0 恒成立.因此有 Δ=(2a)2+4a≤0, 解得-1≤a≤0.
基础诊断
考点突第破七页,编辑于星期日课:六堂点总四十结四分。
2.(必修1P25B2改编)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域 为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )
解析 A中函数定义域不是[-2,2],C中图象不表示函数,D中函 数值域不是[0,2]. 答案 B
答案 D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章函数概念与基本初等函数Ⅰ
第1讲函数及其表示
基础巩固题组
(建议用时:30分钟)
一、选择题
1.(2017·宜春质检)函数f(x)=log2(x2+2x-3)的定义域是
() A.[-3,1] B.(-3,1)
C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞)
解析使函数f(x)有意义需满足x2+2x-3>0,解得x>1或x<-3,所以f(x)的定义域为(-∞,-3)∪(1,+∞).
答案 D
2.(2017·衡水中学月考)设f,g都是由A到A的映射,其对应法则如下:映射f的对应法则
x 123 4
f(x)342 1
x 123 4
g(x)431 2
则f[g(1)]
() A.1 B.2 C.3 D.4
解析由映射g的对应法则,可知g(1)=4,
由映射f的对应法则,知f(4)=1,故f[g(1)]=1.
答案 A
3.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=
() A.x+1 B.2x-1
C .-x +1
D .x +1或-x -1
解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2. ∴k 2=1,且kb +b =2,解得k =b =1. 答案 A
4.(2017·衡阳八中一模)f (x )=⎩⎪⎨⎪⎧
⎝ ⎛⎭
⎪⎫13x (x ≤0),
log 3x (x >0),
则f ⎣⎢⎡⎦
⎥⎤
f ⎝ ⎛⎭⎪⎫19=
( )
A .-2
B .-3
C .9
D .-9
解析 ∵f ⎝ ⎛⎭⎪⎫
19=log 319=-2,
∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2
=9. 答案 C
5.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为
( )
A .y =⎣⎢⎡⎦⎥⎤x 10
B .y =⎣⎢
⎡⎦⎥⎤
x +310 C .y =⎣⎢
⎡⎦
⎥⎤
x +410 D .y =⎣⎢
⎡⎦
⎥⎤
x +510 解析 取特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,选B. 答案 B
6.(2016·全国Ⅱ卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是
( )
A .y =x
B .y =lg x
C .y =2x
D .y =
1x
解析 函数y =10lg x 的定义域、值域均为(0,+∞),而y =x ,y =2x 的定义域均为R ,排除A ,C ;y =lg x 的值域为R ,排除B ,故选D. 答案 D
7.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪
⎧
x +a ,-1≤x <0,⎪⎪⎪⎪
⎪⎪
25-x ,0≤x <1,其中a ∈R .
若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭
⎪⎫
92,则f (5a )的值是
( )
A.12
B.14 C .-25
D.18
解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫
-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110, ∴-12+a =110,则a =35,
故f (5a )=f (3)=f (-1)=-1+35=-2
5. 答案 C
8.(2017·铜陵一模)设P (x 0,y 0)是函数f (x )图像上任意一点,且y 20≥x 2
0,则f (x )的解
析式可以是
( )
A .f (x )=x -1x
B .f (x )=e x -1
C .f (x )=x +4
x
D .f (x )=tan x
解析 对于A 项,当x =1,f (1)=0,此时02≥12不成立.对于B 项,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e
-12≥(-1)2
不成立.在D 项中,f ⎝ ⎛⎭
⎪⎫54π=tan 54π=1,
此时12≥⎝ ⎛⎭⎪⎫
54π2不成立.∴A ,B ,D 均不正确.选C.事实上,在C 项中,对任
意
x 0∈R ,y 20=⎝
⎛
⎭⎪⎫x 0+
4x 02
有y 20-x 20=16x 20
+8>0,有y 20≥x 2
0成立. 答案 C 二、填空题
9.(2016·江苏卷)函数y =3-2x -x 2的定义域是________. 解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]
10.已知函数f (x )=⎩⎪⎨⎪⎧
2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫
f ⎝ ⎛⎭⎪⎫π4=________. 解析 ∵f ⎝ ⎛⎭⎪⎫
π4=-tan π4=-1.
∴f ⎣⎢⎡⎦⎥⎤
f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案 -2
11.已知函数f (x )满足f ⎝ ⎛⎭⎪⎫
2x +|x |=log 2x |x |,则f (x )的解析式是________.
解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫
1x =log 2x ,则f (x )=log 21x =-log 2x .
答案 f (x )=-log 2 x
12.设函数f (x )=⎩⎨⎧
2x ,x ≤0,|log 2x |,x >0,
则使f (x )=12的x 的集合为________. 解析 由题意知,若x ≤0,则2x =12,解得x =-1;若x >0,则|log 2x |=1
2,解
得x =212或x =2-12,故x 的集合为⎩
⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,2
2.
答案
⎩⎪⎨⎪
⎧⎭
⎪⎬⎪
⎫-1,2,22
能力提升题组 (建议用时:15分钟)
13.(2015·湖北卷)设x ∈R ,定义符号函数sgn x =⎩⎨⎧
1,x >0,
0,x =0,
-1,x <0.
则
( )
A .|x |=x |sgn x |
B .|x |=x sgn|x |
C .|x |=|x |sgn x
D .|x |=x sgn x
解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 D
14.设函数f (x )=⎩⎨⎧
3x -1,x <1,
2x ,x ≥1,
则满足f (f (a ))=2f (a )的a 的取值范围是
( )
A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭
⎪⎫23,+∞ D .[1,+∞)
解析 由f (f (a ))=2f (a )得,f (a )≥1.
当a <1时,有3a -1≥1,∴a ≥23,∴2
3≤a <1. 当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥2
3. 答案 C
15.函数f (x )=ln ⎝ ⎛
⎭
⎪⎫1+1x +1-x 2的定义域为________.
解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧
1+1
x >0,
x ≠0,
1-x 2≥0
⇒⎩⎨⎧
x <-1或x >0,
x ≠0,-1≤x ≤1
⇒0<x ≤1.∴
f (x )的定义域为(0,1]. 答案 (0,1]
16.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧
x +2x
-3,x ≥1,
lg (x 2+1),x <1,则f (f (-3))=________,f (x )
的最小值是________.
解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,
当x ≥1时,f (x )=x +2
x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;
当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-3。