第19章一次函数全章教案
【人教版】数学八下:第19章《一次函数》全章名师教学设计
【人教版】数学八下:第19章《一次函数》全章名师教学设计一. 教材分析人教版数学八下第19章《一次函数》是学生在学习了初中阶段函数概念的基础上,进一步深入学习一次函数的知识。
一次函数是实际问题中应用最广泛的一种函数,本章内容主要包括一次函数的定义、性质、图像以及一次函数在实际问题中的应用。
通过本章的学习,使学生能理解和掌握一次函数的基本概念和性质,能运用一次函数解决一些简单的实际问题,为后续学习其他函数知识打下基础。
二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的认识。
但在实际应用中,对一次函数的理解和运用还不够熟练。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解和掌握一次函数的知识,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.理解一次函数的定义和性质。
2.学会绘制一次函数的图像。
3.能够运用一次函数解决实际问题。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的绘制。
3.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握一次函数的知识。
2.实践操作法:让学生动手绘制一次函数的图像,提高学生的实践能力。
3.问题驱动法:提出实际问题,激发学生的思考,培养学生解决问题的能力。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画等。
2.练习题:准备一些一次函数的相关练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一次函数的概念。
例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
2.呈现(10分钟)讲解一次函数的定义和性质,通过课件展示一次函数的图像,让学生直观地理解一次函数的特点。
3.操练(10分钟)让学生动手绘制一次函数的图像,加深对一次函数的理解。
教师巡回指导,解答学生遇到的问题。
第19章-一次函数全章教案(共13个).docx
子表示 y?
2.你见过水中的涟漪吗?如右图,圆形水波慢慢地扩大。在这一过程中,当圆的半径 r 分别 为 10cm,20cm,30cm 时,圆的面积 s 分别为多少?用含 r 的式子表示 s.
3. 用 10m 长的绳子围成一个矩形.当矩形的一边长 x 分别为 3m,3.5m,4m,4.5m 时,它的邻边 长 y 分别为多少?用含 x 的式子表示 y.
计 行驶 5×60 千米,即 300 千米……因此行驶里程 s 千米与时间 t 小时之间有关系:s=60t.其中里
程 s 与时间 t 是变化的量,速度 60•千米/小时是不变的量.
[师]很好!谢谢你正确的阐述.
这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多
类似的问题,都是反映不同事物的变化过程,其中有些量的是按照某种规律变化的,如上例中的时
施 对应.
教
问题(4)中,可以看出:x 与 y 是两个变量,每当 x 取定一个值时,y 就有唯一确定的值与其
学 对应.
过
由以上回顾我们可以归纳这样的结论:
程
上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有
设 唯一确定的值与它对应.
计
其实,在一些用图或表格表达的问题中,.5 元,购买《万盛报》所需钱数 y(元)与所买份数 x 之间的关系
是
,其中 是常量,
是变量。
2、在圆的周长公式 C=2πr 中,常量是
,变量是
。
3、指出下列关系式中的常量与变量:
(1) y=5-3x
(2) v 4 r 3
3
4、已知直线 m、n 之间的距离是 3,△ABC 的顶点 A 在直线 m 上,边 BC 在直线 n 上,求△ABC
人教版初中数学八年级下册第十九章:一次函数(全章教案)
第十九章一次函数教材简析本章的主要内容有:(1)函数、一次函数与正比例函数的概念;(2)函数的表示方法;(3)一次函数的图象与性质;(4)一次函数的应用.函数是刻画各种运动变化的常用模型,其中最为简单的是一次函数,它可以解决现实生活中的许多问题,本章将主要向学生讲授一次函数的相关知识.本章是中考中的必考内容,主要考查用待定系数法求一次函数的表达式,结合函数图象对简单的实际问题进行信息分析,通过分析函数关系式对变量的变化规律进行预测等,题型多样.教学指导【本章重点】通过学习变量间的关系初步体会函数的概念,明确函数的三种表示方法,一次函数的图象、性质及其应用.【本章难点】函数的概念和一次函数的应用.【本章思想方法】1.分类讨论思想:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得出结论.在本章中,有时确定一次函数的表达式时,要根据一次函数所对应的直线位置来求解,做到不重复、不遗漏.2.数形结合思想:本章在解决与一次函数有关的函数值大小比较时,利用数形结合解决这类问题最快最优.另外解决一次函数图象的综合题时,也常用数形结合法.3.函数与方程思想:将具体问题抽象为函数模型,根据函数之间的关系建立方程,通过方程解决问题的方法称为函数与方程思想.在本章中,经常根据实际问题抽象出一次函数模型,并根据函数图象的交点建立一元一次方程来求某些特殊值.课时计划19.1函数4课时19.2一次函数6课时19.3课题学习选择方案1课时19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .x 与y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时函数教学目标一、基本目标【知识与技能】1.认识变量中的自变量与函数.2.进一步掌握确定函数关系式的方法.3.会确定自变量的取值范围.【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯.二、重难点目标【教学重点】1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.【教学难点】认识函数、领会函数的意义.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P72~P74的内容,完成下面练习.【3 min反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式.3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x=a时,y=b,函数有唯一的值b 与之对应,则这个对应值b叫做x=a时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大?(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是v随着t的增大而增大.(3)当t每增加1秒,v的变化情况不相同,在第9秒时,v的增加量最大.(4) 120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t的取值范围;(2)当7:55时,t=55-30=25,将t=25代入(1)中的关系式即可;(3)令y=0,求出t的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100).(2)∵7:55-7:30=25(分钟),∴当t=25时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升.(3)令y=0,即200-2t=0,解得t=100.100分=1时40分,7时30分+1时40分=9时10分,故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x的值,实际上就是解方程.环节3课堂小结,当堂达标(学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!19.1函数19.1.2函数的图象第1课时函数的图象教学目标一、基本目标【知识与技能】1.学会用列表、描点、连线画函数图象.2.学会观察、分析函数图象信息.【过程与方法】在研究函数图象的过程中体会数形结合思想,并利用它解决问题,提高解决问题的能力.【情感态度与价值观】1.体会数学方法的多样性,提高学习兴趣.2.认识数学在解决问题中的重要作用,从而加深对数学的认识.二、重难点目标【教学重点】1.函数图象的画法.2.观察分析图象信息.【教学难点】分析概括图象中的信息.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P75~P79的内容,完成下面练习.【3 min反馈】1.什么是函数图象?解:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.2.在学习函数图象时,可以通过以下两点帮助理解:(1)函数图象上的任意点P(x,y)中的x、y都满足其函数解析式;(2)满足函数解析式的任意一对x、y的值,所对应的点一定在函数图象上.3.用函数图象描述实际问题时,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.4.如何作函数图象?具体步骤有哪些?画函数的图象,一般运用描点法.用描点法画函数图象的一般步骤:(1)列表:表中给出一些自变量的值及其对应的函数值.自变量的取值不应使函数太大或太小,以便于描点,点数一般以5到7个为宜;(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;(3)连线:按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连结起来.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经过的时间t(分钟)之间的大致函数图象是()A BC D【互动探索】(引发学生思考)行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加,但增加的比高速路上慢,故B 符合题意.【答案】B【互动总结】(学生总结,老师点评)此类题目,理解题意是解题关键,根据题干中提供的信息及生活实际,判断图象各阶段的变化情况和特征.【例2】作出函数y =-6x的图象.【互动探索】(引发学生思考)先列表取值,再描点,最后连线. 【解答】列表:【互动总结】(学生总结,老师点评)画函数图象要经过列表、描点、连线三个步骤,列表时自变量取值要有代表性(自变量不可以只取正数,也不可以只取负数).自变量不为0,表示图象不是连续的,在自变量为0时,图象断开,分为两段.活动2 巩固练习(学生独学)1.周末小石去博物馆参加综合实践活动,先骑行共享单车前往,0.5小时后到达公交车站,他在公交车站等了一段时间,遇到了叔叔,搭上了叔叔的电瓶车前往.已知小石离家的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象大致如图.则小石叔叔电瓶车的平均速度为( C )A.30千米/小时B.18千米/小时C.15千米/小时D.9千米/小时2.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→B→C→D→A,设P点经过的路程为x,以点A,P,B为顶点的三角形的面积是y,则下列图象能大致反应y与x的函数关系的是(B)A B C D3.在所给的平面直角坐标系中画出函数y=-2x+2的图象,并根据图象回答问题:(1)当x=-1时,y的值;(2)当x为何值时,y>0?(3)若0≤x≤3,求y的取值范围.解:列表如下:(1)根据表格,当x=-1时y=4.(2)根据图象,观察可得,当x<1时,y>0.(3)根据图象,观察可得,若0≤x≤3,则-4≤y≤2.活动3拓展延伸(学生对学)【例3】小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与离家距离的关系示意图.根据图中提供的信息回答下列问题:(1)小明从家到学校的路程是多少米?(2)小明在书店停留了多久?(3)本次上学途中,小明一共骑行了多少米?一共用了多长时间?(4)我们认为骑单车的速度超过300米/分就超越了安全范围.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全范围内吗?【互动探索】根据图象,获取其中的信息,图象中横、纵坐标表示的是什么?函数值随自变量的变化趋势是怎么样的?【解答】(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米.(2)根据图象,从8分钟到12分钟这段时间内距离不变,故小明在书店停留了4分钟. (3)一共骑行的总路程为1200+(1200-600)+(1500-600)=1200+600+900=2700(米),共用了14分钟.(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14分钟时,平均速度为1500-60014-12=450(米/分).所以,12~14分钟时,小明骑车速度最快,不在安全范围内.【互动总结】(学生总结,老师点评)解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数的图象⎩⎪⎨⎪⎧作法意义应用练习设计请完成本课时对应训练!第2课时函数的三种表示方法教学目标一、基本目标【知识与技能】1.总结函数三种表示方法,并总结三种表示方法的优缺点.2.会根据具体情况选择适当方法.【过程与方法】经历回顾思考训练提高归纳总结能力.【情感态度与价值观】1.积极参与活动,提高学习兴趣.2.在数学活动过程中形成合作交流意识及独立思考习惯.二、重难点目标【教学重点】函数三种表示方法.【教学难点】会根据具体情况选择适当方法.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P79~P81的内容,完成下面练习.【3 min反馈】1.函数的三种表示方法分别是解析式法、列表法、图象法.2.用含自变量x的式子表示函数的方法叫做解析式法.3.把一系列自变量x的值与对应的函数值y列成一个表来表示函数关系的方法叫做列表法.4.用图象来表示函数关系的方法叫做图象法.5.函数的三种表示方法的优缺点有哪些?活动1小组讨论(师生互学)【例1】有一根弹簧原长10厘米,挂重物后(不超过50克),它的长度会改变,请根据下面表格中的一些数据回答下列问题:(1)(2)当所挂重物为x(克)时,用h(厘米)表示总长度,请写出此时弹簧的总长度的函数表达式.(3)当弹簧的总长度为25厘米时,求此时所挂重物的质量.【互动探索】(引发学生思考)能从表格中直接读出挂重物体的质量与对应的弹簧总长度的值吗?如何根据表格写出所挂物体的质量与弹簧的总长度之间的函数关系?【解答】(1)5÷0.5×1=10(克),即要想使弹簧伸长5厘米,应挂重物10克.(2)h=10+0.5x(0≤x≤50).(3)令10+0.5x=25,解得x=30,即当弹簧的总长度为25厘米时,此时所挂重物的质量为30克.【互动总结】(学生总结,老师点评)列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用,如成绩表、银行的利率表等.【例2】如图描述了一辆汽车在某一直路上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的关系,请根据图象回答下列问题:(1)汽车一共行驶的路程是多少? (2)汽车在行驶途中停留了多长时间? (3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?【互动探索】(引发学生思考)从函数图象中我们得到哪些信息?这些信息与所求问题有何关系?【解答】(1)由纵坐标看出汽车最远行驶路程是120千米,往返共行驶的路程是120×2=240(千米).(2)由横坐标看出2-1.5=0.5(小时),故汽车在行驶途中停留了0.5小时.(3)①由纵坐标看出汽车到达B 点时的路程是80千米,由横坐标看出到达B 点所用的时间是1.5小时,由此算出平均速度80÷1.5=1603(千米/时);②由纵坐标看出汽车从B 到C 没动,此时速度为0千米/时;③由横坐标看出汽车从C 到D 用时3-2=1(小时),从纵坐标看出行驶了120-80=40(千米),故此时的平均速度为40÷1=40(千米/时);④由纵坐标看出汽车返回的路程是120千米,由横坐标看出用时4.5-3=1.5(小时),由此算出平均速度120÷1.5=80(千米/时).(4)由横坐标看出4.5-3=1.5(小时),返回用了1.5小时.【互动总结】(学生总结,老师点评)图象法的优点是直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.【例3】一辆汽车油箱内有油48升,从某地出发,每行1千米,耗油0.6升,如果设剩余油量为y (升),行驶路程为x (千米).(1)写出y 与x 的关系式;(2)这辆汽车行驶35千米时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆车在中途不加油的情况下,最远能行驶多少千米?【互动探索】(引发学生思考)剩余油量为y(升)与行驶路程为x(千米)之间满足什么样的等量关系?根据自变量的取值怎样求函数值?由函数值怎样求出自变量的取值?【解答】(1)由题意,得y=-0.6x+48.(2)当x=35时,y=48-0.6×35=27,∴这辆车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60,∴汽车剩油12升时,行驶了60千米.(3)令y=0,即-0.6x+48=0,解得x=80,即这辆车在中途不加油的情况下,最远能行驶80 km.【互动总结】(学生总结,老师点评)解析式法有两个优点:一是简明、精确地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.活动2巩固练习(学生独学)1.下面说法中正确的是(C)A.两个变量间的关系只能用关系式表示B.图象不能直观的表示两个变量间的函数关系C.借助表格可以表示出因变量随自变量的变化情况D.以上说法都不对2.某学习小组做了一个实验:从一幢100 m高的楼顶随手放下一个苹果,测得有关数据如下:A.苹果每秒下落的路程越来越长B.苹果每秒下落的路程不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒3.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为(B)。
人教版八年级数学下册19章一次函数复习教学设计
(二)过程与方法
1.通过对一次函数图像的观察、分析,培养学生的观察能力和空间想象力。
2.引导学生运用数形结合的方法,将一次函数与实际问题相结合,提高学生解决问题的能力。
3.通过小组合作、讨论、交流等学习方式,培养学生的团队协作能力和表达能力。
b.斜率k和截距b对一次函数图像的影响;
c.一次函数在实际生活中的应用。
2.各小组汇报:每个小组选派一名代表汇报讨论成果,其他小组成员进行补充。
3.教师点评:针对各小组的讨论情况,给予积极评价和指导,强调重点,纠正错误。
(四)课堂练习
1.基础练习:设计一些基础题目,让学生独立完成,巩固一次函数的基本概念和性质。
8.情感教育,培养良好态度:关注学生的情感体验,营造轻松、愉快的学习氛围,引导学生树立正确的价值观,培养良好的学习态度。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的手机话费套餐为例,展示不同套餐的价格与通话时长之间的关系。引导学生观察、分析并发现其中存在的数学规律,从而引出一次函数的概念。
(2)小组合作完成一份关于一次函数在生活中的应用报告,内容包括:问题背景、数学模型、解决方案、实际操作及Байду номын сангаас果分析。
5.自主学习任务:
(1)查阅资料,了解一次函数在其他学科领域的应用,如物理、经济等;
(2)总结一次函数学习过程中的心得体会,分析自己的学习方法,为下一阶段学习制定合理的学习计划。
2.突破重点,化解难点:针对斜率k和截距b的概念,采用直观的图像演示和实际案例分析,帮助学生理解其物理意义。同时,通过小组合作、讨论交流,让学生在互动中加深对一次函数性质的理解。
一次函数教案-数学八年级下第十九章19.2一次函数19.2.2人教版
第十九章一次函数19.2一次函数19.2.2 一次函数1教学目标1.1知识与技能:[1]理解一次函数和正比例函数的图象是一条直线;[2]熟练地作出一次函数和正比例函数的图象,掌握k 与 b 的取值对直线位置的影响。
1.2 过程与方法:[1]经历一次函数的作图过程,探索某些一次函数图象的异同点;[2]体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
1.3情感态度与价值观:[1]体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
[2]在探索过程中体验成功的喜悦,树立学习的自信心。
2教学重点 / 难点2.1教学重点[1]理解掌握一次函数的图象的特征和相关的性质。
2.2教学难点[1]理解一次函数的概念。
3专家建议本节课是以类比的思想方法为主线,研究什么是一次函数这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数〔从定义到图象与性质〕的根底上学习的。
学生原有知识与学习经历对本节课的类比学习奠定扎实的学习根底,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的根本思路,促进学生的认知构造的不断的完善,进而开展学生的类比、抽象与概括能力而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
4教学方法启发、引导、类比、发现第1页共1页5 教学用具多媒体课件,教学用直尺、三角板等。
6 教学过程6.1 情境创设【师】前面我们学习了用描点法画函数的图象的方法, 下面请同学们根据画图象的步骤: 列表、 描点、连线,在同一平面直角坐标系中画出以下函数的图象。
( 1) y1 x ; ( 2) y 1 x2 ; 22 (3) y 3x ; (4 )y = 3x 2 =+ . 【师】提示学生要注意在同一个平面直角坐标系中完成以上四个图象。
人教版八年级数学下册 第19章 一次函数 全章优秀教案
第19章一次函数19.1.1变量与函数(1)教学目标①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义。
能分清实例中的常量与变量,了解自变量与函数的意义。
②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。
③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心。
教学重点与难点重点:函数概念的形成过程。
难点:正确理解函数的概念。
教学准备每个小组一副弹簧秤和挂件,一根绳子。
教学设计提出问题:1.汽车以60千米/时的速度匀速行驶。
行驶里程为s千米,行驶时间为t小时。
先填写下面的表,再试着用含t的式子表示s:2.已知每张电影票的售价为10元。
如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?3.要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?注:(1)让学生充分发表意见,然后教师进行点评。
(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验。
动手实验1.在一根弹簧秤上悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,填入下表:如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?2.用10dm长的绳子围成矩形.试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示) 。
设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?注:分组进行实验活动,然后各组选派代表汇报。
通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息。
第十九章--一次函数全章教案
第十九章--一次函数全章教案人教版义务教育教材◎数学八年级下册第十九章一次函数本章概述本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系.以及以建立一次函数模型来选择最优方案为素材的课题学习.全章包括三节:第19.1节变量与函数是全章的基础部分;第19.2节是全章的重点部分;第19.3节是全章的拓展提高部分,通过两个典型问题的讨论,展示函数的应用价值,突出建立数学模型的思想方法和实际意义.教学目标1. 以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建1人教版义务教育教材◎数学八年级下册立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.2. 结合实例,了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象数形结合地分析简单的函数关系.3. 能确定简单实际问题中函数自变量的取值范围,并会求函数值.4. 结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单实际问题.5. 通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2人教版义务教育教材◎数学八年级下册6. 进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.课时安排本章教学时间约需17课时,具体分配如下:19.1 变量与函数6课时19.2 一次函数6课时19.3 课题学习选择方案3课时教学活动小结2课时3人教版义务教育教材◎数学八年级下册19.1 函数教案A第1课时教学内容变量与函数.教学目标1. 结合实例,了解常量、变量的意义,体会“变化与对应”的思想.2. 通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.3. 引导学生探索实际问题中的数量关系,4人教版义务教育教材◎数学八年级下册1人教版义务教育教材◎数学八年级下册(2)电影票的售价为10元/张.第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各多少元?设一场电影售出x张票,票房收入为y元,y的值随x 的值的变化而变化吗?(3)你见过水中涟漪吗?圆形水波慢慢地扩大.在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S 分别为多少?S 的值随r 的值的变化而变化吗?(4)用10 m长的绳子围一个矩形.当矩形的一边长x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?设计意图:让学生熟练地从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个1人教版义务教育教材◎数学八年级下册变化的量.教师引导学生思考这些问题,通过合理、正确的思维方法探索出变化规律.可以分组进行实验活动,然后各组选派代表汇报.最后教师进行点评.通过动手实验,调动学生的学习积极性,使学生进一步深刻体会了变量间的关系,学会运用表格形式来表示实验信息.2. 变量与常量的概念(1)在学生动手实验并充分发表自己意见的基础上,师生共同归纳:这些问题反映了不同事物的变化过程.其中有些量的数值是变化的,例如时间t,路程s;售出票数x,票房收入y……有些量的数值是始终不变的,例如速度60 km/h,票价10元/张……在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.(2)请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量.2人教版义务教育教材◎数学八年级下册(3)举出一些变化的实例,指出其中的变量和常量.学生先独立思考,然后组内交流并作记录,最后各组选派代表汇报.通过活动,培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力.三、课堂练习指出下列问题中的变量和常量:1. 某市的自来水价为4元/t.现要抽取若干户居民调查水费支出情况,记某户月用水量为x t,月应交水费为y元.2. 某地手机通话费为0.2元/min.李明在手机话费卡中存入30元,记此后他的手机通话时间为t min,话费卡中的余额为w元.3. 水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π.4. 把10本书随意放入两个抽屉(每个抽3人教版义务教育教材◎数学八年级下册屉内都放),第一个抽屉放入x本,第二个抽屉放入y本.练习答案:1. 变量x,y;常量4.2. 变量t,w;常量0.2,30.3. 变量r,C;常量π.4. 变量x,y;常量10.四、课堂小结对本节课进行总结、理清脉络.五、布置作业教材第71、72页练习.第2课时教学内容变量与函数.教学目标1. 了解函数的概念.2. 能结合具体实例概括函数的概念.3. 在函数概念的形成过程中体会运动变4人教版义务教育教材◎数学八年级下册化与对应的思想.教学重点函数的概念.教学难点函数概念中的“单值对应”.教学过程一、导入新课教师:我们首先回顾一下上节课中的四个问题.问题(1)~(4)中是否各有两个变量?同一个问题中的变量之间有什么联系?通过挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验.归纳出变量间的单值对应关系.二、新课教学学生1:在问题(1)中,有t和s 是两个变量,每当t 取定一个值时,s就有唯一确定的值与其对应.学生2:在问题(2)中,有x和y是两个5人教版义务教育教材◎数学八年级下册变量,每当x取定一个值时,y就有唯一确定的值与其对应.学生3:在问题(3)中,有r和S是两个变量,每当r 取定一个值时,S就有唯一确定的值与其对应.它们的关系式为S=πr2.据此可以算出r分别为10cm,20cm,30cm时,S 分别为100 πcm2,400 πcm2,900 πcm2.学生4:在问题(4)中,有x和y是两个变量,每当x取定一个值时,y就有唯一确定的值与其对应.它们的关系式为y=5-x.据此可以算出x 分别为3m,3.5m,4m,4.5m 时,y分别为2m,1.5m,1m,0.5m.教师:同学们说的很好,我们为他们鼓掌.上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量就有唯一确定的值与其对应.其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题:6人教版义务教育教材◎数学八年级下册(1)下图是体检时的心电图,其中图上点的横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每一个确定的值,y都有唯一确定的值与其对应吗?(2)下面的我国人口数统计表中,年份与人口数可以分别记作两个变量x与y.对于表中每一个确定的年份x,都对应着一个确定的人口数y吗?中国人口数统计表学生:我们通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y•都有唯7人教版义务教育教材◎数学八年级下册一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.教师:说的很好.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.从这个意义看,我们前面学习的问题中,自变量、函数和函数值分别是什么?学生1:在汽车行驶中,时间t是自变量,路程s是t的函数,当t=1时,函数值s=60,当t=2时,函数值s=120.学生2:在心电图中,时间x是自变量,心脏部位的生物电流y是x的函数.学生3:在人口数统计表中,年份x是自变量,人口数y是x的函数,当x=2010时,函数值y=13.71.8人教版义务教育教材◎数学八年级下册教师:从上面可知,函数是刻画变量之间对应关系的数学模型,许多问题中变量之间的关系都可以用函数来表示.三、课堂练习教材第74、75页练习.四、课堂小结今天学习了什么?还有什么问题?五、布置作业习题第19.2第1、2题.第3课时教学内容变量与函数.教学目标1. 初步掌握函数概念,能判断两个变量间的关系是否可看做函数.2. 能举出生活中函数的实例,并能初步形9人教版义务教育教材◎数学八年级下册成利用函数的观点认识现实世界的意识和能力.3. 经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力和从图象中获取信息的能力.教学重点了解函数的意义,会求函数值.教学难点函数概念的抽象性.教学过程一、导入新课上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?二、实例探究例1 汽车油箱中有汽油50 L.如果不再10人教版义务教育教材◎数学八年级下册加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.(1)写出表示y与x的函数关系的式子;(2)指出自变量x的取值范围;(3)汽车行驶200 km时,油箱中还有多少汽油?解:(1)行驶路程x 是自变量,油箱中的油量y是x 的函数,它们的关系为y=50-0.1x.(2)仅从式子y=50-0.1x 看,x 可以取任意实数.但是考虑到x 代表的实际意义为行驶路程,因此x 不能取负数.行驶中的耗油量为0.1x,它不能超过油箱中现有汽油量50,即0.1x ≤50.因此,自变量狓的取值范围是0≤x≤500.(3)汽车行驶200 km时,油箱中的汽油11人教版义务教育教材◎数学八年级下册量是函数y=50-0.1x在x=200时的函数值.将x=200代入y=50-0.1x ,得y=50-0.1×200=30.汽车行驶200 km时,油箱中还有30 L汽油.像y=50-0.1x这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法.这种式子叫做函数的解析式.三、拓展应用例2 自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,12人教版义务教育教材◎数学八年级下册试求该保管站这个星期日收入保管费总数的范围.解:(1)y=0.3x+0.5×(3500―x)=―0.2x+1750(x是正整数,0≤x≤3500) .(2)若变速车的辆次不小于25%,但不大于40%,则3500×(1―40%)≤x≤3500×(1―25%).∴y max=―0.2×3500×(1―40%) +1750=1330.y min=―0.2×3500×(1―25%) +1750=1225.∴该保管站这个星期日收入保管费总数的范围在1225元至1330元之间.总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.四、课堂练习1. 学校计划组织一次春游,学生每人交3013人教版义务教育教材◎数学八年级下册14 元,求总金额y (元)与学生数n (个)的关系.2. 为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n (个)与单价(a )元的关系.答案:1. y =30n ;y 是函数,n 是自变量. 2. 100n a ,n 是函数,a 是自变量.五、布置作业习题第19.2第4、5题.人教版义务教育教材◎数学八年级下册第4课时教学内容函数的图象.教学目标1. 学会用描点法画出简单函数的图象,初步了解函数关系式与函数图象之间的关系.2. 学会观察、分析函数图象信息.3. 提高识图能力、分析函数图象信息能力.4. 体会数形结合思想,并利用它解决问题,提高解决问题能力.教学重点1. 函数图象的画法.2. 观察分析图象信息.15人教版义务教育教材◎数学八年级下册教学难点分析概括图象中的信息.教学过程一、导入新课教师指导学生在网上打开天气预报页面,引导学生学生阅读气温变化图,体会图象的直观和简单.随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.二、新课教学例如,正方形的面积S与边长x的函数解析式为S=x2.根据问题的实际意义,可知自变量x 的取值范围是x>0.我们还可以利用在坐标系中画图的方法来表示S与x 的关系.16人教版义务教育教材◎数学八年级下册计算并填写下表.如下图,在直角坐标系中,画出上面表格中各对数值所对应的点,然后连接这些点.所得曲线上每一个点都代表x的值与S的值的一种对应,例如点(2,4)表示当x=2时,S=4.注意:(1)要根据表格中的数值画出合适的直角坐标系.(2)描点法画函数的图象时,要描出的点的个数应取值适当.一般地,如果函数在描出的两点之间是连续的,那么已17人教版义务教育教材◎数学八年级下册描出的点之间的连线要光滑,不要出现明显的拐弯点.在完成图象后,教师引导学生得出概念:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.上图的曲线即函数S=x2(x>0)的图象.思考:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t 的变化而变化.你从图象中得到了哪些信息?18人教版义务教育教材◎数学八年级下册设计目的:由图象分析函数的变化趋势.由图象分析数量变化的规律是研究问题的方法之一.这里的气温变化情况难以用确切的解析式来表达.只能通过分析仪器自动绘制的气温变化曲线得到相关信息.可以认为,气温T是时间t 的函数,上图是这个函数的图象.由图象可知:(1)这一天中凌晨4时气温最低(-3℃),14时气温最高(8℃).(2)从 0 时至4 时气温呈下降状态(即温度随时间的增长而下降),从4时到14时气温呈上升状态,从14时至24时气温又呈下降状态.(3)我们可以从图象中看出这一天中任一时刻的气温大约是多少.三、实例探究例某河流受暴雨影响,水位不断上涨,19人教版义务教育教材◎数学八年级下册20下面是某天此河流的水位记录:时间/时0 4 8 12 16 2024 水位/米 2 2.5 34 5 6 8 (1)上表反映的是哪两个量之间的关系?自变量和因变量各是什么?(2)根据表格画出表示两个变量的河流水位变化图. (3)哪段时间水位上升得最快?解:(1)表格反映的是时间与水位之间的关系.自变量是时间,因变量是水位.(2)河流水位变化图如下:(3)在20~24小时内,水位上升得最快.人教版义务教育教材◎数学八年级下册评注:表格中的数据不断变化的量即为变量,时间就是自变量,水位即为因变量.根据表格中的具体数据即可画出折线统计图.在统计图中,倾斜最厉害的那一段就是变化最大的.四、课堂小结总结所学内容,深化学生理解.五、布置作业习题第19.2第6题.21人教版义务教育教材◎数学八年级下册第5课时教学内容函数的图象.教学目标1. 学会用列表、描点、连线画函数图象,知道画函数图象的一般步骤.2. 学会观察、分析函数图象信息,提高识图能力、分析函数图象信息能力.3. 体会数形结合思想,并利用它解决实际生活中的问题,提高解决问题能力.4. 使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.教学重点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转22人教版义务教育教材◎数学八年级下册23换这一数形结合的思想.教学难点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学过程一、导入新课问题 上节课我们从气温曲线上获得了许多信息,知道了一些问题.现在让我们来看看下图,如何从图上找到各个时刻的气温?分析:图中,有一个直角坐标系,它的横轴是t 轴,表示时间;它的纵轴是T 轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间t (时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是人教版义务教育教材◎数学八年级下册24 可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t =10时,对应的函数值T =2.气温曲线上每一个点的坐标(t ,T ),表示时间为t 时的气温是T .二、新课教学例1 如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.右图反映了这个过程中,小明离家的距离x 与时间y 之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?人教版义务教育教材◎数学八年级下册(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?教师首先要引导学生观看函数的图象:这个函数的图象是由几条线段组成的折线,其中每条线段代表一个阶段的活动,这条线段的左右端点是横坐标的差,对应相应活动所用的时间.分析:小明离家的距离y是时间x的函数.由图象中有两段平行于x 轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里.解题过程见教材.例2 在式子y=x+0.5中,对于x的每一个确定的值,y有唯一的对应值,即y是x 的函数,画出这个函数的图象.解:从式子y=x+0.5可以看出,x 取任意实数时这个式子都有意义,所以y 的取值范围是全体实数.25人教版义务教育教材◎数学八年级下册从x的取值范围中选出一些数值,算出y 的对应值,列表如下.根据表中数值描点(x,y),并用平滑的曲线连接这些点(下图).从函数的图象可以看出,直线从左向右上升,即当x由小变大时,y=x+0.5随之增大.通过对函数S=x2(x>0)和y=x+0.5的具体分析和讨论,让学生经历列表、描点、连线等绘制函数图象的具体过程,即加深了对图象意义的认识,了解图象上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及描点法画函数图象的一般步骤进行归纳做了准备.26人教版义务教育教材◎数学八年级下册归纳:描点法画函数图象的一般步骤如下:第一步,列表——表中给出一些自变量的值及其对应的函数值;第二步,描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步,连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.三、课堂练习教材第79页练习1、2.四、布置作业习题第19.2第7、8、9、10题.第6课时教学内容函数的图象.27人教版义务教育教材◎数学八年级下册教学目标1. 总结函数三种表示方法.2. 了解三种表示方法的优缺点.3. 会根据具体情况选择适当方法.教学重点1. 认清函数的不同表示方法,知道各自优缺点.2. 能按具体情况选用适当方法.教学难点函数表示方法的应用.教学过程一、导入新课我们在前几节课里知道函数解析式、列表格、画函数图象,都可以表示具体的函数.这三种表示函数的方法,分别称为解析式法、列表法和图象法.思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?28人教版义务教育教材◎数学八年级下册这就是我们这节课要研究的内容.二、新课教学从前面几节课所见到的或自己做的练习可以看出.列表法比较直观、准确地表示出函数中两个变量的关系.解析式法则比较准确、全面地表示出了函数中两个变量的关系.至于图象法它则形象、直观地表示出函数中两个变量的关系.相比较而言,列表法不如解析式法全面,也不如图象法形象;而解析式法却不如列表法直观,不如图象法形象;图象法也不如列表法直观准确,不如解析式法全面.从全面性、直观性、准确性及形象性四个方面来总结归纳函数三种表示方法的优缺点.从所填表中可清楚看到三种表示方法各29人教版义务教育教材◎数学八年级下册有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.例4 一个水库的水位在最近5 h内持续上涨.下表记录了这5 h内6个时间点的水位高度,其中t表示时间,y 表示水位高度.(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你能发现水位变化有什么规律吗?(2)水位高度y是否为时间t的函数?如果是,试写出一个符合表中数据的函数解析式,并画出这个函数的图象.这个函数能表示水位的变化规律吗?(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将为多少米.解:(1)如下图,描出上表中数据对应的点.可以看出,这 6 个点在一条直线上.再结合表中数据,可以发现每小时水位上升0.3 m.由此猜想,如果画出这5 h内其他时刻(如30人教版义务教育教材◎数学八年级下册31t =2.5 h 等)及其水位高度所对应的点,它们可能也在这条直线上,即在这个时间段中水位可能是始终以同一速度均匀上升的.(2)由于水位在最近5 h 内持续上涨,对于时间 t 的每一个确定的值,水位高度y 都有唯一的值与其对应,所以y 是t 的函数.开始时水位高度为3 m ,以后每小时水位上升0.3 m .函数y =0.3t +3(0≤t ≤5)是符合表中数据的一个函数,它表示经过t h 水位上升0.3t m ,即水位 y 为(0.3t +3)m .其图象是下图中点A (0,3)和点B (5,4.5)之间的线段AB .如果在这5 h 内,水位一直匀速上升,即升速为0.3 m/h ,那么函数y =0.3t +3(0≤t ≤5)。
(最新)人教版八年级下册数学第19章《一次函数》全章教学案含解析
第十九章一次函数1.了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象分析简单的函数关系.2.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.3.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单的实际问题.1.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,利用函数模型解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系以及以建立一次函数模型来选择最优方案为素材的课题学习.本章是在学习了平面直角坐标系的基础上进行学习的,为画一次函数的图象进而研究性质奠定了基础.一次函数是初中阶段研究的第一个具体的函数,它的研究方法具有一般性和代表性,并为后面学习反比例函数、二次函数奠定了基础.一次函数和一元一次方程、一元一次不等式、二元一次方程等有着密切的联系,学习一次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解数形结合的重要思想.本章在整个教材中具有承上启下的作用.【重点】结合实例掌握变量、常量和函数的概念,掌握函数的三种表示方法,能结合图象讨论函数的基本性质,运用一次函数的图象和性质解决实际问题.【难点】函数的概念以及一次函数的图象和性质的应用.本章内容是初中数学教学中的重点,也是难点.要重视学生对基本概念的理解,及时了解学生在学习过程中的状况,探索有效地教与学的各种方式.在具体的实施过程中应注意:1.加强与学生已学知识的联系.在代数式、方程、不等式等内容的学习、探索中都已渗透了变化的思想,要注意引导学生在原有知识的基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解和准确应用.运用数学的语言和符号去理解、描述现实世界的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.4.给学生充分的自主探索时间.19.1函数19.1.1变量与函数(2课时)19.1.2函数的图象(2课时)19.2一次函数19.2.1正比例函数(2课时)19.2.2一次函数(3课时)19.2.3一次函数与方程、不等式(1课时)19.3课题学习选择方案单元概括整合4课时6课时1课时1课时19.1函数1.理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.2.掌握用描点法画出一些简单函数的图象,能根据函数图象所提供的信息获取函数的性质.3.全面理解函数的三种表示方法,会根据具体情况选择适当方法表示函数.1.在探究问题的过程中,体会从具体的实例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.2.学生通过自己动手,体会用描点法画函数的图象的步骤.1.从图象中获得变量之间的关系的有关信息,并预测变化趋势,进行科学决策,应用于社会生活.2.让学生通过实际操作,体会函数三种表示法在实际生活中的应用价值,渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流的能力.【重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【难点】函数的概念的理解.19.1.1变量与函数理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.在探究问题的过程中,体会从具体的事例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.通过列举自己身边的事例,体验数学与生活的密切联系,学会观察与发现,激发同学们探究问题的兴趣.【重点】函数的概念和函数自变量的取值范围.【难点】求函数自变量的取值范围.第课时1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.【教师准备】教学中出示的教学插图和例题.【学生准备】预习教材内容导入一:当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.[设计意图]利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:飞机从武汉飞往北京,在这个行驶的过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的汽油在不停的减少,飞机离武汉越来越远,离北京越来越近,….教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.[设计意图]由学生经历的事情提问题,能引起学生的好奇心.1.变量与常量的概念问题:汽车以60km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h12345s/km学生填表,并思考.1.根据题意填写下表:t/h12345s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1h行驶60km,2h行驶2×60km,即120km,3h行驶3×60km,即180km,4h行驶4×60km,即240km,5h行驶5×60km,即300km……t/h12345s/km60120180240300因此其中行驶里程s与时间t是变化的量,速度60km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?学生分析问题,并同桌交流.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元;第二场售出205张票,则第二场电影的票房收入为元;第三场售出310张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析:第一场电影的票房收入为150×10=1500(元).第二场电影的票房收入为205×10=2050(元).第三场电影的票房收入为310×10=3100(元).用含x的式子表示y为y=10x,y随x的增大而增大.[设计意图]通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20 cm,30cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)102030圆面积S(cm2)(2)S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)102030圆面积S(cm2)31412562826(2)S=πr2.圆的半径越大,它的面积就越大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题:用10m长的绳子围成一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10m的一半,即5m.若矩形一边长为3m,则它的邻边长为5-3=2(m).若矩形一边长为3.5m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4m,则它的邻边长为5-4=1(m).若矩形一边长为4.5m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.[设计意图]在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量. [设计意图]通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.问题讲解在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):下图是某地一天的气温变化图象,任意给出这天中的某一时刻t,你能说出这一时刻的气温T吗?这一问题中涉及哪几个量?它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认.问题(2):弹簧原长22cm,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg0123456y/cm2222.52323.52424.525在这个问题中变化的量是什么?不变化的量是什么?学生讨论发现:弹簧的原长不变,为22cm,弹簧伸长的长度随着物体质量的变化而变化.因此,弹簧的总长=原长+伸长的长度.问题(3):你能举出生活中类似的例子吗?可以小组讨论.学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.[设计意图]在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.[知识拓展](1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=πr2,其中常量是π.3.例题讲解(补充)若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.〔解析〕根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V Rπ(补充)写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.〔解析〕先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.[设计意图]通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.1.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y(元)与购买支数x(支)的关系式是y=4x,∴变量为x,y,常量为4.答案:y=4x x,y42.在圆的周长公式C=2πR中,下列说法正确的是()A.π,R是变量,2是常量B.R是变量,C,2,π是常量C.C是变量,2,π,R是常量D.C,R是变量,2,π是常量解析:∵C=2πR,∴变量为C,R,常量为2,π.故选D.3.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是S=h;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S=h,∴变量为S,h,常量为.(2)∵β=90-α,∴变量为β,α,常量为-1,90.4.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?解:根据圆的面积公式S=πr2,得r=,面积为10cm2的圆半径r=≈1.78(cm).面积为20cm2的圆半径r=≈2.52(cm).用圆面积S的式子表示圆半径r的关系式为r=.第1课时1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2一、教材作业【必做题】教材第71页练习.【选做题】教材第81页习题19.1第1,2题.二、课后作业【基础巩固】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+503.(2015·临沂中考)已知甲、乙两地相距20千米,汽车从甲地运输匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数关系式是()A.t=20vB.t=C.t=D.t=4.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q(升)与行驶时间t(小时)的关系式是.6.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车离乙地的距离s(千米).【能力提升】7.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份1234…价钱/元…x与y之间的关系式是.8.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为y=,其中常量是,y和x都是量.9.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为.【拓展探究】10.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.【答案与解析】1.A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.B(解析:根据时间=,有t=.故选B.)4.y=30x,y(解析:由长方形的面积=长×宽进行求解.)5.Q=40-5t(解析:根据剩余油量=总油量-已用油量进行求解.)6.解:(1)W=(n-2)×180°,变量为W,n;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.7.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)8.500-5x500,-5变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.y=23-x10.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把π看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.练习(教材第71页)解:(1)变量为x,y;常量为4.(2)变量为t,w;常量为0.2,30.(3)变量为r,C;常量为π.(4)变量为x,y;常量为10.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,1642~1727,英国科学家)的《自然哲学的数学原理》中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried Wilhelm Leibniz,1646~1716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”.1718年,瑞士数学家约翰·贝努利(John Bernoulli,1667~1748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,1707~1783,被称为历史上最“多产”的数学家)将约翰·贝努利的思想进一步解析化,他在《无限小分析引论》中将函数定义为:“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式”,欧拉的函数定义在18世纪后期占据了统治地位.我国“函数”一词,是《代数积拾级》中首先使用的.这本书把函数定义为:“凡此变数中含彼变数,则此为彼之函数”.这里的“函”指包含的意思.这个定义相当于欧拉的解析表达式定义:在一个式中“包含”着变量x,那么这个式子就是x的函数.函数这个概念已成为数学中最重要的几个概念之一,而变量这个词却逐渐被新的词所代替.第课时初步了解函数三种表示方法以及三种表示方法的优缺点,会根据具体情况选择适当方法表示函数.1.经历回顾思考,训练提高归纳总结能力.2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力.通过分析具体的问题中的一个变量的值对应着另一个变量的值,体会到函数是刻画变量之间的对应关系的数学模型.【重点】函数表示方法的应用.【难点】确定实际问题中函数自变量的取值范围.【教师准备】带有网格的纸,三角板.【学生准备】三角板,铅笔,带有网格的纸.导入一:你听说过“两个铁球同时落地”的故事吗?站在比萨斜塔顶部,让两个铁球自由下落,在铁球下落的过程中,随着时间的变化,铁球下落的速度是怎样变化的?铁球下落的速度v随下落的时间t的变化而变化.这就是我们今天要继续学习的内容.[设计意图]结合学生熟悉的故事导入新课,激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.导入二:1.有根弹簧原长10cm,每挂1kg重物,弹簧伸长0.5cm,设所挂的重物为m kg,受力后弹簧的长度为l cm,根据上述信息完成下表:m/kg01233.5…l/cm受力后弹簧的长度l是所挂重物质量m的函数吗?2.有一辆出租车,前3公里内的起步价为8元,每超过1公里收2元,有一位乘客坐了t(t>3)公里,他付费y 元,用含x的式子表示y.3.如图所示的是某地某一天的气温变化图:学生自由思考,自由发言.上面用图、表格或关系式表达的问题反映了两个变量之间的关系.[设计意图]出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题,从而激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.1.自变量、函数和函数值思路一[过渡语]前面我们学习了变量与常量,下面我们一起来思考下面的问题:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52201013.71学生通过观察发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.引导学生归纳:上面用图或表格表达的问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.教师总结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.学生分析上面两个问题中的自变量和函数,并交流.。
人教版八年级数学册下第十九章;一次函数单元教学设计
(一)教学重难点
1.重点:一次函数的定义、图像与性质,以及一次函数在实际问题中的应用。
2.难点:
-斜率k和截距b对一次函数图像的影响,特别是如何通过斜率判断图像的走势。
-将实际问题抽象为一次函数模型,建立数学模型解决实际问题。
-理解一次函数与线性方程、不等式之间的关系,并能灵活运用。
9.教学反思:在教学过程中,教师应不断反思自己的教学方法和手段,根据学生的实际情况调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:教师以生活中的一次函数实例作为导入,例如“同学们,你们坐出租车的时候,有没有注意过计费方式?其实,出租车计费就涉及到了我们今天要学习的一次函数。”通过这个实例,让学生感受到数学与生活的紧密联系。
7.评价与反馈:在教学过程中,教师应及时关注学生的学习情况,通过提问、练习、讨论等方式,了解学生的掌握程度,给予针对性的指导和鼓励。
8.课后作业设计:课后作业应注重巩固基础知识,同时兼顾拓展提高。布置一定数量的基础题,确保学生掌握一次函数的基本概念和性质;适当布置一些综合题,培养学生的解题能力和创新意识。
2.提出问题:请同学们思考,一次函数在我们的生活中还有哪些应用?这个问题旨在引导学生关注一次函数在现实生活中的作用,激发学生学习兴趣。
3.过渡语:接下来,我们就一起走进一次函数的世界,探索它的奥秘。
(二)讲授新知
1.讲解一次函数的定义:教师以简洁明了的语言,向学生讲解一次函数的定义,即y=kx+b(k≠0),并解释其中k和b的含义。
1.学生对函数的概念理解尚不深入,需要通过具体的一次函数实例,帮助他们巩固和拓展对函数的认识。
2.学生在图像识别和性质分析方面存在一定难度,特别是斜率k和截距b对图像影响的理解,需要教师耐心引导和实例演示。
第19章一次函数全章教案
第十九章一次函数一、课程学习目标1、以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型。
2、综合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法、图像法),能利用图像数形结合的分析简单的函数关系。
3、理解正比例函数和一次函数的概念,会画它们的图像,能结合图像讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题4、通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系5、通过讨论课题学习选择最佳方案的问题,提高综合运用所学函数知识分析和解决实际问题的能力。
学情分析从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着快速发展,但同时。
这一阶段的学生好动,注意力易分散,爱发表见解。
希望得到老师的关注或表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上,另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性,在教学中注意发展学生数形结合的思想。
二、本章知识结构框图三、重点和难点重点:初步认识函数概念,并具体讨论最简单的初等函数——一次函数难点:函数的意义和函数的表示方法的了解 四、教学建议1、反映函数概念的实际背景,渗透“变化与对应”的思想2、从特殊到一般的认识一次函数3、注重联系实际问题,体现数学模型的作用4、重视数形结合的研究方法5、加强对知识之间内在联系的认识,体会函数观点的统领作用6、注重对基础知识和基本技能的掌握,提高基本能力五、课时安排19.1 函数 6课时19.2 一次函数 8课时19.3 课题学习 选择方案 3课时数学活动、章末小结 3课时某些现实问题中相互联系的变量之间建立数学模型函数 一次函数y =kx +b (k ≠0)图象:一条直线性质: k >0,y 随x 的增大而增大; k <0,y 随x 的增大而减小.应用 一元一次方程一元一次不等式二元一次方程组 再认识19.1.1变量与函数(1)教学目标:知识技能目标1.掌握常量和变量、自变量和因变量(函数)基本概念;2.了解表示函数关系的三种方法:解析法、列表法、图象法,并会用解析法表示数量关系.过程性目标1.通过实际问题,引导学生直观感知,领悟函数基本概念的意义;2.引导学生联系代数式和方程的相关知识,继续探索数量关系,增强数学建模意识,列出函数关系式.教学重点:在运动变化过程中,能对正确识别常量、变量教学难点:运动变化中,量与量之间对应关系的理解学情分析:教学准备:多媒体课件教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程:一、创设情境问题1 如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?解 (1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解随着存期x的增长,相应的年利率y也随着增长.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量.上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x的函数.表示函数关系的方法通常有三种: (1)解析法, (2)列表法, (3)图象法,问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量(constant),如问题3中的300 000,问题4中的π等.三、实践应用例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?解 (1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;四、小结1.函数概念包含:2.变量;做常量.自变量,因变量.3.函数关系三种表示方法:(1)解析法; (2)列表法;(3)图象法.五、作业布置教材P74 练习第1,2题板书设计19.1.1变量与函数(1)创设情境知识点例题六、课后反思19.1.1变量与函数(2)教学目标:知识技能目标1.掌握根据函数关系式直观得到自变量取值范围,以及实际背景对自变量取值的限制;2.掌握根据函数自变量的值求对应的函数值.过程性目标1.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识; 2.联系求代数式的值的知识,探索求函数值的方法.教学重点:函数概念的形成和理解教学难点:函数概念的本质----对应关系的理解学情分析:教学准备:多媒体课件教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程一、创设情境问题1 填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,试写出y与x的函数关系式.解如图能发现涂黑的格子成一条直线.函数关系式:y=10-x.问题2 试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解 y 与x 的函数关系式:y =180-2x .二、探究归纳思考 在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?解:当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4. 上面例子中的函数,都是利用解析法表示的,又例如:s =60t , S =πR 2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,不必须使实际问题有意义.例如,函数解析式S =πR 2中自变量R 的取值范围是全体实数,如果式子表示圆面积S 与圆半径R 的关系,那么自变量R 的取值范围就应该是R >0.对于函数 y =x (30-x ),当自变量x =5时,对应的函数y 的值是y =5×(30-5)=5×25=125.125叫做这个函数当x =5时的函数值.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2)21+=x y ; (3)2-=x y . 解 (1)x 取值范围是任意实数;(2)x 的取值范围是x ≠-2;(3)x 的取值范围是x ≥2.例2 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ;解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;四、小结1.求函数自变量取值范围的两个依据:2.求函数值的方法五、作业布置教材P81 第1,2题板书设计19.1.1变量与函数(2)创设情境知识点例题六、课后反思19.1.2函数的图象(1)教学目标:知识技能目标1.掌握用描点法画出一些简单函数的图象;2.理解解析法和图象法表示函数关系的相互转换.过程性目标1.结合实际问题,经历探索用图象表示函数的过程;2.通过学生自己动手,体会用描点法画函数的图象的步骤.教学重点:了解画函数图像的一般步骤,会画出简单函数的图像教学难点:函数关系式与函数图像之间的对应关系学情分析:教学准备:多媒体课件教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程一、创设情境问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.二、探究归纳先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?分析图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间t(时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t=10时,对应的函数值T=2.气温曲线上每一个点的坐标(t,T),表示时间为t时的气温是T.一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.三、实践应用例画出函数y=x+1的图象.解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如下左图所示.通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如上右图所示.这里画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.四、练习、小结由函数解析式画函数图象,一般按下列步骤进行:1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.五、作业布置教材P79 练习第1,2题板书设计19.1.2函数的图像(1)创设情境知识点例题六、课后反思19.1.2函数的图象(2)教学目标:知识技能目标1.使学生掌握用描点法画实际问题的函数图象;2.使学生能从图形中分析变量的相互关系,寻找对应的现实情境,预测变化趋势等问题.过程性目标;通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学重点:认清函数的不同表示方法,知道不同方法各自的优缺点能根据具体情况选用适当方法教学难点:函数表示方法的应用学情分析:教学准备:多媒体课件教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程一、创设情境问题王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).问 图中有一个直角坐标系,它的横轴(x 轴)和纵轴(y 轴)各表示什么? 答 横轴(x 轴)表示两人爬山所用时间,纵轴(y 轴)表示两人离开山脚的距离.问 如图,线段上有一点P ,则P 的坐标是多少?表示的实际意义是什么? 答 P 的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米. 我们能否从图象中看出其它信息呢?二、探究归纳看上面问题的图,回答下列问题:(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?解 (1)小强让爷爷先上60米;(2)山顶离山脚的距离有300米,小强先爬上山顶.三、实践应用例1 王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式x x y 58512+-=击球,球正好进洞.其中,y (m)是球的飞行高度,x (m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少?球的起点与洞之间的距离是多少?解 (1)列表如下:在直角坐标系中,描点、连线,便可得到这个函数的大致图象.(2)高尔夫球的最大飞行高度是3.2 m,球的起点与洞之间的距离是8 m.四、小结1.画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以取得不一致;2.在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.五、作业布置教材P82 第6、9题板书设计19.1.2函数的图像(2)创设情境知识点例题六、课后反思19.2.1正比例函数教学目标:1、认识目标:接受正比例函数的概念并发现正比例函数的性质。
第19章《一次函数》全章教案(共12份)
第二学期初二数学第19章单元计划授课时间: 年 月 日 第 周 星 期 课时序号 一、课前导学:学生自学课本71-73页内容,并完成下列问题【问题一】:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时.2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含t 的式子表示s ,s=_____________ ,t 的取值范围是 .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程. 【问题二】:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x 张,票房收入y 元.•怎样用含x 的式子表示y ?2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含x 的式子表示y ,y=_________________ ,x 的取值范围是这个问题反映了票房收入_________随售票张数_________的变化过程. 【问题三】:圆的面积和它的半径之间的关系是什么? 1中国人口数统计表 年份 人口数/亿 1984 10.34 1989 11.06 1994 11.76 201013.712.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含r 的式子表示s .s= ______________ ,r 的取值范围是 这个问题反映了___ _ 随_ __的变化过程.【问题四】:用10m 长的绳子围成矩形,试改变矩形一边的长度,观察矩形的面积怎样变化. 1.请同学们根据题意填写下表:一边长x (m ) 1 2 3 4 x 面积s (m 2)2.在以上这个过程中,变化的量是_____________.不变化的量是__________. 3.试用含x 的式子表示s ,s =_______________ ,x 的取值范围是 这个问题反映了矩形的___ _ 随_ __的变化过程. 【归纳】:在一个变化过程中,我们称数值发生变化的量为________; 在一个变化过程中,我们称数值始终不变的量为________; 二、合作、交流、展示: (一 )【交流1】1.在前面研究的每个问题中,都出现了______个变量,它们之间是相互影响,相互制约的. 2.同一个问题中的变量之间有什么联系?归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有________确定的值与其对应.3.其实,在一些用图或表格表达的问题中,也能看到两个变量间有上述这样的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中图上点的横坐标x 表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x 的每一个确定的值,y 都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数 可以记作两个变量x 与y ,•对于表中每一个确定的年 份(x ),都对应着一个确定的人口数(y )吗?中国人口数统计表 (二 )【交流2】归纳概念一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x•的每一个确定的值,y•都有唯一确定的值与其对应,•那么我们就说x•是_________,y 是x 的________.如果当x=a 时y=b ,那么b•叫做当自变量的值为a 时的_________. 三、巩固与应用1.说出上述四个问题中的函数、自变量;2.课本第71页练习; 四、小结: 本节课学了哪些概念?五、作业:必做:P81练习T1、2. 选做:《全效》或《点睛》相应练习.授课时间: 年 月 日 第 周 星 期 课时序号 一、课前导学:学生自学课本73-74页内容,并完成下列问题 1.在一个变化过程中,我们称数值发生变化的量为________; 在一个变化过程中,我们称数值始终不变的量为________。
【人教版】数学八下:第19章《一次函数》全章名师说课稿
【人教版】数学八下:第19章《一次函数》全章名师说课稿一. 教材分析人教版数学八下第19章《一次函数》是学生在学习了初中数学基础知识后,进一步深入研究函数的性质和应用的重要章节。
本章主要介绍了一次函数的定义、性质、图像以及一次函数在实际生活中的应用。
通过本章的学习,使学生能够理解和掌握一次函数的基本概念,会绘制一次函数的图像,能够运用一次函数解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了实数、代数式、方程等基础知识,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于一次函数的图像和实际应用,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解一次函数的定义,掌握一次函数的性质,学会绘制一次函数的图像,并能够运用一次函数解决实际问题。
2.过程与方法目标:通过观察、实验、探究等方法,使学生能够自主学习,培养学生的发现问题、分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生能够感受数学与生活的紧密联系。
四. 说教学重难点1.教学重点:一次函数的定义、性质、图像以及一次函数在实际生活中的应用。
2.教学难点:一次函数图像的绘制方法和一次函数解决实际问题的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,培养学生的发现问题、分析问题、解决问题的能力。
2.教学手段:利用多媒体课件、教学挂图、练习题等,辅助教学,提高教学效果。
六. 说教学过程1.导入:通过生活实例,引导学生思考数学与生活的联系,激发学生的学习兴趣。
2.新课导入:介绍一次函数的定义和性质,引导学生通过实验、观察、讨论等方式,理解一次函数的图像特点。
3.实例分析:通过实际问题,引导学生运用一次函数解决问题,巩固所学知识。
4.练习与反馈:布置相关练习题,及时巩固所学知识,并对学生的学习情况进行反馈。
人教版八年级数学教案:第十九章一次函数(教案)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y = kx + b的表达式,其中k为斜率,b为截距。它是描述两个变量线性关系的重要数学工具,广泛应用于自然科学和社会科学领域。
2.案例分析:接下来,我们来看一个具体的案例。假设小明的利润与他卖出的书本数量成正比,每卖出一本书利润为5元。我们,y为获得的利润。
1.加强对重点难点的讲解,通过更多具体的例子和图形演示,帮助学生深入理解一次函数的性质和图像变换。
2.在实践活动和小组讨论中,更加关注学生的参与度和思考过程,引导他们围绕主题进行深入探讨,鼓励他们提出自己的观点和想法。
3.注重培养学生的独立思考能力,鼓励他们在学习过程中发现问题、解决问题,从而提高他们对一次函数知识的运用能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.增强学生的数学建模意识,将一次函数应用于解决实际问题,使学生能够运用数学知识构建模型,解决现实生活中的问题。
4.培养学生的数据分析能力,通过对一次函数数据的处理和分析,让学生掌握数据处理的基本方法,形成数据驱动的思维习惯。
5.激发学生的数学探究精神,鼓励学生在一次函数的学习过程中提出问题、探索规律,培养创新意识和合作交流能力。
人教版八年级数学第19章一次函数复习课教学设计
2.培养学生的逻辑思维能力和批判性思维,提高学生的数学思维能力。
-在讲解与练习中,鼓励学生多角度思考问题,培养逻辑推理和批判性思维。
-引导学生通过反思、总结,形成自己的学习方法,培养独立思考和问题解决的能力。
3.培养学生的团队协作精神,学会尊重他人,发展良好的个性品质。
2.能够解决实际问题中的一次函数模型,运用一次函数的知识解释生活现象。
-学生通过实例分析,学会构建一次函数模型解决实际应用问题,如距离与速度的关系、成本与产量的关系等。
-学会在坐标轴上准确地绘制一次函数图像,并能够通过图像分析函数值的变化趋势。
3.掌握一次函数与其他数学知识(如不等式、坐标系等)的综合运用,增强解决问题的综合能力。
-例如:判断下列各题中,哪些是一次函数的图像?请给出理由。
2.实际问题应用题:布置一些与生活实际相关的一次函数应用题,让学生学会将理论知识运用到实际问题中,提高解决问题的能力。
-例如:某商店进行促销活动,每购买100元商品可获赠20元优惠券,请用一次函数表示购买商品原价x(元)与实际支付y(元)之间的关系。
-教学过程中,注重差异化教学,关注每一个学生的个体发展,提供不同层次的教学资源,使所有学生都能在原有基础上得到提高。
-创设互动、轻松的课堂氛围,鼓励学生敢于表达、勇于尝试,充分调动学生的积极性。
3.教学评价与反馈:
-采用多元化的评价方式,包括课堂表现、作业完成情况、小组合作、测验成绩等,全面评估学生的学习效果。
-一次函数图像与解析式之间的关系理解,特别是斜率k和截距b对图像的影响。
-一次函数在实际问题中的应用,如何构建数学模型解决实际问题。
-一次函数与其他数学知识(如不等式、坐标系等)的综合运用。
八年级下第19章一次函数全章教案_新人教版
八下人教版十九章一次函数教案第十九章一次函数单元备课一次函数单元名称单元教学目标单元知识结构教学重点:对于一次函数与正比例函数概念的理解.重点、难点教学难点:根据具体条件求一次函数与正比例函数的解析式课时划分第19章一次函数19.1变量19.1.1变量与函数授课时间:知识与技能:理解变量与函数的概念以及相互之间的关系。
增强对变量的理解过程与方法:师生互动,讲练结合情感态度世界观:渗透事物是运动的,运动是有规律的辨证思想重点:变量与常量难点:对变量的判断教学说明:本节渗透找变量之间的简单关系,试列简单关系式教学设计:引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,s.新课:问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x 张,票房收入为y元,怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。
记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
人教版数学八年级下册第19章一次函数(教案)
一、教学内容
本节课依据人教版数学八年级下册第19章“一次函数”进行设计。教学内容主要包括以下几部分:
1.一次函数的定义:介绍一次函数的概念,使学生理解一次函数的表达式y=kx+b(k≠0,k、b是常数)的含义。
2.一次函数的图像:探讨一次函数的图像特点,包括直线、斜率和截距,以及图像与k、b的关系。
4.培养学生的几何直观能力:通过一次函数图像的绘制和分析,提高学生对几何图形的认识,培养几何直观素养。
本节课将着重关注这些核心素养的培养,使学生能够在掌握一次函数知识的同时,提升综合运用数学知识解决问题的能力。
三、教学难点与重点
1.教学重点
-一次函数的定义:重点讲解一次函数表达式y=kx+b(k≠0,k、b是常数)的意义,使学生理解k、b分别代表斜率和截距。
五、教学反思
在这次一次函数的教学中,我注意到学生们对一次函数的定义和图像绘制掌握得相对较好,但在理解斜率和截距的实际意义以及一次函数在解决具体问题中的应用上,还存在一些困难。这让我意识到,在今后的教学中,我需要从以下几个方面进行改进和加强。
首先,针对斜率和截距的理解,我可以设计更多的直观演示和实际案例,让学生能够更直观地感受到斜率和截距在图像上的具体表现。比如,可以让学生们通过动手操作,改变斜率和截距的值,观察图像的变化,从而加深对这两个概念的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b种数学模型。
2.案例分析:接下来,我们来看一个具体的案例。假设苹果的价格是每千克2元,那么购买x千克的苹果需要支付y元,可以表示为一次函数y=2x。这个案例展示了如何利用一次函数解决实际问题。
人教版八年级数学下册第19章一次函数(教案)
(4)一次函数与其他函数的关系:了解一次函数与正比例函数、反比例函数的联系与区别;
举例:对比y=kx和y=k/x的图像特点,阐述一次函数与正比例函数、反比例函数的关系。
2.教学难点
(1)一次函数图像的变换:理解平移、缩放等变换对一次函数图像的影响;
3.在探究一次函数性质的过程中,锻炼学生的数据分析、数学运算能力,提升数学核心素养;
4.深化学生对一次函数与其他函数关系的理解,培养他们数学知识的整合与应用能力,增强综合素质。
具体内容包括:
(1)让学生在实际问题中运用一次函数,学会从数学角度分析问题,提高数学抽象和逻辑推理能力;
(2)引导学生通过观察、分析一次函数图像,培养直观想象力和数学建模素养;
(4)一次函数与坐标轴的交点:求解一次函数与坐标轴的交点;
难点解析:学生可能在求解过程中忽视k=0的特殊情况,需要强调并举例说明;
举例:求解y=2x+1与x轴、y轴的交点,解释当k=0时,函数图像与y轴的交点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人同时出发,速度不同,但最终在某一点相遇的情况?”这个问题与我们将要学习的一次函数密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数的奥秘。
另数模型。这说明我们在教授数学应用方面还需要加强。在接下来的教学中,我会着重培养同学们的数学建模能力,让他们学会从实际问题中抽象出数学模型,并用一次函数来解决。
此外,小组讨论环节也让我看到了同学们的积极参与和合作精神。他们在讨论一次函数在实际生活中的应用时,提出了很多有趣的观点和实例。这说明同学们已经能够将所学知识应用到实际情境中,这是值得鼓励的。但同时,我也注意到部分同学在讨论中较为被动,今后我会更加关注这部分同学,鼓励他们积极参与,提高他们的自信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19章一次函数全章教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第十九章一次函数一、教学目标1.以探索实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型;2.结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合地分析简单的函数关系;3.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题;4.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的认识,构建和发展相互联系的知识体系。
二、本章知识结构框图三、教材教学建议1、反映函数概念的实际背景,渗透“变化与对应”的思想在建立和运用函数这种数学模型的过程之中,“变化与对应”的思想是重要的基础。
变化与对应的思想包括以下两个基本意思:1.世界是变化的,客观事物中存在大量的变量;2.在同一个变化过程中,变量之间不是孤立的,而是相互联系的,一个变量的变化会引起其他变量的相应变化,这些变化之间存在对应关系。
函数是数量化地表达变化与对应思想的数学工具,变化规律表现在变量(自变量与函数)之间的对应关系上,函数通过数或形定量地描述这种对应关系。
作为关于函数的初始教学,应有意识地体现函数的本质,这正是本章内容中蕴涵的基本思想。
对于运动变化与联系对应的思想的认识也是需要逐步理解的,所以教学中应注意在不同阶段对这一思想的渗透介绍要有不同的做法和要求,要逐步深化,要从具体到抽象,从特殊到一般地引导学生认识它。
2、从特殊到一般地认识一次函数人们认识事物往往经历“从特殊到一般”的过程,教材对本章重点内容的安排正是按照这样的过程展现的。
在分析具体问题时,教师应注意引导学生利用事物之间的联系从特殊到一般地认识问题。
用这种处理方式能够展示解决问题的一种基本策略,即“先特殊化、简单化,再一般化、复杂化”的做法。
从讨论正比例函数开始。
正比例函数是特殊的一次函数,即y=kx+b中b=0的类型。
对正比例函数的定义、图象和性质的讨论,可以为讨论一般的一次函数奠定基础。
关于正比例函数的图象是一条直线,教材是从特殊到一般用不完全归纳法给出的。
由画y=2x的图象归纳出y=kx(k>0)的图象(特殊到一般),讨论一次函数的图象时,教材先对比函数y=kx+b和y=kx的区别,由直线y=kx的平移变换过渡到直线y=kx+b,然后再得出由两点确定直线的一般方法。
3、注重联系实际问题,体现数学建模的作用世界是运动变化的,函数是研究运动变化的重要数学模型,它来源于客观实际又服务于客观实际。
现实中存在大量问题涉及具有简单函数关系的变量,其中许多问题中的数量关系是一次(也称线性)的,这为学习本章内容提供了大量的现实素材。
在教材中,实际问题情境多次出现,其作用主要体现在以下两方面:(1).引入或解释函数等概念。
例如,通过候鸟飞行问题引入正比例函数,通过登山问题引入一次函数,通过一系列具体例子解释变量间的对应关系等,这样做的目的是借助直观的、具体的事物为理解抽象的内容服务。
(2).作为函数的应用举例。
它们都可以体现数学建摸思想,反映函数的广泛应用性。
4、重视数形结合的研究方法本章所讨论的对象是函数,函数的表示法之一是图象法,即通过坐标系中的曲线上点的坐标反映变量之间的对应关系。
这种表示方法的产生,将数量关系直观化、形象化,提供了用数形结合研究问题的重要方法,这在数学发展中具有重要地位。
结合本章内容可以对数形结合的方法顺势自然地理解,并逐步加以灵活运用,发挥从数和形两个方面共同分析解决问题的优势。
教学过程中,在函数解析式与图象的结合方面应有细致的安排设计,注意两者的互补作用,体现两者的联系,突出两者间的转化对分析解决问题的特殊作用。
学习了本章之后,不仅要知道有关函数的图象,更要体验图象的作用和数形结合的方法。
5、加强对知识之间内在联系的认识,体会函数观点的统领作用本章最后的用函数观点看方程(组)与不等式,从函数的角度对前面学习过的一元一次方程、一元一次不等式和二元一次方程组重新进行了分析,这种再认识不是原来水平上的回顾复习,而是站在更高的起点上的动态分析。
加深对已经学习过的方程(组)及不等式内容的认识,构建和发展相互联系的知识体系。
四、本章课时安排课时安排19.1 函数 5课时19.2 一次函数 8课时19.3 课题学习选择方案 3课时数学活动、章末小结 3课19.1.1变量与函数(1)教学目标:(一)知识与技能目标:理解变量与函数的概念以及相互之间的关系(二)过程与方法目标:对变量的理解(三)情感态度与价值观目标:渗透事物是运动的,运动是有规律的辨证思想教学重点:变量与常量教学难点:对变量的判断教学准备:多媒体电脑,绳圈教学方法:本节渗透找变量之间的简单关系,试列简单关系式教学设计:一、情境引入:信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.t/m 1 2 3 4 5s/km二、新课:问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元设一场电影受出票x 张,票房收入为y元,怎样用含x的式子表示y(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢怎样用含圆面积S的式子表示圆的半径r(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。
记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?(1)用总长为60m的篱笆围成矩形场地,求矩形的面积S(m2)与一边长x(m)之间的关系式;(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:1.分别指出下列各式中的常量与变量.(1) 圆的面积公式S=πr2;(2) 正方形的l=4a;(3) 大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.2.写出下列问题的关系式,并指出不、常量和变量.(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与n之间的关系式.思考:怎样列变量之间的关系式?小结:变量与常量布置作业:基础训练册19.1.1变量与函数(2)教学目标:(一)知识与技能:了解常量与变量的含义,了解自变量与函数的意义。
(二)过程与方法:通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力。
(三)情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.教学重点与难点重点:函数概念的形成过程。
难点:正确理解函数的概念。
教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程:一、创设情境问题1 如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少最低气温是多少解 (1)这天的6时、10时和14时的气温分别为-1℃、2℃、5℃;(2)这一天中,最高气温是5℃.最低气温是-4℃;从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其它类似的数量关系呢?二、探究归纳问题2 银行对各种不同的存款方式都规定了相应的利率,下表是2002年7月中国工商银行为“整存整取”的存款方式规定的年利率:观察上表,说说随着存期x的增长,相应的年利率y是如何变化的.解随着存期x的增长,相应的年利率y也随着增长.在上面的问题中,我们研究了一些数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,特别值得注意的是出现了一些数值会发生变化的量.例如问题1中,刻画气温变化规律的量是时间t和气温T,气温T随着时间t的变化而变化,它们都会取不同的数值.像这样在某一变化过程中,可以取不同数值的量,叫做变量.上面各个问题中,都出现了两个变量,它们互相依赖,密切相关.一般地,如果在一个变化过程中,有两个变量,例如x和y,对于x的每一个值,y 都有惟一的值与之对应,我们就说x是自变量,y是因变量,此时也称y是x 的函数.表示函数关系的方法通常有三种: (1)解析法, (2)列表法, (3)图象法,问题的研究过程中,还有一种量,它的取值始终保持不变,我们称之为常量,如问题3中的300 000,问题4中的π等.三、实践应用例1 下表是某市2000年统计的该市男学生各年龄组的平均身高.(1)从表中你能看出该市14岁的男学生的平均身高是多少吗?(2)该市男学生的平均身高从哪一岁开始迅速增加?解 (1)平均身高是146.1cm;(2)约从14岁开始身高增加特别迅速;四、小结1.函数概念包含:2.变量;做常量.自变量,函数.3.函数关系三种表示方法:(1)解析法; (2)列表法;(3)图象法.五、作业布置教科书P.71,习题19.1第1,2题。
六、课后反思19.1.1变量与函数(3)教学目标:(一)知识与技能:理解掌握函数的概念,能根据所给条件写出简单的函数关系式.(二)过程与方法:经历从实际问题中得到函数关系式的过程,发展学生的数学应用能力.(三)情感态度与价值观:体验生活中数学的应用价值,感受数学与人类生活的密切联系,激学生学数学、用数学的兴趣.教学重点与难点理解函数概念,并能根据具体问题得出相应的函数关系式.教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程一、提出问题1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 O 101y显示的数y是输入的数x的函数吗为什么2.在计算器上按照下面的程序进行操作:下表中的x与y是输入的5个数与相应的计算结果.x 1 2 3 0 -1y 3 5 7 1 -1问:所按的第三、四两个键是哪个两个键y是x的函数吗如果是,写出它的表达式(用含x的式子表示y).二、探究新知一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.问题1:写出表示y与x的函数关系的式子.问题2:指出自变量x的取值范围.问题3:汽车行驶200km时,油箱中还有多少汽油?学生分组讨论、交流、说出各自得到的结论,最后师生共同归纳,得出:(1)y与x的函数关系式是y=50-0.1x.(2)自变量x 的取值范围是O≤x≤500.(3)汽车行驶200km 时,油箱中还有30L 汽油. 教师提示:确定自变量的取值范围时,不仅要考虑到函数关系式必须有意义,而且还要注意问题的实际意义.三、实践应用例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2)21+=x y ; (3)2-=x y . 解 (1)x 取值范围是任意实数;(2)x 的取值范围是x ≠-2;(3)x 的取值范围是x ≥2.例2 求下列函数当x = 2时的函数值:(1)y = 2x -5 ; (2)y =-3x 2 ;解 (1)当x = 2时,y = 2×2-5 =-1;(2)当x = 2时,y =-3×22 =-12;四、小结1.求函数自变量取值范围的两个依据:2.求函数值的方法五、作业布置教科书第74~75页习题19.1第3、4题.六、课后反思19.1.2函数的图象(1)教学目标:(一)知识与技能:理解函数图象的意义.会对实际生活中的例子用两变量之间关系的图象进行描述表达,初步认识函数与图象的对应关系.(二)过程与方法:学会观察图象、识别图象及理解图象所表示的含义.了解图象的意义及其与实际轨道之间的关系和区别.(三)情感态度与价值观:渗透数形结合思想,体会到数学来源于生活,又应用于生活.培养学生的团结协作精神、探索精神和合作交流的能力.教学重点与难点:把实际问题转化为函数图象,再根据图象来研究实际问题教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程:一、创设情境问题1 在前面,我们曾经从如图所示的气温曲线上获得许多信息,回答了一些问题.现在让我们来回顾一下.二、探究归纳先考虑一个简单的问题:你是如何从图上找到各个时刻的气温的?分析图中,有一个直角坐标系,它的横轴是t轴,表示时间;它的纵轴是T轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间t(时)的函数关系.例如,上午10时的气温是2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10,2).实质上也就是说,当t=10时,对应的函数值T=2.气温曲线上每一个点的坐标(t,T),表示时间为t时的气温是T.一般来说,函数的图象是由直角坐标系中的一系列点组成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.例下面的图象反映的过程是:小明从家里出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:1.菜地离小明家多远小明走到菜地用了多少时间2.小明给菜地浇水用了多少时间?3.菜地离玉米地多远小明从菜地走到玉米地用了多少时间4.小明给玉米地锄草用了多少时间?5.玉米地离小明家多远?小明从玉米地走回家的平均速度是多少三、实践应用例画出函数y=x+1的图象.解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如下左图所示.通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如上右图所示.这里画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.四、小结由函数解析式画函数图象,一般按下列步骤进行:1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来.描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.五、作业布置教材P79 练习第1,2题,习题19.1第9题.六、课后反思19.1.2函数的图象(2)教学目标:(一)知识与技能:学会用描点法画出简单函数的图象,初步了解函数关系式与函数图象之间的关系.(二)过程与方法:渗透数形结合思想,让学生学会函数图象的基本画法.(三)情感态度与价值观:引导学生积极参与实验与探索活动,体验探索的快乐并从中获得成功的体验.通过细心画图,培养严谨细致的学习作风.教学重点与难点重点:了解画函数图象的一般步骤,会画出简单函数的图象.难点:函数关系式与函数图象之间的对应关系.教学方法:创设情境—观察思考—分析讨论—归纳总结—得出结论教学过程一、创设情境问题王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).问图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?答 横轴(x 轴)表示两人爬山所用时间,纵轴(y 轴)表示两人离开山脚的距离.问 如图,线段上有一点P ,则P 的坐标是多少表示的实际意义是什么答 P 的坐标是(3,90).表示小强爬山3分后,离开山脚的距离90米. 我们能否从图象中看出其它信息呢?二、探究归纳看上面问题的图,回答下列问题:(1)小强让爷爷先上多少米?(2)山顶离山脚的距离有多少米谁先爬上山顶解 (1)小强让爷爷先上60米;(2)山顶离山脚的距离有300米,小强先爬上山顶.三、实践应用例1 王强在电脑上进行高尔夫球的模拟练习,在某处按函数关系式x x y 58512+-=击球,球正好进洞.其中,y (m)是球的飞行高度,x (m)是球飞出的水平距离.(1)试画出高尔夫球飞行的路线;(2)从图象上看,高尔夫球的最大飞行高度是多少球的起点与洞之间的距离是多少解 (1)列表如下:在直角坐标系中,描点、连线,便可得到这个函数的大致图象.(2)高尔夫球的最大飞行高度是3.2 m,球的起点与洞之间的距离是8 m.四、小结1.画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以取得不一致;2.在观察实际问题的图象时,先从两坐标轴表示的实际意义得到点的坐标的实际意义.然后观察图形,分析两变量的相互关系,给合题意寻找对应的现实情境.五、作业布置教材P82 第6、9题六、课后反思19.2.1正比例函数教学目标:知识与技能:通过对不同背景下函数模型(关系式)的比较,接受正比例函数的概念.过程与方法:在用描点法画正比例函数图象的过程中发现正比例函数的性质.情感态度与价值观:利用发现的性质简便地画出正比例函数的图象,初步体验函数的一般思路与方法.教学重点与难点重点:正确理解正比例函数的概念。